MAX17410EVKIT+ [MAXIM]

Intel IMVP-6 Code-Set Compliant;
MAX17410EVKIT+
型号: MAX17410EVKIT+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Intel IMVP-6 Code-Set Compliant

文件: 总20页 (文件大小:1047K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4441; Rev 0; 1/09  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
General Description  
Features  
The MAX17410 evaluation kit (EV kit) demonstrates the  
high-power, dynamically adjustable, multiphase IMVP-6+  
notebook CPU application circuit. This DC-DC convert-  
er steps down high-voltage batteries and/or AC  
adapters, generating a precision, low-voltage CPU core  
Dual-Phase, Fast-Response Interleaved, Quick-  
PWM  
Intel IMVP-6+ Code-Set Compliant  
Dynamic Phase Selection Optimizes Active/Sleep  
V
rail. The MAX17410 EV kit meets the Intel mobile  
CC  
Efficiency  
IMVP-6+ CPU’s transient voltage specification, power-  
good signaling, voltage regulator thermal monitoring  
(VRHOT), and power monitor output (PMON). The  
MAX17410 EV kit consists of the MAX17410 2-phase  
interleaved Quick-PWM™ step-down controller. The  
MAX17410 EV kit includes active voltage positioning  
with adjustable gain, reducing power dissipation, and  
bulk output capacitance requirements. A slew-rate con-  
troller allows controlled transitions between VID codes,  
controlled soft-start and shutdown, and controlled exit  
suspend voltage. Precision slew-rate control provides  
“just-in-time” arrival at the new DAC setting, minimizing  
surge currents to and from the battery.  
Transient Phase Overlap Reduces Output  
Capacitance  
Transient-Overshoot Suppression Feature  
Active Voltage Positioning with Adjustable Gain  
High Speed, Accuracy, and Efficiency  
Low Bulk Output Capacitor Count  
7V to 24V Input-Voltage Range  
0 to 1.5000V Output-Voltage Range (7-Bit DAC)  
38A Load-Current Capability (19A per Phase)  
Accurate Current Balance and Current Limit  
300kHz Switching Frequency (per Phase)  
Dedicated system inputs (PSI, DPRSTP, and DPRSLPVR)  
dynamically select the operating mode and number of  
active phases, optimizing the overall efficiency during  
the CPU’s active and sleep states.  
Power-Good (PWRGD) and Phase-Good  
The MAX17410 includes latched output undervoltage-  
fault, overvoltage-fault, and thermal-overload protec-  
tion. It also includes a voltage regulator power-good  
output (PWRGD), a clock enable output (CLKEN), a  
power monitor output (PMON), a phase-good output  
(PHASEGD), and a system power-good input (PGDN).  
(PHASEGD) Outputs and Indicators  
Clock Enable (CLKEN) and Thermal-Fault  
(VRHOT) Outputs and Indicators  
Lead(Pb)-Free and RoHS Compliant  
Fully Assembled and Tested  
This fully assembled and tested circuit board provides  
a digitally adjustable 0 to 1.5000V output voltage (7-bit  
on-board DAC) from a 7V to 24V battery input range.  
Each phase delivers up to 19A output current for a total  
of 38A. The MAX17410 EV kit operates at 300kHz  
switching frequency (per phase) and has superior line-  
and load-transient response.  
Ordering Information  
PART  
TYPE  
MAX17410EVKIT+  
EV Kit  
+Denotes lead(Pb)-free and RoHS compliant.  
