MAX1640D [MAXIM]

Adjustable-Output, Switch-Mode Current Sources with Synchronous Rectifier; 可调输出,开关模式电流源,内置同步整流器
MAX1640D
型号: MAX1640D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Adjustable-Output, Switch-Mode Current Sources with Synchronous Rectifier
可调输出,开关模式电流源,内置同步整流器

开关
文件: 总11页 (文件大小:119K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1245; Rev 0; 7/97  
Ad ju s t a b le -Ou t p u t , S w it c h -Mo d e  
Cu rre n t S o u rc e s w it h S yn c h ro n o u s Re c t ifie r  
0/MAX641  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
95% Efficiency  
The MAX1640/MAX1641 CMOS, a d jus ta b le -outp ut,  
switch-mode current sources operate from a +5.5V to  
+26V input, and are ideal for microprocessor-controlled  
battery chargers. Charging current, maximum output  
voltage, and pulse-trickle charge are programmed with  
external resistors. Programming the off-time modifies  
the switching frequency, suppressing undesirable har-  
monics in noise-sensitive circuits. The MAX1640s high-  
side current sensing allows the load to connect directly  
to g round , e limina ting g round -p ote ntia l e rrors . The  
MAX1641 incorporates a low-side current sense.  
+5.5V to +26V Input Supply Range  
2V to 24V Adjustable-Output Voltage Range  
100% Maximum Duty Cycle (Low Dropout)  
Up to 500kHz PWM Operation  
Optional Synchronous Rectifier  
16-Pin QSOP Package  
Current-Sense Accuracy: 2% (MAX1641)  
The MAX1640/MAX1641 step-down pulse-width-modu-  
la tion (PWM) c ontrolle rs use a n e xte rna l P-c ha nne l  
MOSFET switch and an optional, external N-channel  
MOSFET synchronous rectifier for increased efficiency.  
An internal low-dropout linear regulator provides power  
for the internal reference and circuitry as well as the  
gate drive for the N-channel synchronous rectifier.  
5.3% (MAX1640)  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
Dice*  
The MAX1640/MAX1641 are available in space-saving,  
16-pin narrow QSOP packages.  
MAX1640C/D  
MAX1640EEE  
MAX1641C/D  
MAX1641EEE  
-40°C to +85°C  
0°C to +70°C  
16 QSOP  
Dice*  
________________________Ap p lic a t io n s  
-40°C to +85°C  
16 QSOP  
Battery-Powered Equipment  
Laptop, Notebook, and Palmtop Computers  
Handy Terminals  
*Dice are specified at T = +25°C, DC parameters only.  
A
Portable Consumer Products  
Cordless Phones  
__________Typ ic a l Op e ra t in g Circ u it  
Cellular Phones  
V
IN  
= +5.5V TO +26V  
PCS Phones  
IN  
LDOH  
PDRV  
Backup Battery Charger  
D0  
D1  
P
__________________P in Co n fig u ra t io n  
TOFF  
REF  
NDRV  
PGND  
CS+  
R
TOFF  
TOP VIEW  
LDOL  
TOFF  
D1  
1
2
3
4
5
6
7
8
16 IN  
15 LDOH  
14 PDRV  
13 NDRV  
12 PGND  
11 CS+  
10 CS-  
SET  
OUT  
CS-  
D0  
MAX1640  
MAX1641  
CC  
MAX1640  
TERM  
REF  
SET  
TERM  
CC  
GND  
LDOL  
9
GND  
QSOP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Ad ju s t a b le -Ou t p u t , S w it c h -Mo d e  
Cu rre n t S o u rc e w it h S yn c h ro n o u s Re c t ifie r  
ABSOLUTE MAXIMUM RATINGS  
IN to GND...............................................................-0.3V to +28V  
LDOH to IN...............................................................+0.3V to -6V  
LDOL to GND ...........................................................-0.3V to +6V  
PGND to GND.....................................................................±0.3V  
Continuous Power Dissipation (T = +70°C)  
A
QSOP (derate 8.30mW/°C above +70°C)................... 667mW  
Operating Temperature Range  
