MAX16036PLB29+T [MAXIM]

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, 2 X 2 MM, LEAD FREE, MICRO, DFN-10;
MAX16036PLB29+T
型号: MAX16036PLB29+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, 2 X 2 MM, LEAD FREE, MICRO, DFN-10

信息通信管理
文件: 总20页 (文件大小:1559K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
General Description  
Features  
● Low 1.2V Operating Supply Voltage  
The MAX16033–MAX16040 supervisory circuits reduce  
the complexity and number of components required for  
power-supply monitoring and battery-control functions in  
microprocessor (μP) systems. The devices significantly  
improve system reliability and accuracy compared to other  
ICs or discrete components. The MAX16033–MAX16040  
provide μP reset, backup-battery switchover, power-fail  
warning, watchdog, and chip-enable gating features.  
● Precision Monitoring of 5.0V, 3.3V, 3.0V, and 2.5V  
Power-Supply Voltages  
● Independent Power-Fail Comparator  
● Debounced Manual-Reset Input  
● Watchdog Timer, 1.6s Timeout  
● Battery-On Output Indicator  
● Auxiliary User-Adjustable RESETIN  
● Low 13μA Quiescent Supply Current  
The MAX16033–MAX16040 operate from supply volt-  
ages up to 5.5V. The factory-set reset threshold volt-  
age ranges from 2.32V to 4.63V. The devices feature a  
manual-reset input (MAX16033/MAX16037), a watchdog  
timer input (MAX16034/MAX16038), a battery-on output  
(MAX16035/MAX16039), an auxiliary adjustable-reset  
input (MAX16036/MAX16040), and chip-enable gating  
(MAX16033–MAX16036). Each device includes a power-  
fail comparator and offers an active-low push-pull reset or  
an active-low open-drain reset.  
● Two Available Output Structures:  
Active-Low Push-Pull Reset  
Active-Low Open-Drain Reset  
● Active-Low Reset Valid Down to 1.2V  
● Power-Supply Transient Immunity  
● 140ms (min) Reset Timeout Period  
● Small 2mm x 2mm, 8-Pin and 10-Pin μDFN Paclages  
Ordering Information  
The MAX16033–MAX16040 are available in 2mm x 2mm,  
8-pin or 10-pin μDFN packages and are fully specified  
from -40°C to +85°C.  
PART*  
TEMP RANGE PIN-PACKAGE  
-40°C to +85°C 10 µDFN  
-40°C to +85°C 10 µDFN  
-40°C to +85°C 10 µDFN  
-40°C to +85°C 10 µDFN  
MAX16033LLB_ _+T  
MAX16033PLB_ _+T  
MAX16034LLB_ _+T  
MAX16034PLB_ _+T  
Applications  
● Portable/Battery-  
Powered Equipment  
● POS Equipment  
● Critical μP/μC Power  
Monitoring  
Controllers  
Computers  
● Fax Machines  
Industrial Control  
● Real-Time Clocks  
Intelligent Instrument  
*These parts offer a choice of reset threshold voltages. From  
the Reset Threshold Ranges table, insert the desired threshold  
voltage code in the blank to complete the part number. See the  
Selector Guide for a listing of device features.  
● Set-Top Boxes  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
Pin Configurations and Typical Operating Circuit appear at  
end of data sheet  
Ordering Information continued on last page.  
Selector Guide  
PART  
MR  
WATCHDOG  
BATTON  
RESETIN  
CEIN/CEOUT  
PFI, PFO  
PIN-PACKAGE  
10 µDFN-10  
10 µDFN-10  
10 µDFN-10  
10 µDFN-10  
8 µDFN-8  
MAX16033_  
MAX16034_  
MAX16035_  
MAX16036_  
MAX16037_  
MAX16038_  
MAX16039_  
MAX16040_  
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
8 µDFN-8  
ü
8 µDFN-8  
ü
8 µDFN-8  
Note: Replace “_” with L for push-pull or P for open-drain RESET and PFO outputs.  
19-0882; Rev 1; 5/14  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
Absolute Maximum Ratings  
Terminal Voltages (with respect to GND)  
Output Current  
V
, BATT, OUT.......................................................-0.3V to +6V  
OUT..................................Short-Circuit Protected for up to 5s  
CC  
RESET (open drain), PFO (open drain) ....................-0.3V to +6V  
RESET, BATTON............................................................20mA  
RESET (push-pull), PFO (push-pull), BATTON, RESETIN, WDI  
Continuous Power Dissipation (T = +70°C)  
A
MR, CEIN, CEOUT, PFI...........................-0.3V to (V  
Input Current  
+ 0.3V)  
8-Pin μDFN (derate 4.8mW/°C above +70°C)..........380.6mW  
10-Pin μDFN (derate 5mW/°C above +70°C)...........402.8mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
OUT  
V
V
Peak.............................................................................1A  
Continuous............................................................250mA  
CC  
CC  
BATT Peak....................................................................250mA  
BATT Continuous............................................................40mA  
GND................................................................................75mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V  
