MAX1642C/D-T [MAXIM]

Switching Regulator, 1A;
MAX1642C/D-T
型号: MAX1642C/D-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator, 1A

开关
文件: 总12页 (文件大小:130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1183; Rev 0; 6/97  
Hig h -Effic ie n c y, S t e p -Up  
DC-DC Co n ve rt e rs fo r 1 V In p u t s  
2/MAX1643  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Built-In Synchronous Rectifier  
The MAX1642/MAX1643 are high-efficiency, low-voltage,  
step-up DC-DC converters intended for devices pow-  
ered by a single alkaline cell. They feature low quies-  
cent supply currents and are supplied in the ultra-small  
µMAX package, which is only 1.1mm high. The guaran-  
teed start-up voltage is 0.88V.  
0.88V Guaranteed Start-Up  
Ultra-Small µMAX Package: 1.1mm High  
83% Efficiency  
Ea c h d e vic e c ons is ts of a n inte rna l 1, N-c ha nne l  
MOSFET power switch; a built-in synchronous rectifier  
that acts as the catch diode; an oscillator; a reference;  
and pulse-frequency-modulation (PFM) control circuitry.  
Both devices feature an independent undervoltage  
comparator (PFI/PFO). The MAX1642 also includes a  
2µA logic-controlled shutdown mode. The MAX1643  
offers a dedicated low-battery detector (BATTLO) in  
lieu of shutdown.  
4µA Quiescent Supply Current into BATT Pin  
2µA Logic-Controlled Shutdown (MAX1642)  
Two Undervoltage Detectors (MAX1643)  
2V to 5.2V Output Range  
20mA Output Current at 1.2V Input  
Reverse Battery Protection  
The output voltage for each device is preset to 3.3V  
±4%, or can be adjusted from +2V to +5.2V using only  
two resistors.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
Dice*  
MAX1642C/D  
MAX1642EUA  
MAX1643C/D  
MAX1643EUA  
8 µMAX  
Dice*  
________________________Ap p lic a t io n s  
8 µMAX  
Pagers  
*Dice are tested at T = +25°C.  
A
Remote Controls  
Note: To order these devices shipped in tape and reel, add a -T  
to the part number.  
Pointing Devices  
Personal Medical Monitors  
Single-Cell Battery-Powered Devices  
_________________P in Co n fig u ra t io n s  
TOP VIEW  
1
2
3
4
8
7
6
5
OUT  
LX  
BATT  
PFI  
__________Typ ic a l Op e ra t in g Circ u it  
MAX1642  
µMAX  
GND  
FB  
PFO  
SHDN  
INPUT  
0.88V TO 1.65V  
OUTPUT  
3.3V  
100µH  
OUT  
LX  
22µF  
22µF  
MAX1642  
BATT  
1
2
3
4
8
7
6
5
OUT  
LX  
BATT  
PFI  
ON  
SHDN  
OFF  
MAX1643  
µMAX  
PFI  
GND  
PFO  
FB  
LOW-BATTERY  
DETECTOR INPUT  
LOW-BATTERY  
DETECTOR OUTPUT  
GND  
FB  
BATTLO  
PFO  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Hig h -Effic ie n c y, S t e p -Up  
DC-DC Co n ve rt e rs fo r 1 V In p u t s  
ABSOLUTE MAXIMUM RATINGS  
BATT to GND ...........................................................-0.3V to 6.0V  
BATT Forward Current ..........................................................0.5A  
OUT to GND.............................................................-0.3V to 6.0V  
OUT, LX Current.......................................................................1A  
LX to GND................................................................-0.3V to 6.0V  
SHDN, FB, BATTLO, PFO to GND...........................-0.3V to 6.0V  
Continuous Power Dissipation  
µMAX (derate 4.1mW/°C above 70°C)..........................330mW  
Operating Temperature Range  
MAX1642EUA/MAX1643EUA ............................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +165°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
PFI to GND ............................................................-0.3V to V  
BATT  
Reverse Battery Current (T = +25°C) (Note 1) ...............220mA  
A
