MAX17250ATD [MAXIM]

2.7V to 18V Input, Boost Converter with 0.1μA True Shutdown, Short-Circuit Protection and Selectable Input Current Limit;
MAX17250ATD
型号: MAX17250ATD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.7V to 18V Input, Boost Converter with 0.1μA True Shutdown, Short-Circuit Protection and Selectable Input Current Limit

文件: 总13页 (文件大小:1027K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX17250  
2.7V to 18V Input, Boost Converter with 0.1μA  
True Shutdown, Short-Circuit Protection  
and Selectable Input Current Limit  
General Description  
Benefits and Features  
Input Voltage Range 2.7V to 18V  
TheMAX17250DC-DCboostconverterisahigh-efficiency,  
low quiescent current, synchronous boost (step-up)  
converter with True Shutdown™, programmable input  
current limit, and short-circuit protection. The MAX17250  
has a wide input voltage range of 2.7V to 18V and  
generates an output voltage of 3V to 18V. The MAX17250  
has a maximum on-time of 800ns and implements three  
modes of operation. The first mode of operation is a  
soft-start mode at power-up. The second mode of  
operation is normal operation and utilizes a fixed on-time/  
minimum off-time Pulse Frequency Modulation (PFM)  
architecture that uses only 60μA (typ) quiescent  
current due to the converter switching only when needed.  
The last mode is True Shutdown, where the output is  
completely disconnected from the input, and the battery  
drain is minimized to 0.1μA (typ) shutdown current. The  
MAX17250 is available in a compact, 12-bump, 1.72mm  
x 1.49mm WLP or a 14-pin, 3mm x 3mm TDFN package.  
• 1 or 2 Cell Li-ion Batteries  
Output Voltage Range 3V to 18V, > V  
Integrated Power FETs  
IN  
Selectable Input Peak Current Limit (ISET)  
• 3.5A, 2.7A, or 1.85A  
93% Efficiency  
Low Power  
0.1μA True Shutdown Current  
60μA Quiescent Current  
Protection  
• True Shutdown Prevents Current Flowing Between  
Input and Output  
• Soft-Start Inrush Protection  
• Short-Circuit Protection  
• Overtemperature Protection  
• -40°C to +125°C Operation  
Applications  
Digital Cameras  
Battery Powered Internet of Things (IoT) Device  
1 or 2 Cell Li-ion Battery Applications  
Display Supply  
Ordering Information appears at end of data sheet.  
Buzzer/Alarm Driver  
True Shutdown is a trademark of Maxim Integrated Products.  
Typical Application Circuit  
L
3.0V to 8.4V  
2.2µH  
0.1µF  
12V  
OUT  
IN  
LX  
IN  
BST  
OUT  
PVH  
CIN  
2x10µF  
COUT  
10µF  
CPVH  
2x22µF  
Rz  
1kΩ  
4.7nF  
EN  
GND  
EN MAX17250  
R1  
84.5kΩ  
VL  
ISET  
FB  
VL  
2.2µF  
R2  
10kΩ  
AGND  
PGND  
19-100359; Rev 2; 10/19  
MAX17250  
2.7V to 18V Input, Boost Converter with 0.1μA  
True Shutdown, Short-Circuit Protection  
and Selectable Input Current Limit  
Absolute Maximum Ratings  
IN, LX, OUT, PVH to AGND...................................-0.3V to +22V  
BST to LX.................................................................-0.3V to +6V  
EN, ISET, FB, VL to AGND......................................-0.3V to +6V  
PGND to AGND.....................................................-0.3V to +0.3V  
TDFN Continuous Power Dissipation  
(T = +70°C, derate 24.4mW/°C above +70°C.).....1951.2mW  
A
Operating Temperature Range.......................... -40°C to +125°C  
Junction Temperature.......................................................+150°C  
Storage Temperature Range............................. -65°C to +150°C  
Lead Temperature (soldering, 10 seconds)......................+300°C  
Soldering Temperature (reflow)........................................+260°C  
WLP LX RMS Current.............................-3.2A  
TDFN LX RMS Current.......................-2.58A  