= 2.25V to 5.5V, V  
= 3V, RESET not asserted, T = -40°C to +85°C, for MAX16039PLA31+T, T = -55°C to +85°C, unless  
CC  
BATT A A  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
, V  
CONDITIONS  
No load (Note 2)  
MIN  
TYP  
MAX  
5.5  
30  
35  
50  
1
UNITS  
Operating Voltage Range  
V
0
V
CC BATT  
V
V
V
= 2.8V  
= 3.6V  
= 5.5V  
13  
16  
22  
CC  
CC  
CC  
Supply Current  
I
No load, V  
> V  
TH  
µA  
µA  
CC  
CC  
T
T
= +25°C  
A
A
= -40°C to +85°C  
2
V
V
= 2.8V,  
= 0V,  
BATT  
CC  
Supply Current in Battery  
Backup Mode  
T
= -55°C  
A
excluding I  
OUT  
(MAX16039PLA31+T  
10  
only)  
T
T
= +25°C  
-0.1  
-0.3  
+0.02  
+0.02  
3.1  
(V  
< 5.5V  
+ 0.2V) < V  
A
A
BATT  
CC  
BATT Standby Current (Note 3)  
I
µA  
BATT  
= -40°C to +85°C  
V
V
V
V
V
V
= 4.75V, V  
> V , I  
= 150mA  
> V , I = 65mA  
TH OUT  
CC  
CC  
TH OUT  
V
to OUT On-Resistance  
R
= 3.15V, V  
3.7  
CC  
ON  
CC  
CC  
= 2.5V, V  
> V , I = 25mA  
TH OUT  
4.6  
CC  
CC  
= 4.50V, V  
= 0V, I  
= 20mA  
= 10mA  
V
V
V
- 0.2  
BATT  
BATT  
BATT  
CC  
CC  
OUT  
OUT  
BATT  
BATT  
BATT  
Output Voltage in Battery  
Backup Mode  
V
= 3.15V, V  
= 0V, I  
- 0.15  
- 0.15  
V
OUT  
= 2.5V, V  
= 0V, I  
= 5mA  
CC  
OUT  
V
rising  
0
V
V
- V  
< V  
,
CC  
CC  
CC  
CC  
BATT  
TH  
Battery-Switchover Threshold  
V
mV  
SW  
V
falling  
-40  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
Electrical Characteristics (continued)  
(V  
= 2.25V to 5.5V, V  
= 3V, RESET not asserted, T = -40°C to +85°C, for MAX16039PLA31+T, T = -55°C to +85°C, unless  
CC  
BATT A A  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
RESET OUTPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX160_ _ _L_46  
4.50  
4.25  
3.00  
2.85  
2.55  
2.25  
4.63  
4.38  
3.08  
2.93  
2.63  
2.32  
25  
4.75  
4.50  
3.15  
3.00  
2.70  
2.38  
MAX160_ _ _L_44  
MAX160_ _ _L_31  
MAX160_ _ _L_29  
MAX160_ _ _L_26  
MAX160_ _ _L_23  
Reset Threshold  
V
V
TH  
V
Falling Reset Delay  
V
falling at 10V/ms  
µs  
CC  
CC  
Reset Active Timeout Period  
t
140  
280  
0.3  
0.4  
ms  
RP  
I
I
= 1.6mA, V  
= 100µA, V  
2.1V  
> 1.2V  
SINK  
SINK  
CC  
RESET Output Low Voltage  
V
RESET asserted  
V
OL  
CC  
MAX160_ _L only (push-pull), RESET not  
asserted, I = 500µA, V > V  
0.8 x  
RESET Output High Voltage  
V
V
OH  
V
SOURCE  
CC  
TH(MAX)  
CC  
RESET Output Leakage  
Current  
I
MAX160_ _P only (open drain), not asserted  
1
µA  
LKG  
POWER-FAIL COMPARATOR  
PFI Input Threshold  
PFI Hysteresis  
V
V
V
falling  
1.185  
1.235  
1.285  
V
PFI  
PFI  
1
%
PFI Input Current  
= 0V or V  
-100  
+100  
0.3  
nA  
PFI  
CC  
V
V
> 2.1V, I  
> 1.2V, I  
= 1.6mA  
CC  
SINK  
PFO Output Low Voltage  
PFO Output High Voltage  
V
V
Output asserted  
V
OL  
= 100µA  
0.4  
CC  
SINK  
MAX160_ _L only (push-pull), V  
>
CC  
0.8 x  
V
I
= 500µA, output not  
V
OH  
TH(MAX), SOURCE  
V
CC  
asserted  
MAX160_ _P only (open drain), V  
not asserted  
= 5.5V,  
PFO  
PFO Leakage Current  
PFO Delay Time  
1
µA  
µs  
V
+ 100mV to V  
- 100mV  
4
PFI  
PFI  
MANUAL RESET (MAX16033/MAX16037)  
V
0.3 x V  
CC  
IL  
MR Input Voltage  
V
V
0.7 x V  
IH  
CC  
Pullup Resistance to V  
Minimum Pulse Width  
Glitch Immunity  
20  
1
165  
kΩ  
µs  
ns  
ns  
CC  
V
= 3.3V  
100  
120  
CC  
MR to Reset Delay  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
Electrical Characteristics (continued)  
(V  
= 2.25V to 5.5V, V  
= 3V, RESET not asserted, T = -40°C to +85°C, for MAX16039PLA31+T, T = -55°C to +85°C, unless  
CC  
BATT A A  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
WATCHDOG (MAX16034/MAX16038)  
Watchdog Timeout Period  
t
1.00  
1.65  
2.25  
s
WD  
Minimum WDI Input Pulse Width  
t
(Note 4)  
100  
ns  
WDI  
V
0.3 x V  
CC  
IL  
WDI Input Voltage  
V
V
0.7 x V  
-1.0  
IH  
CC  
WDI Input Current  
+1.0  
0.4  
µA  
BATTON (MAX16035/MAX16039)  
Output Voltage  
V
I
= 3.2mA, V = 2.1V  
BATT  
V
OL  
SINK  
Sink current, V  
= 5V  
60  
30  
mA  
µA  
CC  
Output Short-Circuit Current  
Source current, V  
> 2V  
10  
120  
BATT  
RESETIN (MAX16036/MAX16040)  
RESETIN Threshold  
V
1.185  
1.235  
0.01  
1.5  
1.285  
V
RTH  
RESETIN Input Current  
25  
nA  
µs  
RESETIN to Reset Delay  
(V  
+ 100mV) to (V  
- 100mV)  
RTH  
RTH  
CHIP-ENABLE GATING (MAX16033–MAX16036)  
CEIN Leakage Current  
RESET asserted  
RESET not asserted, V  
±1  
µA  
= V  
= 10mA  
CC  
TH(MAX),  
CEIN to CEOUT Resistance  
CEOUT Short-Circuit Current  
100  
V
= V /2, I  
CEIN  
CC  
SINK  
RESET asserted, V  
= 0V  
1
1.5  
2
2.0  
7
mA  
ns  
CEOUT  
V
V
= 4.75V  
= 3.15V  