PDRV to GND .............................. (V  
- 0.3V) to (V + 0.3V)  
IN  
LDOH  
NDRV to GND .........................................-0.3V to (V  
TOFF, REF, SET, TERM, CC to GND ......-0.3V to (V  
D0, D1 to GND .........................................................-0.3V to +6V  
CS+, CS- to GND ...................................................-0.3V to +28V  
+ 0.3V)  
+ 0.3V)  
MAX164_EEE...................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) ............................ +300°C  
LDOL  
LDOL  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +12V, V  
= 6V, Circuit of Figure 2, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
IN  
OUT  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Range  
V
IN  
5.5  
26  
V
0/MAX641  
Linear-Regulator Output  
Voltage, V Referenced  
IN  
V
5.5  
-
V
5.0  
-
V
4.5  
-
IN  
IN  
IN  
V
V
= 5.5V to 26V, I  
= 0 to 20mA  
V
V
LDOH  
IN  
LOAD  
Linear-Regulator Output  
Voltage, Ground Referenced  
V
LDOL  
V
IN  
= 5.5V to 26V, I  
= 0 to 20mA  
4.5  
5.0  
5.5  
LOAD  
MAX1640  
MAX1641  
MAX1640  
MAX1641  
142  
147  
36  
150  
150  
42  
158  
153  
48  
Full-Scale Current-Sense  
Threshold  
mV  
Quarter-Scale Current-Sense  
Threshold  
mV  
%/V  
%/V  
34  
37.5  
0.03  
0.1  
0.1  
2
41  
Current-Sense Line Regulation  
Output Current Compliance  
V
IN  
= V  
+ 0.5V to 26V  
OUT  
MAX1640  
MAX1641  
0.4  
4
V
OUT  
= 2V to 24V  
D0 or D1 = high  
mA  
µA  
µA  
V
Quiescent V Supply Current  
IN  
D0 = D1 = low (off mode)  
D0 = D1 = low  
500  
Output Current in Off Mode  
1
4.35  
2.04  
10  
V
LDOL  
Undervoltage Lockout  
4.05  
1.96  
4.20  
2.00  
4
Reference Voltage  
V
REF  
V
Reference Load Regulation  
I
= 0 to 50µA  
mV  
µA  
REF  
V
SET  
Input Current  
1
FET Drive Output Resistance  
Off-Time Range  
PFET and NFET drive  
12  
1
10  
µs  
Off-Time Accuracy  
R
= 62k  
1.7  
2.2  
33  
2.7  
µs  
TOFF  
Pulse-Trickle Mode Duty-Cycle  
Period  
D0 = low, D1 = high, R  
D0 = low, D1 = high, R  
= 100kΩ  
= 100kΩ  
27  
40  
ms  
%
TOFF  
Pulse-Trickle Mode Duty Cycle  
(Note 1)  
12.5  
TOFF  
Note 1: This ratio is generated by a 1:8 clock divider and is not an error source for current calculations.  
_______________________________________________________________________________________  
2
Ad ju s t a b le -Ou t p u t , S w it c h -Mo d e  
Cu rre n t S o u rc e w it h S yn c h ro n o u s Re c t ifie r  
0/MAX641  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +12V, V  
= 6V, Circuit of Figure 2, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
IN  
OUT  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PWM Maximum Duty Cycle  
Input Low Voltage  
100  
%
V
V
D0, D1  
D0, D1  
D0, D1  
0.8  
±1  
IL  
Input High Voltage  
V
IH  
2.4  
V
Input Leakage Current  
I
IN  
µA  
ELECTRICAL CHARACTERISTICS  
(V = +12V, V  
= 6V, Circuit of Figure 2, T = -40°C to +85°C, unless otherwise noted.)  
IN  
OUT  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Range  
V
IN  
5.5  
26  
V
Linear-Regulator Output  
Voltage, V Referenced  
IN  
V
= 5.5V to 26V,  
= 0 to 20mA  
V
5.5  
-
V
4.5  
-
IN  
IN  
IN  
V
V
V
LDOH  
I
LOAD  
Linear-Regulator Output  
Voltage, Ground Referenced  
V
= 5.5V to 26V,  
= 0 to 20mA  
IN  
V
LDOL  
4.5  
5.5  
I
LOAD  
MAX1640  
MAX1641  
MAX1640  
MAX1641  
141  
146  
34  
159  
154  
48  
Full-Scale Current-Sense  
Threshold  
mV  
mV  
Quarter-Scale Current-Sense  
Threshold  
33  
42  
0.4  
4
Output Current Compliance  