Short-Circuit Between OUT and GND........................Continuous  
WLP Continuous Power Dissipation  
to +3.2A  
RMS  
RMS  
to +2.58A  
RMS  
RMS  
(T = +70°C, derate 13.7mW/°C above +70°C.)........1096mW  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
14-TDFN  
Package Code  
T1433+2C  
21-0137  
90-0063  
Outline Number  
Land Pattern Number  
Thermal Resistance, Single-Layer Board:  
Junction to Ambient (θ  
)
54°C/W  
8°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
41°C/W  
8°C/W  
JA  
Junction to Case (θ  
)
JC  
12-WLP  
Package Code  
Outline Number  
N121B1+1  
21-100158  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
Refer to Application Note 1891  
)
72.82°C/W  
N/A  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX17250  
2.7V to 18V Input, Boost Converter with 0.1μA  
True Shutdown, Short-Circuit Protection  
and Selectable Input Current Limit  
Electrical Characteristics  
(V = 7.2V, V  
= V  
= 10V, V = 5V, T = -40°C to +125°C, typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
IN  
PVH  
OUT  
EN  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
18  
UNITS  
Input Voltage Range  
V
2.7  
V
IN  
T
T
= 25°C  
60  
80  
Quiescent Supply  
Current  
Not switching, 105%  
A
A
I
μA  
μA  
Q
of V  
= -40°C to 125°C  
95  
OUT_TARGET,  
V
V
= V  
= 0V,  
EN  
OUT  
Shutdown Current  
I
T
= 25°C  
<0.001  
1
SD  
A
= 7.2V  
PVH  
Output Voltage Range  
FB Accuracy  
V
V
< V  
OUT_TARGET  
3
18  
V
V
OUT  
IN  
ACC  
V
falling, when LX starts switching  
1.235  
1.25  
2.6  
1.265  
FB  
Input Undervoltage  
Threshold  
V
Rising, hysteresis typical 100mV  
2.68  
V
UVLO  
PEAK  
ISET = Open (Note 2)  
ISET = AGND (Note 2)  
ISET = VL (Note 2)  
1.48  
2.16  
2.8  
1.85  
2.7  
2.31  
3.45  
4.55  
Inductor Peak Current  
Limit  
I
A
3.5  
LX Switch Maximum  
On-Time  
t
V
V
= 1.2V, I  
= 0A  
OUT  
640  
160  
800  
960  
260  
ns  
ON  
FB  
FB  
LX Switch Minimum  
Off-Time  
t
= 1.2V  
200  
9
ns  
OFF  
Startup Slew Rate  
t
Using Typical Application Circuit  
V/ms  
ST_SR  
V
= V  
= 18V, V  
= V  
= 0V,  
= 0V,  
LX  
PVH  
EN  
OUT  
9
1000  
T = 25°C  
A
LX Leakage Current  
I
nA  
LX_LEAK  
V
= V  
PVH  
= 125°C  
= 18V, V  
= V  
LX  
EN  
OUT  
570  
3.4  
T
A
Output Short-Circuit  
Current Limit  
I
V
= V = 5V  
PVH  
2.6  
4.25  
A
OUT_SHORT  
IN  
ISET = OPEN  
ISET = AGND  
175  
120  
95  
380  
260  
200  
N-Channel On-  
Resistance  
R
R
mΩ  
mΩ  
mA  
DS(ON)  
DS(ON)  
ISET = V  
L
Load Switch-On  
Resistance  
V
= V  
= 5V  
250  
520  
IN  
PVH  
ISET = OPEN (Note 2)  
ISET = AGND (Note 2)  
90  
130  
170  
1.2  
1.7  
2.3  
Synchronous Rectifier  
Zero Crossing  
I
ZX  
ISET = V (Note 2)  
L
ISET = OPEN (Note 2)  
ISET = AGND (Note 2)  
Synchronous Rectifier  
Valley Current Crossing  
I
A
V
VX  
ISET = V (Note 2)  
L
V
V
V
= 2.7V to 18V  
= 2.7V to 18V  
0.4  
Enable Voltage  
Threshold  
IL  
IN  
IN  
V
1.5V  
IH  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX17250  
2.7V to 18V Input, Boost Converter with 0.1μA  
True Shutdown, Short-Circuit Protection  
and Selectable Input Current Limit  
Electrical Characteristics (continued)  
(V = 7.2V, V  
= V  
= 10V, V = 5V, T = -40°C to +125°C, typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
IN  
PVH  
OUT  
EN  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
≤ 5.5V, T = 25°C, V  
MIN  
TYP  
MAX  
UNITS  
0V ≤ V  
= 0V, V  
=
EN  
A
EN  
IN  
V
V
V
= V  
= V  
= 7.2V, V  
= V = 0V,  
LX  
PVH  
BST  
OUT FB  
-1  
+0.45  
+1  
= 5.5V, V = V = 7.2V, V  
= V  
BST  
=
=
EN  
IN  
LX  
PVH  
= 10V, V = 1.3V  
OUT  
FB  
Enable Input Leakage  
I
µA  
EN_LK  
0V ≤ V  
≤ 5.5V, T = 125°C, V  