Note 1: The reverse battery current is measured from the Typical Operating Circuit’s input terminal to GND when the battery is con-  
nected backward. A reverse current of 220mA will not exceed package dissipation limits but, if left for an extended time  
(more than 10 minutes), may degrade performance.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
BATT  
= V  
= 1.3V, I  
= 0mA, FB = GND, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
SHDN  
LOAD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2/MAX1643  
Minimum Operating Input Voltage  
Maximum Operating Input Voltage  
Start-Up Voltage (Note 2)  
Start-Up Voltage Tempco  
Output Voltage  
V
0.7  
V
V
BATT(MIN)  
1.65  
R
= 3k, T = +25°C  
0.88  
V
L
A
-2  
mV/°C  
V
V
OUT  
V
FB  
< 0.1V  
3.16  
2.0  
3.30  
3.44  
5.2  
Output Voltage Range  
External feedback  
External feedback  
V
FB Set Voltage  
V
FB  
1.18  
1.225  
1
1.27  
1.5  
V
N-Channel On-Resistance  
P-Channel On-Resistance  
P-Channel Catch-Diode Voltage  
On-Time Constant  
V
OUT  
= 3.3V  
= 3.3V  
V
OUT  
1.5  
0.8  
25  
2.2  
I
= 100mA, P-channel switch off  
V
DIODE  
K
0.9V < V  
< 1.5V (t  
= K / V )  
BATT  
17  
1
35  
1.5  
18  
6.5  
1
V-µs  
BATT  
ON  
Off-Time Tracking Ratio (Note 3)  
Quiescent Current into OUT  
Quiescent Current into BATT  
Shutdown Current into OUT  
Shutdown Current into BATT  
Efficiency  
RATIO  
0.9V < V  
< 1.5V, V  
= 3.3V  
BATT  
OUT  
I
V
OUT  
= 3.5V  
11  
4
µA  
µA  
µA  
µA  
%
QOUT  
I
QBATT  
I
V
OUT  
= 3.5V (MAX1642)  
= 1.0V (MAX1642)  
= 20mA  
0.1  
2
SHDN,OUT  
I
V
BATT  
3.5  
SHDN,BATT  
η
I
80  
LOAD  
FB Input Current  
V
= 1.3V  
10  
632  
10  
nA  
mV  
nA  
V
FB  
PFI Trip Voltage  
Falling PFI, hysteresis = 1%  
590  
614  
1.0  
PFI Input Current  
V
PFI  
= 650mV  
= 0V, V  
V
V
PFI  
= 3.3V, I = 1mA  
SINK  
0.4  
1
PFO, BATTLO Low Output Voltage  
PFO, BATTLO Leakage Current  
BATTLO Trip Voltage  
OL  
OUT  
V
PFI  
= 650mV, V  
= 6V  
µA  
V
PFO  
V
OUT  
= 3.3V, hysteresis = 2% (MAX1643)  
0.96  
80  
1.04  
20  
V
IL  
% of V  
(MAX1642)  
(MAX1642)  
BATT  
%
SHDN Input Low Voltage  
SHDN Input High Voltage  
SHDN Input Current  
BATT  
V
% of V  
%
IH  
(MAX1642)  
10  
nA  
2
_______________________________________________________________________________________  
Hig h -Effic ie n c y, S t e p -Up  
DC-DC Co n ve rt e rs fo r 1 V In p u t s  
2/MAX1643  
ELECTRICAL CHARACTERISTICS  
(V  
BATT  
= V  
= 1.3V, I = 0mA, FB = GND, T = -40°C to +85°C, unless otherwise noted.) (Note 4)  
LOAD A  
SHDN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
2.99  
1.11  
MAX  
3.56  
1.32  
1.5  
UNITS  
V
Output Voltage  
FB Set Voltage  
V
OUT  
V
< 0.1V  
FB  
V
FB  
External feedback  
V
N-Channel On-Resistance  
P-Channel On-Resistance  
On-Time Constant  
V
OUT  
= 3.3V  
= 3.3V  
V
OUT  
2.2  
K
0.9V < V  
< 1.5V (t  
= K / V )  
BATT  
12.4  
38.2  
18  
V-µs  
µA  
µA  
µA  
µA  
mV  
BATT  
ON  
Quiescent Current into OUT  
Quiescent Current into BATT  
Shutdown Current into OUT  
Shutdown Current into BATT  
PFI Trip Voltage  
I
V
OUT  
= 3.5V  
QOUT  
I
6.5  
QBATT  
I
V
OUT  
= 3.5V (MAX1642)  
= 1.0V (MAX1642)  
BATT  
1
SHDN,OUT  
I
V
3.5  
SHDN,BATT  
Falling PFI, hysteresis = 1%  
550  
662  
Falling V , V = 3.3V, hysteresis = 2%  
(MAX1643)  
BATT  
OUT  
0.93  
1.06  
V
BATTLO Trip Voltage  
Note 2: Start-up guaranteed by correlation to measurements of device parameters (i.e., switch on-resistance, on-times, off-times, and  
output voltage trip points).  
t
x V  
BATT  
- V  
BATT  
ON  
Note 3:  
. This guarantees discontinuous conduction.  
x RATIO  
t
=
OFF  
V
OUT  
Note 4: Specifications to -40°C are guaranteed by design, not production tested.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Circuit of Figure 4, V  