V
OUT  
= 2V to 24V (MAX1640)  
%/V  
mA  
Quiescent V Supply Current  
IN  
D0 or D1 = high  
D0 = D1 = low  
Output Current in Off Mode  
1
4.4  
2.06  
10  
1
µA  
V
V
LDOL  
Undervoltage Lockout  
4.0  
Reference Voltage  
V
REF  
1.94  
V
Reference Load Regulation  
I
= 0 to 50µA  
mV  
µA  
REF  
V
SET  
Input Current  
FET Drive Output Resistance  
Off-Time Range  
12  
8
1.5  
1.5  
µs  
Off-Time Accuracy  
R
= 62kΩ  
2.5  
µs  
TOFF  
Pulse-Trickle Mode Duty-Cycle  
Period  
D0 = low, D1 = high, R  
= 50kΩ  
25  
42  
ms  
TOFF  
PWM Maximum Duty Cycle  
Input Low Voltage  
100  
%
V
V
D0, D1  
D0, D1  
D0, D1  
0.8  
±1  
IL  
Input High Voltage  
V
IH  
2.4  
V
Input Leakage Current  
I
IN  
µA  
_______________________________________________________________________________________  
3
Ad ju s t a b le -Ou t p u t , S w it c h -Mo d e  
Cu rre n t S o u rc e w it h S yn c h ro n o u s Re c t ifie r  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Circuit of Figure 2, T = +25°C, unless otherwise noted.)  
A
MAX1640  
MAX1640  
OUTPUT CURRENT vs. OUTPUT VOLTAGE  
EFFICIENCY vs. OUTPUT VOLTAGE  
OUTPUT CURRENT vs. INPUT VOLTAGE  
1.510  
1.510  
1.500  
1.490  
1.480  
1.470  
1.460  
1.450  
100  
90  
80  
70  
60  
50  
40  
V
= 26V  
IN  
(V = 4V)  
OUT  
V
IN  
= 18V  
V
= 12V  
IN  
T = -40°C  
A
T = -40°C  
A
1.500  
1.490  
1.480  
1.470  
1.460  
T = +85°C  
A
T = +85°C  
A
T = +25°C  
A
T = +25°C  
A
2
4
6
8
10 12 14 16 18 20 22 24  
2
4
6
8 10 12 14 16 18 20 22 24  
4
8
12  
16  
20  
24  
28  
0/MAX641  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
MAX1641  
OUTPUT CURRENT vs. INPUT VOLTAGE  
MAX1641  
QUIESCENT CURRENT  
vs. INPUT VOLTAGE (NO-LOAD)  
OUTPUT CURRENT vs. OUTPUT VOLTAGE  
1.550  
1.525  
1.500  
1.475  
1.450  
1.560  
1.540  
1.520  
1.500  
1.480  
1.460  
1.440  
1.420  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
(V = 4V)  
OUT  
T = +85°C  
A
T = -40°C  
A
T = -40°C  
A
T = +25°C  
A
T = +25°C  
A
T = +25°C  
A
T = +85°C  
A
T = +85°C  
A
T = -40°C  
A
4
8
12  
16  
20  
24  
28  
2
4
6
8
10 12 14 16 18 20 22 24  
4
8
12  
16  
20  
24  
28  
INPUT VOLTAGE (V)  
V
OUT  
(V)  
INPUT VOLTAGE (V)  
OFF-MODE SUPPLY CURRENT  
(NO-LOAD)  
LINE-TRANSIENT RESPONSE  
SWITCHING FREQUENCY vs. R  
TOFF  
10,000  
1000  
100  
10  
0.65  
0.63  
0.61  
0.59  
0.57  
0.55  
0.53  
0.51  
0.49  
0.47  
0.45  
V
OUT  
= +3V  
A
T = +85°C  
A
T = +25°C  
A
0A  
0V  
V
OUT  
= +6V  
T = -40°C  
A
B
1
0
50 100 150 200 250 300 350 400  
(k)  
2ms/div  
V
LOAD  
= 3V  
4
8
12  
16  
20  
24  
28  
T
OFF  
INPUT VOLTAGE (V)  
A: OUTPUT CURRENT, D1 = D0 = 1 1A/div  
B: INPUT VOLTAGE, 10V/div  
4
_______________________________________________________________________________________  
Ad ju s t a b le -Ou t p u t , S w it c h -Mo d e  
Cu rre n t S o u rc e w it h S yn c h ro n o u s Re c t ifie r  
0/MAX641  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 2, T = +25°C, unless otherwise noted.)  
A
CURRENT-MODE CHANGE RESPONSE TIME  
EXITING OFF MODE  
A
A
0A  
0V  
B
B
20µs/div  
2ms/div  
V = 12V, R  
= 4Ω  
IN  
LOAD  
V = 12V, V = 1V, R = 4Ω, NO OUTPUT CAPACITOR  
LOAD  
IN  
SET  
A: D0 = D1 = 1 2V/div  
A: OUTPUT CURRENT, D0 = D1 = 0 1A/div  
B: LOAD VOLTAGE, AC coupled, 500mV/div  
B: OUTPUT CURRENT, 0.5A/div  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Internal, Ground-Referenced Low-Dropout Linear Regulator Output.  
Bypass with a 0.1µF capacitor in parallel with a 4.7µF capacitor to GND.  
