MAX16922AUP_/V+ [MAXIM]

2.2MHz, Dual, Step-Down DC-DC Converters, Dual LDOs, and RESET; 2.2MHz,双,降压型DC- DC转换器,双路LDO ,和RESET
MAX16922AUP_/V+
型号: MAX16922AUP_/V+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.2MHz, Dual, Step-Down DC-DC Converters, Dual LDOs, and RESET
2.2MHz,双,降压型DC- DC转换器,双路LDO ,和RESET

转换器
文件: 总17页 (文件大小:989K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5039; Rev 1; 5/10  
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
MAX1692  
General Description  
Features  
o 1.2A High-Efficiency 2.2MHz DC-DC Converter  
The MAX16922 power-management integrated circuit  
(PMIC) is designed for medium power-level automotive  
applications and integrates multiple supplies in a small  
footprint. The device includes one high-voltage step-  
down converter (OUT1) and three low-voltage cascad-  
ed DC-DC converters (OUT2, OUT3, OUT4). OUT1 and  
OUT2 are step-down DC-DC converters, and OUT3/  
OUT4 are linear regulators. The device also includes a  
reset output (RESET) and a high-voltage-compatible  
enable input (EN).  
3.7V to 28V Operating Supply Voltage  
45V Load-Dump Protection  
Output Voltage: 3.0V to 5.5V  
o 600mA High-Efficiency 2.2MHz DC-DC Converter  
2.7V to 5.5V Supply Voltage  
Output Voltage: 1.0V to 3.9V  
180° Out-of-Phase Operation  
Forced-PWM and Auto-PWM Modes  
o LDO Linear Regulators  
OUT3: 1.0V to 4.15V at 300mA  
OUT4: 1.0V to 4.15V at 300mA  
Separate Inputs for Increased Efficiency  
The 1.2A output high-efficiency, step-down DC-DC con-  
verter (OUT1) operates from a voltage up to 28V contin-  
uous and is protected from load-dump transients up to  
45V. The 600mA output high-efficiency step-down DC-  
DC converter (OUT2) runs from a voltage up to 5.5V.  
The two 300mA LDO linear regulators offer low dropout  
of only 130mV (typ). The power-good RESET output  
provides voltage monitoring for OUT1 and OUT2.  
o Enable Input  
o RESET Output Monitoring on OUT1 and OUT2  
o Overtemperature and Short-Circuit Protection  
o Available in  
5mm x 5mm x 0.8mm, 20-Pin TQFN-EP  
4.5mm x 6.5mm, 20-Pin TSSOP-EP  
OUT1 and OUT2 use fast 2.2MHz PWM switching and  
small external components. The high-voltage converter  
(OUT1) enters skip mode automatically under light  
loads to prevent an overvoltage condition from occur-  
ring at the output. The low-voltage synchronous DC-DC  
converter (OUT2) can operate in forced-PWM mode to  
prevent any AM band interference or high-efficiency  
auto-PWM mode.  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX16922ATP_ /V+*  
MAX16922AUP_ /V+*  
-40°C to +125°C 20 TQFN-EP**  
-40°C to +125°C 20 TSSOP-EP**  
*Insert the desired suffix letters (from the Selector Guide) into  
the blank “_” to complete the part number.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
/V denotes an automotive qualified part.  
**EP = Exposed pad.  
The MAX16922 includes overtemperature shutdown  
and overcurrent limiting. All devices are designed to  
operate from -40°C to +125°C ambient temperature.  
Typical Operating Circuit  
V
PV1  
PV1  
EN  
OUTS2  
2.2µH  
4.7µF  
LX2  
V
OUT2  
10µF  
PWM  
PV3  
V
OUT1  
PGND2  
PV2  
BST  
4.7µF  
4.7µF  
MAX16922  
0.1µF  
V
V
OUT3  
GND1  
GND3  
OUT3  
4.7µF  
4.7µH  
LX1  
V
OUT1  
V
OUT2  
OUTS1  
PV4  
10µF  
4.7µF  
V
OUT1  
LSUP  
OUT4  
GND  
OUT4  
1µF  
20kΩ  
4.7µF  
GND2  
RESET  
EP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
ABSOLUTE MAXIMUM RATINGS  
PV1, EN to GND .....................................................-0.3V to +45V  
Junction-to-Case Thermal Resistance (θJC) (Note 1)  
LX1 to GND.................................................-0.5V to (PV1 + 0.3V)  
LX2 to GND.................................................-0.5V to (PV2 + 0.3V)  
BST to LX1.............................................................-0.3V to +6.0V  
PV2, PV3, PV4, OUTS1, PWM, RESET to GND_....-0.3V to +6.0V  
OUTS2 .......................................................-0.3V to (PV2 + 0.3V)  
OUT3 .........................................................-0.3V to (PV3 + 0.3V)  
OUT4 .........................................................-0.3V to (PV4 + 0.3V)  
LX1 RMS Current .................................................................2.0A  
LX2 RMS Current .................................................................1.2A  
PGND2 to GND_....................................................-0.3V to +0.3V  
LSUP to GND............................................................-0.3V to +6V  
OUTS_, OUT_ Output Short-Circuit Duration .............Continuous  
20-Pin TQFN-EP .......................................................... 2.7°C/W  
20-Pin TSSOP-EP ........................................................... 2°C/W  
Junction-to-Ambient Thermal Resistance (θJA) (Note 1)  
20-Pin TQFN-EP ........................................................... 32°C/W  
20-Pin TSSOP-EP ..................................................... 37.7°C/W  
