MAX16037LLA46+ [MAXIM]

Low-Power Battery Backup Circuits in Small レDFN Packages; 小μDFN封装低功耗电池备份电路
MAX16037LLA46+
型号: MAX16037LLA46+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Power Battery Backup Circuits in Small レDFN Packages
小μDFN封装低功耗电池备份电路

电池
文件: 总21页 (文件大小:215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0882; Rev 0; 7/07  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
3–MAX1640  
General Description  
Features  
Low 1.2V Operating Supply Voltage  
The MAX16033–MAX16040 supervisory circuits reduce  
the complexity and number of components required for  
power-supply monitoring and battery control functions  
in microprocessor (µP) systems. The devices signifi-  
cantly improve system reliability and accuracy com-  
pared to other ICs or discrete components. The  
MAX16033–MAX16040 provide µP reset, backup-bat-  
tery switchover, power-fail warning, watchdog, and  
chip-enable gating features.  
Precision Monitoring of 5.0V, 3.3V, 3.0V, and 2.5V  
Power-Supply Voltages  
Independent Power-Fail Comparator  
Debounced Manual-Reset Input  
Watchdog Timer, 1.6s Timeout  
Battery-On Output Indicator  
Auxiliary User-Adjustable RESETIN  
Low 13µA Quiescent Supply Current  
The MAX16033–MAX16040 operate from supply volt-  
ages up to 5.5V. The factory-set reset threshold voltage  
ranges from 2.32V to 4.63V. The devices feature a man-  
ual-reset input (MAX16033/MAX16037), a watchdog  
timer input (MAX16034/MAX16038), a battery-on output  
(MAX16035/MAX16039), an auxiliary adjustable reset  
input (MAX16036/MAX16040), and chip-enable gating  
(MAX16033–MAX16036). Each device includes a  
power-fail comparator and offers an active-low push-  
pull reset or an active-low open-drain reset.  
Two Available Output Structures:  
Active-Low Push-Pull Reset  
Active-Low Open-Drain Reset  
Active-Low Reset Valid Down to 1.2V  
Power-Supply Transient Immunity  
140ms (min) Reset Timeout Period  
Small 2mm x 2mm, 8-Pin and 10-Pin µDFN  
Packages  
The MAX16033–MAX16040 are available in 2mm x  
2mm, 8-pin or 10-pin µDFN packages and are fully  
specified from -40°C to +85°C.  
Ordering Information  
PIN-  
PKG  
PART*  
TEMP RANGE  
Applications  
PACKAGE  
CODE  
MAX16033LLB_ _+T -40°C to +85°C 10 µDFN-10 L1022-1  
MAX16033PLB_ _+T -40°C to +85°C 10 µDFN-10 L1022-1  
MAX16034LLB_ _+T -40°C to +85°C 10 µDFN-10 L1022-1  
MAX16034PLB_ _+T -40°C to +85°C 10 µDFN-10 L1022-1  
Portable/Battery-  
Powered Equipment  
Controllers  
Computers  
POS Equipment  
Fax Machines  
Industrial Control  
Real-Time Clocks  
Intelligent Instrument  
Critical µP/µC Power  
Monitoring  
Ordering Information continued on last page.  
*These parts offer a choice of reset threshold voltages. From the  
Reset Threshold Ranges table, insert the desired threshold volt-  
age code in the blank to complete the part number. See Selector  
Guide for a listing of device features.  
Set-Top Boxes  
+Denotes a lead-free package.  
T = Tape and reel.  
Pin Configurations and Typical Operating Circuit appear at  
end of data sheet.  
Selector Guide  
CEIN/CEOU  
PART  
MR  
WATCHDOG  
BATTON  
RESETIN  
PFI, PFO  
PIN-PACKAGE  
10 µDFN-10  
10 µDFN-10  
10 µDFN-10  
10 µDFN-10  
8 µDFN-8  
MAX16033_  
MAX16034_  
MAX16035_  
MAX16036_  
MAX16037_  
MAX16038_  
MAX16039_  
MAX16040_  
8 µDFN-8  
8 µDFN-8  
8 µDFN-8  
Note: Replace “_” with L for push-pull or P for open-drain RESET and PFO outputs.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
ABSOLUTE MAXIMUM RATINGS  
Terminal Voltages (with respect to GND)  
Output Current  
V
BATT, OUT.......................................................-0.3V to +6V  
OUT ..................................Short-Circuit Protected for up to 5s  
RESET, BATTON.............................................................20mA  
CC,  
RESET (open drain), PFO (open drain)....................-0.3V to +6V  
RESET (push-pull), PFO (push-pull), BATTON, RESETIN, WDI  
Continuous Power Dissipation (T = +70°C)  
A
MR, CEIN, CEOUT, PFI ............................-0.3V to (V  
+ 0.3V)  
8-Pin µDFN (derate 4.8mW/°C above +70°C) ..........380.6mW  
10-Pin µDFN (derate 5mW/°C above +70°C) ...........402.8mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
OUT  
Input Current  
V
V
Peak..............................................................................1A  
Continuous ............................................................250mA  
CC  
CC  
BATT Peak ....................................................................250mA  
BATT Continuous ............................................................40mA  
GND ................................................................................75mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 2.25V to 5.5V, V = 3V, RESET not asserted, T = -40°C to +85°C, unless otherwise noted. Typical values are at T =  
BATT A A  
CC  
+25°C.) (Note 1)  
3–MAX1640  
PARAMETER  
SYMBOL  
, V  
CONDITIONS  
No load (Note 2)  
MIN  
TYP  
MAX  