1
LDOL  
Off-Time Select Input. A resistor (R ) connected from this pin to GND programs the off-time for the hys-  
TOFF  
2
TOFF  
teretic PWM step-down converter. This resistor also sets the period in duty-cycle mode. See Duty-Cycle  
Mode and Programming the Off-Time.  
3, 4  
5
D1, D0  
CC  
Digital Inputs. Select mode of operation (Table 1).  
Constant-Current Loop Compensation Input. Bypass with a 0.01µF capacitor to GND.  
6
REF  
Reference Voltage Output (V  
= 2V). Bypass with a 0.1µF capacitor to GND.  
REF  
Current Select Input. Program the desired current level by applying a voltage at SET between 0V and V  
,
REF  
7
8
SET  
(I = V  
/ 13.3R ). See Figure 3.  
SENSE  
SET  
Maximum Output Voltage Termination Input. When V  
exceeds the reference voltage, the comparator  
TERM  
TERM  
resets the internal PWM latch, shutting off the external P-channel FET.  
9
GND  
CS-  
Ground  
10  
11  
12  
13  
14  
Negative Current-Sense Comparator Input  
Positive Current-Sense Comparator Input  
High-Current Ground Return for the output drivers  
Gate Drive for an optional N-channel FET synchronous rectifier  
Gate Drive for the P-channel FET  
CS+  
PGND  
NDRV  
PDRV  
Internal, Input-Referenced Low-Dropout Linear Regulator Output.  
Bypass with a 0.33µF capacitor to IN.  
15  
16  
LDOH  
IN  
Power-Supply Input. Input of the internal, low-dropout linear regulators.  
_______________________________________________________________________________________  
5
Ad ju s t a b le -Ou t p u t , S w it c h -Mo d e  
Cu rre n t S o u rc e w it h S yn c h ro n o u s Re c t ifie r  
IN  
LDOL  
LDOH  
REG  
0/MAX641  
A1  
A2  
CS+  
PDRV  
Gm  
CS-  
MODE  
CONTROL  
B
SET  
NDRV  
PGND  
MUX  
REF  
A
SEL  
MAX1640  
MAX1641  
TERM  
D0, D1  
CC  
TOFF  
Figure 1. MAX1640/MAX1641 Functional Diagram  
6
_______________________________________________________________________________________  
Ad ju s t a b le -Ou t p u t , S w it c h -Mo d e  
Cu rre n t S o u rc e w it h S yn c h ro n o u s Re c t ifie r  
0/MAX641  
0.33µF  
0.33µF  
47µF  
47µF  
1/2 IR7309  
1/2 IR7309  
IN  
LDOH  
PDRV  
IN  
LDOH  
PDRV  
LDOL  
P
LDOL  
P
0.1µF  
4.7µF  
4.7µF  
0.1µF  
MAX1641  
MAX1640  
D0  
D1  
D0  
D1  
R
TOFF  
R
TOFF  
TOFF  
REF  
1/2 IR7309  
TOFF  
REF  
1/2 IR7309  
47µH  
NDRV  
PGND  
N
NDRV  
PGND  
N
V
OUT  
47µH  
BATT  
100mΩ  
R3  
R4  
R1  
CS+  
CS+  
R1  
SET  
0.1µF  
100mΩ  
SET  
0.1µF  
R2  
CS-  
R2  
CS-  
V
OUT  
R3  
R4  
TERM  
BATT  
CC  
GND  
TERM  
0.01µF  
CC  
GND  
0.01µF  
Figure 2a. Standard Application Circuit  
Figure 2b. Standard Application Circuit  
part operates for 12.5% of the period set by R  
,
TOFF  
_______________De t a ile d De s c rip t io n  
resulting in a lower current for pulse-trickle charging.  
Figure 1 is the MAX1640/MAX1641 functional diagram.  
Figure 2 shows the standard application circuits.  
The MAX1640/MAX1641 switch-mode current sources  
utilize a hysteretic, current-mode, step-down pulse-  
width-modulation (PWM) topology with constant off-  
time . Inte rna l c omp a ra tors c ontrol the s witc hing  
mechanism. These comparators monitor the current  
Ch a rg e Mo d e : P ro g ra m m in g t h e  
Ou t p u t Cu rre n t s  
through a sense resistor (R  
) and the voltage at  
SENSE  
The sense resistor, R , sets two charging current  
SENSE  
TERM. When inductor current reaches the current limit  
[(V - V ) / R ], the P-channel FET turns off  
levels. Choose between these two levels by holding  