CEIN to CEOUT Propagation  
Delay (Note 4)  
50Ω source impedance driver,  
CC  
C
= 50pF  
LOAD  
9
CC  
V
V
= 5V, V  
> V  
, I  
= 100µA  
= 1µA  
0.7 x V  
CC  
CC  
CC  
BATT SOURCE  
CEOUT Output-Voltage High  
RESET to CEOUT Delay  
V
= 0V, V  
> 2.2V, I  
V
- 0.1  
CC  
BATT  
SOURCE  
BATT  
1
µs  
Note 1: All devices are 100% production tested at T = +25°C. All overtemperature limits are guaranteed by design.  
A
Note 2: V  
can be 0V any time, or V  
can go down to 0V if V  
is active (except at startup).  
BATT  
CC  
BATT  
Note 3: Positive current flows into BATT.  
Note 4: Guaranteed by design.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
BATTERY SUPPLY CURRENT  
(BACKUP MODE) vs. TEMPERATURE  
BATT-TO-OUT ON-RESISTANCE  
vs. TEMPERATURE  
20  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
9
V
CC  
= 5V  
V
V
= 3V  
= 0V  
V
CC  
= 0V  
BATT  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
CC  
8
V
BATT  
= 2V  
7
6
5
4
3
V
BATT  
= 5V  
2
V
BATT  
= 3V  
10  
1
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
V -TO-OUT ON-RESISTANCE  
CC  
vs. TEMPERATURE  
V -TO-RESET PROPAGATION DELAY  
CC  
vs. TEMPERATURE  
230  
225  
220  
215  
210  
205  
200  
195  
190  
185  
180  
120  
105  
90  
75  
60  
45  
30  
15  
0
V
CC  
= 5V  
V
CC  
FALLING  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 2.5V  
= 25mA  
CC  
I
0.25V/ms  
OUT  
1V/ms  
V
= 4.5V  
= 150mA  
CC  
V
CC  
= 3V  
= 65mA  
I
OUT  
I
OUT  
10V/ms  
-40 -25 -10  
5
20 35 50 65 80  
-40  
-15  
10  
35  
60  
85  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
NORMALIZED RESET THRESHOLD  
vs. TEMPERATURE  
MAXIMUM TRANSIENT DURATION  
vs. RESET THRESHOLD OVERDRIVE  
1.003  
300  
250  
200  
150  
100  
50  
RESET OCCURS  
ABOVE CURVE  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
0.994  
0.993  
0.992  
0.991  
0.990  
MAX160_ _-46  
(V = 4.63V)  
TH  
MAX160_ _-29  
(V = 2.93V)  
TH  
0
-40  
-20  
0
20  
40  
60  
80  
1
10  
100  
1000  
10,000  
TEMPERATURE (°C)  
RESET THRESHOLD OVERDRIVE (V - V ) (mV)  
TH  
CC  
Maxim Integrated  
5
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
BATTERY SUPPLY CURRENT  
RESETIN THRESHOLD  
vs. TEMPERATURE  
RESETIN-TO-RESET PROPAGATION  
vs. SUPPLY VOLTAGE  
DELAY vs. TEMPERATURE  
2.00  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
3.0  
V
= 2.93V  
TH  
MAX16036/  
MAX16040  
MAX16036/  
MAX16040  
V
OD  
= 50mV  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.8  
2.5  
2.3  
2.0  
1.8  
1.5  
1.3  
1.0  
V
BATT  
= 2.8V  
V
BATT  
= 2.5V  
V
= 2.3V  
BATT  
-0.25  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
SUPPLY VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CEIN PROPAGATION DELAY  
vs. CEOUT LOAD CAPACITANCE  
CEIN TO CEOUT ON-RESISTANCE  
WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
vs. TEMPERATURE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
35  
30  
25  
20  
15  
10  
5
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
V
CC  
= 5V  
V
CC  
= 3V  
V
CC  
= 3V  
V
CC  
= 5V  
V
CC  
= 5V  
0
0
25  
50  
75 100 125 150 175  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
CEOUT LOAD CAPACITANCE (pF)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
PFI-TO-PFO DELAY  
vs. TEMPERATURE  
PFI THRESHOLD  
vs. TEMPERATURE  
5.00  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
V
OD  
= 30mV  
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
FALLING EDGE  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
Pin Description  
PIN  
MAX16033–  
MAX16036  
MAX16037–  
MAX16040  
NAME  
FUNCTION  
(10-pin µDFN) (8-pin µDFN)  
Active-Low Reset Output. RESET remains low when V  
is below the reset  
CC  
threshold (V ), the manual-reset input is low, or RESETIN is low. It asserts low  
TH  
in pulses when the internal watchdog times out. RESET remains low for the reset  
1
1
RESET  
timeout period (t ) after V  
rises above the reset threshold, after the manual-  
RP  
CC  
reset input goes from low to high, after RESETIN goes high, or after the watchdog  
triggers a reset event. The MAX160_ _L is an active-low push-pull output, while the  
MAX160_ _P is an active-low open-drain output.  
Chip-Enable Input. The input to the chip-enable gating circuit. Connect to GND or  
OUT if not used.  
2
CEIN  
3
4
2
3
PFI  
Power-Fail Input. PFO goes low when V  
falls below 1.235V.  
PFI  
GND  
Ground  
Manual-Reset Input (MAX16033/MAX16037). Driving MR low asserts RESET.  
RESET remains asserted as long as MR is low and for the reset timeout period (t  
)
RP  
if not  
MR  
after MR transitions from low to high. Leave unconnected, or connect to V  