= 0V, V  
EN  
A
EN IN  
V
V
V
= V  
= V  
= 7.2V, V  
= V = 0V,  
LX  
PVH  
BST  
OUT FB  
0.65  
= 5.5V, V = V = 7.2V, V  
= V  
=
EN  
IN  
LX  
PVH  
BST  
= 10V, V = 1.3V  
OUT  
FB  
T
T
= 25°C  
-100  
-1  
+10  
60  
+100  
+1  
A
FB Leakage  
I
V
= 1.25V,  
nA  
µA  
FB_LK  
FB  
= 125°C  
A
0V ≤ V  
0V ≤ V  
≤ V , T = 25°C  
+0.0005  
0.001  
ISET  
L
A
ISET Input Leakage  
ISET Maximum Tie-  
I
I
SET_LK  
≤ V , T = 125°C  
ISET  
L
A
High (to V )/Tie-Low  
200  
Ω
L
(to GND) Resistance  
VL Voltage  
VL  
No load  
3.29  
-1  
3.38  
3.47  
+1  
V
<
V
= V  
= 18V, V = 0V, T = 25°C  
EN A  
BST  
PVH  
PVH  
+0.001  
BST Leakage  
OUT Leakage  
µA  
µA  
BST_LK  
V
V
V
V
= V  
= 18V, V  
= 0V, T = 125°C  
0.02  
+0.002  
0.25  
BST  
PVH  
PVH  
PVH  
EN  
OUT  
OUT  
A
= 18V, V  
= 18V, V  
= 18V, V  
= V  
= V  
= 0V, T = 25°C  
-1  
-1  
+1  
+1  
EN  
EN  
EN  
A
I
OUT_LK  
= 0V, T = 125°C  
A
= V = VOUT = 0V,  
LX  
+0.015  
0.5  
T = 25°C  
A
PVH Leakage  
I
µA  
PVH_LK  
V
= 18V, V  
= V = VOUT = 0V,  
PVH  
EN LX  
T = 125°C  
A
Overtemperature  
Lockout Threshold  
T rising, 15°C typical hysteresis  
J
165  
°C  
V
Rising  
Falling  
2.03  
2
2.185  
2.145  
2.34  
2.3  
VL_UVLO Voltage  
VL_UVLO  
Note 1: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control (SQC) methods.  
Note 2: This is a static measurement. The actual dynamic threshold depends upon V , V  
and the inductor due to propagation  
IN OUT  
delays.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17250  
2.7V to 18V Input, Boost Converter with 0.1μA  
True Shutdown, Short-Circuit Protection  
and Selectable Input Current Limit  
Typical Operating Characteristics  
(MAX17250ANC+, V = 7.2V, V  
= 12V, C = 2 x 10µF, C  
= 10µF, C  
= 2 x 22µF, C = 2.2µF, T = 25°C, unless otherwise  
IN  
OUT  
IN  
OUT  
PVH  
VL  
A
noted.)  
TOTAL SYSTEM SHUTDOWN CURRENT  
vs. TEMPERATURE  
VIN CURRENT vs. TEMPERATURE  
VIN CURRENT vs. INPUT VOLTAGE  
toc01  
toc03  
toc02  
340  
700  
600  
500  
400  
300  
200  
EN = 0V  
EN = VIN, VOUT REGULATED TO  
12V, 125µA LOAD  
EN = 1.8V, VOUT REGULATED TO  
12V, 125µA LOAD  
330  
320  
310  
300  
290  
280  
270  
260  
5050  
4050  
3050  
2050  
1050  
50  
2.7 3.7 4.7 5.7 6.7 7.7 8.7 9.7 10.7 11.7  
-50  
-25  
0
25  
50  
75  
100 125  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (ºC)  
TEMPERATURE (ºC)  
V
(V)  
IN  
EFFICIENCY vs. LOAD CURRENT  
(VOUT = 12V)  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
VIN CURRENT vs. INPUT VOLTAGE  
toc06  
toc04  
toc05  
100  
95  
90  
85  
80  
75  
70  
65  
60  
1200  
1000  
800  
600  
400  
200  
0
400  
350  
300  
250  
200  
VIN = 8.4V WLP  
VIN = 7.2V TDFN  
VOUT = 12V , L = 2.2µH  
EN = 1.8V, VOUT REGULATED TO 5V,  
125µA LOAD  
VOUT = 5V , L = 1.0µH  
VIN = 5.4V WLP  
VIN = 7.2V WLP  
VOUT = 18V , L = 3.3µH  
1
10  
100  
1000  
2.7  
3.7  
4.7  
5.7  
6.7  
7.7  
8.7  
2.7  
3.1  
3.5  
3.9  
(V)  
4.3  
4.7  
LOAD CURRENT (mA)  
VIN (V)  
V
IN  
EFFICIENCY vs. LOAD CURRENT  
(VOUT = 5V)  
EFFICIENCY vs. LOAD CURRENT  
(VOUT = 14V)  
SWITCHING FREQUENCY  
vs. LOAD CURRENT  
toc08  
toc07  
toc09  
95  
90  
85  
80  
75  
70  
65  
60  
100  
90  
80  
70  
60  
50  
40  
VIN = 3.3V TDFN  
VIN = 4.2V WLP  
VIN = 8.4V WLP  
VIN = 7.2V TDFN  
1000.00  
100.00  
10.00  
1.00  
VIN = 3.3V, VOUT = 5V  
VIN = 7.2V WLP  
VIN = 3.3V WLP  
VIN = 2.7V WLP  
VIN = 5.4V WLP  
VIN = 7.2V, VOUT = 12V  
0.10  
1
10  
100  
1000  
0.01  
1
10  
100  
1000  
10  
1000  
100000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (µA)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX17250  
2.7V to 18V Input, Boost Converter with 0.1μA  