5.5  
30  
UNITS  
Operating Voltage Range  
Supply Current  
V
0
V
CC BATT  
V
V
V
= 2.8V  
= 3.6V  
= 5.5V  
13  
16  
22  
CC  
CC  
CC  
I
No load, V  
> V  
TH  
35  
µA  
CC  
CC  
50  
V
V
= 2.8V,  
= 0V,  
BATT  
T
T
= +25°C  
1
2
A
A
Supply Current in Battery  
Backup Mode  
µA  
µA  
CC  
= -40°C to +85°C  
excluding I  
OUT  
T
T
= +25°C  
-0.1  
-0.3  
+0.02  
+0.02  
3.1  
A
(V  
< 5.5V  
+ 0.2V) < V  
CC  
BATT  
BATT Standby Current (Note 3)  
I
BATT  
= -40°C to +85°C  
A
V
V
V
= 4.75V, V  
= 3.15V, V  
> V , I  
= 150mA  
> V , I = 65mA  
TH OUT  
CC  
CC  
CC  
CC  
TH OUT  
V
to OUT On-Resistance  
R
3.7  
CC  
ON  
CC  
= 2.5V, V  
> V , I  
= 25mA  
4.6  
CC  
TH OUT  
V
BATT  
- 0.2  
V
V
V
V
= 4.50V, V  
= 3.15V, V  
= 0V, I  
= 0V, I  
= 20mA  
= 10mA  
BATT  
BATT  
BATT  
CC  
OUT  
Output Voltage in Battery  
Backup Mode  
V
BATT  
- 0.15  
V
V
OUT  
CC  
OUT  
V
BATT  
= 2.5V, V  
= 0V, I  
= 5mA  
CC  
OUT  
- 0.15  
V
V
rising  
falling  
0
CC  
CC  
Battery-Switchover Threshold  
V
- V  
, V  
< V  
TH  
mV  
SW  
CC  
BATT CC  
-40  
2
_______________________________________________________________________________________  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
3–MAX1640  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.25V to 5.5V, V  
= 3V, RESET not asserted, T = -40°C to +85°C, unless otherwise noted. Typical values are at T  
A
=
CC  
BATT  
A
+25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RESET OUTPUT  
MAX160_ _ _L_46  
4.50  
4.25  
3.00  
2.85  
2.55  
2.25  
4.63  
4.38  
3.08  
2.93  
2.63  
2.32  
25  
4.75  
4.50  
3.15  
3.00  
2.70  
2.38  
MAX160_ _ _L_44  
MAX160_ _ _L_31  
MAX160_ _ _L_29  
MAX160_ _ _L_26  
MAX160_ _ _L_23  
Reset Threshold  
V
V
TH  
V
Falling Reset Delay  
V
falling at 10V/ms  
CC  
µs  
CC  
Reset Active Timeout Period  
t
140  
280  
0.3  
0.4  
ms  
RP  
I
I
= 1.6mA, V  
= 100µA, V  
> 2.1V  
> 1.2V  
SINK  
CC  
CC  
RESET Output Low Voltage  
V
RESET asserted  
V
V
OL  
SINK  
MAX160_ _L only (push-pull), RESET not  
asserted, I = 500µA, V > V  
0.8 x  
V
CC  
RESET Output High Voltage  
V
OH  
SOURCE  
CC  
TH(MAX)  
RESET Output Leakage  
Current  
I
MAX160_ _P only (open drain), not asserted  
1
µA  
LKG  
POWER-FAIL COMPARATOR  
PFI Input Threshold  
PFI Hysteresis  
V
V
V
falling  
1.185  
-100  
1.235  
1
1.285  
V
PFI  
PFI  
PFI  
%
PFI Input Current  
= 0V or V  
+100  
0.3  
nA  
CC  
V
V
> 2.1V, I  
> 1.2V, I  
= 1.6mA  
= 100µA  
CC  
CC  
SINK  
SINK  
PFO Output Low Voltage  
PFO Output High Voltage  
V
Output asserted  
V
V
OL  
0.4  
MAX160_ _L only (push-pull), V > V  
0.8 x  
V
CC  
CC  
TH(MAX),  
V
OH  
I
= 500µA, output not asserted  
SOURCE  
MAX160_ _P only (open drain), V  
not asserted  
= 5.5V,  
PFO  
PFO Leakage Current  
PFO Delay Time  
1
µA  
µs  
V
+ 100mV to V  
- 100mV  
4
PFI  
PFI  
MANUAL RESET (MAX16033/MAX16037)  
0.3 x  
V
IL  
V
CC  
MR Input Voltage  
V
0.7 x  
V
IH  
V
CC  
Pullup Resistance to V  
Minimum Pulse Width  
Glitch Immunity  
20  
1
165  
k  
µs  
ns  
ns  
CC  
V
= 3.3V  
100  
120  
CC  
MR to Reset Delay  
_______________________________________________________________________________________  
3
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.25V to 5.5V, V = 3V, RESET not asserted, T = -40°C to +85°C, unless otherwise noted. Typical values are at T =  
BATT A A  
CC  
+25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
2.25  
0.3 x  
UNITS  
WATCHDOG (MAX16034/MAX16038)  
Watchdog Timeout Period  
t
1.00  
100  
1.65  
s
WD  
Minimum WDI Input Pulse Width  
t
(Note 4)  
ns  
WDI  
V
IL  
V
CC  
WDI Input Voltage  
V
0.7 x  
V
IH  
V
CC  
WDI Input Current  
-1.0  
+1.0  
0.4  
µA  
BATTON (MAX16035/MAX16039)  
Output Voltage  
V
I
= 3.2mA, V = 2.1V  
BATT  
V
OL  
SINK  
Sink current, V  
= 5V  
BATT  
60  
30  
mA  
µA  
CC  
Output Short-Circuit Current  
Source current, V  
> 2V  
10  
120  
RESETIN (MAX16036/MAX16040)  
RESETIN Threshold  
3–MAX1640  
V
1.185  
1.235  
0.01  
1.5  
1.285  
25  
V
RTH  
RESETIN Input Current  
nA  
µs  
RESETIN to Reset Delay  
(V  
RTH  
+ 100mV) to (V  
- 100mV)  
RTH  
CHIP-ENABLE GATING (MAX16033–MAX16036)  
CEIN Leakage Current  
RESET asserted  
1
µA  
RESET not asserted, V  
= V  
= 10mA  
CC  
TH(MAX),  
CEIN to CEOUT Resistance  
CEOUT Short-Circuit Current  
100  
V
= V  
/ 2, I  
CEIN  
CC  
SINK  
RESET asserted, V  
= 0V  
1
1.5  
2
2.0  
7
mA  
ns  
CEOUT  
V
V
= 4.75V  
= 3.15V  
CC  
CC  
CEIN to CEOUT Propagation  
Delay (Note 4)  
50source impedance driver,  
C
= 50pF  
LOAD  
9
0.7 x  
V
V
= 5V, V  
> V  
, I  
BATT SOURCE  
= 100µA  
= 1µA  
CC  
CC  
V
CC  
CEOUT Output-Voltage High  
RESET to CEOUT Delay  
V
V
BATT  
= 0V, V  
> 2.2V, I  
SOURCE  
CC  
BATT  
- 0.1  
1
µs  
Note 1: All devices are 100% production tested at T = +25°C. All overtemperature limits are guaranteed by design.  
A
Note 2: V  
can be 0V any time, or V  
can go down to 0V if V  
is active (except at startup).  
