MAX1610-MAX1611 [MAXIM]

Digitally Controlled CCFL Backlight Power Supplies; 数控CCFL背光灯电源
MAX1610-MAX1611
型号: MAX1610-MAX1611
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Digitally Controlled CCFL Backlight Power Supplies
数控CCFL背光灯电源

文件: 总20页 (文件大小:138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1128; Rev 0; 9/96  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
0/MAX61  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX1610/MAX1611 a re fully inte g ra te d , hig h-  
efficiency drivers for cold-cathode fluorescent lamps  
(CCFLs ). The y op e ra te from a 4.5V to 26V p owe r  
source. An on-board, high-switching-frequency power  
MOSFET reduces external component count and mag-  
netics size. The MAX1610/MAX1611 protect against  
open or shorted lamps. The CCFL can be driven from  
an isolated transformer secondary winding to improve  
e ffic ie nc y a nd a void flic ke r a t d im tub e s e tting s .  
Brightness is adjusted by scaling the lamp current, or  
by operating with a fixed lamp current and chopping  
the CCFL on and off at a rate faster than the eye can  
detect.  
Direct Digital Control of CCFL Brightness  
Low Supply Current: 3mA Max Operating  
20µA Max Shutdown  
Low-Voltage Operation, Down to 4.5V  
Internal 26V, 0.7Power Switch  
Protection Against Open or Shorted Lamps  
Supports Isolated Transformer Secondary  
Winding  
SMBus Serial Interface (MAX1611)  
No Flicker at Low Brightness (internal 280Hz  
The MAX1610s digital inputs increment, decrement, or  
clear an internal, 5-bit up/down counter, which sets  
CCFL b rig htne s s . The MAX1611 us e s a Sys te m  
Management Bus (SMBus) 2-wire serial interface to  
directly set CCFL brightness. Both devices include  
micropower shutdown and a linear regulator that elimi-  
nates the need for a separate logic supply. The digital  
interface remains active in shutdown, preserving the  
brightness setting.  
current chopping)  
High Power-to-Light Efficiency  
Selectable 290kHz/145kHz Switching Frequency  
Oscillator SYNC Input  
16-Pin Narrow SO Package  
________________________Ap p lic a t io n s  
______________Ord e rin g In fo rm a t io n  
Notebook/Laptop Computers  
Point-of-Sale Terminals  
Portable Medical Equipment  
Instrument Displays  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
16 Narrow SO  
16 Narrow SO  
MAX1610CSE  
MAX1611CSE  
__________________________________________________________P in Co n fig u ra t io n s  
TOP VIEW  
UP  
DN  
1
2
3
4
5
6
7
8
16  
15  
14  
SDA  
SCL  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
BATT  
LX  
BATT  
LX  
SHDN  
SYNC  
SS  
SMBSUS  
SYNC  
SS  
BST  
BST  
GND  
MAX1610  
MAX1611  
13 GND  
12 VL  
11 CS  
12 VL  
11 CS  
CC  
CC  
CSAV  
MINDAC  
10  
9
CSAV  
MINDAC  
OTP  
REF  
10  
9
OTP  
REF  
SO  
SO  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
ABSOLUTE MAXIMUM RATINGS  
BATT to GND ............................................................-0.3V to 28V  
BST to GND ..............................................................-0.3V to 30V  
BST to LX ....................................................................-0.3V to 6V  
LX to GND ................................................-0.6V to (BATT + 0.3V)  
VL to GND...................................................................-0.3V to 6V  
CS, CSAV, CC, SYNC, REF, MINDAC,  
BATT, LX Current .....................................................................1A  
SDA Current........................................................................50mA  
VL Current...........................................................................50mA  
Continuous Power Dissipation (T = +70°C)  
A
SO (derate 8.70mW/°C above +70°C).........................696mW  
Operating Temperature Range  
SS, OTP to GND............................................-0.3V to (VL + 0.3V)  
SHDN, UP, DN to GND...............................................-0.3V to 6V  
SMBSUS, SDA, SCL to GND ......................................-0.3V to 6V  
MAX1610CSE/MAX1611CSE..............................0°C to +70°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(T = 0°C to +70°C, BATT = 8.2V, MINDAC = 0V, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
0/MAX61  
SUPPLY AND REFERENCE  
BATT Input Voltage Range  
4.75  
26  
3
V
BATT Quiescent Supply Current,  
Operate Mode  
BATT = 25V  
1.5  
10  
mA  
BATT Quiescent Supply Current,  
Shutdown Mode  
µA  
20  
VL Output Voltage, Operate Mode  
VL Output Voltage, Shutdown Mode  
REF Output Voltage  
4.75V < BATT < 26V  
No load  
4.25  
3.0  
4.5  
3.6  
2.0  
6
4.75  
4.75  
2.08  
20  
V
V
1.92  
V
I
= 100µA  
REF Load Regulation  
mV  
SOURCE  
SWITCHING REGULATOR  
BATT-to-LX Switch On-Resistance  
LX Switch Off-Leakage Current  
BST - LX = 4.1V  
0.7  
1.0  
10  
µA  
SYNC = REF  
SYNC = GND  
250  
125  
240  
200  
200  
-1  
290  
145  
330  
165  
350  
Oscillator Frequency  
kHz  
Oscillator SYNC Pin Synchronization Range  
SYNC High Pulse Width  
SYNC Low Pulse Width  
kHz  
ns  
ns  
µA  
V
SYNC Input Current  
SYNC = GND or VL  
1
SYNC Input Low Voltage  
SYNC Input High Voltage  
Power-Switch Maximum Duty Cycle  
SS Source Current  
0.5  
4.0  
89  
2.5  
2
V
SYNC = REF  
SS = GND  
SS = 0.5V  
91  
%
µA  
mA  
4.0  
5.5  
SS Sink Current  
2
_______________________________________________________________________________________  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
0/MAX61  
ELECTRICAL CHARACTERISTICS (continued)  