ESD (all pins)................................................................... 2kV  
HB  
ESD  
ESD  
ESD  
(all pins)................................................................ 200V  
(corner pins) ....................................................... 750V  
(other pins).......................................................... 500V  
MM  
CDM  
CDM  
MAX1692  
Operating Temperature Range .........................-40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow)  
TSSOP...........................................................................+240°C  
TQFN.............................................................................+260°C  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin TQFN-EP (derate 31.3 mW/°C above +70°C)....... 2500mW  
20-Pin TSSOP-EP (derate 26.5 mW/°C above +70°C)..... 2122mW  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 13.5V, V  
= V  
= V  
, V  
= V  
; T = T = -40°C to +125°C, unless otherwise noted. Typical values are at  
PV1  
PV2  
PV3  
OUT1  
PV4  
OUT2 A J  
T
A
= +25°C under normal conditions, unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUT1—SYNCHRONOUS STEP-DOWN DC-DC CONVERTER  
(Note 3)  
3.7  
28  
45  
Supply-Voltage Range  
V
V
V
PV1  
Operation < 500ms  
V
V
PV1 rising  
3.7  
3.3  
4.0  
UVLO,R  
PV1 Undervoltage Lockout  
PV1 falling  
2.85  
4.75  
UVLO,F  
BST Refresh Load Enable  
BST Refresh Load Hysteresis  
LSUP Regulator Voltage  
Supply Current  
V
PV1 falling (option enabled)  
6.45  
0.65  
5.0  
V
V
BRLE  
LSUP  
V
6V V  
28V  
5.45  
V
PV1  
I
EN = low  
14  
µA  
MHz  
PV1  
PWM Switching Frequency  
f
Internally generated  
2.0  
-3  
2.2  
2.4  
+3  
SW  
Duty cycle = 20% to 90%;  
I
= 300mA to 1.2A  
Voltage Accuracy  
V
LOAD  
%
OUT1  
SKIP mode (Note 4)  
= 4V, V = 9V, I = 0.2A  
LX1  
-2  
+4  
700  
2.1  
DMOS On-Resistance  
Current-Limit Threshold  
Soft-Start Ramp Time  
Maximum Output Current  
V
300  
1.75  
2.2  
mΩ  
A
PV1  
BST  
1.4  
1.2  
ms  
A
I
(V  
OUT1  
+ 1.0V) V  
28V  
OUT1  
PV1  
V
= 12V, LX1 = GND or V  
= -40°C to +85°C  
;
PV1  
PV1  
LX1 Leakage Current  
1
µA  
T
A
Maximum Duty Cycle  
Minimum Duty Cycle  
DC  
94  
20  
%
%
MAX  
DC  
f
= 2.2MHz  
MIN  
SW  
2
_______________________________________________________________________________________  
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
MAX1692  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 13.5V, V  
= V  
= V  
, V  
= V  
; T = T = -40°C to +125°C, unless otherwise noted. Typical values are at  
PV1  
PV2  
PV3  
OUT1  
PV4  
OUT2 A J  
T
A
= +25°C under normal conditions, unless otherwise noted.) (Note 2)  
PARAMETER  
OUTS1 Discharge Resistance  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EN = low (or optionally EN = high and  
70  
V
< 5.7V)  
PV1  
OUT2—SYNCHRONOUS STEP-DOWN DC-DC CONVERTER  
Supply-Voltage Range  
V
Fully operational  
2.7  
2.0  
5.5  
2.4  
V
PV2  
SW  
PWM Switching Frequency  
f
Internally generated  
2.2  
MHz  
Duty cycle = 20% to 90%;  
-3  
-2  
+3  
%
I
= 1mA to 600mA, PWM = high  
LOAD  
Voltage Accuracy  
V
OUT2  
SKIP mode (Note 4)  
+4  
250  
350  
1.05  
%
mΩ  
mΩ  
A
pMOS On-Resistance  
V
V
= 5.0V, I  
= 0.2A  
= 0.2A  
150  
200  
0.9  
50  
PV2  
PV2  
LX2  
LX2  
nMOS On-Resistance  
= 5.0V, I  
pMOS Current-Limit Threshold  
nMOS Zero-Crossing Threshold  
Soft-Start Ramp Time  
0.75  
600  
mA  
ms  
1.5  
Maximum Output Current  
I
V
V
+ 0.5V V 5.5V  
PV2  
mA  
OUT2  
OUT2  
= 6V, LX2 = PGND2 or V  
;
PV2  
PV2  
LX2 Leakage Current  
Duty-Cycle Range  
1
µA  
T
= -40°C to +85°C  
A
Forced-PWM mode only, minimum duty  
cycle in skip mode is 0% (Note 4)  
15  
100  
%
OUTS2 Discharge Resistance  
OUT3—LDO REGULATOR  
Input Voltage  
EN = 0V  
70  
V
1.7  
-2  
5.5  
+2  
V
PV3  
Voltage Accuracy  
Load Regulation  
Dropout Voltage  
V
V
+ 0.4V V  
5.5V, I = 1mA  
LOAD  
%
OUT3  
OUT3  
PV3  
I
= 0 to 300mA  
= 250mA (Note 4)  
-0.2  
130  
%
LOAD  
V
= 1.8V, I  
320  
mV  
PV3  
LOAD  
Current Limit  
450  
57  
1
mA  
dB  
kΩ  
Power-Supply Rejection Ratio  
Shutdown Output Resistance  
OUT4—LDO REGULATOR  
Input Voltage  
I
= 30mA, f = 1kHz  
OUT3  
EN = low  
V
1.7  
-2  
5.5  
+2  
V
PV4  
Voltage Accuracy  
V
(V  
+ 0.4V) V  
5.5V, I = 1mA  
LOAD  
%
%
OUT4  
OUT4  
PV4  
Load Regulation  
I
= 0 to 300mA  
-0.2  
LOAD  
Dropout Voltage  
V
= 1.8V, I  
= 250mA (Note 4)  
130  
450  
57  
320  
mV  
mA  
dB  
kΩ  
PV4  
LOAD  
Current Limit  
Power-Supply Rejection Ratio  
Shutdown Output Resistance  
THERMAL OVERLOAD  
Thermal-Shutdown Temperature  
Thermal-Shutdown Hysteresis  
I
= 30mA, f = 1kHz  
OUT4  
EN = low  
1
(Note 4)  
150  
175  
15  
°C  
°C  
_______________________________________________________________________________________  
3
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 13.5V, V  
= V  
= V  
, V  
= V  
; T = T = -40°C to +125°C, unless otherwise noted. Typical values are at  