CC  
used. MR has an internal 20kΩ pullup to V  
.
CC  
Watchdog Input (MAX16034/MAX16038). If WDI remains high or low for longer than  
the watchdog timeout period (t ), the internal watchdog timer runs out and a reset  
WD  
WDI  
pulse is triggered for the reset timeout period (t ). The internal watchdog clears  
5
4
RP  
whenever RESET asserts or whenever WDI sees a rising or falling edge (Figure 2).  
Battery-On Output (MAX16035/MAX16039). BATTON goes high during battery  
backup mode.  
BATTON  
Reset Input (MAX16036/MAX16040). When RESETIN falls below 1.235V, RESET  
RESETIN asserts. RESET remains asserted as long as RESETIN is low and for at least t  
RP  
after RESETIN goes high.  
Active-Low Power-Fail Output. PFO goes low when V  
falls below 1.235V. PFO  
PFI  
6
5
PFO  
stays low until V  
goes above 1.235V. PFO also goes low when V  
falls below  
CC  
PFI  
the reset threshold voltage.  
7
8
6
7
V
Supply Voltage, 1.2V to 5.5V  
Output. OUT sources from V  
CC  
when RESET is not asserted and from the greater  
CC  
OUT  
of V  
or BATT when V  
is below the reset threshold voltage.  
CC  
CC  
Backup-Battery Input. When V  
falls below the reset threshold, OUT switches  
CC  
to BATT if V  
is 40mV greater than V . When V  
rises above V , OUT  
BATT  
CC  
CC  
CC  
BATT  
9
8
BATT  
switches to V . The 40mV hysteresis prevents repeated switching if V  
falls  
CC  
slowly.  
Chip-Enable Output. CEOUT goes low only when CEIN is low and reset is not  
asserted. When CEOUT is disconnected from CEIN, CEOUT is actively pulled up  
to OUT.  
10  
CEOUT  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
Pin Description (continued)  
BATTON (MAX16035/MAX16039 ONLY)  
1.235V  
MAX16033  
MAX16040  
V
CC  
OUT  
CHIP-ENABLE  
OUTPUT  
CONTROL  
BATT  
CEIN  
CEOUT  
(MAX16033–MAX16036 ONLY)  
RESET  
GENERATOR  
MR  
RESET  
(MAX16033/MAX16037 ONLY)  
WATCHDOG  
TRANSITION  
DETECTOR  
WATCHDOG  
TIMER  
WDI  
(MAX16034/MAX16038 ONLY)  
RESETIN  
(MAX16036/MAX16040 ONLY)  
PFO  
1.235V  
1.235V  
GND  
PFI  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
from CEIN to CEOUT allows these devices to be used  
with most μPs and high-speed DSPs.  
Detailed Description  
The Typical Operating Circuit shows a typical connec-  
When RESET is deasserted, CEIN is connected to  
CEOUT through a low on-resistance transmission gate. If  
CEIN is high when RESET is asserted, CEOUT remains  
high regardless of any subsequent transitions on CEIN  
during the reset event.  
tion for the MAX16033–MAX16040. OUT powers the  
static random-access memory (SRAM). If V  
is greater  
CC  
than the reset threshold (V ), or if V  
is lower than  
TH  
CC  
V
TH  
but higher than V  
, V  
BATT  
is connected to OUT.  
CC  
If V  
is lower than V  
and V  
is less than V  
,
BATT  
CC  
TH  
CC  
BATT is connected to OUT. OUT supplies up to 200mA  
If CEIN is low when RESET is asserted, CEOUT is held  
low for 1μs to allow completion of the read/write operation  
(Figure 1). After the 1μs delay expires, CEOUT goes high  
and stays high regardless of any subsequent transitions  
on CEIN during the reset event. When CEOUT is discon-  
nected from CEIN, CEOUT is actively pulled up to OUT.  
from V . In battery-backup mode, an internal MOSFET  
CC  
connects the backup battery to OUT. The on-resistance  
of the MOSFET is a function of the backup-battery volt-  
age and temperature and is shown in the BATT-to-OUT  
On-Resistance vs. Temperature graph in the Typical  
Operating Characteristics.  
The propagation delay through the chip-enable circuitry  
depends on both the source impedance of the drive to  
CEIN and the capacitive loading at CEOUT. The chip-  
enable propagation delay is specified from the 50% point  
of CEIN to the 50% point of CEOUT, using a 50Ω driver  
and 50pF load capacitance. Minimize the capacitive load  
at CEOUT and use a low output-impedance driver to  
minimize propagation delay.  
Chip-Enable Signal Gating  
(MAX16033–MAX16036 Only)  
The MAX16033–MAX16036 provide internal gating of  
chip-enable (CE) signals to prevent erroneous data from  
being written to CMOS RAM in the event of a power fail-  
ure or brownout condition. During normal operation, the  
CE gate is enabled and passes all CE transitions. When  
reset asserts, this path becomes disabled, preventing  
erroneous data from corrupting the CMOS RAM. The  
MAX16033–MAX16036 provide a series transmission  
gate from CEIN to CEOUT. A 2ns (typ) propagation delay  
In high-impedance mode, the leakage current at CEIN is  
±1μA (max) over temperature. In low-impedance mode,  
the impedance of CEIN appears as a 75Ω resistor in  