(T = 0°C to +70°C, BATT = 8.2V, MINDAC = 0V, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
CONDITIONS  
Guaranteed monotonic  
MIN  
TYP  
MAX  
UNITS  
DAC AND ERROR AMPLIFIER  
DAC Resolution  
5
0
Bits  
V
MINDAC Input Voltage Range  
MINDAC Input Bias Current  
MINDAC Digital PWM Threshold  
1
1
µA  
-1  
3
V
V
CSAV Input Voltage Range  
CSAV Regulation Point  
CSAV Input Bias Current  
0
1.0  
D/A at full scale  
D/A at 1LSB  
232  
247  
12  
260  
mV  
µA  
-5  
5
CSAV to CC Voltage-to-Current Converter  
Transconductance  
µmho  
CC = 2V, CSAV = 1V, D/A at 1LSB  
85  
µA  
µA  
CC Sink Current  
CC = 2V, CSAV = 1V, D/A at 1LSB  
CC = 2V, CSAV = 0V, D/A at full scale  
80  
20  
CC Source Current  
OPEN AND SHORTED TUBE PROTECTION  
OTP Voltage Trip Point  
Referred to REF  
GND < OTP < VL  
OTP rising  
-20  
-1  
20  
1
mV  
µA  
OTP Input Bias Current  
CS Overcurrent Cutoff Threshold  
MAX1610 LOGIC LEVELS  
500  
mV  
0.8  
1
V
V
SHDN, UP, DN Input Low Voltage  
SHDN, UP, DN Input High Voltage  
SHDN, UP, DN Input Bias Current  
MAX1611 LOGIC LEVELS  
2.4  
-1  
µA  
SMBSUS, SDA, SCL Input Low Voltage  
SMBSUS, SDA, SCL Input High Voltage  
SMBSUS, SDA, SCL Input Bias Current  
SDA Output Low Sink Current  
0.8  
1
V
V
2.2  
-1  
6
µA  
mA  
V
SDA  
= 0.6V  
_______________________________________________________________________________________  
3
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
TIMING CHARACTERISTICS—MAX1610  
(Figure 1, T = +25°C, unless otherwise noted.)  
A
PARAMETER  
UP, DN Pulse Width High  
UP, DN Pulse Width Low  
UP, DN Pulse Separation  
Counter Reset Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µs  
t
1
t
2
t
3
t
4
1
1
1
1
µs  
µs  
µs  
TIMING CHARACTERISTICS—MAX1611  
(Figures 2 and 3, T = +25°C, unless otherwise noted.)  
A
PARAMETER  
SCL Serial Clock High Period  
SCL Serial Clock Low Period  
SCL, SCA Rise Time  
SYMBOL  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
µs  
t
HIGH  
µs  
t
4.7  
LOW  
0/MAX61  
µs  
t
R
(Note 1)  
(Note 1)  
1
µs  
SCL, SDA Fall Time  
t
F
0.3  
µs  
Start Condition Setup Time  
Start Condition Hold Time  
t
4.7  
4
SU:STA  
HD:STA  
µs  
t
SDA Valid to SCL Rising Edge  
Setup Time, Slave Clocking in Data  
t
500  
0
SU:DAT  
HD:DAT  
ns  
ns  
SCL Falling Edge to SDA  
Transition  
t
(Note 1)  
SCL Falling Edge to SDA Valid,  
Reading Out Data  
µs  
t
1
DV  
Note 1: Guaranteed by design.  
4
_______________________________________________________________________________________  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
0/MAX61  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
REF OUTPUT VOLTAGE  
vs. REF OUTPUT CURRENT  
2.2  
BATT SUPPLY CURRENT  
vs. BATT VOLTAGE (SHDN = VL)  
VL OUTPUT VOLTAGE  
vs. VL OUTPUT CURRENT  
2.0  
1.8  
5.0  
4.5  
SHDN = VL, BATT = 5V  
2.1  
SHDN = VL, OTP = 3V  
SHDN = VL, OTP = 3V  
2.0  
BATT = 5V  
BATT = 12V  
4.0  
3.5  
3.0  
1.6  
1.4  
1.9  
1.8  
1.7  
1.2  
1.0  
2.5  
2.0  
1.6  
1.5  
1
10  
100  
1000  
10000  
0
4
8
12  
16  
20 24  
28  
0
10  
20  
30  
40  
REF OUTPUT CURRENT (µA)  
BATT (V)  
VL OUTPUT CURRENT (mA)  
BATT SUPPLY CURRENT  
vs. BATT VOLTAGE (SHDN = OV)  
VL OUTPUT VOLTAGE  
vs. BATT VOLTAGE (SHDN = OV)  
VL OUTPUT VOLTAGE  
vs. VL LOAD CURRENT  
10  
8
5.0  
4.5  
4.0  
3.5  
3.0  
3.70  
3.65  
3.60  
3.55  
3.50  
NO LOAD ON VL,  
SHDN = OV  
SHDN = GND  
SHDN = OV  
BATT = 12V  
6
4
3.45  
3.40  
3.35  
3.30  
2
0
BATT = 5V  
2.5  
2.0  
0
4
8
12  
16  
20 24  
28  
0
4
8
12  
16  
20  
24  
28  
0
200  
400  
600  
800  
1000  
BATT (V)  
BATT (V)  
VL LOAD CURRENT (µA)  
VL OUTPUT VOLTAGE  
vs. BATT VOLTAGE (SHDN = VL)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
NO LOAD ON VL,  
SHDN = VL  
0
4
8
12  
16  
20 24  
28  
BATT (V)  
_______________________________________________________________________________________  
5
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX1610  
MAX1611  
Logic-Level Input. A rising edge on UP increments the 5-bit counter for the 5-bit DAC.  
UP = DN = 1 presets the counter to mid-scale.  
1
2
1
UP  
SDA  
DN  
System Management Bus Serial Data Input and Open-Drain Output  
Logic-Level Input. A rising edge on DN decrements the 5-bit counter for the 5-bit DAC.  
UP = DN = 1 presets the counter to mid-scale.  
2
3
SCL  
SHDN  
System Management Bus Serial Clock Input  
Logic-Level Shutdown Input Pin. Applying a logic low to SHDN places the chip in a low-  
supply-current shutdown mode.  
System Management Bus Suspend Mode Input. SMBSUS Selects one of two chip-  
configuration settings, which are preprogrammed serially.  
4
3
4
5
6
7
SMBSUS  
SYNC  
SS  
Oscillator Synchronization Input. Tying SYNC to REF sets the oscillator frequency to 290kHz.  
Tying SYNC to GND or VL lowers the oscillator frequency to 145kHz.  
0/MAX61  
Soft-Start Pin. A 4µA current source feeds the capacitor placed on SS. The voltage on this  
pin limits the peak current in the switch. When the lamp is turned off, SS pulls to GND.  
5
Output of the Voltage-to-Current Converter; Input to the PWM Comparator, which sets the  
current limit. A capacitor placed at CC sets the current-regulator-loop bandwidth.  
6
CC  
Input to the Voltage-to-Current Converter, which averages the voltage on CSAV using the  
capacitor on CC.  
7
CSAV  
The voltage at MINDAC sets the DACs minimum-scale output voltage. Tying MINDAC to  
VL enables the internal 280Hz current-chopping mode.  
8
9
8
9
MINDAC  
REF  
2.0V Reference Output. Bypass with 0.1µF to GND.  