Component List  
DESIGNATION  
QTY  
DESCRIPTION  
DESIGNATION  
QTY  
DESCRIPTION  
CLKEN, DPRSLPVR,  
GND_SENSE,  
10µF ±±0%, ±5V X5R ceramic  
capacitors (1±10)  
PGDIN, PHASEGD,  
PMON, PSI, PWRGD,  
VID_VCC,  
C1–C4  
4
TDK C3±±5X7R1E106M  
AVX 1±103D106M  
Taiyo Yuden TMK3±5BJ106MM  
13 Test points  
VOUT_SENSE,  
VRHOT, VR_ON,  
V3P3  
Not installed, polymer  
capacitor (D case)  
C5  
0
Quick-PWM is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX17410 Evaluation Kit  
Component List (continued)  
DESIGNATION  
QTY  
DESCRIPTION  
DESIGNATION  
QTY  
DESCRIPTION  
0.36µH, 36A, 0.82mpower  
inductors  
Panasonic ETQP4LR36ZFC  
NEC TOKIN MPC1055LR36  
TOKO FDUE1040D-R36M  
330µF, ±V, 4.5Mlow-ESR  
polymer capacitors (D case)  
Panasonic EEFSX0D331E4 or  
NEC TOKIN PSGV0E337M4.5  
C6, C7, C8  
3
L1, L2  
2
Not installed, ceramic  
capacitor (0805)  
C9  
0
±
n-channel MOSFETs (PowerPAK  
8 SO)  
Fairchild FDS6298 (8 SO)  
Vishay (Siliconix) SI4386DY  
N1, N2  
N3–N6  
2
1µF ±10%, 16V X5R ceramic  
capacitors (0603)  
TDK C1608X5R1C105K  
Taiyo Yuden EMK107BJ683MA  
Murata GRM188R61C105K  
C10, C11  
n-channel MOSFETs (PowerPAK  
8 SO)  
Fairchild FDS8670 (8 SO)  
Vishay (Siliconix) SI4626ADY  
4
5
0.1µF ±10%, ±5V X7R ceramic  
capacitors (0603)  
TDK C1608X7R1E104K or  
Murata GRM188R71E104K  
C1±, C17, C±0, C±1  
4
±
R1, R15, R16,  
R43, R44  
105ꢀ resistors (0603)  
R2  
R3, R19  
R4  
1
2
1
3
2
61.9k1ꢀ resistor (0603)  
10k1ꢀ resistors (0603)  
4.02k1ꢀ resistor (0603)  
0resistors (0603)  
Evluates:MAX7410  
0.±±µF ±±0%, 10V X7R ceramic  
capacitors (0603)  
Taiyo Yuden LMK107BJ±±4MA  
TDK C1608X7R1C±±4M  
AVX 06033D±±4KAT  
C13, C14  
R5, R6, R10  
R7, R11  
3.32k1ꢀ resistors (0603)  
1000pF ±10%, 50V X7R  
ceramic capacitors (0603)  
TDK C1608X7R1H10±K or  
Murata GRM188R71H10±K or  
equivalent  
Not installed, resistors (0603)  
R8, R10, R12, R18, R20, R33, R45,  
R48, and R49 are open;  
R8, R10, R12, R18,  
R20, R33, R34,  
R35, R45, R48, R49  
C15, C18, C±7  
3
0
R34 and R35 are short (PC trace)  
R9, R30  
2
0
11ꢀ resistors (0603)  
0.47µF ±±0%, 10V X5R ceramic  
capacitor (0603)  
R13, R31  
Not installed, resistors (0805)  
C16  
1
0
Murata GRM188R71C474M  
Taiyo Yuden LMK107BJ474MA  
TDK C1608X5R1A474M  
10k1ꢀ NTC thermistor,  
β = 3380 (0603)  
Murata NCP18XH103F03RB  
TDK NTCG163JH103F  
R14  
1
C19, C±±–C±6,  
C±8, C±9  
Not installed, ceramic  
capacitors (0603)  
R17  
R21–R24  
R25  
1
4
1
1.5k1ꢀ resistor (0603)  
1k5ꢀ resistors (0603)  
4.99k1ꢀ resistor (0603)  
10µF ±±0%, 6.3V X5R ceramic  
capacitors (0805)  
C30–C61  
3± TDK C±01±X5R0J106M or  
Taiyo Yuden AMK±1±BJ106MG  
AVX 08056D106MAT  
100k5ꢀ NTC thermistor,  
β = 4250 (0603)  
Murata NCP18WF104J03RB  
TDK NTCG163JF104J (0402) or  
Panasonic ERT-J1VR104J  
R26  
1
D1, D±  
D3–D6  
0
4
Not installed, Schottky diodes  
LEDs, green clear SMD (0805)  
2
_______________________________________________________________________________________  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Component List (continued)  
DESIGNATION  
QTY  
DESCRIPTION  
DESIGNATION  
QTY  
DESCRIPTION  
R27, R28, R29,  
R32, R36–R42  
2-phase Quick-PWM VID  
controller (48 TQFN)  
11 100k5ꢀ resistors (0603)  
U1  
1
Maxim MAX17410GTM+  
R46, R47  
SW1  
2
1
1
2k1ꢀ resistors (0603)  
7-position low-profile DIP switch  
5-position low-profile DIP switch  
U2  
1
1
CPU socket MPGA479  
SW2  
PCB: MAX17410 Evaluation Kit+  
Component Suppliers  
SUPPLIER  
PHONE  
WEBSITE  
AVX Corporation  
843-946-0238  
888-522-5372  
770-436-1300  
408-324-1790  
800-344-2112  
800-348-2496  
847-803-6100  
847-297-0070  
402-563-6866  
www.avxcorp.com  
Fairchild Semiconductor  
www.fairchildsemi.com  
www.murata-northamerica.com  
www.nec-tokinamerica.com  
www.panasonic.com  
www.t-yuden.com  
Murata Electronics North America, Inc.  