= 1.2V, R1 + R2 = 1M, T = +25°C, unless otherwise noted.)  
A
BATT  
EFFICIENCY vs. OUTPUT CURRENT  
EFFICIENCY vs. OUTPUT CURRENT  
EFFICIENCY vs. OUTPUT CURRENT  
(V = 2.4V)  
OUT  
(V = 2.4V)  
OUT  
(V = 3.3V)  
OUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 1.6V  
V
= 1.6V  
IN  
IN  
V
= 1.6V  
IN  
V = 1.2V  
IN  
V
IN  
= 1.2V  
V
= 1.2V  
IN  
V
= 1.0V  
V
= 1.0V  
IN  
IN  
V
= 1.0V  
IN  
V
= 0.85V  
V
IN  
= 0.85V  
IN  
V = 0.85V  
IN  
L1 = 100µH  
L1 = 100µH  
SUMIDA CD54-101  
L1 = 150µH  
TDK NLC565050T-151K  
SUMIDA CD54-101  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
_______________________________________________________________________________________  
3
Hig h -Effic ie n c y, S t e p -Up  
DC-DC Co n ve rt e rs fo r 1 V In p u t s  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 4, V  
= 1.2V, R1 + R2 = 1M, T = +25°C, unless otherwise noted.)  
A
BATT  
EFFICIENCY vs. OUTPUT CURRENT  
EFFICIENCY vs. OUTPUT CURRENT  
EFFICIENCY vs. OUTPUT CURRENT  
(V = 5.0V)  
OUT  
(V = 3.3V)  
OUT  
(V = 5.0V)  
OUT  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
V = 1.6V  
IN  
V
IN  
= 1.6V  
V
= 1.6V  
IN  
V
= 1.0V  
V
IN  
= 1.0V  
IN  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN  
= 0.85V  
V
= 0.85V  
IN  
V
IN  
= 1.2V  
V
IN  
= 1.2V  
V
= 1.2V  
IN  
V
= 1.0V  
IN  
V
IN  
= 0.85V  
L1 = 100µH  
SUMIDA CD54-101  
L1 = 150µH  
TDK NLC565050T-151K  
L1 = 150µH  
TDK NLC565050T-151K  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
6
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
NO-LOAD BATTERY CURRENT  
vs. TEMPERATURE  
NO-LOAD BATTERY CURRENT  
vs. INPUT VOLTAGE  
BATT AND OUT PIN QUIESCENT CURRENTS  
vs. TEMPERATURE  
30  
140  
10,000  
V
V
OUT  
= 1.2V  
= 3.6V  
V
V
= 1.2V  
= 3.3V  
BATT  
BATT  
120  
100  
OUT  
25  
20  
1000  
100  
80  
60  
40  
V
OUT  
= 5.0V  
15  
10  
5
I
OUT  
20  
0
V
OUT  
= 2.5V OR 3.3V  
I
BATT  
10  
0
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80  
100  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MINIMUM START-UP INPUT VOLTAGE  
vs. OUTPUT CURRENT  
MINIMUM START-UP INPUT VOLTAGE  
vs. OUTPUT CURRENT  
1.6  
1.5  
1.6  
1.5  
L1 = 150µH  
TDK NLC565050T-151K  
L1 = 100µH  
SUMIDA CD54-101  
1.4  
1.3  
1.2  
1.4  
1.3  
1.2  
V
OUT  
= 5V  
V
OUT  
= 5V  
1.1  
1.0  
0.9  
0.8  
1.1  
1.0  
0.9  
0.8  
V
OUT  
= 2.4V, 3.3V  
V
OUT  
= 2.4V, 3.3V  
0.7  
0.6  
0.7  
0.6  
2
4
6
8
10 12 14  
0
16  
0
5
10  
15  
20  
25  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
4
_______________________________________________________________________________________  
Hig h -Effic ie n c y, S t e p -Up  
DC-DC Co n ve rt e rs fo r 1 V In p u t s  
2/MAX1643  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 4, V  
= 1.2V, R1 + R2 = 1M, T = +25°C, unless otherwise noted.)  
A
BATT  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
SWITCHING WAVEFORMS  
35  
30  
25  
20  
18  
16  
14  
12  
V
OUT  
= 2.4V  
V
OUT  
= 2.4V  
A
B
C
V
OUT  
= 3.3V  
20  
15  
10  
8
V
OUT  
= 3.3V  
V
OUT  
= 5V  
V
OUT  
= 5V  
6
10  
4
2
0
L1 = 100µH  
SUMIDA CD54-101  
L1 = 150µH  
TDK NLC565050T-151K  
5
0
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6  
INPUT VOLTAGE (V)  
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6  
INPUT VOLTAGE (V)  
10ms/div  
V
OUT  
= 3.3V, V = 1.2V, I = 12mA  
IN OUT  
A: LX, 2V/div, L1 = TDK NLC565050T-151K  
B: OUT, 20mV/div, 3.3V DC OFFSET  
C: INDUCTOR CURRENT, 100mA/div  
SHUTDOWN RESPONSE AND  
INDUCTOR CURRENT  
LINE-TRANSIENT RESPONSE  
LOAD-TRANSIENT RESPONSE  
A
A
B
A