series with the load at CEOUT.  
V
CC  
V
TH  
CEIN  
CEOUT  
*
RESET-TO-CEOUT DELAY  
t
t
RD  
RD  
t
t
RP  
RP  
RESET  
PFO  
PFI > V  
PFI  
* IF CEIN GOES HIGH BEFORE RESET ASSERTS,  
CEOUT GOES HIGH WITHOUT DELAY AS CEIN GOES HIGH.  
Figure 1. RESET and Chip-Enable Timing  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
high. MR has an internal 20kΩ (min) pullup resistor to  
CC  
Backup-Battery Switchover  
V
. This input can be driven from TTL/CMOS logic  
To preserve the contents of the RAM in a brownout or  
power failure, the MAX16033–MAX16040 automatically  
switch to back up the battery installed at BATT when the  
following two conditions are met:  
outputs or with open-drain/collector outputs. Connect a  
normally open momentary switch from MR to GND to cre-  
ate a manual-reset function; external debounce circuitry  
is not required. When driving MR from long cables, or  
when using the device in a noisy environment, connect  
a 0.1μF capacitor from MR to GND to provide additional  
noise immunity.  
1) V  
2) V  
falls below the reset threshold voltage.  
CC  
CC  
is below V  
.
BATT  
Table 1 lists the status of the inputs and outputs in battery-  
backup mode. The devices do not power up if the only  
Watchdog Input  
(MAX16034/MAX16038 Only)  
voltage source is V  
at startup.  
. OUT only powers up from V  
BATT  
CC  
The watchdog monitors μP activity through the watchdog  
input (WDI). RESET asserts when the μP fails to toggle  
WDI. Connect WDI to a bus line or μP I/O line. A change  
of state (high to low, low to high, or a minimum 100ns  
pulse) resets the watchdog timer. If WDI remains high or  
Table 1. Input and Output Status in  
Battery-Backup Mode  
PIN  
STATUS  
Disconnected from OUT  
Connected to BATT  
Connected to OUT. Current drawn from the  
battery is less than 1µA (at V = 2.8V,  
low for longer than the watchdog timeout period (t ), the  
V
WD  
CC  
internal watchdog timer runs out and triggers a reset pulse  
OUT  
for the reset timeout period (t ). The internal watchdog  
RP  
timer clears whenever RESET is asserted or whenever  
WDI sees a rising or falling edge. If WDI remains in either  
a high or low state, a reset pulse periodically asserts after  
BATT  
BATT  
excluding I  
) when V  
= 0V.  
OUT  
CC  
every watchdog timeout period (t ); see Figure 2.  
Asserted  
RESET  
WD  
BATTON  
High state  
MR, RESETIN,  
CEIN, and WDI  
Inputs ignored  
WDI  
Connected to OUT  
CEOUT  
t
t
RP  
RP  
Asserted  
PFO  
t
t
WD  
WD  
RESET  
Manual-Reset Input  
t
t
= WATCHDOG TIMEOUT PERIOD  
= RESET TIMEOUT PERIOD  
(MAX16033/MAX16037 Only)  
WD  
RP  
Many μP-based products require manual-reset capabil-  
ity, allowing the user or external logic circuitry to initiate  
a reset. For the MAX16033/MAX16037, a logic-low on  
MR asserts RESET. RESET remains asserted while MR  
Figure 2. MAX16034/MAX16038 Watchdog Timeout Period and  
Reset Active Time  
is low and for a minimum of 140ms (t ) after it returns  
RP  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
BATTON Indicator  
(MAX16035/MAX16039 Only)  
Power-Fail Comparator  
The MAX16033–MAX16040 issue an interrupt (nonmask-  
able or regular) to the μP when a power failure occurs.  
The power line is monitored by two external resistors  
connected to the power-fail input (PFI). When the voltage  
at PFI falls below 1.235V, the power-fail output (PFO)  
drives the processor’s NMI input low. An earlier power-fail  
warning can be generated if the unregulated DC input of  
the regulator is available for monitoring. The MAX16033–  
MAX16040 turn off the power-fail comparator and force  
BATTON is a push-pull output that asserts high when in  
battery-backup mode. BATTON typically sinks 3.2mA at  
a 0.4V saturation voltage. In battery-backup mode, this  
terminal sources approximately 10μA from OUT. Use  
BATTON to indicate battery-switchover status or to supply  
base drive to an external pass transistor for higher current  
applications (Figure 3).  
RESETIN Comparator  
(MAX16036/MAX16040 Only)  
An internal 1.235V reference sets the RESETIN threshold  
voltage. RESET asserts when the voltage at RESETIN is  
below 1.235V. Use the RESETIN function to monitor a  
secondary power supply.  
PFO low when V  
falls below the reset threshold voltage  
CC  
(Figure 1). The MAX160_ _L devices provide push-pull  
PFO outputs. The MAX160_ _P devices provide open-  
drain PFO outputs.  
V
CC  
Use the following equations to set the reset threshold volt-  
age (V  
) of the secondary power supply (see Figure 4):  
RTH  
V
IN  
V
= V  
(R1/R2 + 1)  
RTH  
REF  
MAX16036  
MAX16040  