True Shutdown, Short-Circuit Protection  
and Selectable Input Current Limit  
Typical Operating Characteristics (continued)  
(MAX17250ANC+, V = 7.2V, V  
= 12V, C = 2 x 10µF, C  
= 10µF, C  
= 2 x 22µF, C = 2.2µF, T = 25°C, unless otherwise  
IN  
OUT  
IN  
OUT  
PVH  
VL  
A
noted.)  
STARTUP  
LOAD TRANSIENT  
POWER DOWN  
toc12  
toc11  
toc10  
VOUT  
30mV/div  
(AC-  
1V/div  
4V/div  
COUPLED)  
EN  
EN  
1V/div  
4V/div  
2A/div  
ILX  
VOUT  
VOUT  
500mA/div  
IOUT  
6V/div  
VLX  
ILX  
1A/div  
ILX  
1A/div  
20µSec/div  
1mSec/div  
VIN = 5.4V, VOUT = 12V, IOUT = 0A  
100µSec/div  
VIN = 7.2V, VOUT = 12V, IOUT = 0A  
VIN = 7.2V, VOUT = 12V, IOUT = 0 TO 500mA  
HEAVY LOAD  
SWITCHING WAVEFORM  
MEDIUM LOAD  
SWITCHING WAVEFORM  
NO LOAD  
SWITCHING WAVEFORM  
toc15  
toc14  
toc13  
VOUT  
50mV/div  
(AC-  
VOUT  
100mV/div  
(AC-  
COUPLED)  
COUPLED)  
VOUT  
100mV/div  
(AC-  
COUPLED)  
ILX  
1A/div  
ILX  
1A/div  
ILX  
1A/div  
6V/div  
VLX  
6V/div  
VLX  
6V/div  
VLX  
IOUT  
500mA/div  
300mA/div  
IOUT  
5mSec/div  
2µSec/div  
5µSec/div  
VIN = 7.2V, VOUT = 12V, IOUT = 0A  
VIN = 7.2V, VOUT = 12V, IOUT = 0.76A  
VIN = 7.2,VOUT = 12V, IOUT = 300mA  
LINE TRANSIENT  
SHORT AT OUTPUT  
toc16  
toc17  
50mV/div  
(AC-  
COUPLED)  
VOUT  
ILX  
VOUT  
5V/div  
3A/div  
1V/div  
ILX  
VIN  
5V/div)  
1A/div  
4A/div  
5V/div  
IOUT  
VLX  
6V/div  
VIN  
200µSec/div  
50µSec/div  
VIN = 7.2V, VOUT = 12V, IOUT = SHORT to GND  
VIN = 5.4V TO 8.4V, VOUT = 12V, IOUT = 680mA  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX17250  
2.7V to 18V Input, Boost Converter with 0.1μA  
True Shutdown, Short-Circuit Protection  
and Selectable Input Current Limit  
Pin Configurations  
TOP VIEW  
TOP VIEW  
1
2
3
4
PGND  
PGND  
LX  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
L
+
+
AGND  
BST  
OUT  
PVH  
IN  
EN  
A
B
C
FB  
LX  
FB  
ISET  
LX  
LX  
ISET  
AGND  
BST  
PVH  
PVH  
OUT  
*EP  
8
IN  
EN  
PGND  
V
L
TDFN  
*CONNECT EXPOSED PAD TO GND  
WLP  
Pin Description  
PIN  
NAME  
FUNCTION  
WLP  
A1  
TDFN  
6
7
AGND  
BST  
Analog Ground.  
A2  
Boost Flying Capacitor Connection. Connect a 0.1µF cap from BST to LX.  
Output. Connect, at least, a 10µF capacitor from OUT to PGND.  
Load Switch Gate Driver Supply. Connect two 22µF capacitors to PGND.  
A3  
8
OUT  
PVH  
A4  
9, 10  
Feedback. Connect to the center point of a resistor-divider from OUT to AGND to set the  
target output voltage.  
B1  
4
FB  
Inductor Peak Current Limit Select. Set the inductor peak current limit by connecting this pin  
B2  
5
ISET  
LX  
to either V (I  
= 3.5A), AGND (I  
= 2.7A) or leave unconnected (I  
= 1.85A).  
PEAK  
L
PEAK  
PEAK  
B3, B4  
11, 12  
Inductor Switching Node.  
Input Voltage Pin for the Device. Apply a voltage from 2.7V to 18V. Connect two 10µF ceramic  
capacitors to PGND. Additional capacitance may be needed for input voltages close to 2.7V  
C1  
C2  
C3  
C4  
2
IN  
to prevent disabling the part by input voltage spikes which result in V < V  
IN  
.
UVLO  
1
3
V
Internal Supply. Connect at least a 2.2µF capacitor to AGND.  
L
Active-High Enable Input. Drive with a logic-high to enable the device and drive low to put the  
device in True Shutdown mode. This pin should not be driven directly by IN, if IN is greater  
than 5.5V.  
EN  
13, 14, EP  
PGND  
Power Ground.  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17250  
2.7V to 18V Input, Boost Converter with 0.1μA  
True Shutdown, Short-Circuit Protection  
and Selectable Input Current Limit  
Functional Diagram  
Boost Converter with Short-Circuit Protection and Programmable Input Current Limit  
L1  
CBST  
0.1µF  
2.2µH  
LX  
BST  
PVH  
MAX17250  