B
B
C
400µs/div  
10ms/div  
400µs/div  
V
OUT  
= 3.3V, LOAD = 15mA  
V
OUT  
= 3.3V, V  
= 1.2V, I = 5mA  
V
OUT  
= 3.3V, V  
= 1.2V  
BATT OUT  
BATT  
A: OUT, 50mV/div, 3.3V DC OFFSET  
A: OUT, 1V/div  
B: INDUCTOR CURRENT, 200mA/div  
C: SHDN, 2V/div  
A: OUT, 20mV/div, 3.3V DC OFFSET  
B: LOAD, 2mA to 20mA, 10mA/div  
B: V , 1V to 1.5V, 500mV/div  
BATT  
_______________________________________________________________________________________  
5
Hig h -Effic ie n c y, S t e p -Up  
DC-DC Co n ve rt e rs fo r 1 V In p u t s  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX1642  
MAX1643  
1
2
1
2
BATT  
PFI  
IC Battery-Power Input. Sense input for BATTLO comparator (MAX1643 only).  
Power-Fail Input. When the voltage on PFI drops below 614mV, PFO sinks current.  
Open-Drain Battery-Low Output. When the voltage at BATT drops below 1V, BATTLO  
sinks current.  
3
BATTLO  
3
4
4
Open-Drain Power-Fail Output. Sinks current when PFI drops below 614mV.  
Active-Low Shutdown Input. Connect to BATT for normal operation.  
PFO  
SHDN  
Feedback Input for adjustable-output operation. Connect FB to an external resistor voltage  
divider between OUT and GND. Connect to GND for fixed-output operation.  
5
5
FB  
6
7
6
7
GND  
LX  
Ground  
2/MAX1643  
N-Channel MOSFET Switch Drain and P-Channel Synchronous-Rectifier Drain  
Power Output. Feedback input for fixed 3.3V operation and IC power input. Connect filter  
capacitor close to OUT.  
8
8
OUT  
Op e ra t in g P rin c ip le  
_______________De t a ile d De s c rip t io n  
The MAX1642/MAX1643 employ a proprietary pulse-  
frequency-modulation (PFM) control scheme that com-  
b ine s the ultra -low q uie s c e nt c urre nt tra d itiona l of  
pulse-skipping PFM converters with the high-load effi-  
ciency of pulse-width-modulation (PWM) converters.  
The on-time and minimum off-times are varied as a  
function of the input and output voltages:  
The MAX1642/MAX1643 each consist of an internal 1,  
N-channel MOSFET power switch, a built-in synchro-  
nous rectifier that acts as the catch diode, an oscillator,  
a reference, and PFM control circuitry (Figure 1).  
The s e d e vic e s a re op timize d for a p p lic a tions with  
power-management features that operate from one  
alkaline cell, such as pagers, remote controls, and bat-  
tery-powered instruments. They are designed to meet  
the specific demands of the operating states character-  
istic of such systems:  
K
t
t
=
ON  
V
BATT  
1) Primary battery is good and the load is active: In  
this state, the system draws tens of milliamperes,  
and the MAX1642/MAX1643 typically offer 80% effi-  
ciency.  
1.2 x K  
- V  
=
OFF(MIN)  
V
OUT  
BATT  
whe re K is typ ic a lly 25V-µs . This e na b le s the  
MAX1642/MAX1643 to maintain high efficiency over a  
wide range of loads and input/output voltages. The DC-  
DC converter is powered from the OUT pin.  
2) Primary battery is good and the load is sleeping: In  
this state, the load is drawing hundreds of microam-  
peres, and the DC-DC converter IC draws very low  
quiescent current. In many applications, the load is  
expected to be in this state most of the time.  
6
_______________________________________________________________________________________  
Hig h -Effic ie n c y, S t e p -Up  
DC-DC Co n ve rt e rs fo r 1 V In p u t s  
2/MAX1643  
Whe n the e rror c omp a ra tor de te c ts tha t the output  
the P-channel synchronous rectifier remains off and  
either its body diode or an external diode is used as an  
output rectifier. Reduce the load as needed to allow  
s ta rt-up with inp ut volta g e s b e low 2V (s e e Typ ic a l  
Operating Characteristics).  