BATT  
CC  
BATT  
Note 3: Positive current flows into BATT.  
Note 4: Guaranteed by design.  
4
_______________________________________________________________________________________  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
3–MAX1640  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
BATTERY SUPPLY CURRENT  
(BACKUP MODE) vs. TEMPERATURE  
BATT-TO-OUT ON-RESISTANCE  
vs. TEMPERATURE  
20  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
9
V
= 5V  
V
V
= 3V  
= 0V  
V
= 0V  
CC  
CC  
BATT  
CC  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
8
V
= 2V  
BATT  
7
6
5
4
3
V
= 5V  
BATT  
2
V
= 3V  
10  
BATT  
1
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
CC  
-TO-OUT ON-RESISTANCE  
vs. TEMPERATURE  
RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
V
CC  
-TO-RESET PROPAGATION DELAY  
vs. TEMPERATURE  
120  
105  
90  
75  
60  
45  
30  
15  
0
230  
225  
220  
215  
210  
205  
200  
195  
190  
185  
180  
V
FALLING  
0.25V/ms  
V
= 5V  
CC  
CC  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
I
= 2.5V  
= 25mA  
CC  
OUT  
1V/ms  
V
= 4.5V  
= 150mA  
CC  
V
= 3V  
= 65mA  
CC  
I
OUT  
I
OUT  
10V/ms  
-40 -25 -10  
5
20 35 50 65 80  
-40  
-20  
0
20  
40  
60  
80  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
NORMALIZED RESET THRESHOLD  
vs. TEMPERATURE  
MAXIMUM TRANSIENT DURATION  
vs. RESET THRESHOLD OVERDRIVE  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
0.994  
0.993  
0.992  
0.991  
0.990  
300  
RESET OCCURS  
ABOVE CURVE  
250  
200  
150  
100  
50  
MAX160_ _-46  
(V = 4.63V)  
TH  
MAX160_ _-29  
(V = 2.93V)  
TH  
0
-40  
-20  
0
20  
40  
60  
80  
1
10  
100  
1000  
10,000  
TEMPERATURE (°C)  
RESET THRESHOLD OVERDRIVE (V - V ) (mV)  
TH  
CC  
_______________________________________________________________________________________  
5
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
BATTERY SUPPLY CURRENT  
RESETIN THRESHOLD  
vs. TEMPERATURE  
RESETIN-TO-RESET PROPAGATION  
DELAY vs. TEMPERATURE  
vs. SUPPLY VOLTAGE  
2.00  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
3.0  
2.8  
2.5  
2.3  
2.0  
1.8  
1.5  
1.3  
1.0  
V
= 2.93V  
MAX16036/  
MAX16040  
MAX16036/  
MAX16040  
V
= 50mV  
OD  
TH  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
V
= 2.8V  
BATT  
V
= 2.5V  
BATT  
V
= 2.3V  
BATT  
-0.25  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
SUPPLY VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
CEIN PROPAGATION DELAY  
vs. CEOUT LOAD CAPACITANCE  
CEIN TO CEOUT ON-RESISTANCE  
vs. TEMPERATURE  
3–MAX1640  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
35  
30  
25  
20  
15  
10  
5
V
= 5V  
CC  
V
= 3V  
CC  
V
= 3V  
CC  
V
= 5V  
CC  
V
= 5V  
CC  
0
-40  
-15  
10  
35  
60  
85  
0
25  
50  
75 100 125 150 175  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
CEOUT LOAD CAPACITANCE (pF)  
TEMPERATURE (°C)  
PFI-TO-PFO DELAY  
vs. TEMPERATURE  
PFI THRESHOLD  
vs. TEMPERATURE  
5.00  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
V
= 30mV  
OD  
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
FALLING EDGE  
-15  
-40  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
3–MAX1640  
Pin Description  
PIN  
MAX16033–  
MAX16036  
MAX16037–  
MAX16040  
NAME  
FUNCTION  
(10-pin µDFN) (8-pin µDFN)  
Active-Low Reset Output. RESET remains low when V  
is below the reset  
CC  
threshold (V ), the manual-reset input is low, or RESETIN is low. It asserts low in  
TH  
pulses when the internal watchdog times out. RESET remains low for the reset  
1
1
RESET  
timeout period (t ) after V  
rises above the reset threshold, after the manual-reset  
RP  
CC  
input goes from low to high, after RESETIN goes high, or after the watchdog triggers  
a reset event. The MAX160_ _L is an active-low push-pull output, while the  
MAX160_ _P is an active-low open-drain output.  
Chip-Enable Input. The input to the chip-enable gating circuit. Connect to GND or  
OUT if not used.  
2
CEIN  
3
4
2
3
PFI  
Power-Fail Input. PFO goes low when V  
falls below 1.235V.  
PFI  
GND  
Ground  
Manual-Reset Input (MAX16033/MAX16037). Driving MR low asserts RESET. RESET  
remains asserted as long as MR is low and for the reset timeout period (t ) after  
RP  
MR  
MR transitions from low to high. Leave unconnected, or connect to V  
if not used.  
CC  
MR has an internal 20kpullup to V  
.
CC  
Watchdog Input (MAX16034/MAX16038). If WDI remains high or low for longer than  
the watchdog timeout period (t ), the internal watchdog timer runs out and a reset  
pulse is triggered for the reset timeout period (t ). The internal watchdog clears  
RP  
WD  
WDI  
5
4
whenever RESET asserts or whenever WDI sees a rising or falling edge (Figure 2).  
Battery-On Output (MAX16035/MAX16039). BATTON goes high during battery  
backup mode.  
BATTON  
RESETIN  
Reset Input (MAX16036/MAX16040). When RESETIN falls below 1.235V, RESET  