HIGH-SIDE FET  
CPVH  
2 x 22µF  
IN  
CZ  
UVLO  
CIN  
LOAD  
SWITCH  
2 x 10µF  
EN  
OUT  
FB  
TON/TOFF CONTROL  
MODULATOR  
COUT  
10µF  
RZ  
LOW-  
SIDE  
FET  
R1  
R2  
V
REF  
PEAK CURRENT LIMIT  
AND  
ISET  
CURRENT SENSE  
REGULATOR  
VL  
C1  
2.2µF  
PGND  
AGND  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17250  
2.7V to 18V Input, Boost Converter with 0.1μA  
True Shutdown, Short-Circuit Protection  
and Selectable Input Current Limit  
MAX17250 provides over temperature and output short-  
circuit protection. Should junction temperature be raised  
Detailed Description  
The MAX17250 compact, high-efficiency, step-up DC-DC  
converters have low quiescent current and are guaranteed  
to operate with input voltages ranging from 2.7V to 18V.  
True Shutdown disconnects the input from the output,  
eliminating the need for external load switches. Switching  
frequencies up to 1MHz are supported. Tiny package  
options, short-circuit protection, 18V operation, 800ns  
fixed on time, and the three current-limit options allow the  
user to minimize the total solution size.  
to undesired levels, the device will stop switching and will  
monitortemperatureasitstartstodecline.Oncetemperature  
has fallen to manageable levels, switching will resume. The  
output voltage short-circuit protection will cause the device  
to stop switching once an output short-circuit condition is  
detected upon which the output will be permanently latched  
off. The device will have to be reset either by power cycling  
or using enable signal to resume regulation.  
Design Procedure  
Feedback Resistor Divider Selection  
for Output Voltage  
The MAX17250 utilizes a fixed on-time, current-limited,  
pulse-frequency-modulation (PFM) control scheme that  
allows low quiescent current and high efficiency over a  
wide output current range. The inductor current is limited  
by the 1.85A/2.7A/3.5A low-side FET current limit or by  
the 800ns switch maximum on-time. When the error  
comparator senses that the feedback signal has fallen  
below the regulation threshold, the low-side FET is turned  
on. This is the beginning of a switching cycle and the  
inductor current starts ramping up from the input source.  
Once the on-time elapses or the maximum current limit  
is reached the low-side FET turns off, the high-side FET  
turns on and the inductor current starts discharging to  
the output. The high-side FET turns off when the inductor  
current reaches zero or if the feedback signal falls below  
the regulation threshold after the minimum off time  
(200ns) has elapsed. The MAX17250 PFM control scheme  
allows for both continuous conduction mode (CCM) or  
discontinuous conduction mode (DCM) operation.  
The output voltage of the MAX17250 is set through the  
resistor divider (R1, Rz, and R2) from VOUT to AGND,  
as shown in the Typical Application Circuit. The bottom  
resistor (R2) is recommended to be 10.0kΩ. This recom-  
mendation is to minimize noise levels at the feedback  
pin, which is relevant in continuous conduction mode of  
operation. In applications where lower output power  
is required and the device operates in discontinuous  
conduction mode of operation, larger divider impedance  
can be used to minimize current consumption. The top  
resistor (R1 + Rz) is calculated by the equation below,  
where 1.25V represents the internal reference voltage.  
Recommended Rz value is 1kΩ. Because resistor  
tolerance will have direct effect on V  
resistors should have 1% accuracy or better.  
accuracy, these  
OUT  
R1 + Rz = R2 x (V /1.25 - 1)  
OUT  
The switching frequency in CCM can be calculated by the  
equation below.  