voltage is too low, it turns on the internal N-channel  
MOSFET switch until the on-time is satisfied (see Figure  
1 and the Standard Application Circuits, Figures 2 and  
3). During the on-time, current ramps up in the induc-  
tor, storing energy in a magnetic field. When the MOS-  
FET turns off, during the second half of each cycle, the  
magnetic field collapses, causing the inductor voltage  
to forc e c urre nt throug h the s ync hronous re c tifie r,  
transferring the stored energy to the output filter capac-  
itor and load. The output filter capacitor stores charge  
while current from the inductor is high, then holds up  
the output voltage until the second half of the next  
switching cycle, smoothing power flow to the load.  
S h u t d o w n (MAX1 6 4 2 )  
Pulling SHDN low places the MAX1642 in shutdown  
mode (I  
= 2µA typical). In shutdown, the internal  
SHDN  
s witc hing MOSFET turns off, PFO g oe s hig h-  
impedance, and the synchronous rectifier turns off to  
prevent reverse current from flowing from the output  
back to the input. However, there is still a forward cur-  
rent path through the synchronous-rectifier body diode  
from the input to the output. Thus, in shutdown, the out-  
put remains one diode drop below the battery voltage  
Bo o t s t ra p DC-DC Blo c k  
The bootstrap block contains a low-voltage start-up  
oscillator. This oscillator pumps up the output voltage  
to approximately 1.7V, where the main DC-DC con-  
verter can operate. The oscillator is powered from the  
BATT input and drives an NPN switch. During start-up,  
(V ). To disa b le the shutdown fe a ture , c onne c t  
BATT  
SHDN (a logic input) to BATT.  
BATT  
OUT  
TIMING  
TON  
TOFF  
0.5REF  
PDRV  
NDRV  
P
EN  
LOGIC  
PFI  
MAX1642  
LX  
FB  
PFO  
N
REF  
START-UP  
OSCILLATOR  
RFRDY  
REF  
REF  
0.5REF  
GND  
OUT  
1.7V  
SHDN  
Figure 1. MAX1642 Functional Diagram  
_______________________________________________________________________________________  
7
Hig h -Effic ie n c y, S t e p -Up  
DC-DC Co n ve rt e rs fo r 1 V In p u t s  
BATTLO (MAX1 6 4 3 )  
The MAX1643 contains an on-chip comparator for low-  
100µH, 350mA  
0.88V to 1.65V INPUT  
battery detection. If the voltage at BATT drops below  
22µF  
0.1µF  
1V, BATTLO sinks current. BATTLO is an open-drain  
output. In combination with PFI/PFO, this allows moni-  
toring of both the input and output voltages.  
BATT  
PFI  
LX  
OUT  
3.3V  
OUT  
OUT  
Re ve rs e -Ba t t e ry P ro t e c t io n  
The MAX1642/MAX1643 can sustain/survive single-cell  
battery reversal up to the package power-dissipation  
limit. An internal 5resistor in series with a diode limits  
reverse current to less than 220mA, which prevents dam-  
age to the MAX1642/MAX1643. Prolonged operation  
above 220mA reverse-battery current can degrade the  
devices’ performance.  
0.1µF  
22µF  
MAX1642  
PF0  
SHDN  
GND  
FB  
Figure 2. MAX1642 3.3V Standard Application Circuit  
________________De s ig n In fo rm a t io n  
Ou t p u t Vo lt a g e S e le c t io n  
The MAX1642/MAX1643 operate with a 3.3V ±4% or  
adjustable output. To select fixed-voltage operation, con-  
nect FB to GND. For an adjustable output between 2V  
a nd 5.2V, c onne c t FB to a re s is tor volta g e d ivid e r  
between OUT and GND (Figure 4). FB regulates to 1.23V.  
100µH, 350mA  
2/MAX1643  
0.88V to 1.65V INPUT  
22µF  
0.1µF  
BATT  
LX  
3.3V  
OUT  
OUT  
OUT  
Since FB leakage is 10nA max, select feedback resistor  
R2 in the 100kto 1Mrange. R1 is given by:  
MAX1643  
0.1µF 22µF  
PFI  
V
OUT  
R1 = R2  
= 1.23V.  
- 1  
BATTLO  
GND  
V
REF  
PFO  
FB  
where V  
REF  