asserts. RESET remains asserted as long as RESETIN is low and for at least t  
RP  
after RESETIN goes high.  
Active-Low Power-Fail Output. PFO goes low when V  
falls below 1.235V. PFO  
PFI  
stays low until V  
goes above 1.235V. PFO also goes low when V falls below  
CC  
6
5
PFO  
PFI  
the reset threshold voltage.  
7
8
6
7
V
Supply Voltage, 1.2V to 5.5V  
Output. OUT sources from V  
CC  
when RESET is not asserted and from the greater of  
CC  
OUT  
V
or BATT when V  
is below the reset threshold voltage.  
CC  
CC  
Backup Battery Input. When V  
falls below the reset threshold, OUT switches to  
CC  
BATT if V  
is 40mV greater than V . When V  
rises above V  
, OUT  
BATT  
CC  
CC  
BATT  
9
8
BATT  
switches to V . The 40mV hysteresis prevents repeated switching if V  
CC  
falls  
CC  
slowly.  
Chip-Enable Output. CEOUT goes low only when CEIN is low and reset is not  
asserted. When CEOUT is disconnected from CEIN, CEOUT is actively pulled up to  
OUT.  
10  
CEOUT  
_______________________________________________________________________________________  
7
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
Functional Diagram  
BATTON (MAX16035/MAX16039 ONLY)  
1.235V  
MAX16033–  
MAX16040  
V
CC  
OUT  
CHIP-ENABLE  
OUTPUT  
CONTROL  
BATT  
3–MAX1640  
CEIN  
CEOUT  
RESET  
(MAX16033–MAX16036 ONLY)  
RESET  
GENERATOR  
MR  
(MAX16033/MAX16037 ONLY)  
WATCHDOG  
TRANSITION  
DETECTOR  
WATCHDOG  
TIMER  
WDI  
(MAX16034/MAX16038 ONLY)  
RESETIN  
(MAX16036/MAX16040 ONLY)  
PFO  
1.235V  
1.235V  
GND  
PFI  
8
_______________________________________________________________________________________  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
3–MAX1640  
these devices to be used with most µPs and high-  
Detailed Description  
speed DSPs.  
The Typical Operating Circuit shows a typical connec-  
tion for the MAX16033–MAX16040. OUT powers the  
When RESET is deasserted, CEIN is connected to  
CEOUT through a low on-resistance transmission gate.  
If CEIN is high when RESET is asserted, CEOUT  
remains high regardless of any subsequent transitions  
on CEIN during the reset event.  
static random-access memory (SRAM). If V  
is  
CC  
is lower  
greater than the reset threshold (V ), or if V  
TH  
CC  
than V  
but higher than V  
, V  
is connected to  
is less than  
CC  
TH  
OUT. If V  
BATT CC  
is lower than V  
and V  
CC  
TH  
V
BATT  
, BATT is connected to OUT. OUT supplies up to  
If CEIN is low when RESET is asserted, CEOUT is held  
low for 1µs to allow completion of the read/write opera-  
tion (Figure 1). After the 1µs delay expires, CEOUT  
goes high and stays high regardless of any subsequent  
transitions on CEIN during the reset event. When  
CEOUT is disconnected from CEIN, CEOUT is actively  
pulled up to OUT.  
200mA from V . In battery-backup mode, an internal  
CC  
MOSFET connects the backup battery to OUT. The on-  
resistance of the MOSFET is a function of the backup-  
battery voltage and temperature and is shown in the  
BATT-to-OUT On-Resistance vs. Temperature graph in  
the Typical Operating Characteristics.  
The propagation delay through the chip-enable circuit-  
ry depends on both the source impedance of the drive  
to CEIN and the capacitive loading at CEOUT. The  
chip-enable propagation delay is specified from the  
50% point of CEIN to the 50% point of CEOUT, using a  
50driver and 50pF load capacitance. Minimize the  
capacitive load at CEOUT and use a low output-imped-  
ance driver to minimize propagation delay.  
Chip-Enable Signal Gating  
(MAX16033–MAX16036 Only)  
The MAX16033–MAX16036 provide internal gating of  
chip-enable (CE) signals to prevent erroneous data  
from being written to CMOS RAM in the event of a  
power failure or brownout condition. During normal  
operation, the CE gate is enabled and passes all CE  
transitions. When reset asserts, this path becomes  
disabled, preventing erroneous data from corrupting  
the CMOS RAM. The MAX16033–MAX16036 provide a  
series transmission gate from CEIN to CEOUT. A 2ns  
(typ) propagation delay from CEIN to CEOUT allows  
In high-impedance mode, the leakage current at CEIN  
is 1µA (max) over temperature. In low-impedance  
mode, the impedance of CEIN appears as a 75resis-  
tor in series with the load at CEOUT.  
V
CC  
V
TH  
CEIN  
CEOUT  
*
RESET-TO-CEOUT DELAY  
t
t
RD  
RD  
t
t
RP  
RP  
RESET  
PFO  
PFI > V  
PFI  
* IF CEIN GOES HIGH BEFORE RESET ASSERTS,  
CEOUT GOES HIGH WITHOUT DELAY AS CEIN GOES HIGH.  
Figure 1. RESET and Chip-Enable Timing  
_______________________________________________________________________________________  
9
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
V
. This input can be driven from TTL/CMOS logic  
Backup Battery Switchover  
To preserve the contents of the RAM in a brownout or  
power failure, the MAX16033–MAX16040 automatically  
switch to back up the battery installed at BATT when  
the following two conditions are met:  
CC  