Note: Recommended Cz values are: 10nF for output  
voltages up to 10V, 4.7nF for output voltages  
greater than 10V.  
V
V
1
+
1
OUT  
IN  
fsw  
=
=
t
t
t
[
]
ON  
OFF  
ON  
V
[
Inductor and Peak Current Limit Selection  
[
]
]
OUT  
Inductor value depends on the output voltage setting. For  
proper inductance selection, refer to Table 1.  
For example, with an input voltage of 7.2V and an output  
voltage of 12V, the switching frequency in CCM can be  
calculated as:  
f
= 1/800ns x (12 - 7.2)V/12V = 500kHz  
SW  
In DCM, the switching frequency varies with load current.  
Table 1. Inductance Selection  
If the input voltage (V ) is greater than the output  
IN  
OUTPUT VOLTAGE RANGE  
14V to 18V  
L (µH)  
3.3  
voltage (V  
) by a diode drop (V  
OUT  
varies from  
DIODE  
~0.2V at light load to ~0.7V at heavy load), the output  
voltage is clamped to a diode drop below the input voltage  
8V to 14V  
2.2  
(i.e., V  
= V - V  
).  
5V to 8V  
1.5  
OUT  
IN  
DIODE  
3V to 5V  
1.0  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17250  
2.7V to 18V Input, Boost Converter with 0.1μA  
True Shutdown, Short-Circuit Protection  
and Selectable Input Current Limit  
The MAX17250 has a three-state ISET input pin used to  
select the inductor peak current limit (I ), as shown in  
If the calculated value of I  
use the ISET = AGND setting for I  
is between 1.3A and 2A,  
INPEAK  
(2.7A, typical).  
PEAK  
PEAK  
the Table 2. ISET value is read when VL crosses its UVLO  
threshold during power-up, or when EN transitions low-to-  
high. (See VL UVLO in the Electrical Characteristics table).  
If the calculated value of I  
use the ISET = VL setting for I  
is between 2A and 2.7A,  
INPEAK  
(3.5A, typical).  
PEAK  
For example, if the minimum input voltage is 6V, the  
output voltage is 12V, and the output current is 500mA,  
assuming the conversion efficiency is 92%,  
The inductor peak current limit setting should be  
determined as follows:  
Calculate the inductor ripple current (∆I) using the  
equation below.  
∆I = (V x t )/L = (6V x 800ns)/(2.2µH) = 2.2A  
IN  
ON  
I
= (V  
x I )/(V x η)+ ∆I/2 =  
OUT IN  
INPEAK  
OUT  
V
×
t
(12V x 500mA)/(6V x 0.92) + 2.2A/2 = 2.2A  
IN_MIN  
ON  
∆ I  
=
L
So, the ISET = VL setting for I  
be chosen.  
(3.5A, typical) should  
PEAK  
where V  
is the minimum input voltage, t  
is the  
ON  
IN_MIN  
800ns on time.  
Capacitor Selection  
Calculate the maximum input current (I  
equation below.  
) using the  
Input capacitors reduce current peaks from the battery  
and increase efficiency. For the input capacitor, choose a  
ceramic capacitor because they have the lowest equivalent  
series resistance (ESR), smallest size, and lowest cost.  
Choose an acceptable dielectric, such as X5R or X7R.  
Other capacitor types can be used as well but will have  
larger ESRs. Due to ceramic capacitors’ capacitance  
drop with DC bias, two standard 10µF ceramic capacitors  
are recommended at the input for most applications. The  
minimum recommended effective capacitance at the  
input is 10µF for most applications. For lower input  
voltage applications, the input capacitor value can be  
reduced. However, additional capacitance may be needed  
for input voltages close to 2.7V to prevent disabling the  
INPEAK  
V
× I  
OUT  
V
OUT  
× η  
∆ I  
I
=
+
INPEAK  
2
INMIN  
where V  
is the output voltage, I  
is the maximum  
OUT  
OUT  
load current, V  
is the minimum input voltage and η  
IN_MIN  
is the conversion efficiency.  
If the calculated value of I  
the ISET = Open setting for I  
is lower than 1.3A use  
(1.85A, typical).  
INPEAK  
PEAK  
Table 2. Inductor I  
Selection Table  