P o w e r-Fa il De t e c t io n  
The MAX1642/MAX1643 have an on-chip comparator for  
power-fail detection. This comparator can detect loss of  
power at the input or output. If the voltage at PFI falls  
below 614mV, the PFO output sinks current to GND.  
Hysteresis at the power-fail input is 1%. The power-fail  
monitors threshold is set by two resistors: R3 and R4  
(Figure 5). Set the threshold using the following equation:  
Figure 3. MAX1643 3.3V Standard Application Circuit  
the battery voltage decreases below the start-up volt-  
age (see Typical Operating Characteristics).  
In d u c t o r S e le c t io n  
A 100µH ind uc tor is re c omme nd e d for mos t a p p li-  
cations. The use of lower inductor values (down to  
68µH) increases maximum output current. Higher val-  
ues (up to 220µH) reduce peak inductor current and  
consequent ripple and noise. The inductors saturation-  
current rating must exceed the peak current limit syn-  
the s ize d b y the MAX1642/MAX1643s timing  
algorithms:  
V
TH  
R3 = R4  
- 1  
V
PFI  
where V is the desired threshold of the power-fail  
TH  
detector, and V is the 614mV reference of the power-  
PFI  
fail comparator. Since PFI leakage is 10nA max, select  
feedback resistor R4 in the 100kto 1Mrange.  
K
MAX  
Lo w -Ba t t e ry S t a rt -Up  
The MAX1642/MAX1643 are bootstrapped circuits with  
a low-voltage start-up oscillator. They can start under  
low-load conditions at lower battery voltages than at full  
load. Once started, the output can maintain the load as  
I
=
PEAK  
L
MIN  
where K  
= 35V-µs. The maximum recommended  
is 350mA. For best efficiency, inductor series  
resistance should be less than 1.  
MAX  
I
PEAK  
8
_______________________________________________________________________________________  
Hig h -Effic ie n c y, S t e p -Up  
DC-DC Co n ve rt e rs fo r 1 V In p u t s  
2/MAX1643  
Ca p a c it o r S e le c t io n  
Choose input and output capacitors to service input  
and output peak currents with acceptable voltage rip-  
ple. A 22µF, 6V, low-ESR, surface-mount tantalum out-  
p ut filte r c a p a c itor typ ic a lly p rovid e s 60mV outp ut  
ripple when stepping up from 1.3V to 3.3V at 20mA.  
100µH  
0.88V to 1.65V INPUT  
22µF 0.1µF  
V = 2V  
OUT  
TO 5.2V  
BATT  
PFI  
LX  
OUT  
The input filter capacitor (C ) also reduces peak cur-  
IN  
OUT  
rents drawn from the battery and improves efficiency.  
100pF*  
R1  
R2  
MAX1642  
Low equivalent series resistance (ESR) capacitors are  
recommended. Capacitor ESR is a major contributor to  
output ripple (usually more than 60%). Ceramic capaci-  
tors have the lowest ESR, but low-ESR tantalums repre-  
sent a good balance between cost and performance.  
Low-ESR aluminum electrolytic capacitors are tolerable,  
and standard aluminum electrolytic capacitors should  
be avoided. Do not exceed tantalum capacitors ripple-  
current ratings; select capacitors with a rating exceed-  
FB  
PF0  
SHDN  
GND  
*OPTIONAL COMPENSATION  
ing the peak inductor current (I  
).  
PEAK  
Figure 4. Adjustable-Output Circuit  
P C Bo a rd La yo u t a n d Gro u n d in g  
High switching frequencies and large peak currents  
make PC board layout an important part of design. Poor  
design can result in excessive EMI on the feedback paths  
and voltage gradients in the ground plane. Both of these  
factors can result in instability or regulation errors. The  
OUT pin must be bypassed directly to GND as close to  
the IC as possible (within 0.2 in. or 5mm).  
V
TH  
MAX1642  
MAX1643  
R3  
R4  
PFI  
Pla c e p owe r c omp one nts —s uc h a s the MAX1642/  
MAX1643, inductor, input filter capacitor, and output filter  