Open-Tube Protection Comparator. As long as OTP exceeds the reference voltage, the  
N-channel BATT-to-LX switch is forced off.  
10  
10  
OTP  
Low-Side Current-Sense Input. The current-mode regulator terminates the switch cycle  
when the voltage at CS exceeds REF - CC.  
11  
11  
CS  
Output of the Internal Linear Regulator. VL can be overdriven by a voltage greater than 4.75V  
to operate the chip from +5V ± 5%, and to conserve power. Bypass with 0.1µF to GND.  
12  
13  
14  
12  
13  
14  
VL  
GND  
BST  
System Ground  
Power Input to the High-Side Gate Driver, which switches the internal N-channel MOSFET  
on and off.  
Ground Connection for the Internal High-Side Gate Driver; source-connection point for the  
internal N-channel MOSFET  
15  
16  
15  
16  
LX  
4.5V to 25V Battery-Voltage Input Point. Connects to the internal N-channel power MOSFETs  
drain, and to the input of the internal linear regulator that powers the chip.  
BATT  
6
_______________________________________________________________________________________  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
0/MAX61  
t
t
t
1
2
4
UP  
t
3
DN  
Figure 1. MAX1610 UP and DN Signal Timing  
MOST SIGNIFICANT  
ADDRESS BIT (A6)  
CLOCKED INTO SLAVE  
START  
CONDITION  
A5 CLOCKED  
INTO SLAVE  
A3 CLOCKED  
INTO SLAVE  
A4 CLOCKED  
INTO SLAVE  
SCL  
• • •  
t
HD:STA  
t
t
HIGH  
LOW  
• • •  
SDA  
t
SU:STA  
t
t
HD:DAT  
t
t
HD:DAT  
SU:DAT  
SU:DAT  
Figure 2. MAX1611 SMB Serial-Interface Timing—Address  
_______________________________________________________________________________________  
7
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
ACKNOWLEDGED  
BIT CLOCK  
INTO MASTER  
RW BIT  
CLOCKED  
INTO SLAVE  
MOST SIGNIFICANT  
BIT CLOCKED  
SCL  
SDA  
• • •  
SLAVE PULLING  
SDA LOW  
• • •  
t
t
DV  
DV  
Figure 3. MAX1611 SMB Serial-Interface Timing—Acknowledge  
0/MAX61  
does not exceed its maximum rating, despite T1, C1, and  
C2 component-value variations. The Royer oscillator  
waveforms for the circuit of Figure 4 are shown in Figures  
5 and 6.  
_______________De t a ile d De s c rip t io n  
Ge t t in g S t a rt e d  
A cold-cathode fluorescent lamp (CCFL) has two termi-  
nals. For the CCFL to emit light, the two lamp terminals  
mus t b e d rive n with a hig h-volta g e (a p p roxima te ly  
550V AC RMS) and high-frequency (approximately  
45kHz) sine wave. The MAX1610/MAX1611 use a vary-  
ing DC input voltage to create this high-voltage, high-  
fre q ue nc y s ine -wa ve d rive . To s e le c t the c orre c t  
component values for the MAX1610/MAX1611 circuit,  
several CCFL parameters and the minimum DC input  
voltage must be specified; these are listed in Table 1.  
An a lo g Circ u it ry  
The MAX1610/MAX1611 maintain fixed CCFL bright-  
ness with varying input voltages on BATT by regulating  
the current fed into the Royer oscillator. This current is  
sensed via resistor R1 between CSAV and GND. An  
internal switch from BATT-to-LX pulse-width modulates  
at a fixed frequency to servo the CSAV pin to its regula-  
tion volta g e . The CSAV re g ula tion volta g e c a n b e  
adjusted via the digital interface to set CCFL bright-  
ness. The MAX1610 and MAX1611 differ only in the  
digital interface they use to adjust the internal 5-bit digi-  
tal-to-analog converter (DAC) that sets the CSAV regu-  
lation voltage. The minimum-scale (min-scale) CSAV  
regulation voltage is resistor adjustable using the MIN-  
DAC pin, setting the minimum CCFL brightness. The  
D/A setting at MAX1610/MAX1611 power-up is preset  
to mid-scale (10000 binary) (Figure 7).  
Table 3 shows the recommended component values to  
use with the circuit of Figure 4, depending on the par-  
ticular CCFL parameters. The C2 values in Table 3  
have been selected such that the normal operating  
voltage on the secondary of T1 is as close as possible  
to the CCFL strike voltage (where the strike voltage  
(V ) is assumed to be approximately 1.8 times the  
S
CCFL operating voltage (V )).  
L
Components T1, C1, R2, Q1, and Q2 form a Royer  
oscillator. A Royer oscillator is a resonant tank circuit  
that oscillates at a frequency dependent on C1, the pri-  
MINDAC Sets the Minimum Scale  
The MINDAC p in s e ts the lowe s t CCFL b rig htne s s  
level. The voltage at MINDAC is divided by eight, and  
sets the minimum CSAV regulation voltage. For exam-  
p le , in the c irc uit of Fig ure 4, R5 (150k) a nd R6  
(51k) form a resistor divider from REF, which sets  
MINDAC to 507mV (REF = 2.0V). This sets a minimum  
CSAV re g ula tion volta g e of 63mV with a full-s c a le  
CSAV regulation voltage of 247mV.  
ma ry ma g ne tizing ind uc ta nc e of T1 (L ), a nd the  
P
imp e d a nc e s e e n b y the T1 s e c ond a ry. The  
MAX1610/MAX1611 regulate the current fed into the  
Royer oscillator by sensing the voltage on R1. For a  
given current through the Royer oscillator (I ), the  
R1  
power delivered to the CCFL depends on the Royer  
oscillator frequency. The R1 values in Table 3 have  
been selected to ensure that the power into the CCFL  
8
_______________________________________________________________________________________  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
0/MAX61  
V
IN  
16  
5
12  
VL  
C2  
BATT  
SS  
+
D3  
R7  
C9  
C4  
C3  
C6  
CCFL  
MAX1610  
MAX1611*  
10  
6
T1  
14  
15  
BST  
LX  
L1  
C7  
1
2
3
4
5
R2  
D1  
D2  
6
CC  
C1  
R3  
R4  
10  
11  
OTP  
Q1  
Q2  
C5  
4
9
SYNC  