PV1  
PV2  
PV3  
OUT1  
PV4  
OUT2 A J  
T
A
= +25°C under normal conditions, unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RESET  
OUT1 OV Threshold  
OUT1 Reset Threshold  
OUT2 Reset Threshold  
110  
%
%
%
Reset option 1 (see the Selector Guide)  
Reset option 2 (see the Selector Guide)  
Percentage of nominal output  
85  
75  
85  
90  
80  
90  
95  
85  
95  
MAX1692  
Reset timeout option 1 (see the Selector  
Guide)  
14.9  
Reset Timeout Period  
ms  
Reset timeout option 2 (see the Selector  
Guide)  
1.9  
1
Output-High Leakage Current  
Output Low Level  
µA  
V
Sinking -3mA  
EN rising  
0.4  
2.2  
UV Propagation Time  
EN LOGIC INPUT  
EN Threshold Voltage  
EN Threshold Hysteresis  
Input Current  
28  
µs  
1.4  
1.8  
1.8  
0.4  
0.5  
V
V
V
= 5V  
µA  
EN  
PWM LOGIC INPUT  
Input High Level  
PWM rising  
PWM falling  
V
V
Input Low Level  
0.4  
Logic-Input Current  
0 V  
5.5V  
1
µA  
PWM  
Note 2: All units are 100% production tested at T = +25°C. All temperature limits are guaranteed by design.  
A
Note 3: Once PVI exceeds undervoltage-lockout rising threshold 4.0V and the device is in regulation.  
Note 4: Guaranteed by design. Not product tested.  
4
_______________________________________________________________________________________  
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
MAX1692  
Typical Operating Characteristics  
(V  
= 13.5V, V  
= V  
= V  
, V  
= V  
; T = +25°C, unless otherwise specified.)  
A
PV1  
PV2  
PV3  
OUT1 PV4  
OUT2  
OUT1 EFFICIENCY vs. LOAD CURRENT  
OUT2 EFFICIENCY vs. LOAD CURRENT  
OUT1 EFFICIENCY vs. LOAD CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
100  
PV1 = 13.5V  
T
= -40°C  
A
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
PV1 = 8V  
T = +25°C  
A
PV1 = 13.5V  
T
A
= +125°C  
T
A
= +25°C  
T
A
= +125°C  
PV1 = 18V  
PV2 = 5V  
OUT2 = 2.7V  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2  
LOAD CURRENT (A)  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
NORMALIZED OUT1 VOLTAGE  
vs. LOAD CURRENT  
OUT1 VOLTAGE vs. V  
SUPPLY CURRENT vs. TEMPERATURE  
PV1  
2.0  
1.5  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
I
= 1A  
OUT1  
NO LOAD  
PWM = GND  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2  
(A)  
6
9
12  
15  
18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
I
VPV1 (V)  
PV1  
POWER-UP/DOWN AT  
THERMAL SHUTDOWN  
POWER-UP ENABLE TURNING ON  
MAX16922 toc07  
MAX16922 toc08  
EN  
RESET  
5V/div  
OUT1  
10V/div  
OUT1  
5V/div  
5V/div  
OUT2  
2V/div  
OUT2  
2V/div  
OUT3  
2V/div  
OUT3  
2V/div  
OUT4  
1V/div  
OUT4  
1V/div  
1ms/div  
2ms/div  
_______________________________________________________________________________________  
5
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
Typical Operating Characteristics (continued)  
(V  
= 13.5V, V  
= V  
= V  
, V  
= V  
; T = +25°C, unless otherwise specified.)  
OUT2 A  
PV1  
PV2  
PV3  
OUT1 PV4  
DROPOUT VOLTAGE  
vs. LOAD CURRENT  
OUT1 DROPOUT VOLTAGE  
vs. TEMPERATURE  
SWITCHING FREQUENCY  
vs. LOAD CURRENT  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
I
= 1.2A  
OUT1  
2.0  
OUT1  
1.6  
1.2  
0.8  
0.4  
0
MAX1692  
OUT2  
OUT3  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2  
LOAD CURRENT (A)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
200  
400  
600  
800 1000 1200  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
OUT2 DROPOUT VOLTAGE  
vs. TEMPERATURE  
OUT1 LOAD TRANSITION  
MAX16922 toc13  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
= 600mA  
OUT2  
I
OUT1  
500mA/div  
V
OUT1  
AC-COUPLED  
50mV/div  
20ms/div  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
OUT1 LINE TRANSIENT  
OUT2 LOAD TRANSIENT  
MAX16922 toc15  
MAX16922 toc14  
I
OUT2  
200mA/div  
PV1  
5V/div  
OUT1  
AC-COUPLED  
20mV/div  
V
OUT2  
AC-COUPLED  
20mV/div  
4ms/div  
20ms/div  
6
_______________________________________________________________________________________  
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
MAX1692  
Typical Operating Characteristics (continued)  
(V  
= 13.5V, V  
= V  
= V  
, V  
= V  
; T = +25°C, unless otherwise specified.)  
OUT2 A  
PV1  
PV2  
PV3  
OUT1 PV4  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
2.30  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
PWM = OUT1  
LOAD CURRENT = 100mA  
2.28  
2.26  
2.24  
2.22  
2.20  
2.18  
2.16  
2.14  
2.12  
2.10  
100mV RIPPLE  
P-P  
OUT4  
OUT3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
OUT4 OUTPUT-NOISE DENSITY  
vs. FREQUENCY  
OUT3 OUTPUT-NOISE DENSITY  
vs. FREQUENCY  
2000  
1800  
1600  
1400  
1200  
1000  
800  
4000  
3600  
3200  
2800  
2400  
2000  
1600  
1200  
800  
R = 100Ω  
R = 100Ω  
L
L
600  
400  
200  
400  
0
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
7
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
Functional Diagram  
V
OUT1  