capacitor—as close together as possible. Keep their  
traces short, direct, and wide (50 mil or 1.25mm), and  
place their ground pins close together in a star-ground  
configuration. Keep the extra copper on the board and  
integrate it into ground as a pseudo-ground plane. On  
multilayer boards, route the star ground using compo-  
nent-side copper fill, then connect it to the internal ground  
plane using vias.  
Figure 5. Power-Fail Detection Circuit  
2) Us e a c los e d -c ore ind uc tor, s uc h a s toroid or  
shielded bobbin, to minimize fringe magnetic fields.  
3) Choose the largest inductor value that satisfies the  
load requirement to minimize peak switching cur-  
rent and resulting ripple and noise.  
Place the external voltage-feedback network very close to  
the FB pin (within 0.2 in. or 5mm). Noisy traces, such as  
from the LX pin, should be kept away from the voltage-  
feedback network and separated from it using grounded  
copper. The evaluation kit manual shows an example PC  
board layout, routing, and pseudo-ground plane.  
4) Use low-ESR input and output filter capacitors.  
5) Follow sound circuit-board layout and grounding  
rules (see the PC Board Layout and Grounding  
section).  
No is e a n d Vo lt a g e Rip p le  
EMI and output voltage ripple can be minimized by fol-  
lowing a few simple design rules.  
6) Where necessary, add LC pi filters, linear post-reg-  
ula tors s uc h a s the MAX8863 a nd MAX8864  
(SOT23 package), or shielding. The LC pi filters  
cutoff frequency should be at least a decade or two  
below the DC-DC converters switching frequency  
for the specified load and input voltage.  
1) Place the DC-DC converter and digital circuitry on  
an opposite corner of the PC board, away from sen-  
sitive RF and analog input stages.  
_______________________________________________________________________________________  
9
Hig h -Effic ie n c y, S t e p -Up  
DC-DC Co n ve rt e rs fo r 1 V In p u t s  
__________________ Ch ip In fo rm a t io n  
Table 1. Component Suppliers  
SUPPLIER  
PHONE  
FAX  
TRANSISTOR COUNT: 594  
(803) 946-0690  
(800) 282-4975  
(803) 626-3123  
AVX  
USA  
SUBSTRATE CONNECTED TO GND  
Coilcraft  
Coiltronics  
Dale  
USA  
USA  
USA  
(847) 639-6400  
(561) 241-7876  
(605) 668-4131  
(847) 639-1469  
(561) 241-9339  
(605) 665-1627  
USA  
Japan  
(847) 843-7500  
81-7-5231-8461  
(847) 843-2798  
81-7-5256-4158  
Nichicon  
USA  
Japan  
(619) 661-6835  
81-7-2070-6306  
(619) 661-1055  
81-7-2070-1174  
Sanyo  
Sprague  
Sumida  
TDK  
USA  
(603) 224-1961  
(603) 224-1430  
USA  
Japan  
(847) 956-0666  
81-3-3607-5111  
(847) 956-0702  
81-3-3607-5144  
USA  
(847) 390-4373  
(847) 390-4428  
2/MAX1643  
Table 2. Surface-Mount Inductor Information  
INDUCTOR SPECIFICATION  
INDUCTANCE  
VENDOR/PART  
(µH)  
RESISTANCE  
I
SAT  
()  
(mA)  
400  
610  
310  
520  
250  
270  
400  
210  
220  
350  
Coilcraft DO1608-683  
0.75  
0.46  
1.1  
68  
Sumida CD54-680  
Coilcraft DO1608-104  
100  
Sumida CD54-101  
0.7  
TDK NLC565050T-101K  
Coilcraft DO1608-154  
Sumida CD54-151  
1.6  
1.7  
150  
220  
1.1  
TDK NLC565050T-151K  
Coilcraft DO1608-224  
Sumida CD54-221  
2.2  
2.3  
1.57  
10 ______________________________________________________________________________________  
Hig h -Effic ie n c y, S t e p -Up  
DC-DC Co n ve rt e rs fo r 1 V In p u t s  
2/MAX1643  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 11  
Hig h -Effic ie n c y, S t e p -Up  
DC-DC Co n ve rt e rs fo r 1 V In p u t s  
NOTES  
2/MAX1643  
12 ______________________________________________________________________________________  