NEC TOKIN America, Inc.  
Panasonic Corp.  
Taiyo Yuden  
TDK Corp.  
www.component.tdk.com  
www.tokoam.com  
TOKO America, Inc.  
Vishay  
www.vishay.com  
Note: Indicate that you are using the MAX17410 when contacting these component suppliers.  
Set SW1 (1, 14), SW1 (3, 12), SW1 (5, 10), SW1 (7, 8),  
and SW1 (7, 8) to the on positions. The output voltage  
is set for 0.9750V.  
Quick Start  
Recommended Equipment  
• MAX17410 EV kit  
3) Turn on the battery power before turning on the 5V  
bias power.  
• 7V to 24V, > 100W power supply, battery, or note-  
book AC adapter  
4) Observe the 0.9750V output voltage with the DMM  
and/or oscilloscope. Look at the LX switching  
nodes and MOSFET gate-drive signals while vary-  
ing the load current.  
• 5V at 1A DC bias power supply  
• Two loads capable of sinking 19A each  
• Digital multimeters (DMMs)  
Detailed Description of Hardware  
• 100MHz dual-trace oscilloscope  
This 38A multiphase buck-regulator design is opti-  
mized for a 300kHz switching frequency (per phase)  
Procedure  
The MAX17410 EV kit is fully assembled and tested.  
Follow the steps below to verify board operation:  
and output-voltage settings around 1V. At V  
= 1V  
OUT  
and V = 10V, the inductor ripple is approximately  
IN  
1) Ensure that the circuit is connected correctly to the  
supplies and dummy load prior to applying any  
power.  
45ꢀ (LIR = 0.45). The MAX17410 controller interleaves  
all the active phases, resulting in out-of-phase opera-  
tion that minimizes the input and output filtering  
requirements. The multiphase controller shares the cur-  
rent between two phases that operate 180° out-of-  
phase supplying up to 19A per phase. Table 1 lists the  
MAX17410 operating mode truth table function.  
2) Verify that all positions of switch SW2 are off. The  
DAC code settings (D6–D0) are set by switch SW1.  
_______________________________________________________________________________________  
3
MAX17410 Evaluation Kit  
2) Switch SW1. When SW1 positions are off, the  
MAX17410’s D0–D6 inputs are at logic 1 (connect-  
ed to VDD). When SW1 positions are on, D0–D6  
inputs are at logic 0 (connected to GND). The out-  
put voltage can be changed during operation by  
activating SW1 on and off. As shipped, the EV kit is  
configured with SW1 positions set for 0.9750V out-  
put (Table 2). Refer to the MAX17410 IC data sheet  
for more information.  
Setting the Output Voltage  
The MAX17410 has an internal digital-to-analog con-  
verter (DAC) that programs the output voltage. The out-  
put voltage can be digitally set from 0 to 1.5000V  
(Table 2) from the D0–D6 pins. There are two different  
ways of setting the output voltage:  
1) Drive the external VID0–VID6 inputs (all SW1 posi-  
tions are off). The output voltage is set by driving  
VID0–VID6 with open-drain drivers (pullup resistors  
are included on the board) or 3V/5V CMOS output  
logic levels.  
Table 1. MAX17410 Operating Mode Truth Table Functions  
INPUTS  
PHASE  
OPERATION*  
SHDN  
SW2  
(1, 10)  
DPRSTP DPRSLPVR  
PSI  
SW2  
(3, 8)  
OPERATING MODE  
SW2  
(5, 6)  
SW2  
(2, 9)  
Low-Power Shutdown Mode. DL1 and DL2 are forced  
low and the controller is disabled. The supply current  
drops to 1µA (max).  
GND  
X
X
X
Disabled  
Evluates:MAX7410  
Startup/Boot. When SHDN is pulled high, the MAX17410  
begins the startup sequence. Once the REF is above  
1.84V, the controller enables the PWM controller and  
ramps the output voltage up to the boot voltage.  
Multiphase Forced-PWM  
Rising  
High  
X
X
X
X
X
1/8 R  
Slew Rate  
TIME  
Multiphase Forced-PWM Full Power. The no-load output voltage is determined by  
Low  
Low  
High  
Low  
Nominal R  
Slew Rate the selected VID DAC code (D0–D6, Table 2).  