LSUP  
LINEAR  
REGULATOR  
20k  
1µF  
BST  
PV1  
RESET  
MAX1692  
POR  
GENERATION  
V
PV1  
4.7µF  
GND1  
PV3  
STEP-DOWN  
PWM  
OUT1  
4.7µH  
LDO REG 1: 300mA  
LX1  
V
OUT1  
V
OUT1  
3.0V TO 5.5V  
1.2A  
10µF  
4.7µF  
PWM  
EN  
EN  
OUTS1  
OUT3  
GND2  
1.0V TO 4.15V  
4.7µF  
MAX16922  
PWM  
PV4  
MODE  
SELECT  
PV2  
LX2  
4.7µF  
LDO REG 2: 300mA  
V
V
OUT2  
STEP-DOWN  
PWM  
OUT2  
2.2µH  
4.7µF  
4.7µF  
V
OUT2  
10µF  
1.0V TO 3.9V  
600mA  
EN  
OUT4  
EN  
PGND2  
OUTS2  
OUT4  
1.0V TO 4.15V  
PWM  
EN  
100kΩ  
EP  
8
_______________________________________________________________________________________  
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
MAX1692  
Pin Configurations  
TOP VIEW  
TOP VIEW  
+
GND1  
EN  
1
2
20 RESET  
19 LSUP  
18 PV4  
BST  
3
16  
17  
18  
19  
20  
10  
9
LX2  
PV4  
LSUP  
RESET  
GND1  
EN  
PV1  
4
17 OUT4  
16 GND2  
15 OUT3  
14 PV3  
PGND2  
OUTS2  
GND  
LX1  
5
MAX16922  
8
MAX16922  
GND3  
OUTS1  
PWM  
GND  
6
7
7
EP  
6
PWM  
+
8
13 PV2  
EP  
9
12 LX2  
OUTS2  
10  
11 PGND2  
THIN QFN  
TSSOP  
Pin Description  
PIN  
NAME  
FUNCTION  
TQFN  
TSSOP  
1
2
3
4
BST  
PV1  
Bootstrap Capacitor Input. Connect a 0.1µF ceramic capacitor from BST to LX1.  
OUT1 Supply Input. Connect a 4.7µF or larger ceramic capacitor from PV1 to PGND.  
Inductor Connection for OUT1. Connect a 4.7µH inductor between LX1 and OUTS1, and a  
Schottky diode between LX1 (cathode) and the power-ground plane (anode) as shown in the  
Functional Diagram.  
3
4
5
6
LX1  
GND3  
Ground. Connect GND, GND1, GND2, and GND3 together.  
OUT1 Voltage-Sensing Input. Connect OUTS1 directly to the OUT1 output voltage and  
bypass to power-ground plane with a minimum total capacitance of 15µF. The total  
capacitance can include input bypass capacitors cascaded from OUT1, discharged by a  
70resistance between OUTS1 and GND3 when disabled.  
5
7
OUTS1  
PWM Control Input. Connect PWM to OUTS1 to force LX2 to switch every cycle. Connect  
PWM to high for forced-PWM operation on OUT2. Connect low for auto-PWM operation to  
improve efficiency at light loads.  
6
7
8
9
PWM  
GND  
Ground. Connect GND, GND1, GND2, and GND3 together.  
_______________________________________________________________________________________  
9
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
TQFN  
TSSOP  
OUT2 Voltage Sense Input. Connect OUTS2 directly to the OUT2 output voltage and  
bypass to PGND2 with a minimum total capacitance of 10µF. The total capacitance can  
include input bypass capacitors cascaded from OUT2, discharged by a 70resistance  
between OUTS2 and PGND2 when disabled.  
8
10  
OUTS2  
9
11  
12  
13  
14  
PGND2  
LX2  
Power Ground for BUCK 2. Connect PGND2 and GND_ together near the device.  
MAX1692  
Inductor Connection for OUT2. Connect a 2.2µH inductor between LX2 and OUT2 as shown  
in the Functional Diagram.  
10  
11  
12  
PV2  
OUT2 Supply Input. Connect a 4.7µF or larger ceramic capacitor from PV2 to ground.  
Linear-Regulator Power Input for OUT3. Bypass PV3 to GND with a minimum 2.2µF ceramic  
capacitor.  
PV3  
Linear-Regulator 1 Output. Bypass OUT3 to GND with a minimum 2.2µF ceramic capacitor  
internally discharged by a 1kresistance when disabled.  
13  
14  
15  
15  
16  
17  
OUT3  
GND2  
OUT4  
Ground. Connect GND, GND1, GND2, and GND3 together.  
Linear-Regulator 2 Output. Bypass OUT4 to GND with a minimum 2.2µF ceramic capacitor.  
Internally discharged by a 1kresistance when disabled.  
Linear-Regulator Power Input for OUT4. Bypass PV4 to GND with a minimum 2.2µF ceramic  
capacitor.  
16  
17  
18  
19  
PV4  
5V Logic Supply to Provide Power to Internal Circuitry. Bypass LSUP to GND1 with a 1µF  
ceramic capacitor.  
LSUP  
Open-Drain Reset Output for the Input Monitoring OUT1 and OUT2. External pullup  
required.  
18  
19  
20  
20  
1
RESET  
GND1  
EN  
Ground. Connect GND, GND1, GND2, and GND3 together.  
Active-High Enable Input. Connect EN to PV1 or a logic-high voltage to turn on all  
regulators. Pull EN input low to place the regulators in shutdown.  
2
Exposed Pad. Connect the exposed pad to ground. Connecting the exposed pad to ground  
does not remove the requirement for proper ground connections to PGND2 and GND_. The  
exposed pad is attached with epoxy to the substrate of the die, making it an excellent path  
to remove heat from the device.  
EP  
10 ______________________________________________________________________________________  
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
MAX1692  
Dropout  
Detailed Description  
The high-voltage, step-down converter (OUT1) of the  
MAX16922 is designed to operate near 100% duty-  
cycle. When the input voltage is close to the output  
voltage, the device tries to maintain the high-side  
switch on with 100% duty cycle. However, to maintain  
proper gate charge, the high-side switch must be  