R1  
R2  
where V  
= 1.235V. To simplify the resistor selection,  
choose a value for R2 and calculate R1:  
REF  
RESETIN  
R1 = R2 [(V /V ) - 1]  
RTH REF  
Since the input current at RESETIN is 25nA (max), large  
values (up to 1MΩ) can be used for R2 with no significant  
loss in accuracy.  
Figure 4. Setting RESETIN Voltage for the MAX16036/  
MAX16040  
2.4V TO 5.5V  
0.1µF  
V
CC  
BATTON  
BATT  
OUT  
(CEOUT)  
CE  
CMOS RAM  
MAX16035  
MAX16039  
ADDRESS  
A0–A15  
(CEIN)  
DECODE  
µP  
GND  
RESET  
RESET  
( ) FOR MAX16035 ONLY  
Figure 3. MAX16035/MAX16039 BATTON Driving an External Pass Transistor  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
RESET  
Applications Information  
A μP’s reset input puts the μP in a known state.  
The MAX16033–MAX16040 μP supervisory circuits  
assert a reset to prevent code-execution errors during  
power-up, power-down, and brownout conditions. RESET  
Operation Without a Backup Power Source  
The MAX16033–MAX16040 provide a battery-backup  
function. If a backup power source is not used, connect  
BATT to GND and OUT to V  
.
CC  
asserts when V  
is below the reset threshold volt-  
CC  
age and for at least 140ms (t ) after V  
rises above  
RP  
CC  
Using a Super Cap as a  
Backup Power Source  
the reset threshold. RESET also asserts when MR  
is low (MAX16033/MAX16037) or when RESETIN is  
below 1.235V (MAX16036/MAX16040). The MAX16034/  
MAX16038 watchdog function causes RESET to assert  
in pulses following a watchdog timeout (Figure 2). The  
MAX160_ _L devices provide push-pull RESET outputs.  
The MAX160_ _P devices provide open-drain RESET  
outputs.  
Super caps are capacitors with extremely high capaci-  
tance, such as 0.47F. Figure 5 shows two methods to  
use a super cap as a backup power source. Connect the  
super cap through a diode to the 3V input (Figure 5a)  
or connect the super cap through a diode to 5V (Figure  
5b), if a 5V supply is available. The 5V supply charges  
the super cap to a voltage close to 5V, allowing a longer  
backup period. Since V  
can be higher than V  
BATT  
CC  
while V  
is above the reset threshold voltage, there  
CC  
are no special precautions required when using these μP  
supervisors with a super cap.  
3V OR 3.3V  
3V OR 3.3V  
V
V
CC  
CC  
5V  
MAX16033  
MAX16040  
MAX16033  
MAX16040  
1N4148  
0.47F  
1N4148  
0.47F  
BATT  
BATT  
(a)  
(b)  
Figure 5. Using a Super Cap as a Backup Source  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
V
CC  
START  
V
CC  
RESET  
TO µP  
SET  
WDI  
LOW  
MAX16033  
MAX16040  
SUBROUTINE  
OR PROGRAM LOOP  
SET  
V+  
MR  
WDI HIGH  
R1  
R2  
PFI  
PFO  
GND  
RETURN  
END  
Figure 6. Watchdog Flow Diagram  
Figure 7. Monitoring an Additional Power Supply  
Connect PFO to MR in applications that require RESET to  
assert when the second voltage falls below its threshold.  
RESET remains asserted as long as PFO holds MR low,  
and for 140ms (min) after PFO goes high.  
Watchdog Software Considerations  
One way to help the watchdog timer to monitor software  
execution more closely is to set and reset the watchdog  
at different points in the program, rather than pulsing the  
watchdog input periodically. Figure 6 shows a flow diagram  
where the I/O driving the watchdog is set low in the begin-  
ning of the program, set high at the beginning of every  
subroutine or loop, and set low again when the program  
returns to the beginning. If the program should hang in any  
subroutine, the watchdog would timeout and reset the μP.  
Adding Hysteresis to the Power-Fail Comparator  
The power-fail comparator provides a typical hysteresis  
of 12mV, which is sufficient for most applications where a  
power-supply line is being monitored through an external  
voltage-divider. Connect a voltage-divider between PFI  
and PFO, as shown in Figure 8a, to provide additional  
noise immunity. Select the ratio of R1 and R2 such that  
Replacing the Backup Battery  
Decouple BATT to GND with a 0.1μF capacitor. The  
backup power source can be removed while V  
valid without the danger of triggering a reset pulse. The  
device does not enter battery-backup mode when V  
stays above the reset threshold voltage.  
V
falls to 1.235V when V drops to its trip point  
PFI  
IN  
(V  
). R3 adds hysteresis and is typically more than  
TRIP  
remains  
CC  
10 times the value of R1 or R2. The hysteresis window  
extends above (V ) and below (V ) the original trip point,  
H
L
CC  
V
. Connecting an ordinary signal diode in series with  
TRIP  
R3, as shown in Figure 8b, causes the lower trip point (V )  
L
Power-Fail Comparator  