TIME  
Intermediate Power. The no-load output voltage is  
determined by the selected VID DAC code (D0–D6,  
Table 2). When PSI is pulled low, the MAX17410  
immediately disables phase 2. DH2 and DL2 are pulled  
low.  
1-Phase Forced-PWM  
Nominal R Slew Rate  
High  
TIME  
Deeper Sleep Mode. The no-load output voltage is  
determined by the selected VID DAC code (D0–D6,  
Table 2). When DPRSLPVR is pulled high, the  
MAX17410 immediately enters 1-phase pulse-skipping  
operation allowing automatic PWM/PFM switchover  
under light loads. The PWRGD and CLKEN upper  
thresholds are blanked. DH2 and DL2 are pulled low.  
1-Phase Pulse Skipping  
Nominal R Slew Rate  
High  
High  
Low  
High  
High  
X
X
TIME  
Deeper Sleep Slow Exit Mode. The no-load output  
voltage is determined by the selected VID DAC code  
(D0–D6, Table 2). When DPRSTP is pulled high while  
DPRSLPVR is already high, the MAX17410 remains in 1-  
phase pulse-skipping operation allowing automatic  
PWM/PFM switchover under light loads. The PWRGD  
and CLKEN upper thresholds are blanked. DH2 and DL2  
are pulled low.  
1-Phase Pulse Skipping  
1/4 R Slew Rate  
High  
TIME  
4
_______________________________________________________________________________________  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Table 1. MAX17410 Operating Mode Truth Table Functions (continued)  
INPUTS  
PHASE  
OPERATION*  
SHDN  
SW2  
(1, 10)  
DPRSTP DPRSLPVR  
PSI  
SW2  
(3, 8)  
OPERATING MODE  
SW2  
(5, 6)  
SW2  
(2, 9)  
Shutdown. When SHDN is pulled low, the MAX17410  
immediately pulls PWRGD and PHASEGD low, CLKEN  
Multiphase Forced-PWM becomes high impedance, all enabled phases are  
Falling  
X
X
X
1/8 R  
Slew Rate  
activated, and the output voltage is ramped down to  
ground. Once the output reaches 0V, the controller  
enters the low-power shutdown state.  
TIME  
Fault Mode. The fault latch has been set by the  
MAX17410 UVP or thermal-shutdown protection, or by  
the OVP protection. The controller remains in FAULT  
mode until VCC power is cycled or SHDN toggled.  
High  
X
X
X
Disabled  
*Multiphase operation = All enabled phases active.  
X = Don’t care.  
Table 2. MAX17410 IMVP-6+ Output-Voltage VID DAC Codes  
OUTPUT  
VOLTAGE (V)  
OUTPUT  
VOLTAGE (V)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.5000  
1.4875  
1.4750  
1.4625  
1.4500  
1.4375  
1.4250  
1.4125  
1.4000  
1.3875  
1.3750  
1.3625  
1.3500  
1.3375  
1.3250  
1.3125  
1.3000  
1.2875  
1.2750  
1.2625  
1.2500  
1.2375  
1.2250  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6375  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
_______________________________________________________________________________________  
5
MAX17410 Evaluation Kit  
Table 2. MAX17410 IMVP-6+ Output-Voltage VID DAC Codes (continued)  
OUTPUT  
VOLTAGE (V)  
OUTPUT  
VOLTAGE (V)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.2125  
1.2000  
1.1875  
1.1750  
1.1625  
1.1500  
1.1375  
1.1250  
1.1125  
1.1000  
1.0875  
1.0750  
1.0625  
1.0500  
1.0375  
1.0250  
1.0125  
1.0000  
0.9875  
0.9750  
0.9625  
0.9500  
0.9375  
0.9250  
0.9125  
0.9000  
0.8875  
0.8750  
0.8625  
0.8500  
0.8375  
0.8250  
0.8125  
0.8000  
0.7875  
0.7750  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.4125  
0.4000  
0.3875  
0.3750  
0.3625  
0.3500  
0.3375  
0.3250  
0.3125  
0.3000  
0.2875  
0.2750  
0.2625  
0.2500  
0.2375  
0.2250  
0.2125  
0.2000  
0.1875  
0.1750  
0.1625  
0.1500  
0.1375  
0.1250  
0.1125  
0.1000  
0.0875  
0.0750  
0.0625  
0.0500  
0.0375  
0.0250  
0.0125  
0
Evluates:MAX7410  
0
0
0
0
0
0
0
6
_______________________________________________________________________________________  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Reduced Power-Dissipation  
Voltage Positioning  
Table 3. Shutdown Mode (SHDN)  
The MAX17410 includes a transconductance amplifier  
for adding gain to the voltage-positioning sense path.  