turned off periodically so the LX pin can go to ground  
and charge the BST capacitor. As the input voltage  
approaches the output voltage, the effective duty cycle  
of the n-channel MOSFET approaches 94%. Every 4th  
cycle is limited to a maximum duty cycle of 75%  
(recharge period is approximately 112ns) while the  
remaining cycles can go to 100% duty cycle. As a  
result, when the MAX16922 is in dropout, the switching  
frequency is reduced by a factor of 4.  
The MAX16922 PMIC is designed for medium power  
level automotive applications requiring multiple sup-  
plies in a small footprint. As shown in the Typical  
Applications Circuit, the MAX16922 integrates one  
high-voltage power supply and three low-voltage cas-  
caded power supplies. OUT1 and OUT2 are step-down  
DC-DC converters, and OUT3 and OUT4 are linear reg-  
ulators. The device also includes a reset output  
(RESET) and a high-voltage compatible enable input  
(EN). The operating input voltage range is from 3.5V to  
28V and tolerant of transient voltages up to 45V.  
OUT1 Step-Down DC-DC Regulator  
Step-Down Regulator Architecture  
OUT1 is a high-input voltage, high-efficiency 2.2MHz  
PWM current-mode step-down DC-DC converter that  
delivers up to 1.2A. OUT1 has an internal high-side n-  
channel switch and uses a low forward-drop free-  
wheeling diode for rectification. Under normal  
operating conditions, OUT1 is fixed frequency to pre-  
vent unwanted AM radio interference. However, under  
light loads and high-input voltage, the step-down regu-  
lator skips cycles to maintain regulation. The output  
voltage is factory selectable from 3.0V to 5.5V in 50mV  
increments.  
During dropout conditions under light load, the load  
current may not be sufficient to enable the LX pin to  
reach ground during the recharge period. To ensure  
the LX pin is pulled to ground and proper BST capaci-  
tor recharge occurs, an internal load is applied to  
OUTS1 when PV1 falls below approximately 6.5V. This  
load is approximately 70and is connected between  
OUTS1 and GND3 through an internal switch.  
OUT2 Step-Down DC-DC Regulator  
Step-Down Regulator Architecture  
OUT2 is a low-input voltage, high-efficiency 2.2MHz  
PWM current-mode step-down DC-DC converter that  
outputs up to 600mA. OUT2 has an internal high-side  
p-channel switch, and low-side n-channel switch for  
synchronous rectification. The DC-DC regulator sup-  
ports auto-PWM operation so that under light loads the  
device automatically enters high-efficiency skip mode.  
The auto-PWM mode can be disabled by connecting  
the PWM input to OUTS1. The output voltage is factory  
selectable from 1.0V to 3.9V in 50mV increments.  
Soft-Start  
When initially powered up or enabled with EN, the  
OUT1 step-down regulator soft-starts by gradually  
ramping up the output voltage for approximately 2.2ms.  
This reduces inrush current during startup. During soft-  
start the full output current is available. Before a soft-  
start sequence begins, the outputs of both DC-DC  
regulators discharge below 1.25V through an internal  
resistor. See the startup waveforms in the Typical  
Operating Characteristics section.  
Current Limit  
The MAX16922 limits the peak inductor current  
sourced by the n-channel MOSFET. When the peak  
current limit is reached, the internal n-channel MOSFET  
turns off for the remainder of the cycle. If the current  
limit is exceeded for 16 consecutive cycles and the  
output voltage is less than 1.25V, the n-channel MOS-  
FET is turned off for 256 clock cycles to allow the  
inductor current to discharge and then initiate a soft-  
start sequence for all four outputs.  
Soft-Start  
OUT2 enters soft-start when OUT1 finishes its soft-start  
sequence to prevent high startup current from exceed-  
ing the maximum capability of OUT1. The step-down  
regulator executes a soft-start by gradually ramping up  
the output voltage for approximately 1.5ms. This  
reduces inrush current during startup. During soft-start,  
the full output current is available. The soft-start  
sequence on OUT2 begins after the soft-start sequence  
is completed on OUT1. See the startup waveforms in  
the Typical Operating Characteristics section.  
______________________________________________________________________________________ 11  
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
Current Limit  
The MAX16922 limits the peak inductor current sourced  
by the p-channel MOSFET. When the peak current limit  
is reached, the internal p-channel MOSFET turns off for  
the remainder of the cycle. If the current limit is exceed-  
ed for 16 consecutive cycles, and the output voltage is  
less than 1.25V, the p-channel MOSFET is turned off  
and enters output discharge mode for 256 clock  
cycles, allowing the inductor current and output voltage  
to discharge. Once completed, a soft-start sequence is  
initiated on OUT2.  
Input Supply and Undervoltage Lockout  