to coincide with the trip point without hysteresis (V  
).  
TRIP  
This method provides additional noise margin without  
compromising the accuracy of the power-fail threshold  
when the monitored voltage is falling. Set the current  
through R1 and R2 to be at least 10μA to ensure that the  
100nA (max) PFI input current does not shift the trip point.  
Set R3 to be higher than 10kΩ to reduce the load at PFO.  
Capacitor C1 adds additional noise rejection.  
Monitoring an Additional Power Supply  
Monitor another voltage by connecting a resistive divider  
to PFI, as shown in Figure 7. The threshold voltage is:  
V
= 1.235 (R1/R2 + 1)  
TH(PFI)  
where V  
is the threshold at which the monitored  
TH(PFI)  
voltage will trip PFO.  
To simplify the resistor selection, choose a value for R2  
and calculate R1:  
R1 = R2 [(V  
/1.235) - 1]  
TH(PFI)  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
(a)  
(b)  
V
CC  
V
CC  
V
IN  
V
IN  
MAX16033  
MAX16040  
MAX16033  
MAX16040  
R1  
R2  
R1  
R2  
PFI  
PFI  
R3  
R3  
C1  
C1  
PFO (PUSH-PULL)  
PFO (PUSH-PULL)  
GND  
GND  
TO µP  
TO µP  
PFO  
0V  
PFO  
0V  
V
IN  
V
IN  
V
TRIP  
V
L
V
H
V
H
V
TRIP  
R1  
R2  
R1  
R2  
V
V
= V  
1 +  
V
V
= V  
1 +  
PFT  
TRIP  
PFT  
TRIP  
H
R1 R1  
R1 R1  
R1  
R3  
= (V  
+ V  
) 1+  
+
= (V  
+ V  
) 1+  
+
V
D
H
PFT  
PFH  
PFT  
PFH  
R2 R3  
R1  
R2 R3  
V = V  
R1 R1  
L
TRIP  
V = V  
1+  
+
V
CC  
L
PFT  
R2 R3  
R3  
V
V
V
=1.235V  
=12mV  
PFT  
PFH  
V
V
=1.235V  
PFT  
PFH  
=12mV  
= DIODEFORWARD VOLTAGE  
D
Figure 8. (a) Adding Additional Hysteresis to the Power-Fail Comparator. (b) Shifting the Additional Hysteresis above V  
TRIP  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
Monitoring a Negative Voltage  
3.0V OR 3.3V  
Connect the circuit, as shown in Figure 9, to use the  
power-fail comparator to monitor a negative supply rail.  
PFO stays low when V- is good. When V- rises to cause  
PFI to be above +1.235V, PFO goes high. Ensure V  
comes up before the negative supply.  
V
CC  
CC  
MAX16033  
MAX16040  
R1  
R2  
Negative-Going V  
Transients  
CC  
The MAX16033–MAX16040 are relatively immune to  
short-duration, negative-going V transients. Resetting  
PFI  
PFO  
CC  
the μP when V  
experiences only small glitches is not  
CC  
usually desired.  
GND  
V-  
The Typical Operating Characteristics section contains  
a Maximum Transient Duration vs. Reset Threshold  
Overdrive graph. The graph shows the maximum pulse  
PFO  
width of a negative-going V  
transient that would not  
CC  
V-  
trigger a reset pulse. As the amplitude of the transient  
increases (i.e., goes further below the reset threshold  
voltage), the maximum allowable pulse width decreases.  
V
V
TRIP  
L
0V  
1
1
V
CC  
Typically, a V  
transient that goes 100mV below the reset  
CC  
V
= R2 V  
+ V  
PFH  
+
(
)
TRIP  
PFT  
R1 R2  
R1  
threshold and lasts for 25μs does not trigger a reset pulse.  
A 0.1μF bypass capacitor mounted close to V  
additional transient immunity.  
provides  
1
1
V
CC  
CC  
V = R2 V  
+
(
)
L
PFT  
R1 R2  
R1  
V
V
1.235V  
PFT  
PFH  
12mV  
Figure 9. Monitoring a Negative Voltage  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
Device Marking Codes  
TOP  
PART  
TOP  
MARK  
TOP  
MARK  
TOP  
MARK  
PART  
PART  
PART  
MARK  
MAX16033LLB23+T  
MAX16033LLB26+T  
+ABE MAX16035LLB23+T  
+ABF MAX16035LLB26+T  
+ACC  
MAX16037LLA23+T  
MAX16037LLA26+T  
+ABX  
+ABY  
MAX16039LLA23+T  
+ACV  
+ACD  
MAX16039LLA26+T +ACW  
MAX16033LLB29+T +ABG MAX16035LLB29+T +ACE MAX16037LLA29+T +ABZ  
MAX16033LLB31+T +ABH MAX16035LLB31+T  
MAX16039LLA29+T +ACX  
+ACF MAX16037LLA31+T +ACA MAX16039LLA31+T  
+ACY  
MAX16033LLB44+T  
+ABI  
MAX16035LLB44+T  
+ACG MAX16037LLA44+T  
+ACB  
MAX16039LLA44+T  
+ACZ  
MAX16033LLB46+T +ABJ MAX16035LLB46+T +ACH MAX16037LLA46+T +ACC MAX16039LLA46+T +ADA  
MAX16033PLB23+T +ABK MAX16035PLB23+T  
MAX16033PLB26+T +ABL MAX16035PLB26+T  
+ACI  
+ACJ  
MAX16037PLA23+T +ACD  
MAX16037PLA26+T +ACE  
MAX16039PLA23+T  
MAX16039PLA26+T  
+ADB  
+ADC  
MAX16033PLB29+T +ABM MAX16035PLB29+T +ACK MAX16037PLA29+T +ACF MAX16039PLA29+T +ADD  
MAX16033PLB31+T +ABN MAX16035PLB31+T +ACL MAX16037PLA31+T +ACG MAX16039PLA31+T +ADE  
MAX16033PLB44+T +ABO MAX16035PLB44+T +ACM MAX16037PLA44+T +ACH MAX16039PLA44+T +ADF  
MAX16039PLA46+T +ADG  
MAX16033PLB46+T +ABP MAX16035PLB46+T +ACN MAX16037PLA46+T  
+ACI  
+ACJ  
+ACK  
MAX16034LLB23+T +ABQ MAX16036LLB23+T  
MAX16034LLB26+T +ABR MAX16036LLB26+T  
+ACO MAX16038LLA23+T  
+ACP MAX16038LLA26+T  
MAX16040LLA23+T  
MAX16040LLA26+T  
MAX16040LLA29+T  
+ADH  
+ADI  
MAX16034LLB29+T +ABS MAX16036LLB29+T +ACQ MAX16038LLA29+T +ACL  