REF  
CS  
CSAV  
GND  
7
R5  
R1  
13  
8
C8  
MINDAC  
R6  
* DIGITAL INTERFACE NOT SHOWN  
Figure 4. Typical Floating-Lamp Application Circuit  
Table 1. Necessary CCFL Specifications  
SPECIFICATION  
UNITS  
SYMBOL  
DESCRIPTION  
Although CCFLs typically operate at 550V  
CCFL Minimum Strike Voltage  
(“Kick-Off Voltage)  
a higher voltage  
RMS,  
V
RMS  
V
S
is required initially to light up the tube.  
Once a CCFL has been struck, the voltage required to maintain  
light output falls to approximately 550V  
operate on as little as 250V . The operating voltage of the  
RMS  
CCFL stays relatively constant, even as the tubes brightness is  
varied.  
. Small tubes may  
RMS  
CCFL Typical Operating Voltage  
(“Lamp Voltage)  
V
RMS  
V
L
The maximum root-mean-square AC current through a CCFL is  
CCFL Maximum Operating  
Current (Lamp Current)  
mA  
I
L
almost always 5mA No DC current is allowed through any  
RMS.  
RMS  
CCFL.  
CCFL Maximum Frequency  
(“Lamp Frequency)  
The maximum AC-lamp-current frequency.  
kHz  
f
L
The minimum DC input voltage to the MAX1610/MAX1611 circuit  
determines the turns ratio required for the DC-AC conversion  
transformer. Decreasing the minimum input voltage increases  
the size of the transformer required for a given output power.  
DC Power Source Minimum  
Input Voltage  
V
V
MIN  
_______________________________________________________________________________________  
9
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
Table 2. Typical Application Circuit Component Values  
a) Resistors  
b) Capacitors  
POWER  
RATING  
TOLER-  
ANCE  
WORKING  
VOLTAGE  
SYMBOL VALUE  
TOLERANCE  
SYMBOL VALUE  
NOTES  
0.1µF  
δF 0.001 @ 1kHz  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
(Note)  
510Ω  
51kΩ  
8.2kΩ  
150kΩ  
51kΩ  
20Ω  
±1%  
±10%  
±5%  
±5%  
±5%  
±5%  
±10%  
1/8W  
1/8W  
C1  
±20%  
±10%  
±20%  
-20%  
-50%  
±25V  
±3kV  
25V  
(Note 1)  
(pF)  
C2  
High voltage  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
C3, C5  
27nF  
0.1µF  
10µF  
C4, C6,  
C7, C8  
Ceramic, larger  
values acceptable  
25V  
C9  
35V  
Tantalum, low ESR  
0/MAX61  
c) Other Components  
GENERIC  
PART  
SURFACE-MOUNT  
PART  
SYMBOL  
DESCRIPTION  
MANUFACTURER  
1A NPN switching transistor,  
50V  
Q1, Q2  
2N2222A  
FMMT619, SOT23  
Zetex  
V
CEO  
D1, D3  
D2  
50mA silicon diode, V 40V  
1N4148  
1N5818  
CMPD4448, SOT23  
EC10QS04  
Central  
Nihon  
BR  
1A Schottky diode, V 30V  
BR  
L1  
100µH, 1A inductor  
CDR125-101  
Sumida  
6W Royer oscillator transformer, turns ratio 67:1,  
secondary (pins 10 and 6) : primary (pins 1 and 3),  
T1  
CTX110605  
Coiltronics  
primary magnetizing inductance (L ) of 44µH ±20%  
P
Note: Component values depend on lamp characteristics. See Table 3 to select values.  
Table 3. Selecting Circuit Values for Figure 4  
f
(kHz)  
ROY  
V
RMS  
I
VCT  
(V )  
MAX  
L
L
C2  
R1  
(V  
)
(mA  
)
RMS  
MIN  
50.3  
43.3  
52.1  
45.6  
51.1  
52.1  
52.5  
53.6  
TYP  
MAX  
71.8  
60.3  
75.1  
64.7  
73.3  
75.1  
76.7  
78.1  
1.21Ω  
0.715Ω  
1.18Ω  
250  
250  
300  
300  
450  
500  
550  
600  
3
22pF  
43pF  
18pF  
36pF  
20pF  
18pF  
18pF  
15pF  
3.63V  
3.61V  
4.30V  
4.14V  
6.55V  
7.17V  
7.29V  
8.41V  
58.6  
49.7  
61.0  
52.8  
59.7  
61.0  
61.8  
63.1  
5
3
5
5
5
5
5
0.681Ω  
0.732Ω  
0.715Ω  
0.665Ω  
0.698Ω  
Note: f  
= Royer oscillator damped resonant oscillation frequency. T1 primary magnetizing inductance (L ) = 44µH ±20%.  
P
ROY  
VCT = average voltage from the T1 center tap to the emitters of Q1 and Q2 (ignoring Q1, Q2 V  
).  
CE,SAT  
C1 = 0.1µF ± 20%; C2 = ±10% tolerance; R1 = ±1% tolerance.  
10 ______________________________________________________________________________________  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
0/MAX61  
3V  
FIGURE 4 CIRCUIT, C2 = 15pF, I = 462mA,  
R1  
CCFL VL = 500V  
RMS  
6V  
SS  
VOLTAGE  
T1  
FIGURE 4 CIRCUIT, C2 = 15pF,  
R1 = 545,  
CENTER-TAP  
VOLTAGE  
0V  
6V  
CCFL VL = 500V , BATT = 15V,  
RMS  
MINDAC = 0.5V, D/A VALUE = 10000  
BATT = 10V, I  
= 0.20A,  
0V  
1A  
BATT  
MINDAC = 0.5V, D/A VALUE = 11111  
T1  
CENTER-TAP  
VOLTAGE  
C1  
CURRENT  
-1A  
0V  
s/div  
10ms/div  
Figure 5. Royer Oscillator Typical Operating Waveforms for  
Circuit of Figure 4  
Figure 6. Start-Up Waveforms for Circuit of Figure 4  
REF / 8 = 250mV  
FULL-SCALE  
MID-SCALE  
MIN-SCALE = MINDAC / 8  
OmV  
DAC CODE  
NOTE: DAC CODE 00000 FORCES THE BATT-TO-LX SWITCH OFF REGARDLESS OF CSAV OR MINDAC VOLTAGE.  
Figure 7. CSAV Regulation Voltage Range  
______________________________________________________________________________________ 11  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
Open-Tube Protection (OTP)  
Any real transformer used in a Royer oscillator will have a  
maximum-allowed secondary voltage. If the maximum-  
allowed secondary voltage is exceeded, the winding  
insulation can break down, leading to permanent trans-  
former damage. The maximum-allowed secondary volt-  
age can be exceeded either when the CCFL drive circuit  
is turned on without the CCFL being in place, or when  
the CCFL becomes disconnected during normal opera-  
tion due to a mechanical failure. To protect against these  
fault conditions, use the OTP pin to sense the voltage on  
the transformer center tap (pin 2 of Figure 4). Whenever  
the voltage on OTP exceeds the REF reference voltage,  
the BATT-to-LX power switch is forced off.  