An undervoltage-lockout circuit turns off the LDO  
regulators when the input supply voltage is too low to  
guarantee proper operation. When PV3 falls below  
1.25V (typ), OUT3 powers down. When PV4 falls below  
1.5V (typ), OUT4 powers down.  
Soft-Start  
OUT3 enters soft-start when PV3 exceeds 1.25V, and  
OUT4 enters soft-start when PV4 exceeds 1.5V. This  
staggers the surge current during startup to prevent  
excess current draw from OUT1 or OUT2 that could  
trigger an overcurrent shutdown. The soft-start time for  
each LDO is 0.1ms (typ). See the startup waveforms in  
the Typical Operating Characteristics section.  
MAX1692  
Dropout  
As the input voltage approaches the output voltage, the  
duty cycle of the p-channel MOSFET reaches 100%. In  
this state, the p-channel MOSFET is turned on constant-  
ly (not switching), and the dropout voltage is the volt-  
age drop due to the output current across the  
Current Limit  
The OUT3 and OUT4 output current is limited to 450mA  
(typ). If the output current exceeds the current limit, the  
corresponding LDO output voltage drops out of regula-  
tion. Excess power dissipation in the device can cause  
the device to turn off due to thermal shutdown.  
on-resistance of the internal p-channel MOSFET (R  
)
PCH  
and the inductor’s DC resistance (R ):  
L
V
DO  
= I  
(R  
+ R )  
LOAD PCH L  
Dropout  
The dropout voltage for the linear regulators is 320mV  
(max) at 250mA load. To avoid dropout, make sure the  
input supply voltage corresponding to OUT3 and OUT4  
is greater than the corresponding output voltage plus  
the dropout voltage based on the application output  
current requirements.  
PWM  
The MAX16922 operates in either auto-PWM or forced-  
PWM modes. At light load, auto-PWM switches only as  
needed to supply the load to improve light-load efficiency  
of the step-down converter. At higher load currents  
(~160mA), the step-down converter transitions to fixed  
2.2MHz switching frequency. Forced PWM always oper-  
ates with a constant 2.2MHz switching frequency regard-  
less of the load. Connect PWM high for forced-PWM  
applications or low for auto-PWM applications.  
LSUP Linear Regulator  
LSUP is the output of a 5V linear regulator that powers  
MAX16922 internal circuitry. LSUP is internally powered  
from PV1 and automatically powers up when EN is high  
and PV1 exceeds approximately 3.7V. LSUP automati-  
cally powers down when EN is taken low. Bypass LSUP  
to GND with a 1µF ceramic capacitor. LSUP remains on  
even during a thermal fault.  
LDO Linear Regulators  
The MAX16922 contains two low-dropout linear regula-  
tors (LDOs), OUT3 and OUT4. The LDO output voltages  
are factory preset, and each LDO supplies loads up to  
300mA. The LDOs include an internal reference, error  
amplifier, p-channel pass transistor, and internal volt-  
age-dividers. Each error amplifier compares the refer-  
ence voltage to the output voltage (divided by the  
internal voltage-divider) and amplifies the difference. If  
the divided feedback voltage is lower than the refer-  
ence voltage, the pass-transistor gate is pulled lower,  
allowing more current to pass to the outputs and  
increasing the output voltage. If the divided feedback  
voltage is too high, the pass-transistor gate is pulled up,  
allowing less current to pass to the output. Each output  
voltage is factory selectable from 1.0V to 4.15V in 50mV  
increments. If not using one of the LDO outputs, then tie  
the associated input power pin (PV_) to ground.  
Thermal-Overload Protection  
Thermal-overload protection limits the total power dissi-  
pation in the MAX16922. Thermal-protection circuits  
monitor the die temperature. If the die temperature  
exceeds +175°C, the device shuts down, allowing it to  
cool. Once the device has cooled by 15°C, the device  
is enabled again. This results in a pulsed output during  
continuous thermal-overload conditions. The thermal-  
overload protection protects the MAX16922 in the event  
of fault conditions. For continuous operation, do not  
exceed the absolute maximum junction temperature of  
+150°C. See the Thermal Considerations section for  
more information.  
12 ______________________________________________________________________________________  
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
MAX1692  
Typical Applications Circuit  
VBAT  
PV1  
EN  
OUTS2  
LX2  
2.2µH  
0.1µF  
220µF  
4.7µF  
V
OUT2  
10µF  
PWM  
PV3  
V
OUT1  
PGND2  
4.7µF  
PV2  
BST  
4.7µF  
0.1µF  
4.7µH  
MAX16922  
OUT3  
GND1  
GND3  
4.7µF  
LX1  
V
OUT1  
V
OUT2  
OUTS1  
PV4  
10µF  
4.7µF  
V
OUT1  
LSUP  
OUT4  
GND  
1µF  
20kΩ  
4.7µF  
GND2  
RESET  
EP  
or when PV1 falls below 3.0V (typ). When a shutdown  
occurs, all outputs discharge through an internal resis-  
tor connected between each output and ground. When  
enable is high, the die temperature is okay, the LSUP  