part by input voltage ripple which results in V < V  
.
PEAK  
IN  
UVLO  
For output and PVH capacitors refer to Table 3 for proper  
selection.  
ISET  
VL  
I
(A)  
PEAK  
3.5  
The output ripple on the MAX17250 is small because the  
ripple at PVH pin gets further filtered and attenuated by the  
on-resistance of the load switch and the capacitance at OUT.  
AGND  
OPEN  
2.7  
1.85  
Table 3. OUT and PVH Capacitor Selection  
OUTPUT VOLTAGE RANGE  
12V to 18V  
C
(µF)  
C
(µF)  
OUT  
PVH  
3 x 22µF/25V/X7R  
2 x 22µF/25V/X7R  
2 x 22µF/16V/X5R  
10µF/25V/X7R  
10µF/25V/X7R  
10µF/16V/X5R  
8V to 12V  
3V to 8V  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX17250  
2.7V to 18V Input, Boost Converter with 0.1μA  
True Shutdown, Short-Circuit Protection  
and Selectable Input Current Limit  
At low V  
and high V  
applications, where the  
Duty Cycle Limitation  
IN  
OUT  
MAX17250 is approaching maximum duty cycle limitation,  
output current will be limited. Please refer to the Typical  
Operating Characteristics for reference.  
Maximum duty ratio MAX17250 can provide is 78%.  
Whether specific application meets this reqirement can be  
checked using the following formula  
Enabling MAX17250  
D = (1 - ((V  
x η))/V  
) < 78%  
OUT  
IN MIN  
The MAX17250 has a dedicated EN pin. This pin can  
be driven by a digital signal. It is recommended that the  
Where,  
D is duty cycle.  
digital signal to enable the device after V crosses the  
IN  
V
V
is minimum input voltage.  
IN MIN  
UVLO threshold.  
is output voltage.  
OUT  
In applications where the EN pin is not driven, it can be  
η is efficiency.  
pulled high to V . If V range is below 5.5V, EN can be  
IN  
IN  
Output Current Limitation  
connected directly to V . If V is above, resistor divider  
IN  
IN  
needs to be used. The divider should be designed that  
EN pin voltage is well above its threshold at the instant  
device starts regulation. This will assure that sag appearing  
The output current will be limited by the input peak  
current limit selection for a specific application. The output  
current expressed as a function of the Peak Input Current  
is shown below:  
at V due to enabled regulation will not cause EN being  
IN  
toggled. Fast transient at enable that makes device  
disable and re-enable can cause device not to power up  
properly, including misreading the peak input current limit  
setting. In some cases, a small value capacitor from the  
EN pin to GND can be used. For high input voltage applications,  
voltage at the EN pin must not exceed its rating.  
I
= ((I  
- ∆I/2) x (V x η))/V  
OUT MAX  
PEAK IN OUT  
For example, for 7.2V , 12V  
application with  
OUT  
IN  
efficiency of 92% maximum output current recommended  
is 0.76A which will allow 30% margin to the peak input  
current limit set to 3.5A.  
I
= I /1.3 = 3.5A/1.3 = 2.7A  
LIMIT  
PCB Layout Guidelines  
PEAK MAX  
Minimize trace lengths to reduce parasitic capacitance,  
inductance and resistance, and radiated noise. Keep the  
main power path from IN, LX, PVH, OUT, and PGND as  
tight and short as possible. Minimize the surface area  
used for LX since this is the noisiest node. The trace  
between the feedback resistor divider and the FB pin  
should be as short as possible and should be isolated  
from the noisy power path. VL decoupling capacitor must  
be as close to the pin as possible referenced to PGND  
pin. Refer to the EV kit layout for best practices.  
∆I = (V  
t
)/L = (7.2V x 800ns)/(2.2µH) = 2.62A  
IN ON  
I
= ((I  
- ∆I/2) x (V x η)) / V  
= 0.76A  
OUT  
OUT MAX  
PEAK  
IN  
In addition, the output current is a function of the device  