outputs or with open-drain/collector outputs. Connect a  
normally-open momentary switch from MR to GND to  
create a manual-reset function; external debounce cir-  
cuitry is not required. When driving MR from long  
cables or when using the device in a noisy environ-  
ment, connect a 0.1µF capacitor from MR to GND to  
provide additional noise immunity.  
1) V  
2) V  
falls below the reset threshold voltage.  
CC  
CC  
is below V  
.
BATT  
Table 1 lists the status of the inputs and outputs in bat-  
tery-backup mode. The devices do not power-up if the  
Watchdog Input  
(MAX16034/MAX16038 Only)  
only voltage source is V  
. OUT only powers up from  
BATT  
The watchdog monitors µP activity through the watch-  
dog input (WDI). RESET asserts when the µP fails to  
toggle WDI. Connect WDI to a bus line or µP I/O line. A  
change of state (high to low, low to high, or a minimum  
100ns pulse) resets the watchdog timer. If WDI remains  
high or low for longer than the watchdog timeout period  
V
CC  
at startup.  
Table 1. Input and Output Status in  
Battery-Backup Mode  
(t ), the internal watchdog timer runs out and triggers  
PIN  
STATUS  
Disconnected from OUT  
WD  
a reset pulse for the reset timeout period (t ). The  
RP  
V
CC  
internal watchdog timer clears whenever reset is  
asserted or whenever WDI sees a rising or falling edge.  
If WDI remains in either a high or low state, a reset  
pulse periodically asserts after every watchdog timeout  
OUT  
Connected to BATT  
Connected to OUT. Current drawn from the  
3–MAX1640  
BATT  
battery is less than 1µA (at V  
= 2.8V,  
BATT  
period (t ); see Figure 2.  
WD  
excluding I  
) when V  
= 0V.  
OUT  
CC  
RESET  
Asserted  
BATTON  
High state  
MR, RESETIN,  
CEIN, and WDI  
Inputs ignored  
CEOUT  
Connected to OUT  
Asserted  
WDI  
PFO  
t
RP  
t
RP  
t
t
WD  
WD  
RESET  
Manual-Reset Input  
(MAX16033/MAX16037 Only)  
t = WATCHDOG TIMEOUT PERIOD  
WD  
t = RESET TIMEOUT PERIOD  
RP  
Many µP-based products require manual-reset capabil-  
ity, allowing the user or external logic circuitry to initiate  
a reset. For the MAX16033/MAX16037, a logic-low on  
MR asserts RESET. RESET remains asserted while MR  
is low and for a minimum of 140ms (t ) after it returns  
RP  
high. MR has an internal 20k(min) pullup resistor to  
Figure 2. MAX16034/MAX16038 Watchdog Timeout Period and  
Reset Active Time  
10 ______________________________________________________________________________________  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
3–MAX1640  
BATTON Indicator  
(MAX16035/MAX16039 Only)  
Power-Fail Comparator  
The MAX16033–MAX16040 issue an interrupt (nonmask-  
able or regular) to the µP when a power failure occurs.  
The power line is monitored by two external resistors con-  
nected to the power-fail input (PFI). When the voltage at  
PFI falls below 1.235V, the power-fail output (PFO) drives  
the processor’s NMI input low. An earlier power-fail warn-  
ing can be generated if the unregulated DC input of the  
regulator is available for monitoring. The MAX16033–  
MAX16040 turn off the power-fail comparator and force  
BATTON is a push-pull output that asserts high when in  
battery-backup mode. BATTON typically sinks 3.2mA  
at a 0.4V saturation voltage. In battery-backup mode,  
this terminal sources approximately 10µA from OUT.  
Use BATTON to indicate battery-switchover status or to  
supply base drive to an external pass transistor for  
higher current applications (see Figure 3).  
RESETIN Comparator  
(MAX16036/MAX16040 Only)  
An internal 1.235V reference sets the RESETIN thresh-  
old voltage. RESET asserts when the voltage at  
RESETIN is below 1.235V. Use the RESETIN function to  
monitor a secondary power supply.  
PFO low when V  
falls below the reset threshold volt-  
CC  
age (see Figure 1). The MAX160_ _L devices provide  
push-pull PFO outputs. The MAX160_ _P devices provide  
open-drain PFO outputs.  
V
CC  
Use the following equations to set the reset threshold  
voltage (V  
Figure 4):  
) of the secondary power supply (see  
RTH  
V
IN  
V
= V  
(R1 / R2 + 1)  
RTH  
REF  
MAX16036  
MAX16040  
R1  
R2  
where V  
= 1.235V. To simplify the resistor selection,  
choose a value for R2 and calculate R1.  
REF  
RESETIN  
R1 = R2 [(V / V ) - 1]  
RTH  
REF  
Since the input current at RESETIN is 25nA (max), large  
values (up to 1M) can be used for R2 with no signifi-  
cant loss in accuracy.  
Figure 4. Setting RESETIN Voltage for the  
MAX16036/MAX16040  
2.4V TO 5.5V  
0.1µF  
V
CC  
BATTON  
BATT  
OUT  
(CEOUT)  
CE  
CMOS RAM  
MAX16035  
MAX16039  
ADDRESS  
A0–A15  
(CEIN)  
RESET  
DECODE  
µP  
GND  
RESET  
( ) FOR MAX16035 ONLY  
Figure 3. MAX16035/MAX16039 BATTON Driving an External Pass Transistor  
______________________________________________________________________________________ 11  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
RESET  
A µP’s reset input puts the µP in a known state. The  