linear regulator is greater than 2.5V (typ), and OUT1 is  
less than 1.25V (typ); a complete soft-start power-on  
sequence is reinitiated.  
Applications Information  
Power-On Sequence  
When the EN input is pulled high and PV1 is greater  
than 3.7V (typ), the 5V LSUP linear regulator turns on.  
Once LSUP exceeds 2.5V, the internal reference and  
bias are enabled. When the internal bias has stabilized  
OUT1, soft-start is initiated. After completion of soft-start  
on OUT1 (2.8ms typ), OUT2 soft-start is initiated. OUT3  
soft-start is enabled when PV3 is greater than or equal  
to 1.25V (typ), and OUT4 soft-start is enabled when PV4  
is greater than or equal to 1.5V (typ).  
Inductor Selection  
The OUT1 step-down converter operates with a 4.7µH  
inductor and the OUT2 step-down converter operates  
with a 2.2µH inductor. The inductor’s DC current rating  
must be high enough to account for peak ripple current  
and load transients. The step-down converter’s archi-  
tecture has minimal current overshoot during startup  
and load transients. In most cases, an inductor capable  
of 1.3 times the maximum load current is acceptable.  
Care must be taken when driving the EN pin. Digital  
input signals deliver a fast edge that is properly detect-  
ed by the MAX16922. If driving the EN pin with an ana-  
log voltage that has a slew rate of less than 1V/ms or a  
voltage-divider from PV1, then the input voltage on PV1  
must always be less than 6V when the voltage at EN is  
near the turn-off threshold of 1.6V. If this cannot be  
guaranteed, then a 1kresistor or 5.6V zener diode  
must be placed in parallel with the LSUP output capaci-  
tor to prevent possible damage to the device.  
For optimum performance choose an inductor with DC-  
series resistance in the 50mto 150mrange. For  
higher efficiency at heavy loads (above 400mA) and  
minimal load regulation, the inductor resistance should  
be kept as small as possible. For light-load applications  
(up to 200mA), higher resistance is acceptable with  
very little impact on performance.  
Power-Down and Restart Sequence  
The MAX16922 can be shut down by thermal shut-  
down, enable low (EN), LSUP regulator undervoltage,  
______________________________________________________________________________________ 13  
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
(ESR) of the LDO output capacitors affects stability and  
Capacitor Selection  
output noise. Use output capacitors with an ESR of  
0.1or less to ensure stable operation and optimum  
transient response. Connect these capacitors as close  
as possible to the device to minimize PCB trace induc-  
tance.  
Input Capacitors  
The input capacitor, CIN1, reduces the current peaks  
drawn from the supply and reduces switching noise in  
the MAX16922. The impedance of CIN1 at the switch-  
ing frequency should be kept very low. Ceramic capac-  
itors with X5R or X7R dielectrics are recommended due  
to their small size, low ESR, and small temperature  
coefficients. Use a 4.7µF ceramic capacitor or an  
equivalent amount of multiple capacitors in parallel  
between PV1 and ground. Connect CIN1 as close to  
the device as possible to minimize the impact of PCB  
trace inductance.  
Thermal Considerations  
The maximum package power dissipation of the  
MAX16922 in the 20-pin thin QFN package is 2500mW.  
The power dissipated by the MAX16922 should not  
exceed this rating. The total device power dissipation is  
the sum of the power dissipation of the four regulators:  
MAX1692  
P = P + P + P + P  
D4  
D
D1  
D2  
D3  
Connect a minimum 4.7µF ceramic capacitor between  
PV2 to ground, and a 2.2µF ceramic capacitor between  
PV3 to ground and PV4 to ground. Since PV2 is cas-  
caded from OUT1, the input capacitor connected to  
PV2 can be used as part of the total output capacitance  
for OUT1.  
Estimate the OUT1 and OUT2 power dissipations as  
follows:  
1− η  
η
P
= I  
× V  
×
D1 OUT1  
OUT1  
1− η  
η
P
= I  
× V  
×
D2 OUT2  
OUT2  
Step-Down Output Capacitors  
The step-down output capacitors are required to keep  
the output-voltage ripple small and to ensure regulation  
loop stability. These capacitors must have low imped-  
ance at the switching frequency. Surface-mount ceram-  
ic capacitors are recommended due to their small size  
and low ESR. The capacitor should maintain its  
capacitance overtemperature and DC bias. Ceramic  
capacitors with X5R or X7R temperature characteristics  
generally perform well. The output capacitance can be  
very low. Place a minimum of 15µF ceramic capaci-  
tance from OUTS1 to ground and a minimum of 10µF  
from OUTS2 to ground. When the OUT2 output voltage  
selection is below 2.35V, the output capacitance should  
be increased to prevent instability. For optimum load-  
transient performance and very low output ripple, the  
output capacitance can be increased. The maximum  