package and PCB thermal performance. The maximum  
junction temperature should be restricted to 125°C under  
normal operating conditions. Calculate the maximum  
allowable power dissipation and keep the actual power  
dissipation less than or equal to that. The maximum  
power dissipation limit is determined using the following  
equation.  
The PCB layout is important for robust thermal design.  
The junction to ambient thermal resistance of the  
package greatly depends on the PCB type, layout, and  
pad connections. Using thick PCB copper and having the  
SW, PVH, VOUT, and PGND copper pours will enhance  
the thermal performance. The TDFN package would  
have smaller junction to ambient thermal resistance and,  
therefore, better thermal performance. It has a large  
thermal pad under the package which creates excellent  
thermal path to PCB. This pad is electrically connected to  
PGND. Its PCB pad should have multiple thermal vias con-  
nectingthepadtointernalPGNDplane.Thermalviasshould  
either be capped or have small diameter to minimize  
solder wicking and voids.  
Power Disipation Max (W) = ((125°C - T °C))/  
A
(R  
(°C)/W)  
θJA  
where,  
T is the maximum ambient temperature for the application.  
A
RθJA is the junction-to-ambient thermal resistance given  
in the Package Information section.  
So, for the same example as above, 7.2V , 12V  
,
OUT  
IN  
I
= 0.76A internal power dissipation will be 0.3W. This  
OUT  
will cause the junction temperature to rise 22°C above  
ambient temperature using the WLP package.  
The TDFN package would have smaller junction to  
ambient thermal resistance and therefore better thermal  
performance.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX17250  
2.7V to 18V Input, Boost Converter with 0.1μA  
True Shutdown, Short-Circuit Protection  
and Selectable Input Current Limit  
Ordering Information  
PART NUMBER  
MAX17250ANC+  
MAX17250ATD+  
T
TEMPERATURE RANGE  
-40°C to +125°C  
PIN-PACKAGE  
12 WLP  
ON  
800ns  
800ns  
-40°C to +125°C  
14 TDFN  
+ Denotes a lead(Pb)-free/RoHS-compliant package.  
T Denotes tape-and-reel.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX17250  
2.7V to 18V Input, Boost Converter with 0.1μA  
True Shutdown, Short-Circuit Protection  
and Selectable Input Current Limit  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
6/18  
Initial release  
Updated Typical Application Circuit, Electrical Characteristics, Typical Operating  
Characsteristics, and Ordering Information  
1
2
9/18  
8/19  
1, 3, 5, 12  
1, 9–12  
Updated Typical Application Circuit, Detailed Description, Table 3, and Ordering  
Information  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
13  

相关型号:

MAX1725EUK+T

Adjustable Positive LDO Regulator, 1.5V Min, 5V Max, 0.6V Dropout, CMOS, PDSO5, SOT-23, 5 PIN
MAXIM

MAX1725EUK-T

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
MAXIM

MAX1726

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
MAXIM

MAX17263LETD+

Power Supply Support Circuit,
MAXIM

MAX1726EUK18-T

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
MAXIM

MAX1726EUK25+T

Fixed Positive LDO Regulator, 2.5V, 0.6V Dropout, CMOS, PDSO5, SOT-23, 5 PIN
MAXIM

MAX1726EUK25-T

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
MAXIM

MAX1726EUK33+T

Fixed Positive LDO Regulator, 3.3V, 0.6V Dropout, CMOS, PDSO5, SOT-23, 5 PIN
MAXIM

MAX1726EUK33-T

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
MAXIM

MAX1726EUK5-T

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
MAXIM

MAX1726EUK50+T

Fixed Positive LDO Regulator, 5V, 0.6V Dropout, CMOS, PDSO5, MINIATURE, SOT-23, 5 PIN
MAXIM

MAX1726EUK50-T

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
MAXIM