MAX16033–MAX16040 µP supervisory circuits assert a  
reset to prevent code-execution errors during power-  
up, power-down, and brownout conditions. RESET  
Applications Information  
Operation Without a Backup Power Source  
The MAX16033–MAX16040 provide a battery backup  
function. If a backup power source is not used, connect  
BATT to GND and OUT to V  
.
CC  
asserts when V  
is below the reset threshold voltage  
CC  
and for at least 140ms (t ) after V  
rises above the  
CC  
RP  
Using a Super Cap as a  
Backup Power Source  
reset threshold. RESET also asserts when MR is low  
(MAX16033/MAX16037) or when RESETIN is below  
1.235V (MAX16036/MAX16040). The MAX16034/  
MAX16038 watchdog function causes RESET to assert in  
pulses following a watchdog timeout (Figure 2). The  
MAX160_ _L devices provide push-pull RESET outputs.  
The MAX160_ _P devices provide open-drain RESET  
outputs.  
Super caps are capacitors with extremely high capaci-  
tance, such as 0.47F. Figure 5 shows two methods to  
use a super cap as a backup power source. Connect  
the super cap through a diode to the 3V input (Figure  
5a) or connect the super cap through a diode to 5V  
(Figure 5b) if a 5V supply is available. The 5V supply  
charges the super cap to a voltage close to 5V, allow-  
ing a longer backup period. Since V  
can be higher  
BATT  
than V  
while V  
is above the reset threshold volt-  
CC  
CC  
age, there are no special precautions required when  
using these µP supervisors with a super cap.  
3–MAX1640  
3V OR 3.3V  
3V OR 3.3V  
V
CC  
V
CC  
5V  
MAX16033–  
MAX16040  
MAX16033–  
MAX16040  
1N4148  
0.47F  
1N4148  
0.47F  
BATT  
BATT  
(a)  
(b)  
Figure 5. Using a Super Cap as a Backup Source  
12 ______________________________________________________________________________________  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
3–MAX1640  
V
CC  
START  
V
CC  
RESET  
TO µP  
SET  
WDI  
LOW  
MAX16033–  
MAX16040  
SUBROUTINE  
OR PROGRAM LOOP  
SET  
V+  
MR  
WDI HIGH  
R1  
R2  
PFI  
PFO  
GND  
RETURN  
END  
Figure 6. Watchdog Flow Diagram  
Figure 7. Monitoring an Additional Power Supply  
Watchdog Software Considerations  
Connect PFO to MR in applications that require RESET to  
assert when the second voltage falls below its threshold.  
RESET remains asserted as long as PFO holds MR low,  
and for 140ms (min) after PFO goes high.  
One way to help the watchdog timer to monitor soft-  
ware execution more closely is to set and reset the  
watchdog at different points in the program, rather than  
pulsing the watchdog input periodically. Figure 6  
shows a flow diagram where the I/O driving the watch-  
dog is set low in the beginning of the program, set high  
at the beginning of every subroutine or loop, and set  
low again when the program returns to the beginning. If  
the program should hang in any subroutine, the watch-  
dog would timeout and reset the µP.  
Adding Hysteresis to the Power-Fail Comparator  
The power-fail comparator provides a typical hysteresis  
of 12mV, which is sufficient for most applications where  
a power-supply line is being monitored through an  
external voltage-divider. Connect a voltage-divider  
between PFI and PFO as shown in Figure 8a to provide  
additional noise immunity. Select the ratio of R1 and R2  
Replacing the Backup Battery  
such that V  
falls to 1.235V when V drops to its trip  
IN  
PFI  
Decouple BATT to GND with a 0.1µF capacitor. The  
point, V  
. R3 adds hysteresis and is typically more  
TRIP  
backup power source may be removed while V  
CC  
than 10 times the value of R1 or R2. The hysteresis win-  
dow extends above (V ) and below (V ) the original trip  
remains valid without the danger of triggering a reset  
pulse. The device does not enter battery-backup mode  
H
L
point, V  
. Connecting an ordinary signal diode in  
TRIP  
when V  
stays above the reset threshold voltage.  
series with R3 as shown in Figure 8b causes the lower  
trip point (V ) to coincide with the trip point without hys-  
CC  
L
TRIP  
Power-Fail Comparator  
teresis (V  
). This method provides additional noise  
margin without compromising the accuracy of the  
power-fail threshold when the monitored voltage is  
falling. Set the current through R1 and R2 to be at least  
10µA to ensure that the 100nA (max) PFI input current  
does not shift the trip point. Set R3 to be higher than  
10kto reduce the load at PFO. Capacitor C1 adds  
additional noise rejection.  
Monitoring an Additional Power Supply  
Monitor another voltage by connecting a resistive divider  
to PFI as shown in Figure 7. The threshold voltage is:  
V
= 1.235 (R1 / R2 + 1)  
TH(PFI)  
where V  
is the threshold at which the monitored  
TH(PFI)  
voltage will trip PFO.  
To simplify the resistor selection, choose a value for R2  
and calculate R1.  
R1 = R2 [(V  
/ 1.235) - 1]  
TH(PFI)  