D0 high, and toggling D1 either high or low (Table 1).  
CS+  
CS-  
SENSE  
and the N-channel FET synchronous rectifier turns on.  
Inductor energy is delivered to the load as the current  
The fast-charge current level equals V  
/ R  
CS  
SENSE  
where V  
is the full-scale current-sense voltage of  
CS  
ramps down. This ramp rate depends on R  
and  
TOFF  
150mV. Alternatively, calculate this current by V  
/
/
REF  
SET  
inductor values. When off-time expires, the P-channel  
FET turns back on and the N-channel FET turns off.  
(13.3R  
). The top -off c urre nt e q ua ls V  
SENSE  
(13.3R ). A resistor-divider from REF to GND pro-  
SENSE  
grams the voltage at SET (Figure 3).  
Two digital inputs, D0 and D1, select between four pos-  
sible current levels (Table 1). In pulse-trickle mode, the  
_______________________________________________________________________________________  
7
Ad ju s t a b le -Ou t p u t , S w it c h -Mo d e  
Cu rre n t S o u rc e w it h S yn c h ro n o u s Re c t ifie r  
The voltage at SET is given by:  
R1 = R2 (V  
/ V  
-1 ); 10k< R2 < 300kΩ  
REF  
SET  
L
MAX1641  
whe re V  
= 2V a nd V  
is p rop ortiona l to the  
REF  
SET  
desired output current level.  
BATT  
Table 1. Selecting Output Current Levels  
R3  
R4  
CS+  
CS-  
D1  
DO  
MODE  
OUTPUT CURRENT (A)  
R
SENSE  
0
0
OFF  
0
0
1
Top-Off  
V
/ (13.3R  
/ (13.3R  
)
)
SET  
SENSE  
V
SET  
SENSE  
1
1
0
1
Pulse-Trickle  
Fast Charge  
12.5% duty cycle  
TERM  
V
SET  
/ (13.3R  
)
SENSE  
Figure 4b. Setting the Maximum Output Voltage Level  
The MAX1640/MAX1641 a re s p e c ifie d for V  
0/MAX641  
SET  
between 0V and V . For V  
> V , output current  
REF  
SET  
REF  
inc re a s e s line a rly (with re d uc e d a c c ura c y) until it  
clamps at V 4V.  
MAX1640  
MAX1641  
SET  
REF  
SET  
P u ls e -Tric k le Mo d e : S e le c t in g t h e  
P u ls e -Tric k le Cu rre n t  
R1  
R2  
Pulling D0 low and D1 high selects pulse-trickle mode.  
This current equals V / (13.3R ) and remains  
SET  
SENSE  
on for 12.5% of the period set by R  
. Pulse-trickle  
TOFF  
current maintains full charge across the battery and  
can slowly charge a cold battery before fast charging  
commences.  
-7  
PERIOD = 3.2 x 10 x R  
(sec)  
TOFF  
Figure 3. Adjusting the Output Current Level  
Off Mo d e : Tu rn in g Off t h e Ou t p u t Cu rre n t  
Pulling D0 and D1 low turns off the P-channel FET and  
hence the output current flow. This mode also controls  
end of charge and protects the battery against exces-  
sive temperatures.  
L
MAX1640  
CS+  
R
S e t t in g t h e Ma x im u m Ou t p u t  
Vo lt a g e Le ve l  
The maximum output voltage should be programmed to  
SENSE  
CS-  
BATT  
a level higher than the output/battery voltage (I  
x
LOAD  
R3  
R
). An external resistor-divider between the output  
LOAD  
TERM  
and ground (Figure 4) sets the voltage at TERM. Once  
the voltage at TERM exceeds the reference, the internal  
comparator turns off the P-channel FET, terminating  
current flow. Select R4 in the 10kto 500krange.  
R3 is given by:  
R4  
Figure 4a. Setting the Maximum Output Voltage Level  
R3 = R4 (V  
/ V  
) -1  
OUT  
TERM  
8
_______________________________________________________________________________________  
Ad ju s t a b le -Ou t p u t , S w it c h -Mo d e  
Cu rre n t S o u rc e w it h S yn c h ro n o u s Re c t ifie r  
0/MAX641  
where V  
voltage.  
= 2V and V  
is the desired output  
generating increased ripple at the output. Select C  
to optimize the ripple vs. loop response.  
TERM  
OUT  
CC  
P ro g ra m m in g t h e Off-Tim e  
S yn c h ro n o u s Re c t ific a t io n  
Synchronous rectification reduces conduction losses in  
the rectifier by shunting the Schottky diode with a low-  
resistance MOSFET switch. In turn, efficiency increases  
by about 3% to 5% at heavy loads. To prevent cross-  
conduction or shoot-through,” the synchronous rectifier  
turns on shortly after the P-channel power MOSFET  
When programming the off-time, consider such factors  
as maximum inductor current ripple, maximum output  
voltage, inductor value, and inductor current rating. The  
output current ripple is less than the inductor current rip-  
ple and depends heavily on the output capacitors size.  
Perform the following steps to program the off-time:  
1) Select the maximum output current ripple. I (A)  
R
Table 2. Component Manufacturers  
2) Select the maximum output voltage. V (MAX)(V)  
OUT  
COMPONENT  
MANUFACTURER  
CDRH125 series  
3) Calculate the inductor value range as follows:  
= (V x 1µs) / I  
Sumida  
L
MIN  
Inductor  
Coilcraft  
Coiltronics  
International Rectifier  
Siliconix  
Dale  
D03316P series  
UP2 series  
OUTMAX  
R
L
MAX  
= (V  
x 10µs) / I  
OUTMAX R  
IRF7309  
4) Select an inductor value in this range.  
5) Calculate t as follows:  
MOSFETs  
S14539DY  
OFF  
WSL-2010 series  
LR2010-01 series  
TPS series  
Sense Resistor  
Capacitors  
IRC  
L x I  
R
t
=
OFF  
AVX  
V
OUTMAX  
Sprague  
595D series  
MBAR5340t3  
IN5817-IN5822  
NSQ03A04  
6) Program t  
by selecting R  
from:  
OFF  
TOFF  
Motorola  
Nihon  
Rectifier  
R
= (29.3 x 109) x t  
TOFF  
OFF  
7) Calculate the switching frequency by:  
fs = 1 / (t + t  
turns off. The synchronous rectifier remains off for 90%  
of the off-time. In low-cost designs, the synchronous  
rectifier FET may be replaced by a Schottky diode.  
)
OFF  
ON  
where t  
= (I x L) / (V - V  
) and I = (V  
IN  
x
ON  
R
IN  
OUT  
R
OUT  
Co m p o n e n t S e le c t io n  
t ) / L. L is the inductor value, V is the input volt-  
OFF  
External Switching Transistors  
The MAX1640/MAX1641 drive an enhancement-mode  
P-c ha nne l MOSFET a nd a s ync hronous -re c tifie r N-  
channel MOSFET (Table 2).  
age, V  
is the output voltage, and I is the output  
R
OUT  
peak-to-peak current ripple.  
Note that R  
trickle charge period.  
sets both the off-time and the pulse-  
TOFF  
When selecting a P-channel FET, some important para-  
Re fe re n c e  
meters to consider are on-resistance (r  
), maxi-  
DS(ON)  
The on-chip reference is laser trimmed for a precise 2V  
at REF. REF can source no more than 50µA. Bypass  
REF with a 0.1µF capacitor to ground.  
mum d ra in-to-s ourc e volta g e (V  
ma x), ma ximum  
DS  
g a te -to-s ourc e volta g e (V  
ma x), a nd minimum  
GS  
threshold voltage (V min).  
TH  
In high-current applications, MOSFET package power  
dissipation often becomes a dominant design factor.  
I R power losses are the greatest heat contributor for  
both high-side and low-side MOSFETs. Switching loss-  
es affect the upper MOSFET only (P-channel), since the  
Schottky rectifier or the N-FET body diode clamps the  
switching node before the synchronous rectifier turns on.  
Co n s t a n t -Cu rre n t Lo o p : AC Lo o p  
Co m p e n s a t io n  
2
The constant-current loops output is brought out at CC.  
To reduce noise due to variations in switching currents,  