Loop-Compensation Capacitor (CC)  
The BATT-to-LX switch turns on at fixed frequency, and  
turns off when the current-sense voltage on the CS pin  
exceeds CC - REF. As the CC pin voltage rises, the CS  
current limit rises as well. A transconductance amplifier  
compares the voltage on CSAV to the desired regulation  
voltage and outputs a current proportional to this error  
to the CC pin. A capacitor from CC to GND sets the  
bandwidth of this regulation loop, as shown in Equation 2:  
85  
BW =  
2πC3  
where BW is the bandwidth of the CSAV regulation loop  
in kHz, and C3 is the capacitance from CC to GND  
in nF.  
For example, in Figure 4, the CTX110605 transformer  
has a maximum-allowed continuous secondary voltage  
of 1340V  
D1 and C5 detect the peak voltage on  
RMS.  
Soft Start (SS)  
Soft start prevents the triggering of OTP upon power-  
up. Placing a capacitor from SS to GND soft starts the  
Royer oscillator by slowly raising the CS current-limit  
volta g e . Inte rna l c irc uitry p ulls SS to GND d uring  
power-on reset, or whenever the lamp is turned off (DAC  
= 00000, shutdown mode, ON-1 = 0, or ON-0 = 0)  
(Figures 10 and 11). When SS is not pulled to GND, an  
internal 4µA current sources into the capacitor at the  
SS pin. This pin is internally diode clamped to REF so  
tha t it ris e s to a ma ximum volta g e of a b out 2.7V.  
Regardless of the voltage on CC, the CS current-sense  
voltage is never allowed to exceed the voltage on SS  
divided by 5.  
the center tap of T1. R3 and R4 determine the limit on  
the center tap peak voltage. The relationship between  
the voltage on the center tap of T1 and the secondary  
volta g e is dia gra mme d in Fig ure 8. Ne gle c ting the  
Q1/Q2 saturation voltage and the voltage on the R1  
current-sense resistor yields Equation 1:  
0/MAX61  
V
2
SEC  
V
=
CTPK  
2N  
where V  
is the maximum root-mean-square voltage  
SEC  
allowed on the secondary, N is the secondary-to-prima-  
ry turns ratio, and V is the peak voltage on the  
transformer center tap.  
CTPK  
Frequency Selection and Synchronization  
The SYNC pin performs two functions: it sets the BATT-  
to-LX switching frequency, and it allows the BATT-to-LX  
switching frequency to be synchronized to an external  
os c illa tor. SYNC tie d to GND or VL s e ts a 145kHz  
switching frequency; SYNC tied to REF sets a 290kHz  
Blo c k Dia g ra m o f t h e An a lo g S e c t io n  
Figure 9 shows a functional diagram of the analog cir-  
cuitry in the MAX1610/MAX1611. The chips have identi-  
c a l a na log c irc uitry, a nd d iffe r only in the ir d ig ita l  
interface.  
NπV  
CT  
πV  
2
CT  
2
-NπV  
CT  
2
2π  
2π  
ω
ω
NOTE: V = AVERAGE VOLTAGE FROM THE T1 CENTER TO THE EMITTERS OF Q1 AND Q2 (IGNORING Q1, Q2 V  
). ω = 2πf  
.
CT  
CE, SAT  
ROY  
Figure 8. Transformer Primary/Secondary Voltage Relationship  
12 ______________________________________________________________________________________  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
0/MAX61  
BATT  
BST  
VL  
DMOS  
POWER  
SWITCH  
LEVEL  
SHIFTER  
4.5V  
REG  
GND  
LX  
CS  
CSAV  
Σ
GM  
CC  
÷8  
REF  
+
2.0V  
-
MINDAC  
(NOTE)  
R
÷5  
SYNC  
OSC  
S
Q
4µA  
SS  
OTP  
5
UP (SDA)  
DN (SCL)  
DIGITAL INTERFACE  
SHDN (SMBSUS)  
( ) ARE FOR MAX1611  
NOTE: CIRCUITRY TO DETECT MINDAC = VL NOT SHOWN. SEE CHOPPING THE LAMP CURRENT SECTION.  
Figure 9. Functional Diagram  
______________________________________________________________________________________ 13  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
MOST  
SIGNIFICANT  
ADDRESS BIT  
LEAST  
SIGNIFICANT  
ADDRESS BIT ACKNOWLEDGE  
SLAVE  
ACKNOWLEDGE  
SLAVE  
MOST  
SIGNIFICANT  
DATA BIT  
LEAST  
SIGNIFICANT  
DATA BIT  
START  
CONDITION  
R/W BIT  
SCL  
SHDNB-0  
REGSEL  
SLAVE PULLS  
SDA LOW  
D4-0 D3-0 D2-0 D1-0 D0-0  
SDA  
STDBY-0  
SLAVE PULLS  
SDA LOW  
Figure 10. MAX1611 Serial-Interface Single-Byte Write Example (REGSEL = 0)  
MOST  
SIGNIFICANT  
ADDRESS BIT  
LEAST  
SIGNIFICANT  
ADDRESS BIT ACKNOWLEDGE  
SLAVE  
ACKNOWLEDGE  
SLAVE  
0/MAX61  
MOST  
SIGNIFICANT  
DATA BIT  
LEAST  
SIGNIFICANT  
DATA BIT  
START  
CONDITION  
R/W BIT  
SCL  
REGSEL SHDNB-1  
STDBY-1  
D4-1 D3-1 D2-1 D1-1 D0-1  
SDA  
SLAVE PULLS  
SDA LOW  
SLAVE PULLS  
SDA LOW  
Figure 11. MAX1611 Serial-Interface Single-Byte Write Example (REGSEL = 1)  
switching frequency. Any rising edge on SYNC restarts  
a BATT-to-LX switch cycle by forcing the switch on.  
(other than the supply current) is consumed through  
the BST pin, requiring VL to source at least 4.5mA of  
current. With SHDN = 0, all analog circuitry turns off,  
except for a coarse regulator that can source up to  
500µA from VL. The coarse regulator preserves the  
state of the internal logic and keeps the digital interface  
active during shutdown (SHDN = 0).  
________MAX1 6 1 0 Dig it a l In t e rfa c e  
The MAX1610 contains an internal 5-bit up/down counter  
that sets the value of the internal 5-bit DAC. At power-on,  
or when both the UP and DN pins are held high simulta-  
neously, the 5-bit up/down counter is preset to 10000  
binary, which corresponds to mid-scale. A rising edge  
on UP increments the 5-bit up/down counter. A rising  
edge on DN decrements the 5-bit up/down counter. The  
counter will not roll over on either underflow or overflow.  
For example, if the CCFL is at maximum intensity level,  
rising edges on UP will not change the output.  