______________________________________________________________________________________ 13  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
(a)  
(b)  
V
CC  
V
CC  
V
IN  
V
IN  
MAX16033–  
MAX16040  
MAX16033–  
MAX16040  
R1  
R2  
R1  
R2  
PFI  
PFI  
R3  
R3  
C1  
C1  
PFO (PUSH-PULL)  
GND  
PFO (PUSH-PULL)  
GND  
TO µP  
TO µP  
PFO  
0V  
PFO  
0V  
3–MAX1640  
V
IN  
V
IN  
V
TRIP  
V
V
H
V
H
L
V
TRIP  
R1  
R2  
R1  
R2  
V
V
V
= V  
1 +  
V
V
= V  
1 +  
PFT  
TRIP  
PFT  
TRIP  
R1  
R2  
R1  
R3  
R1  
R2  
R1  
R3  
R1  
R3  
= (V  
+ V  
) 1 +  
+
= (V  
+ V  
) 1 +  
+
V
D
H
L
PFT  
PFH  
H
PFT  
PFH  
V
V
V
V
= V  
TRIP  
R1  
R2  
R1  
R3  
R1  
L
= V  
1 +  
+
V
CC  
PFT  
R3  
= 1.235V  
= 12mV  
PFT  
PFH  
V
V
= 1.235V  
= 12mV  
PFT  
= DIODE FORWARD VOLTAGE  
PFH  
D
Figure 8. (a) Adding Additional Hysteresis to the Power-Fail Comparator. (b) Shifting the Additional Hysteresis above V  
TRIP  
14 ______________________________________________________________________________________  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
3–MAX1640  
Monitoring a Negative Voltage  
Connect the circuit as shown in Figure 9 to use the  
power-fail comparator to monitor a negative supply rail.  
PFO stays low when V- is good. When V- rises to cause  
3.0V OR 3.3V  
PFI to be above +1.235V, PFO goes high. Ensure V  
CC  
V
CC  
comes up before the negative supply.  
Negative-Going V  
Transients  
CC  
The MAX16033–MAX16040 are relatively immune to  
short-duration, negative-going V transients.  
MAX16033–  
MAX16040  
R1  
R2  
CC  
PFI  
PFO  
Resetting the µP when V  
experiences only small  
CC  
glitches is not usually desired.  
The Typical Operating Characteristics section contains  
a Maximum Transient Duration vs. Reset Threshold  
Overdrive graph. The graph shows the maximum pulse  
GND  
V-  
width of a negative-going V  
transient that would not  
CC  
trigger a reset pulse. As the amplitude of the transient  
increases (i.e., goes further below the reset threshold  
voltage), the maximum allowable pulse width decreas-  
PFO  
V-  
V
TRIP  
V
L
0V  
es. Typically, a V  
transient that goes 100mV below  
CC  
the reset threshold and lasts for 25µs does not trigger a  
reset pulse.  
1
R1  
1
R2  
V
R1  
CC  
V
V
= R2 V  
+ V  
+
(
)
TRIP  
PFT  
PFH  
A 0.1µF bypass capacitor mounted close to V  
vides additional transient immunity.  
pro-  
CC  
(
1
1
V
CC  
R1  
= R2 V  
+
)
L
PFT  
R1  
R2  
V
V
= 1.235V  
= 12mV  
PFT  
PFH  
Figure 9. Monitoring a Negative Voltage  
______________________________________________________________________________________ 15  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
Device Marking Codes  
TOP  
MARK  
TOP  
MARK  
TOP  
MARK  
TOP  
MARK  
PART  
PART  
PART  
PART  
MAX16033LLB23+T  
MAX16033LLB26+T  
MAX16033LLB29+T  
MAX16033LLB31+T  
MAX16033LLB44+T  
MAX16033LLB46+T  
MAX16033PLB23+T  
MAX16033PLB26+T  
MAX16033PLB29+  
MAX16033PLB31+  
+ABE  
+ABF  
+ABG  
+ABH  
+ABI  
MAX16035LLB23+T  
MAX16035LLB26+T  
MAX16035LLB29+  
MAX16035LLB31+  
+ACC  
+ACD  
+ACE  
+ACF  
+ACG  
+ACH  
+ACI  
MAX16037LLA23+T  
MAX16037LLA26+T  
MAX16037LLA29+  
MAX16037LLA31+  
+ABX  
+ABY  
+ABZ  
MAX16039LLA23+T  
MAX16039LLA26+T  
MAX16039LLA29+T  
+ACV  
+ACW  
+ACX  
+ACY  
+ACZ  
+ADA  
+ADB  
+ADC  
+ADD  
+ADE  
+ADF  
+ADG  
+ADH  
+ADI  
+ACA MAX16039LLA31+T  
MAX16035LLB44+T  
MAX16037LLA44+T  
+ACB  
+ACC  
+ACD  
+ACE  
+ACF  
+ACG  
+ACH  
+ACI  
MAX16039LLA44+T  
MAX16039LLA46+T  
MAX16039PLA23+T  
MAX16039PLA26+T  
MAX16039PLA29+  
MAX16039PLA31+  
MAX16035LLB46+  
MAX16037LLA46+  
+ABJ  
+ABK  
+ABL  
+ABM  
+ABN  
+ABO  
+ABP  
+ABQ  
+ABR  
+ABS  
+ABT  
+ABU  
+ABV  
+ABW  
+ABX  
+ABY  
ABZ  
MAX16035PLB23+T  
MAX16035PLB26+T  
MAX16035PLB29+  
MAX16035PLB31+  
MAX16037PLA23+T  
MAX16037PLA26+T  
MAX16037PLA29+  
MAX16037PLA31+  
+ACJ  
+ACK  
+ACL  
+ACM  
+ACN  
+ACO  
+ACP  
+ACQ  
+ACR  
+ACS  
+ACT  
+ACU  
+ACV  
+ACW  
+ACX  
+ACY  
+ACZ  
MAX16033PLB44+T  
MAX16035PLB44+T  
MAX16037PLA44+T  
MAX16039PLA44+T  
MAX16033PLB46+  
MAX16035PLB46+  
MAX16037PLA46+  
MAX16039PLA46+  
MAX16034LLB23+T  
MAX16034LLB26+T  
MAX16034LLB29+T  
MAX16034LLB31+T  
MAX16034LLB44+T  
MAX16034LLB46+T  
MAX16034PLB23+T  
MAX16034PLB26+T  
MAX16034PLB29+  
MAX16034PLB31+  
MAX16036LLB23+T  
MAX16036LLB26+T  
MAX16036LLB29+  
MAX16036LLB31+  
MAX16038LLA23+T  
MAX16038LLA26+T  
MAX16038LLA29+  
MAX16038LLA31+  
+ACJ  
+ACK  
+ACL  
MAX16040LLA23+T  
MAX16040LLA26+T  
MAX16040LLA29+T  
3–MAX1640  
+ADJ  
+ADK  
+ADL  
+ADM  
+ADN  
+ADO  
+ADP  
+ADQ  
+ADR  
+ADS  
+ACM MAX16040LLA31+T  
+ACN MAX16040LLA44+T  
+ACO MAX16040LLA46+T  
MAX16036LLB44+T  
MAX16038LLA44+T  
MAX16036LLB46+  
MAX16038LLA46+  
MAX16036PLB23+T  
MAX16036PLB26+T  
MAX16036PLB29+  
MAX16036PLB31+  
MAX16038PLA23+T  
MAX16038PLA26+T  
MAX16038PLA29+  
MAX16038PLA31+  
+ACP  
+ACQ  
+ACR  
+ACS  
+ACT  
+ACU  
MAX16040PLA23+T  
MAX16040PLA26+T  
MAX16040PLA29+  
MAX16040PAL31+  
MAX16034PLB44+T  
+ACA  
+ACB  
MAX16036PLB44+T  
MAX16038PLA44+T  
MAX16040PLA44+T  
MAX16034PLB46+  
MAX16036PLB46+  
MAX16038PLA46+  
MAX16040PLA46+  
Note: 48 standard versions shown in bold are available. Sample stock is generally held on standard versions only. Contact factory for  
nonstandard versions availability.  
16 ______________________________________________________________________________________  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
3–MAX1640  
Pin Configurations  
TOP VIEW  
10  
9
8
7
6
10  
9
8
7
6
MAX16035  
MAX16036  
MAX16033  
MAX16034  
+
+
1
2
3
4
5
1
2
3
4
5
10-µDFN  
( ) FOR MAX16036 ONLY  
10-µDFN  
( ) FOR MAX16034 ONLY  
8
1
7
6
5
4
8
1
7
6
5
4
MAX16037  
MAX16038  
MAX16039  
MAX16040  
+
+
2
3
2
3
8-µDFN  
( ) FOR MAX16038 ONLY  
8-µDFN  
( ) FOR MAX16040 ONLY  
+ DENOTES A LEAD-FREE PACKAGE.  
______________________________________________________________________________________ 17  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
Typical Operating Circuit  
2.4V TO 5.5V  
0.1µF  
REAL-  
TIME  
CLOCK  
CMOS  
RAM  
CE  
V
CC  
BATT  
ADDITIONAL  
DC VOLTAGE  
OUT  
0.1µF  
MAX16033–  
MAX16040  
R3  
R4  
RESETIN*  
ADDITIONAL  
DC VOLTAGE  
A0–A15  
RESET  
PFO  
RESET  
I/O  
3–MAX1640  
R1  
µP  
PFI  
I/O  
WDI***  
CEOUT**  
CEIN**  
R2  
GND  
ADDRESS  
DECODE  
* RESETIN APPLIES TO MAX16035/MAX16039 ONLY.  
**CEIN AND CEOUT APPLY TO MAX16033–MAX16036 ONLY.  
***WDI APPLIES TO MAX16034/MAX16038 ONLY.  
18 ______________________________________________________________________________________  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
3–MAX1640  
Ordering Information (continued)  
Reset Threshold Ranges  
PIN-  
PACKAGE  
PKG  
CODE  
RESET THRESHOLD VOLTAGE (V)  
PART*  
TEMP RANGE  
SUFFIX  
MIN  
4.50  
4.25  
3.00  
2.85  
2.55  
2.25  
TYP  
4.63  
4.38  
3.08  
2.93  
2.63  
2.32  
MAX  
4.75  
4.50  
3.15  
3.00  
2.70  
2.38  
MAX16035LLB_ _+T -40°C to +85°C 10 µDFN-10 L1022-1  
MAX16035PLB_ _+T -40°C to +85°C 10 µDFN-10 L1022-1  
MAX16036LLB_ _+T -40°C to +85°C 10 µDFN-10 L1022-1  
MAX16036PLB_ _+T -40°C to +85°C 10 µDFN-10 L1022-1  
46  
44  
31  
29  
26  
23  
MAX16037LLA_ _+T -40°C to +85°C 8 µDFN-8  
MAX16037PLA_ _+T -40°C to +85°C 8 µDFN-8  
MAX16038LLA_ _+T -40°C to +85°C 8 µDFN-8  
MAX16038PLA_ _+T -40°C to +85°C 8 µDFN-8  
MAX16039LLA_ _+T -40°C to +85°C 8 µDFN-8  
MAX16039PLA_ _+T -40°C to +85°C 8 µDFN-8  
MAX16040LLA_ _+T -40°C to +85°C 8 µDFN-8  
MAX16040PLA_ _+T -40°C to +85°C 8 µDFN-8  
L822-1  
L822-1  
L822-1  
L822-1  
L822-1  
L822-1  
L822-1  
L822-1  
Chip Information  
PROCESS: BiCMOS  
*These parts offer a choice of reset threshold voltages. From the  
Reset Threshold Ranges table, insert the desired threshold volt-  
age code in the blank to complete the part number. See Selector  
Guide for a listing of device features.  
+Denotes a lead-free package.  
T = Tape and reel.  
______________________________________________________________________________________ 19  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
A
b
D
e
N
XXXX  
XXXX  
XXXX  
SOLDER  
MASK  
COVERAGE  
E
PIN 1  
0.10x45  
L
L1  
1
SAMPLE  
MARKING  
PIN 1  
INDEX AREA  
A
A
7
(N/2 -1) x e)  
3–MAX1640  
C
L
C
L
b
L
L
A
e
e
A2  
EVEN TERMINAL  
ODD TERMINAL  
A1  
PACKAGE OUTLINE,  
6, 8, 10L uDFN, 2x2x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0164  
A
2
20 ______________________________________________________________________________________  
Low-Power Battery Backup  
Circuits in Small µDFN Packages  
3–MAX1640  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
0.15  
0.020  
1.95  
1.95  
0.30  
NOM.  
0.75  
0.20  
0.025  
2.00  
2.00  
0.40  
MAX.  
0.80  
0.25  
0.035  
2.05  
2.05  
0.50  
A
A1  
A2  
D
-
E
L
L1  
0.10 REF.  
PACKAGE VARIATIONS  
PKG. CODE  
L622-1  
N
6
e
b
(N/2 -1) x e  
0.65 BSC  
0.50 BSC  
0.40 BSC  
0.30±0.05 1.30 REF.  
0.25±0.05 1.50 REF.  
0.20±0.03 1.60 REF.  
L822-1  
8
L1022-1  
10  
PACKAGE OUTLINE,  
6, 8, 10L uDFN, 2x2x0.80 mm  
2
21-0164  
A
-DRAWING NOT TO SCALE-  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
Heaney  

相关型号:

MAX16037PLA23+T

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16037PLA26+T

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16037PLA29+

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16037PLA29+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, 2 X 2 MM, LEAD FREE, MICRO, DFN-8
MAXIM

MAX16037PLA31+

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16037PLA31+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, 2 X 2 MM, LEAD FREE, MICRO, DFN-8
MAXIM

MAX16037PLA44+T

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16037PLA46+

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16038

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16038LLA23+T

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16038LLA26+T

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM

MAX16038LLA29+

Low-Power Battery Backup Circuits in Small レDFN Packages
MAXIM