output capacitance should not exceed 3.8mF for OUT1  
and 2.0mF for OUT2.  
where η is the efficiency (see the Typical Operating  
Characteristics section).  
Calculate the OUT3 and OUT4 power dissipations as  
follows:  
P
D3  
= I  
x (V  
– V  
)
OUT3  
PV3  
OUT3  
P
D4  
= I  
x (V  
– V  
)
OUT4  
PV4  
OUT4  
The maximum junction temperature of the MAX16922 is  
+150°C. The junction-to-case thermal resistance (θ  
of the MAX16922 is 2.7°C/W.  
)
JC  
When mounted on a single-layer PCB, the junction to  
ambient thermal resistance (θ ) is approximately  
JA  
48°C/W. Mounted on a multilayer PCB, θ is approxi-  
JA  
mately32°C/W. Calculate the junction temperature of  
the MAX16922 as follows:  
T = T x P x θ  
JA  
LDO Output Capacitors and Stability  
Connect a 4.7µF ceramic capacitor between OUT3 and  
GND, and a second 4.7µF ceramic capacitor from  
OUT4 to GND. When the input voltage of an LDO is  
greater than 2.35V, the output capacitor can be  
decreased to 2.2µF. The equivalent series resistance  
J
A
D
where T is the maximum ambient temperature. Make  
A
sure the calculated value of T does not exceed the  
J
+150°C maximum.  
14 ______________________________________________________________________________________  
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
MAX1692  
The OUTS_ feedback connections are sensitive to  
inductor magnetic field interference so route these  
traces away from the inductors and noisy traces such  
as LX_.  
PCB Layout  
High-switching frequencies and relatively large peak  
currents make PCB layout a very important aspect of  
design. Good design minimizes excessive EMI on the  
feedback paths and voltage gradients in the ground  
plane, both of which can result in instability or regula-  
tion errors. Connect the input capacitors as close as  
possible to the PV_ and ground. Connect the inductor  
and output capacitors as close as possible to the  
device and keep the traces short, direct, and wide to  
minimize the current loop area.  
Connect GND_ and PGND2 to the ground plane.  
Connect the exposed paddle to the ground plane  
with multiple vias to help conduct heat away from  
the device.  
Refer to the MAX16922 evaluation kit for a PCB layout  
example.  
Selector Guide  
MAX16922 ATP  
x
/V  
/V  
+
+
LEAD FREE  
AEC Q100 QUALIFIED  
OUTPUT VOLTAGES RESET THRESHOLD, RESET TIMEOUT  
-40°C TO +125°C OPERATION, TQFN, 20 PINS  
MAX16922 AUP  
x
LEAD FREE  
AEC Q100 QUALIFIED  
OUTPUT VOLTAGES RESET THRESHOLD, RESET TIMEOUT  
-40°C TO +125°C OPERATION, TSSOP, 20 PINS  
BST  
REFRESH  
LOAD  
PART  
NUMBER  
SUFFIX*  
OUT1  
VOLTAGE  
(V)  
OUT2  
VOLTAGE  
(V)  
OUT3  
VOLTAGE  
(V)  
OUT4  
VOLTAGE  
(V)  
OUT1 RESET  
THRESHOLD  
(%)  
RESET  
TIMEOUT  
(ms)  
ENABLE  
A
B
C
D
E
5.00  
5.00  
5.00  
3.6  
2.70  
1.20  
3.30  
1.2  
3.30  
1.80  
1.20  
3.3  
1.0  
3.3  
90  
90  
90  
90  
90  
90  
90  
90  
14.9  
14.9  
14.9  
14.9  
14.9  
14.9  
14.9  
14.9  
On  
On  
On  
Off  
On  
On  
On  
Off  
3.0  
3.3  
5.00  
5.00  
3.30  
3.30  
3.30  
1.20  
Off  
2.50  
3.15  
2.80  
2.50  
1.80  
3.00  
1.80  
1.80  
F
G
H
1.20  
*Other standard versions may be available. Contact factory for availability.  
______________________________________________________________________________________ 15  
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package draw-  
ings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
20 TQFN-EP  
20 TSSOP-EP  
T2055+4  
U20E+1  
21-0140  
21-0108  
MAX1692  
16 ______________________________________________________________________________________  
2.2MHz, Dual, Step-Down DC-DC  
Converters, Dual LDOs, and RESET  
MAX1692  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
1
10/09  
5/10  
Initial release  
Updated Absolute Maximum Ratings, Electrical Characteristics, Typical  
Operating Characteristics, Dropout, and Power-On Sequence sections.  
1, 2, 4, 6, 11, 13  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX16922_10

2.2MHz, Dual, Step-Down DC-DC Converters, Dual LDOs, and RESET
MAXIM

MAX16922_11

2.2MHz, Dual, Step-Down DC-DC Converters, Dual LDOs, and RESET
MAXIM

MAX16922_12

2.2MHz, Dual, Step-Down DC-DC Converters, Dual LDOs, and RESET
MAXIM

MAX16923

Automotive 4-Output Display Power Solution with Watchdog
MAXIM

MAX16923GTPAV

Automotive 4-Output Display Power Solution with Watchdog
MAXIM

MAX16923GTPBV

Automotive 4-Output Display Power Solution with Watchdog
MAXIM

MAX16923GTPCV

Automotive 4-Output Display Power Solution with Watchdog
MAXIM

MAX16923GTPDV

Automotive 4-Output Display Power Solution with Watchdog
MAXIM

MAX16923GTPEV

Automotive 4-Output Display Power Solution with Watchdog
MAXIM

MAX16923GTPFV

Automotive 4-Output Display Power Solution with Watchdog
MAXIM

MAX16923GTPGV

Automotive 4-Output Display Power Solution with Watchdog
MAXIM

MAX16928

Automotive TFT-LCD Power Supply with Boost Converter and Gate Voltage Regulators
MAXIM