相关型号:

MAX1642D

High-Efficiency, Step-Up DC-DC Converters for 1V Inputs
MAXIM

MAX1642D-T

High-Efficiency, Step-Up DC-DC Converters for 1V Inputs
MAXIM

MAX1642EUA

High-Efficiency, Step-Up DC-DC Converters for 1V Inputs
MAXIM

MAX1642EUA+

Switching Regulator, Voltage-mode, 1A, PDSO8, 1.10 MM HEIGHT, ULTRA SMALL, UMAX-8
MAXIM

MAX1642EUA+T

Switching Regulator, Voltage-mode, 1A, PDSO8, 1.10 MM HEIGHT, ULTRA SMALL, UMAX-8
MAXIM

MAX1642EUA-T

High-Efficiency, Step-Up DC-DC Converters for 1V Inputs
MAXIM

MAX1642EVKIT

330MHz.Gain of +1/Gain of +2 Closed-Loop Buffers[MAX4178/MAX4278/MAX4178EPA/MAX4178ESA/MAX4178ESA-T/MAX4178EUA/MAX4178EUA-T/MAX4178EUK-T/MAX4178MJA/MAX4278EPA/MAX4278ESA/MAX4278ESA-T/MAX4278EUA/MAX4278EUA-T/MAX4278EVKIT-SO/MAX4278MJA ]
MAXIM

MAX1643

High-Efficiency Step-Up DC-DC Converters for 1V Inputs
MAXIM

MAX1643C

High-Efficiency, Step-Up DC-DC Converters for 1V Inputs
MAXIM

MAX1643C-T

High-Efficiency, Step-Up DC-DC Converters for 1V Inputs
MAXIM

MAX1643C/D

High-Efficiency, Step-Up DC-DC Converters for 1V Inputs
MAXIM

MAX1643C/D-T

Switching Regulator, 1A
MAXIM