+ADJ  
MAX16034LLB31+T +ABT MAX16036LLB31+T +ACR MAX16038LLA31+T +ACM MAX16040LLA31+T +ADK  
MAX16034LLB44+T +ABU MAX16036LLB44+T  
MAX16034LLB46+T +ABV MAX16036LLB46+T  
MAX16034PLB23+T +ABW MAX16036PLB23+T  
MAX16034PLB26+T +ABX MAX16036PLB26+T  
+ACS  
MAX16038LLA44+T +ACN  
MAX16040LLA44+T  
+ADL  
+ACT MAX16038LLA46+T +ACO MAX16040LLA46+T +ADM  
+ACU MAX16038PLA23+T +ACP  
MAX16040PLA23+T  
MAX16040PLA26+T  
+ADN  
+ADO  
+ACV MAX16038PLA26+T +ACQ  
MAX16034PLB29+T +ABY MAX16036PLB29+T +ACW MAX16038PLA29+T +ACR MAX16040PLA29+T +ADP  
MAX16034PLB31+T ABZ MAX16036PLB31+T +ACX MAX16038PLA31+T +ACS MAX16040PAL31+T +ADQ  
MAX16034PLB44+T +ACA MAX16036PLB44+T  
+ACY MAX16038PLA44+T  
+ACT  
MAX16040PLA44+T  
+ADR  
MAX16034PLB46+T +ACB MAX16036PLB46+T  
+ACZ MAX16038PLA46+T +ACU MAX16040PLA46+T +ADS  
Note: 48 standard versions shown in bold are available. Sample stock is generally held on standard versions only. Contact factory  
for nonstandard versions availability.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
Pin Configurations  
TOP VIEW  
10  
9
8
7
6
10  
9
8
7
6
MAX16035  
MAX16036  
MAX16033  
MAX16034  
+
+
1
2
3
4
5
1
2
3
4
5
10-µDFN  
( ) FOR MAX16036 ONLY  
10-µDFN  
( ) FOR MAX16034 ONLY  
8
7
6
5
8
7
6
5
MAX16037  
MAX16038  
MAX16039  
MAX16040  
+
+
1
2
3
4
1
2
3
4
8-µDFN  
( ) FOR MAX16038 ONLY  
8-µDFN  
( ) FOR MAX16040 ONLY  
+ DENOTES A LEAD(Pb)-FREE PACKAGE.  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
Typical Operating Circuit  
2.4V TO 5.5V  
0.1µF  
REAL-  
CMOS  
TIME  
RAM  
CLOCK  
CE  
V
CC  
BATT  
ADDITIONAL  
DC VOLTAGE  
OUT  
0.1µF  
MAX16033  
MAX16040  
R3  
R4  
RESETIN*  
ADDITIONAL  
DC VOLTAGE  
A0–A15  
RESET  
PFO  
RESET  
R1  
R2  
I/O  
µP  
PFI  
I/O  
WDI***  
CEOUT**  
CEIN**  
GND  
ADDRESS  
DECODE  
* RESETIN APPLIES TO MAX16035/MAX16039 ONLY.  
**CEIN AND CEOUT APPLY TO MAX16033–MAX16036 ONLY.  
***WDI APPLIES TO MAX16034/MAX16038 ONLY.  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
Ordering Information (continued)  
Reset Threshold Ranges  
PART*  
TEMP RANGE PIN-PACKAGE  
RESET-THRESHOLD VOLTAGE (V)  
SUFFIX  
MAX16035LLB_ _+T  
MAX16035PLB_ _+T  
MAX16036LLB_ _+T  
MAX16036PLB_ _+T  
MAX16037LLA_ _+T  
MAX16037PLA_ _+T  
MAX16038LLA_ _+T  
MAX16038PLA_ _+T  
MAX16039LLA_ _+T  
MAX16039PLA_ _+T  
MAX16039PLA31+T  
MAX16040LLA_ _+T  
MAX16040PLA_ _+T  
-40°C to +85°C 10 µDFN  
-40°C to +85°C 10 µDFN  
-40°C to +85°C 10 µDFN  
-40°C to +85°C 10 µDFN  
-40°C to +85°C 8 µDFN  
-40°C to +85°C 8 µDFN  
-40°C to +85°C 8 µDFN  
-40°C to +85°C 8 µDFN  
-40°C to +85°C 8 µDFN  
-40°C to +85°C 8 µDFN  
-55°C to +85°C 8 µDFN  
-40°C to +85°C 8 µDFN  
-40°C to +85°C 8 µDFN  
MIN  
4.50  
4.25  
3.00  
2.85  
2.55  
2.25  
TYP  
4.63  
4.38  
3.08  
2.93  
2.63  
2.32  
MAX  
4.75  
4.50  
3.15  
3.00  
2.70  
2.38  
46  
44  
31  
29  
26  
23  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
*These parts offer a choice of reset threshold voltages. From  
the Reset Threshold Ranges table, insert the desired threshold  
voltage code in the blank to complete the part number. See the  
Selector Guide for a listing of device features.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
8 μDFN  
L822+1  
21-0164  
21-0164  
90-0005  
90-0006  
10 μDFN  
L1022+1  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX16033–MAX16040  
Low-Power Battery-Backup  
Circuits in Small μDFN Packages  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
Data sheet rebranded; updated Electrical Characteristics and Ordering Information  
tables to support MAX16039PLA31+T option at -55°C  
1
5/14  
2, 19  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2014 Maxim Integrated Products, Inc.  
20  

相关型号:

MAX16036PLB31+

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16036PLB44+T

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16036PLB46+

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16036PLB46+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, 2 X 2 MM, LEAD FREE, MICRO, DFN-10
MAXIM

MAX16037

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16037LLA23+T

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16037LLA26+T

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16037LLA29+

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16037LLA29+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, 2 X 2 MM, LEAD FREE, MICRO, DFN-8
MAXIM

MAX16037LLA31+

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16037LLA31+T

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, DSO8, 2 X 2 MM, LEAD FREE, MICRO, DFN-8
ROCHESTER

MAX16037LLA44+T

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM