MAX16059 [MAXIM]

125nA Supervisory Circuits with Capacitor- Adjustable Reset and Watchdog Timeouts; 125nA监控电路,带有Capacitor-可调复位和看门狗超时
MAX16059
型号: MAX16059
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

125nA Supervisory Circuits with Capacitor- Adjustable Reset and Watchdog Timeouts
125nA监控电路,带有Capacitor-可调复位和看门狗超时

监控
文件: 总17页 (文件大小:749K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
General Description  
Features  
o Ultra-Low 125nA (typ) Supply Current  
The MAX16056–MAX16059 are ultra-low-current 125nA  
(typ) microprocessor (µP) supervisory circuits that mon-  
itor a single system supply voltage. These devices  
o 1.1V to 5.5V Operating Supply Range  
o Factory-Set Reset Threshold Options from 1.575V  
assert an active-low reset signal whenever the V  
CC  
to 4.625V in Approximately 100mV Increments  
supply voltage drops below the factory-trimmed reset  
threshold, manual reset is pulled low, or the watchdog  
timer runs out (MAX16056/MAX16058). The reset output  
remains asserted for an adjustable reset timeout period  
o Capacitor-Adjustable Reset Timeout  
o Capacitor-Adjustable Watchdog Timeout  
(MAX16056/MAX16058)  
o Watchdog Timer Capacitor Open Detect Function  
o Optional Watchdog Disable Function  
after V  
rises above the reset threshold. Factory-  
CC  
trimmed reset threshold voltages are offered from  
1.575V to 4.625V in approximately 100mV increments  
(see Table 1).  
(MAX16056/MAX16058)  
o Manual Reset Input  
These devices feature adjustable reset and watchdog  
timeout using external capacitors. The MAX16056/  
MAX16058 contain a watchdog timer with a watchdog  
select input (WDS) that multiplies the watchdog timeout  
period by 128. The MAX16057/MAX16059 do not have  
the watchdog feature.  
o Guaranteed RESET Valid for V  
1.1V  
CC  
o Push-Pull or Open-Drain RESET Output Options  
o Power-Supply Transient Immunity  
o Small, 3mm x 3mm TDFN Package  
Ordering Information  
The MAX16056–MAX16059 are available in either push-  
pull or open-drain output-type configurations (see the  
Ordering Information). These devices are fully specified  
over the -40°C to +125°C automotive temperature range.  
The MAX16056/MAX16058 are available in the 8-pin  
TDFN package, and the MAX16057/MAX16059 are avail-  
able in the 6-pin TDFN package.  
WATCH-  
DOG  
TIMER  
PIN-  
PACKAGE  
RESET  
OUTPUT  
PART  
MAX16056ATA_ _+T 8 TDFN-EP*  
MAX16057ATT_ _+T 6 TDFN-EP*  
MAX16058ATA_ _+T 8 TDFN-EP*  
MAX16059ATT_ _+T 6 TDFN-EP*  
Push-Pull  
Push-Pull  
Yes  
No  
Open-Drain  
Open-Drain  
Yes  
No  
Applications  
Portable/Battery-Powered Equipment  
PDAs/Cell Phones  
MP3 Players/Pagers  
Glucose Monitors/Patient Monitors  
Metering/HVAC  
Note: All devices are specified over the -40°C to +125°C oper-  
ating temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*EP = Exposed pad.  
“_ _” represents the two number suffix needed when ordering  
the reset threshold voltage value (see Table 1).  
Standard versions and their package top marks are shown in  
Table 3 at the end of data sheet.  
Typical Operating Circuit appears at end of data sheet.  
Pin Configurations  
V
WDS WDI SRT  
V
N.C.  
5
SRT  
4
CC  
8
CC  
6
TOP VIEW  
7
6
5
MAX16056  
MAX16058  
MAX16057  
MAX16059  
EP  
EP  
1
2
3
4
1
2
3
RESET GND SWT MR  
RESET  
GND  
MR  
TDFN  
TDFN  
*CONNECT EXPOSED PAD TO GND.  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-4686; Rev 2; 4/13  
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
ABSOLUTE MAXIMUM RATINGS  
CC  
SRT, SWT, WDS, MR, WDI, to GND ...........-0.3V to (V  
RESET (Push-Pull) to GND .........................-0.3V to (V  
RESET (Open-Drain) to GND ...................................-0.3V to +6V  
Input Current (all pins) .................................................... 20mA  
Output Current (RESET) ................................................. 20mA  
V
to GND..............................................................-0.3V to +6V  
Junction-to-Ambient Thermal Resistance (θJA) (Note 1)  
+ 0.3V)  
+ 0.3V)  
6-Pin TDFN...................................................................42°C/W  
8-Pin TDFN...................................................................41°C/W  
Junction-to-Case Thermal Resistance (θJC) (Note 1)  
CC  
CC  
6-Pin TDFN.....................................................................9°C/W  
8-Pin TDFN.....................................................................8°C/W  
Operating Temperature Range .........................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature .....................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
Continuous Power Dissipation (T = +70°C)  
A
6-Pin TDFN (derate 23.8mW/°C above +70°C) .........1905mW  
8-Pin TDFN (derate 24.4mW/°C above +70°C) .........1951mW  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 1.2V to 5.5V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V  
= 3.3V, T = +25°C.) (Note 2)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
= 0°C to +125°C  
MIN  
1.1  
TYP  
MAX  
5.5  
UNITS  
T
T
A
A
Supply Voltage  
V
V
CC  
= -40°C to 0°C  
1.2  
5.5  
V
= 5.0V, T  
=
=
=
=
CC  
A
142  
132  
125  
142  
132  
210  
185  
175  
430  
415  
-40°C to +85°C  
V
= 3.3V, T  
CC  
A
-40°C to +85°C  
V
= 1.8V, T  
CC  
A
V
> V + 150mV,  
TH  
CC  
-40°C to +85°C  
no load, reset output  
deasserted (Note 3)  
nA  
Supply Current  
I
CC  
V
= 5.0V, T  
CC  
A
-40°C to +125°C  
V
= 3.3V, T =  
A
CC  
-40°C to +125°C  
V
= 1.8V, T  
=
A
CC  
125  
7
400  
15  
-40°C to +125°C  
V
V
< V , no load, reset output asserted  
µA  
V
CC  
CC  
TH  
V
1.5%  
-
V
1.5%  
+
TH  
TH  
T
= +25°C  
A
V
Reset Threshold  
V
falling (see Table 1)  
CC  
TH  
T
= -40°C to  
V
-
V
+
TH  
A
TH  
+125°C  
2.5%  
2.5%  
Hysteresis  
to Reset Delay  
V
V
V
rising  
0.5  
80  
%
µs  
ms  
HYST  
CC  
CC  
falling from (V + 100mV) to  
TH  
V
t
RD  
CC  
(V - 100mV) at 10mV/µs  
TH  
Reset Timeout Period  
t
C
= 2700pF (Note 4)  
SRT  
10.5  
14.18  
17.0  
RP  
2
Maxim Integrated  
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 1.2V to 5.5V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V  
= 3.3V, T = +25°C.) (Note 2)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
= -40°C to  
MIN  
TYP  
MAX  
UNITS  
T
A
197  
240  
282  
V
V
= 0V to V  
,
RAMP1  
SRT  
CC  
+125°C  
SRT Ramp Current  
I
nA  
RAMP1  
= 1.6V to 5V  
T
A
= +25°C  
= 1.6V to 5V (V rising)  
RAMP  
210  
1.173  
5
240  
1.235  
6.4  
270  
1.297  
8
SRT Ramp Threshold  
V
V
V
RAMP1  
CC  
T
T
= +25°C  
A
A
Watchdog Timeout Clock Period  
t
ms  
WDPER  
= -40°C to +125°C  
3.5  
6.4  
9.5  
T
= -40°C to  
A
197  
240  
282  
V
V
= 0V to V  
= 1.6V to 5V  
,
SWT  
RAMP2  
+125°C  
SWT Ramp Current  
I
nA  
V
RAMP2  
CC  
T
= +25°C  
= 1.6V to 5V (V rising)  
RAMP2  
210  
240  
270  
A
SWT Ramp Threshold  
V
V
V
V
V
1.173  
1.235  
1.297  
0.3  
RAMP2  
CC  
CC  
CC  
CC  
1.0V, I  
2.7V, I  
4.5V, I  
= 50µA  
SINK  
SINK  
SINK  
V
= 1.2mA  
= 3.2mA  
0.3  
OL  
0.4  
V
1.8V,  
0.8 x  
CC  
I
= 200µA  
V
CC  
RESET Output Voltage  
SOURCE  
V
V
2.25V,  
0.8 x  
V
CC  
CC  
V
MAX16056/MAX16057  
OH  
I
= 500µA  
SOURCE  
V
4.5V,  
0.8 x  
CC  
I
= 800µA  
V
CC  
SOURCE  
RESET Output-Leakage Current,  
Open Drain  
V
> V , reset not asserted, V  
=
RESET  
CC  
TH  
I
1.0  
µA  
V
LKG  
5.5V (MAX16058/MAX16059)  
0.7 x  
V
IH  
V
CC  
Input-Logic Levels  
0.3 x  
V
IL  
V
CC  
MR Minimum Pulse Width  
MR Glitch Rejection  
t
1
µs  
ns  
ns  
ns  
nA  
MPW  
200  
250  
MR to RESET Delay  
t
MRD  
WDI Minimum Pulse Width  
Input Leakage Current  
(Note 5)  
MR, WDI, WDS is connected to GND or V  
150  
-100  
+100  
CC  
Note 2: Devices are production tested at T = +25°C. Specifications over temperature limits are guaranteed by design.  
A
Note 3: WDI input period is 1s with t  
and t  
< 50ns.  
RISE  
FALL  
Note 4: Worst case of SRT ramp current and voltage is used to guarantee minimum and maximum limits.  
Note 5: Guaranteed by design, not production tested.  
Maxim Integrated  
3
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
Typical Operating Characteristics  
(V  
CC  
= 2.5V, T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
RESET TIMEOUT PERIOD  
vs. C  
SUPPLY CURRENT vs. TEMPERATURE  
SRT  
10.0  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 2.23V  
TH  
RESET IS NOT ASSERTED  
V
= 1.575V  
TH  
V
V
= 5.5V  
CC  
V
= 3.3V  
= 2.5V  
CC  
1.0  
0.1  
T
A
= -40NC  
T
A
= +125NC  
T
= +85NC  
T
A
= +25NC  
A
V
CC  
5
= 1.8V  
CC  
0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
(V)  
-40 -25 -10  
20 35 50 65 80 95 110 125  
0
50  
100  
150  
(nF)  
200  
250  
300  
V
TEMPERATURE (NC)  
C
CC  
SRT  
NORMALIZED RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
NORMALIZED WATCHDOG  
TIMEOUT PERIOD vs. TEMPERATURE  
MAXIMUM V TRANSIENT DURATION  
CC  
vs. RESET THRESHOLD OVERDRIVE  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
1000  
100  
10  
RESET OCCURS ABOVE THIS LINE  
V
FALLING FROM V + 100mV  
TH  
CC  
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
10  
100  
1000  
TEMPERATURE (NC)  
TEMPERATURE (NC)  
RESET THRESHOLD OVERDRIVE (mV)  
NORMALIZED RESET THRESHOLD  
VOLTAGE vs. TEMPERATURE  
V
TO RESET DELAY  
CC  
vs. TEMPERATURE  
120  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
V
= V + 100mV TO V - 100mV  
CC  
TH  
TH  
110  
100  
90  
80  
70  
60  
50  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (NC)  
TEMPERATURE (NC)  
4
Maxim Integrated  
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
Typical Operating Characteristics (continued)  
(V  
CC  
= 2.5V, T = +25°C, unless otherwise noted.)  
A
RESET OUTPUT-LOW VOLTAGE  
vs. SINK CURRENT  
RESET OUTPUT-HIGH VOLTAGE  
vs. SOURCE CURRENT  
SUPPLY CURRENT vs. WATCHDOG  
SWITCHING FREQUENCY  
0.30  
0.50  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
V
= 2.5V  
CC  
V
= 1.8V  
CC  
V
= 1.8V  
CC  
V
= 3.3V  
CC  
= 3.3V  
CC  
V
= 2.5V  
CC  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
(mA)  
0.01  
0.1  
1
10  
100 1000 10,000  
I
(mA)  
SINK  
I
SOURCE  
WATCHDOG SWITCHING FREQUENCY (kHz)  
MANUAL RESET DELAY  
vs. TEMPERATURE  
MANUAL RESET DELAY  
MAX16056 toc13  
270  
268  
266  
264  
262  
260  
258  
256  
254  
252  
250  
MR  
1V/div  
RESET  
1V/div  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
200ns/div  
TEMPERATURE (NC)  
RESET SOURCE CAPABILITY  
vs. SUPPLY VOLTAGE  
RESET SINK CAPABILITY  
vs. SUPPLY VOLTAGE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
9
8
7
6
5
4
3
2
1
0
V
= 0.8 x V  
CC  
RESET  
V
= 0.3V  
RESET  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
(V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
V
V
CC  
CC  
Maxim Integrated  
5
5
_______________________________________________________________________________________________________  
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX16056/ MAX16057/  
MAX16058  
MAX16059  
Push-Pull or Open-Drain Reset Output. RESET asserts whenever V  
drops below the  
CC  
selected reset threshold voltage (V ) or manual reset is pulled low. RESET remains low  
TH  
1
2
1
2
RESET for the reset timeout period after all reset conditions are deasserted, and then goes high.  
The watchdog timer triggers a reset pulse (t ) whenever a watchdog fault occurs  
RP  
(MAX16056/MAX16058).  
GND  
SWT  
Ground  
Watchdog Timeout Input. Connect a capacitor between SWT and GND to set the basic  
watchdog timeout period (t ). Determine the period by the formula t  
WD  
5.15 x 10 /6.4ms] x 6.4ms + 3.2ms (Note 6) with t  
use Table 2. Extend the basic watchdog timeout period by using the WDS input. Connect  
SWT to ground to disable the watchdog timer function. The value of the capacitor must be  
between 2275pF and 0.54µF to have a valid watchdog timeout period.  
= Floor[C  
in Farads, or  
SWT  
x
WD  
SWT  
6
in seconds and C  
WD  
3
Manual-Reset Input. Drive MR low to manually reset the device. RESET remains asserted  
for the reset timeout period after MR is released. There is no internal pullup on MR. MR  
4
5
3
4
MR  
must not be left unconnected. Connect MR to V  
if not used.  
CC  
Reset Timeout Input. Connect a capacitor from SRT to GND to select the reset timeout  
6
period. Determine the period as follows: t = 5.15 x 10 x C  
with t in seconds and  
RP  
RP  
SRT  
SRT  
C
in Farads, or use Table 2. The value of the capacitor must be between 39pF and  
SRT  
4.7µF.  
Watchdog Input. A falling transition must occur on WDI within the selected watchdog  
timeout period or a reset pulse occurs. The watchdog timer clears when a falling transition  
occurs on WDI or whenever RESET is asserted. Connect SWT to ground to disable the  
watchdog timer function.  
6
WDI  
Watchdog Select Input. WDS selects the watchdog timeout mode. Connect WDS to  
ground to select normal mode. The watchdog timeout period is t . Connect WDS to V  
to select extended mode, multiplying the basic timeout period (t ) by a factor of 128. A  
WD  
change in the state of WDS clears the watchdog timer.  
WD  
CC  
7
8
6
WDS  
Supply Voltage. V  
is the power-supply input and the input for fixed threshold V  
CC  
CC  
V
CC  
monitor. For noisy systems, bypass V  
with a 0.1µF capacitor to GND.  
CC  
5
N.C.  
EP  
No Connection. Not internally connected.  
Exposed Pad. Connect EP to GND or leave unconnected.  
Note 6: Floor: take the integral value.  
6
Maxim Integrated  
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
Watchdog Timer  
Detailed Description  
The MAX16056/MAX16058’s watchdog timer circuitry  
The MAX16056–MAX16059 are ultra-low-current 125nA  
monitors the µP’s activity. If the µP does not toggle  
(typ) µP supervisory circuits that monitor a single sys-  
(high-to-low) the watchdog input (WDI) within the  
tem supply voltage. These devices assert an active-low  
capacitor-adjustable watchdog timeout period (t ),  
WD  
reset signal whenever the V  
supply voltage drops  
CC  
RESET asserts for the reset timeout period (t ). The  
RP  
below the factory-trimmed reset threshold, manual  
reset is pulled low, or the watchdog timer runs out  
(MAX16056/MAX16058). The reset output remains  
asserted for an adjustable reset timeout period after  
internal watchdog timer is cleared by: 1) any event that  
asserts RESET, by 2) a falling transition at WDI (that  
can detect pulses as short as 150ns) or by 3) a transi-  
tion (high-to-low or low-to-high) at WDS. While reset is  
asserted, the watchdog timer remains cleared and  
does not count. As soon as reset deasserts, the watch-  
dog timer resumes counting.  
V
rises above the reset threshold. The reset and  
watchdog delay periods are adjustable using external  
capacitors.  
CC  
RESET Output  
The MAX16056–MAX16059 µP supervisory circuits assert  
a reset to prevent code-execution errors during power-  
up, power-down, and brownout conditions. The reset  
There are two modes of watchdog operation, normal  
mode and extended mode. In normal mode (Figure 2),  
the watchdog timeout period is determined by the  
value of the capacitor connected between SWT and  
ground. In extended mode (Figure 3), the watchdog  
timeout period is multiplied by 128. For example, in  
extended mode, a 0.33µF capacitor gives a watchdog  
timeout period of 217s (see Table 2). To disable the  
watchdog timer function, connect SWT to ground.  
output is guaranteed to be valid for V down to 1.1V.  
CC  
When V  
falls below the reset threshold, the RESET  
CC  
output asserts low. Once V  
exceeds the reset thresh-  
CC  
old plus the hysteresis, an internal timer keeps the reset  
output asserted for the capacitor-adjusted reset timeout  
period (t ), then after this interval the reset output  
RP  
deasserts (see Figure 1). The reset function features  
immunity to power-supply voltage transients.  
When V  
ramps above V + V  
, the value of the  
CC  
TH  
HYST  
external SWT capacitor is sampled after RESET goes  
high. When sampling is finished, the capacitor value is  
stored in the device and is used to set watchdog time-  
out. If RESET goes low before sampling is finished, the  
device interrupts sampling, and sampling is restarted  
when RESET goes high again.  
Manual-Reset Input (MR)  
Many µP-based products require manual-reset capabil-  
ity, allowing the operator, a test technician, or external  
logic circuitry to initiate a reset. The MAX16056–  
MAX16059 feature an MR input. A logic-low on MR  
asserts a reset. RESET remains asserted while MR is  
If the external SWT capacitor is less than 470pF, the  
sampling result sets the watchdog timeout to zero. This  
causes the watchdog to assert RESET continuously  
after sampling is finished. If a PCB manufacturing  
low and for the timeout period, t , after MR returns  
RP  
high. Connect MR to V  
if unused. MR can be driven  
CC  
defect caused the connection to C  
to be broken,  
SWT  
with CMOS logic levels or with open-drain/collector out-  
puts (with a pullup resistor). Connect a normally open  
momentary switch from MR to GND and a resistor from  
the capacitance is very low and RESET is continuously  
asserted. If the external SWT capacitor is greater than  
0.47µF, the sampling result sets the watchdog timeout  
to be infinite, disabling the watchdog function.  
MR to V  
to implement a manual-reset function; exter-  
CC  
nal debounce circuitry is not required. If MR is driven  
by long cables or the device is used in a noisy environ-  
ment, connect a 0.1µF capacitor from MR to GND to  
provide additional noise immunity.  
Maxim Integrated  
7
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
V
+ V  
HYST  
TH  
V
TH  
V
CC  
t
RP  
t
RP  
t
t
RD  
MRD  
RESET  
t
MPW  
MR  
Figure 1. RESET Timing Relationship  
V
CC  
t
t
WDI  
RP  
WD  
0V  
V
CC  
RESET  
0V  
NORMAL MODE (WDS = GND)  
Figure 2. Watchdog Timing Diagram, Normal Mode, WDS = GND  
V
CC  
t
x 128  
WDI  
WD  
0V  
V
CC  
t
RP  
RESET  
0V  
EXTENDED MODE (WDS = V  
)
CC  
Figure 3. Watchdog Timing Diagram, Extended Mode, WDS = V  
8
CC  
Maxim Integrated  
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
accuracy by substituting the minimum, typical, and  
Applications Information  
Selecting the Reset Timeout Capacitor  
The reset timeout period is adjustable to accommodate  
a variety of µP applications. To adjust the reset timeout  
maximum values into the equation.  
For example, if C  
= 100nF.  
-9  
SWT  
-9  
t
= Floor[100 x 10 x 1.173/(282 x 10 )/9.5ms] x  
WDMIN  
3.5ms + 0.5 x 3.2ms = 141.7ms  
period (t ), connect a capacitor (C  
) between SRT  
RP  
SRT  
-9  
-9  
and ground. The reset timeout capacitor is calculated  
t
= Floor[100 x 10 x 1.235/(240 x 10 )/6.4ms]  
WDNOM  
as follows:  
x 6.4ms + 0.5 x 6.4ms = 515.2ms  
6
-9  
-9  
C
= t /(5.15 x 10 )  
t
= Floor[100 x 10 x 1.297/(197 x 10 )/3.5ms]  
SRT  
RP  
WDMAX  
x 9.5ms + 0.5 x 9.5ms = 1790.75ms  
with t in seconds and C  
in Farads.  
RP  
SRT  
C
must be a low-leakage (< 10nA) type capacitor. A  
SRT  
Transient Immunity  
ceramic capacitor with low temperature coefficient  
dielectric (i.e., X7R) is recommended.  
For applications with higher slew rates on V during  
CC  
power-up, additional bypass capacitance may be  
required.  
Selecting Watchdog Timeout Capacitor  
The watchdog timeout period is adjustable to accom-  
modate a variety of µP applications. With this feature,  
the watchdog timeout can be optimized for software  
execution. The programmer can determine how often  
the watchdog timer should be serviced. Adjust the  
The MAX16056–MAX16059 are relatively immune to  
short-duration supply voltage transients, or glitches on  
V
. The Maximum V  
Transient Duration vs. Reset  
CC  
CC  
Threshold Overdrive graph in the Typical Operating  
Characteristics shows this transient immunity. The area  
below the curve of the graph is the region where these  
devices typically do not generate a reset pulse. This  
graph was generated using a falling pulse applied to  
watchdog timeout period (t ) by connecting a capaci-  
tor (C  
WD  
) between SWT and GND. For normal mode  
SWT  
operation, calculate the watchdog timeout as follows:  
6
V
, starting 100mV above the actual reset threshold  
(V ) and ending below this threshold (reset threshold  
CC  
t
= Floor[C  
x 5.15 x 10 /6.4ms] x 6.4ms + 3.2ms  
WD  
SWT  
TH  
with t  
in seconds and C  
in Farads.  
overdrive). As the magnitude of the transient increases,  
the maximum allowable pulse width decreases.  
WD  
SWT  
(Floor: take the integral value) (Figures 2 and 3)  
Typically, a 100mV V  
transient duration of 40µs or  
CC  
The maximum t is 296s. If the capacitor sets t  
greater than the 296s, t  
timer is disabled.  
WD  
WD  
less does not cause a reset.  
= infinite and the watchdog  
WD  
Using the MAX16056–MAX16059 for  
Reducing System Power Consumption  
Using the RESET output to control an external p-channel  
MOSFET to control the on-time of a power supply can  
result in lower system power consumption in systems that  
can be regularly put to sleep. By tying the WDI input to  
ground, the RESET output becomes a low-frequency  
clock output. When RESET is low, the MOSFET is turned  
on and power is applied to the system. When RESET is  
high, the MOSFET is turned off and no power is con-  
sumed by the system. This effectively reduces the shut-  
down current of the system to zero (Figure 4).  
C
must be a low-leakage (< 10nA) type capacitor.  
SWT  
A ceramic capacitor with low temperature coefficient  
dielectric (i.e., X7R) is recommended.  
Watchdog Timeout Accuracy  
The watchdog timeout period is affected by the SWT  
ramp current (I  
old (V  
) accuracy, the SWT ramp thresh-  
RAMP2  
) and the watchdog timeout clock period  
RAMP2  
(t  
). In the equation above, the constant 5.15 x  
WDPER  
106 is equal to V  
/I  
, and 6.4ms equals the  
RAMP2 RAMP2  
watchdog timeout clock period. Calculate the timeout  
Maxim Integrated  
9
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
BAT  
0.1μF  
0.1μF  
1MΩ  
V
CC  
V
CC1  
RESET  
WDI  
MAX16056  
MR  
μP  
MANUAL  
POWER-ON  
SRT  
GND  
WDS  
SWT  
C
SWT  
C
SRT  
V
CC  
RESET  
V
CC1  
t
t
t
RP  
RP  
WD  
Figure 4. Using MAX16056–MAX16059 to Reduce System Power Consumption  
10  
Maxim Integrated  
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
Interfacing to Other Voltages  
for Logic Compatibility  
Ensuring a Valid RESET Down to V  
= 0V  
CC  
(Push-Pull RESET)  
The open-drain RESET output can be used to interface  
to a µP with other logic levels. The open-drain output is  
connected to a voltage from 0V to 5.5V as shown in  
Figure 5. Generally, the pullup resistor connected to  
RESET connects to the supply voltage that is being  
When V  
falls below 1.1V, the current-sinking capabil-  
CC  
ity of RESET decreases drastically. The high-imped-  
ance CMOS logic inputs connected to RESET can drift  
to undetermined voltages. This presents no problems in  
most applications, since most µPs and other circuitry  
monitored at the device’s V  
input. However, some  
do not operate with V  
below 1.1V. In those applica-  
CC  
CC  
systems use the open-drain output to level-shift from  
the supervisor’s monitored supply to another supply  
tions where RESET must be valid down to 0, add a pull-  
down resistor between the MAX16056/MAX16057  
push-pull RESET output and GND. The resistor sinks  
any stray leakage currents, holding RESET low (Figure  
6). Choose a pulldown resistor that accommodates  
leakages, such that RESET is not significantly loaded  
and is capable of pulling to GND. The external pull-  
down cannot be used with the open-drain RESET out-  
put of the MAX16058/MAX16059.  
voltage. As the supervisor’s V  
decreases, so does  
CC  
the device’s ability to sink current at RESET.  
3.3V  
5V  
V
CC  
V
CC  
V
CC  
V
CC  
MAX16058  
MAX16059  
100kΩ  
MAX16056  
MAX16057  
μP  
RESET  
RESET  
RESET  
2MΩ  
GND  
GND  
GND  
Figure 5. Interfacing with Other Voltage Levels  
Figure 6. Ensuring RESET Valid to V  
CC  
= GND  
Maxim Integrated  
11  
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
Table 1. Threshold Suffix Guide  
V
THRESHOLD FALLING (V)  
TYP  
CC  
SUFFIX  
MIN  
MAX  
4.741  
4.613  
4.484  
4.408  
4.305  
4.203  
4.100  
3.998  
3.895  
3.793  
3.690  
3.588  
3.485  
3.383  
3.280  
3.152  
3.075  
2.998  
2.870  
2.768  
2.691  
2.563  
2.460  
2.371  
2.290  
2.243  
2.153  
2.050  
1.948  
1.845  
1.707  
1.614  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
225  
22  
21  
20  
19  
18  
17  
16  
4.509  
4.388  
4.266  
4.193  
4.095  
3.998  
3.900  
3.802  
3.705  
3.608  
3.510  
3.413  
3.315  
3.218  
3.120  
2.998  
2.925  
2.852  
2.730  
2.633  
2.559  
2.438  
2.340  
2.255  
2.180  
2.133  
2.048  
1.950  
1.853  
1.755  
1.623  
1.536  
4.625  
4.500  
4.375  
4.300  
4.200  
4.100  
4.000  
3.900  
3.800  
3.700  
3.600  
3.500  
3.400  
3.300  
3.200  
3.075  
3.000  
2.925  
2.800  
2.700  
2.625  
2.500  
2.400  
2.313  
2.235  
2.188  
2.100  
2.000  
1.900  
1.800  
1.665  
1.575  
12  
Maxim Integrated  
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
Table 2. Capacitor Selection Guide  
CAPACITANCE (pF)  
39  
t
(ms)  
t
(ms)  
t x 128 (ms)  
WD  
RP  
WD  
47  
56  
68  
82  
100  
120  
0
(no capacitor is connected)  
150  
180  
220  
270  
Not recommended  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
10,000  
12,000  
15,000  
18,000  
Indeterminate  
(0, 9.6, or 16)  
Indeterminate  
(0, 1228.8, or 1636)  
14.18  
16.99  
20.1  
16  
1641  
1641  
2460  
2460  
3280  
4099  
4918  
6556  
7376  
9833  
11,472  
16  
22.4  
22.4  
28.8  
35.2  
41.6  
54.4  
60.8  
80  
24.21  
28.84  
35.00  
42.23  
51.5  
61.8  
77.25  
92.7  
92.8  
Maxim Integrated  
13  
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
Table 2. Capacitor Selection Guide (continued)  
CAPACITANCE (pF)  
22,000  
t
(ms)  
t
(ms)  
t x 128 (ms)  
WD  
RP  
WD  
113.3  
112  
13,929  
17,206  
21,302  
25,398  
30,313  
36,867  
44,240  
53,251  
65,539  
78,646  
98,307  
27,000  
139.05  
169.95  
200.85  
242.05  
288.4  
350.2  
422.3  
515  
137.6  
169.6  
201.6  
240  
33,000  
39,000  
47,000  
56,000  
291.2  
348.8  
419.2  
515.2  
617.6  
771.2  
924.8  
1129.6  
1392  
68,000  
82,000  
100,000  
120,000  
150,000  
180,000  
220,000  
270,000  
330,000  
390,000  
470,000  
680,000  
820,000  
1,000,000  
1,500,000  
2,200,000  
3,300,000  
4,700,000  
618  
772.5  
927  
117,968  
144,182  
177,769  
217,091  
256,412  
308,841  
1133  
1390.5  
1699.5  
2008.5  
2420.5  
3502  
1699.2  
2006.4  
2416  
4223  
Indeterminate  
5150  
(may be infinite and watchdog is disabled)  
7725  
11,330  
16,995  
24,205  
Infinite  
(watchdog is disabled)  
14  
Maxim Integrated  
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
Table 3. Standard Versions  
PART  
TOP MARK  
BKZ  
BLA  
BLB  
BLC  
BLD  
BLE  
MAX16056ATA17+  
MAX16056ATA23+  
MAX16056ATA26+  
MAX16056ATA29+  
MAX16056ATA31+  
MAX16056ATA46+  
MAX16057ATT17+  
MAX16057ATT23+  
MAX16057ATT26+  
MAX16057ATT29+  
MAX16057ATT31+  
MAX16057ATT46+  
MAX16058ATA16+  
MAX16058ATA22+  
MAX16058ATA26+  
MAX16058ATA29+  
MAX16058ATA31+  
MAX16058ATA44+  
MAX16059ATT16+  
MAX16059ATT22+  
MAX16059ATT26+  
MAX16059ATT29+  
MAX16059ATT31+  
MAX16059ATT44+  
ATQ  
ATR  
ATS  
ATT  
AUC  
AUD  
BLF  
BLG  
BLH  
BLI  
BLJ  
BLK  
ATW  
ATX  
ATY  
ATZ  
AUA  
AUB  
Maxim Integrated  
15  
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
Typical Operating Circuit  
BAT  
0.1μF  
1MΩ  
V
CC  
V
CC  
RESET  
WDI  
MAX16056  
MR  
μP  
MANUAL  
RESET  
SRT  
GND  
WDS  
SWT  
C
SWT  
C
SRT  
Package Information  
Chip Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
8 TDFN-EP  
6 TDFN-EP  
T833-2  
T633-2  
21-0137  
21-0137  
90-0059  
90-0058  
16  
Maxim Integrated  
MAX16056–MAX16059  
125nA Supervisory Circuits with Capacitor-  
Adjustable Reset and Watchdog Timeouts  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
6/09  
6/10  
4/13  
Initial release  
2, 3, 15  
1
Updated Absolute Maximum Ratings, Electrical Characteristics, and Table 3.  
Removed Automotive Infotainment from Applications sections  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000 ________________________________ 17  
© 2013 Maxim Integrated Products, Inc.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX16059ATT18+

Volt Supervisor Monitor 6-Pin TDFN EP
MAXIM

MAX16059ATT18+T

Power Supply Support Circuit, Fixed, 1 Channel, +1.8VV, BICMOS, 3 X 3 MM, ROHS COMPLIANT, TDFN-6
MAXIM

MAX16059ATT19+

Power Management Circuit, Fixed, +1.9VV, BICMOS, PDSO6,
MAXIM

MAX16059ATT20+T

Power Supply Support Circuit, Fixed, 1 Channel, +2VV, BICMOS, 3 X 3 MM, ROHS COMPLIANT, TDFN-6
MAXIM

MAX16059ATT22+T

Power Supply Support Circuit, Adjustable, 1 Channel, +2.188VV, BICMOS, 3 X 3 MM, ROHS COMPLIANT, TDFN-6
MAXIM

MAX16059ATT225+T

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 3 X 3 MM, ROHS COMPLIANT, TDFN-6
MAXIM

MAX16059ATT23+T

Power Supply Support Circuit, Fixed, 1 Channel, +2.313VV, BICMOS, 3 X 3 MM, ROHS COMPLIANT, TDFN-6
MAXIM

MAX16059ATT24+

Volt Supervisor Monitor 6-Pin TDFN EP
MAXIM

MAX16059ATT24+T

Power Supply Support Circuit, Fixed, 1 Channel, +2.4VV, BICMOS, 3 X 3 MM, ROHS COMPLIANT, TDFN-6
MAXIM

MAX16059ATT25+

Volt Supervisor Monitor 6-Pin TDFN EP
MAXIM

MAX16059ATT25+T

Power Supply Support Circuit, Fixed, 1 Channel, +2.5VV, BICMOS, 3 X 3 MM, ROHS COMPLIANT, TDFN-6
MAXIM

MAX16059ATT27+

Volt Supervisor Monitor 6-Pin TDFN EP
MAXIM