bypass CC with a 1nF to 100nF capacitor to ground. A  
large capacitor value maintains a constant average out-  
put current but slows the loop response to changes in  
switching current. A small capacitor value speeds up  
the loop response to changes in switching current,  
Rectifier Diode  
If an N-channel MOSFET synchronous rectifier is not  
used, a Schottky rectifier is needed. The MAX1640/  
_______________________________________________________________________________________  
9
Ad ju s t a b le -Ou t p u t , S w it c h -Mo d e  
Cu rre n t S o u rc e w it h S yn c h ro n o u s Re c t ifie r  
DC IN  
PDRV  
P
MAX1640  
I/0  
I/0  
D0  
D1  
NDRV  
N
LOW-SIDE IS SHORTED  
PGND  
CS+  
R
SENSE  
CH0  
CH1  
CS-  
0/MAX641  
R3  
R4  
T
TERM  
BATT  
GND  
Figure 5. Microcontroller Battery Charger  
MAX1641s high switching frequency demands a high-  
speed rectifier (Table 2). Schottky diodes such as the  
1N5817–1N5822 are recommended. Make sure the  
Schottky diodes average current rating exceeds the  
p e a k c urre nt limit a nd tha t its b re a kd own volta g e  
ind uc tor va lue , off-time , outp ut c urre nt rip p le , a nd  
switching frequency.  
__________Ap p lic a t io n s In fo rm a t io n  
All-P u rp o s e Mic ro c o n t ro lle r Ba t t e ry  
Ch a rg e r: NiCd , NiMH  
exceeds the output voltage (V  
). For high-tempera-  
OUT  
ture applications, Schottky diodes may be inadequate  
due to their high leakage current; high-speed silicon  
diodes such as the MUR105 or EC11FS1 can be used  
instead. At heavy loads and high temperatures, the  
benefits of a Schottky diodes low forward voltage may  
outweigh the disadvantage of high leakage current. If  
the application uses an N-channel MOSFET synchro-  
nous re c tifie r, a p a ra lle l Sc hottky d iod e is us ua lly  
unnecessary except with very high charge current (> 3  
a mp s ). Be s t e ffic ie nc y is a c hie ve d with b oth a n  
N-channel MOSFET and a Schottky diode.  
In applications where a microcontroller is available, the  
MAX1640/MAX1641 can be used as a low-cost battery  
c ha rg e r (Fig ure 5). The c ontrolle r ta ke s ove r fa s t  
charge, pulse-trickle charge, charge termination, and  
other smart functions. By monitoring the output voltage  
at V  
, the controller initiates fast charge (set D0 and  
OUT  
D1 high), terminates fast charge and initiates top-off  
(set D0 high and D1 low), enters trickle charge (set D0  
low and D1 high), or shuts off and terminates current  
flow (set D0 and D1 low).  
La yo u t a n d Gro u n d in g  
Due to high current levels and fast switching wave-  
forms, proper PC board layout is essential. High-cur-  
re nt g round p a ths s hould b e c onne c te d in a s ta r  
Inductor Value  
Refer to the section Programming the Off-Time to select  
the proper inductor value. There is a trade-off between  
10 ______________________________________________________________________________________  
Ad ju s t a b le -Ou t p u t , S w it c h -Mo d e  
Cu rre n t S o u rc e w it h S yn c h ro n o u s Re c t ifie r  
0/MAX641  
configuration to PGND. These traces should be wide to  
reduce resistance and as short as possible to reduce  
___________________Ch ip In fo rm a t io n  
stray inductance. All low-current ground paths should  
TRANSISTOR COUNT: 1233  
be connected to GND. Place the input bypass capaci-  
tor as close as possible to the IN pin. See MAX1640 EV  
kit for layout example.  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 11  