________MAX1 6 1 1 Dig it a l In t e rfa c e  
A s ing le b yte of d a ta writte n ove r the Inte l Sys te m  
Management Bus (SMBus) controls the MAX1611.  
Figures 10 and 11 show example single-byte writes. The  
MAX1611 contains two 7-bit latches for storing configu-  
ration data. Only one of the 7-bit latches is active at a  
time. The MAX1611 responds only to its own address,  
0101101 binary. The SMBSUS pin selects which of the  
two sets of configuration data is used. Figure 12 shows  
a schematic diagram of the MAX1611s digital circuitry.  
Notice that the SMBSUS pin selects which one of the  
The SHDN pin provides a way to lower the MAX1610  
s up p ly c urre nt to 10µA without re s e tting the 5-b it  
up/down counter. With SHDN = 1, the MAX1610 oper-  
ates normally with VL at 4.5V. When the BATT-to-LX  
power switch operates, an additional 3mA of current  
14 ______________________________________________________________________________________  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
0/MAX61  
OTPOK  
CONTROL  
LOGIC  
8
SCL  
SDA  
8-BIT  
SHIFT REGISTER  
IN  
DATA LE  
7
LE  
LE  
7-BIT LATCH-0  
7-BIT LATCH-1  
VL  
7
7
CLR  
S
A
B
OTPOK  
MULTIPLEXER  
Y = A WHEN S IS LOW  
Q
SMBSUS  
S
REF  
OTP  
Y
R
PRE  
7
D_  
OTP  
COMPARATOR  
SHDNB  
STDBY  
5
SS  
BIAS  
GENERATORS  
5-BIT DAC  
CIRCUITRY  
Figure 12. MAX1611 Serial-Interface Circuitry Block Diagram  
______________________________________________________________________________________ 15  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
Table 4. MAX1611 Configuration Byte with REGSEL = 0  
POR  
STATE*  
BIT  
NAME  
DESCRIPTION  
Register Select. A zero in this bit writes the remaining seven bits into the 7-bit latch-0  
(Figure 13).  
7
REGSEL  
Complete Shutdown. Pulling SMBSUS low with SHDNB-0 = 0 places the MAX1611 into a  
low-quiescent-current shutdown mode, with the reference off and the VL linear-regulator  
output switched to a low-current, coarse regulation mode. Pulling SMBSUS low with  
SHDNB-0 = 1 puts the MAX1611 into its normal operational mode, with the reference and  
internal VL linear regulator fully on. SHDNB-0 supersedes STDBY-0. As long as SHDNB-0 = 0  
and SMBSUS = 0, it doesn't matter what STDBY-0 is; the MAX1611 still shuts down.  
6
SHDNB-0  
0
Standby, disables CCFL supply only. As long as SMBSUS stays low and STDBY-0 = 0, the  
internal power switch is kept off and SS is held shorted to GND; neither the internal refer-  
ence nor the linear regulator is affected. With STDBY = 1 and SMBSUS low, the MAX1611  
operates normally.  
5
STDBY-0  
0
4
3
2
1
0
D4-0  
D3-0  
D2-0  
D1-0  
D0-0  
1
0
0
0
0
0/MAX61  
DAC Input Data. With the SMBSUS pin low, bits D4-0 through D0-0 set the DAC.  
* Initial register state after power-up.  
Table 5. MAX1611 Configuration Byte with REGSEL = 1  
POR  
STATE*  
BIT  
NAME  
DESCRIPTION  
Register Select. A one in this bit writes the remaining seven bits into the 7-bit latch-1  
(Figure 13).  
7
REGSEL  
Complete Shutdown. Pulling SMBSUS high with SHDNB-1 = 0 places the MAX1611 into a  
low-quiescent-current shutdown mode, with the reference off and the VL linear regulator  
output switched to a low-current coarse regulation mode. Pulling SMBSUS high with  
SHDNB-1 = 1 puts the MAX1611 into its normal operational mode, with the reference and  
internal VL linear regulator fully on. SHDNB-1 supersedes STDBY-1. As long as SHDNB-1 = 0  
and SMBSUS = 0, it doesnt matter what STDBY-1 is; the MAX1611 still shuts down.  
6
SHDNB-1  
1
Standby, disables CCFL supply only. As long as SMBSUS stays high and STDBY-1 = 0,  
the internal power switch is kept off and SS is held shorted to GND; neither the internal ref-  
erence nor the linear regulator is affected. With STDBY-1 = 1 and SMBSUS high, the  
MAX1611 operates normally.  
5
STDBY-1  
1
4
3
2
1
0
D4-1  
D3-1  
D2-1  
D1-1  
D0-1  
1
0
0
0
0
DAC Input Data. With the SMBSUS pin high, bits D4-1 through D0-1 set the DAC.  
* Initial register state after power-up.  
16 ______________________________________________________________________________________  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
0/MAX61  
MOST  
LEAST  
SIGNIFICANT  
ADDRESS BIT  
SIGNIFICANT  
ADDRESS BIT ACKNOWLEDGE  
MOST  
SLAVE  
START  
CONDITION  
SIGNIFICANT  
DATA BIT  
R/W BIT  
SCL  
OTPOK  
DA4  
DA3  
DA2  
DA1  
DA0  
SDA  
SLAVE PULLS  
SDA LOW  
MAX1611 DRIVES SDA  
Figure 13. MAX1611 Serial-Interface Read Example  
Table 6. MAX1611 Status Bits  
POR  
STATE*  
BIT  
NAME  
FUNCTION  
Latched Open-Tube Detection. OTPOK = 0 indicates that open-tube detection has been  
triggered. As soon as the voltage on the OTP pin exceeds REF, the OTPOK bit is cleared.  
Reset the OTPOK pin by entering shutdown or standby.  
7
OTPOK  
1
6
5
Unused. These bits always return a logic one.  
4
3
2
1
0
DA4  
DA3  
DA2  
DA1  
DA0  
Displays the DAC setting selected by SMBSUS.  
* Initial register state after power-up.  
two 7-bit registers is used. Tables 4 and 5 describe the  
data format for the configuration data.  
be varied by turning the lamp on and off at a frequency  
faster than the eye can detect. The SS pin pulls to GND  
during off time and rises to 2.7V during on time. During  
on time, the CSAV pin regulates to REF / 8 (250mV).  
During off time, the BATT-to-LX power switch is forced  
off and the CC compensation node goes high imped-  
ance. Omit R5, R6, and C4 of the circuit in Figure 4.  
Sta tus informa tion c a n b e re a d from the MAX1611  
using the SMBus read-byte protocol. Figure 13 shows  