相关型号:

MAX1640EEE

Adjustable-Output, Switch-Mode Current Sources with Synchronous Rectifier
MAXIM

MAX1640EEE+

Adjustable-Output, Switch-Mode Current Sources with Synchronous Rectifier
MAXIM

MAX1640EEE+T

Switching Controller, Current-mode, 0.02A, 500kHz Switching Freq-Max, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1640EEE-T

Switching Controller, Current-mode, 0.02A, 500kHz Switching Freq-Max, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1640ESE

Battery Charge Controller, Current-mode, PDSO16, 0.150 INCH, MS-012C, SOIC-16
MAXIM

MAX1640EVKIT

Evaluation Kit for the MAX1640/MAX1641
MAXIM

MAX1640_09

Adjustable-Output, Switch-Mode Current Sources with Synchronous Rectifier
MAXIM

MAX1641

Adjustable-Output, Switch-Mode Current Sources with Synchronous Rectifier
MAXIM

MAX1641C

Adjustable-Output, Switch-Mode Current Sources with Synchronous Rectifier
MAXIM

MAX1641C/D

Adjustable-Output, Switch-Mode Current Sources with Synchronous Rectifier
MAXIM

MAX1641D

Adjustable-Output, Switch-Mode Current Sources with Synchronous Rectifier
MAXIM

MAX1641EEE

Adjustable-Output, Switch-Mode Current Sources with Synchronous Rectifier
MAXIM