an example status read. Table 6 describes the status  
information data format.  
During shutdown (SMBSUS = 0 and SHDNB-0 = 0, or  
SMBSUS = 1 and SHDNB-1 = 0), the MAX1611 serial  
interface remains fully functional and can be used to set  
either the SHDNB-0 or SHDNB-1 bits in order to return  
the MAX1611 to its normal operational state.  
In this mode, leave SS floating and increase the CC  
capacitance to 0.1µF. Also, insert a 330resistor in series  
with D1 (Figure 4) to prevent the open-lamp detection cir-  
cuit from being tripped by the repeated striking of the  
lamp. The SS pin will oscillate at the switching frequency  
divided by 1024 (283Hz with SYNC = REF). The intensity  
can be varied with the duty cycle at the SS pin. The duty  
cycle is set by the DAC in 3% increments. Duty cycle will  
vary with intensity. Full-scale yields a 100% duty cycle.  
DAC c od e s 00001, 00010, a nd 00011 a ll yie ld the  
_______ Ch o p p in g t h e La m p Cu rre n t  
Chopping the lamp current allows lower sustainable light  
levels without lamp flicker. Intensity is varied by control-  
ling the on-time duty cycle. Tying MINDAC to VL acti-  
vates a special mode, which allows the CCFL intensity to  
______________________________________________________________________________________ 17  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
minimum 9% duty cycle. DAC code 00000 shuts off the  
lamp entirely (0% duty cycle). Figure 14 shows the  
chopped waveforms with the DAC set to mid-scale.  
tance in the Royer resonant tank. Table 8 lists suppliers  
for the high-voltage ballast capacitor, C2.  
__________ Ap p lic a t io n s In fo rm a t io n  
Dire c t ly Re g u la t in g t h e La m p Cu rre n t  
The MAX1610/MAX1611 can directly regulate the CCFL  
current by tapping into the secondary of T1 (Figure 15).  
This allows more precise setting of the maximum lamp  
current (IL). The disadvantage of this approach is that  
the secondary-to-ground voltage is twice that shown in  
Figure 4, increasing the likelihood of the thermometer  
effect, where one end of the lamp is brighter than the  
other. Figure 15 uses the same component values as  
Figure 4, except for R1, R40, D40, and D41. D40 and  
D41 are the same type of diode as D1. R1 should be  
0.68±10% to set a peak current limit of about 735mA.  
Use a 107±1% resistor for R40 to set a lamp current  
4V  
SS  
VOLTAGE  
0V  
BATT = 15V, MINDAC = VL, SS = OPEN, CC = 0.1µF,  
C2 = 15pF, MID-SCALE SETTING, D/A VALUE = 10000  
15V  
T1  
CENTER-TAP  
VOLTAGE  
0/MAX61  
of 5mA  
. This circuit accepts a wide range of lamp  
RMS  
types without component adjustments.  
0V  
500µs/div  
Co m p o n e n t S u p p lie rs  
Table 7 lists three different sources for C1. C1 requires  
a low dissipation factor to prevent overheating as energy  
is cycled between C1 and the T1 magnetizing induc-  
Figure 14. Chopped Waveforms  
VIN  
C2  
16  
5
12  
VL  
CCFL  
BATT  
SS  
+
D3  
R7  
C9  
C4  
C3  
C6  
10  
T1  
6
MAX1610  
MAX1611  
2
1
3
4
5
14  
15  
BST  
LX  
L1  
C7  
R2  
D1  
D2  
6
C1  
CC  
R3  
R4  
10  
11  
Q1  
Q2  
OTP  
C5  
4
9
SYNC  
REF  
D40  
D41  
CS  
CSAV  
GND  
7
R5  
R1  
R40  
13  
8
C8  
MINDAC  
R6  
Figure 15. Directly Regulating the CCFL Current  
18 ______________________________________________________________________________________  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
0/MAX61  
Table 7. Capacitor C1 Supplier Information  
PART  
SUPPLIER  
LOCATION  
Elmsford, NY  
Germany  
PHONE  
914-347-2474  
(0621) 8785-0  
5-70-11-51  
FAX  
NOTES/CONTACT  
914-347-7230  
(0621) 8710457158  
58-06-84-74  
Dissipation factor (tan δ)  
at 1kHz and 20°C 0.008.  
SMD7.3104  
WIMA  
Hong Kong  
Dissipation factor (tan δ)  
at 1kHz 0.002.  
PACCOM  
Electronics  
CHEV0025J104  
4040N104M250  
Redmond, WA  
Valencia, CA  
206-883-9200  
805-295-5920  
206-881-6959  
805-295-5928  
Dissipation factor (tan δ)  
at 1kHz and 20°C 0.0015.  
NOVACAP  
Table 8. Capacitor C2 Supplier Information  
PART  
SUPPLIER  
LOCATION  
PHONE  
FAX  
Olean, NY  
Vancouver, WA  
Germany  
716-372-6611  
206-696-2840  
08131 9004-0  
852-363-3303  
404-436-1300  
49-911-66870  
886-2-562-4218  
908-679-3366  
818-364-9800  
716-372-6316  
206-695-5836  
08131 9004-44  
852-765-8185  
404-436-3030  
49-911-6687193  
886-2-536-6721  
908-679-3222  
818-364-6100  
1808HA330KATMA  
AVX/Kyocera  
Hong Kong  
Smyrna, GA  
Germany  
GHM1040SL330J3K  
Murata  
Taiwan  
302C1812A330K  
302R29N330K  
Metuchen Capacitors, Inc.  
Johanson Dielectrics  
Old Bridge, NJ  
Sylmar, CA  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT : 5457  
______________________________________________________________________________________ 19  
Dig it a lly Co n t ro lle d CCFL Ba c k lig h t  
P o w e r S u p p lie s  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.053  
MAX  
0.069  
0.010  
0.019  
0.010  
0.157  
MIN  
1.35  
0.10  
0.35  
0.19  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
4.00  
A
D
A1 0.004  
B
C
E
e
0.014  
0.007  
0.150  
0°-8°  
A
0.101mm  
0.004in.  
0.050  
1.27  
e
H
L
0.228  
0.016  
0.244  
0.050  
5.80  
0.40  
6.20  
1.27  
A1  
C
B
L
INCHES  
MILLIMETERS  
DIM PINS  
Narrow SO  
SMALL-OUTLINE  
PACKAGE  
MIN MAX  
MIN  
MAX  
5.00  
8.75  
8
0.189 0.197 4.80  
D
D
D
0/MAX61  
E
H
14 0.337 0.344 8.55  
16 0.386 0.394 9.80 10.00  
(0.150 in.)  
21-0041A  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1610CSE

Digitally Controlled CCFL Backlight Power Supplies
MAXIM

MAX1610CSE+

Fluorescent Light Controller, 290kHz Switching Freq-Max, CMOS, PDSO16, 0.150 INCH, MS-012C, SOIC-16
MAXIM

MAX1610CSE+

FLUORESCENT LIGHT CONTROLLER, 290kHz SWITCHING FREQ-MAX, PDSO16, 0.150 INCH, MS-012C, SOIC-16
ROCHESTER

MAX1610CSE+T

Fluorescent Light Controller, 290kHz Switching Freq-Max, CMOS, PDSO16, 0.150 INCH, MS-012C, SOIC-16
MAXIM

MAX1610CSE-T

Fluorescent Light Controller, Current-mode, 330kHz Switching Freq-Max, CMOS, PDSO16, 0.150 INCH, SOP-16
MAXIM

MAX1610ESE

Analog IC
MAXIM

MAX1611

Digitally Controlled CCFL Backlight Power Supplies
MAXIM

MAX1611CSE

Digitally Controlled CCFL Backlight Power Supplies
MAXIM

MAX1611CSE+

Fluorescent Light Controller, 290kHz Switching Freq-Max, CMOS, PDSO16, 0.150 INCH, MS-012C, SOIC-16
MAXIM

MAX1611CSE+T

Fluorescent Light Controller, 290kHz Switching Freq-Max, CMOS, PDSO16, 0.150 INCH, MS-012C, SOIC-16
MAXIM

MAX1611CSE-T

Fluorescent Light Controller, Current-mode, 330kHz Switching Freq-Max, CMOS, PDSO16, 0.150 INCH, SOP-16
MAXIM

MAX1611ESE

Analog IC
MAXIM