The amplifier’s input is generated by summing the cur-  
rent-sense inputs, which differentially sense the voltage  
across the inductor’s DCR. The transconductance  
amplifier’s output connects to the voltage-positioned  
feedback input (FB), so the resistance between FB and  
VPS (R4) determines the voltage-positioning gain.  
Resistor R4 (4.75k) provides a -2.1mV/A voltage-posi-  
tioning slope at the output when all phases are active.  
Remote output and ground sensing eliminate any addi-  
tional PCB voltage drops.  
SW2 (1, 10)  
SHDN PIN  
MAX17410 OUTPUT  
Output enabled—V is  
selected by VID DAC code  
(D0–D6) settings  
OUT  
Connected  
to VDD  
Off  
On  
Connected  
to GND  
Shutdown mode, V  
= 0V  
OUT  
DPRSLPVR SW2 (2, 9), PSI SW2 (3, 8)  
DPRSLPVR and PSI together determine the operating  
mode, as shown in Table 4. The MAX17410 will be  
forced into full-phase PWM mode during startup, while  
in boot mode, during the transition from boot mode to  
VID mode, and during shutdown.  
Dynamic Output-Voltage  
Transition Experiment  
This MAX17410 EV kit is set to transition the output volt-  
age at 12.5mV/µs. The speed of the transition is altered  
by scaling resistors R2 and R3.  
DPRSTP SW2 (5,6)  
The DPRSTP logic signal is usually the logical comple-  
ment of the DPRSLPVR signal. However, there is a spe-  
cial condition when both DPRSTP and DPRSLPVR  
could temporarily be simultaneously high. If this hap-  
During the voltage transition, watch the inductor current  
by looking at the current-sense inputs with a differential  
scope probe. Observe the low, well-controlled inductor  
current that accompanies the voltage transition. Slew-rate  
control during shutdown and startup results in well-con-  
trolled currents in to and out of the battery (input source).  
pens, the slew rate reduces to 1/4 of the normal (R  
-
TIME  
based) slew rate for the duration of this condition. The  
slew rate returns to normal when this condition is exit-  
ed. Note: Only DPRSLPVR and PSI (not DPRSTP)  
determine the mode of operation (PWM vs. skip and the  
number of active phases). See Table 5.  
There are two methods to create an output-voltage tran-  
sition. Select D0–D6 (SW1). Then either manually  
change the SW1 settings to a new VID code setting  
(Table 2), or disable all SW1 settings and drive the  
VID0–VID6 PCB test points externally to the desired  
code settings.  
Table 4. DPRSLPVR, PSI  
DPRSLPVR  
SW2 (2, 9) SW2 (3, 8)  
PSI  
POWER  
LEVEL  
OPERATING  
MODE  
Switch SW2 Settings  
Very low  
current  
1-phase pulse-  
skipping mode  
Shutdown SW2 (1, 10)  
When SHDN goes low (SW2 (1, 10) = on), the  
MAX17410 enters the low-power shutdown mode.  
PWRGD is pulled low immediately, and the output volt-  
age ramps down at 1/8 the slew rate set by R2 and R3  
(71.9k). When the controller reaches the 0V target, the  
drivers are disabled (DL1 and DL2 driven high), the ref-  
erence is turned off, and the IC supply currents drop to  
1µA (max).  
On (VDD)  
On (VDD)  
Off (GND)  
On (GND)  
Off (VDD)  
Low current 1-phase pulse-  
(3A)  
skipping mode  
1-phase forced-  
PWM mode  
On (GND) Intermediate  
Normal  
operation—all  
phases are active,  
forced-PWM mode  
Off (GND)  
Off (VDD)  
Maximum  
When a fault condition activates the shutdown  
sequence (output undervoltage lockout or thermal shut-  
down), the protection circuitry sets the fault latch to pre-  
vent the controller from restarting. To clear the fault  
latch and reactivate the MAX17410, toggle SHDN or  
cycle VDD power. Table 3 shows the shutdown mode  
(SHDN).  
_______________________________________________________________________________________  
7
MAX17410 Evaluation Kit  
Table 5. DPRSLPVR, DPRSTP  
Table 6. PGDIN  
DPRSLPVR  
SW2 (2,11)  
DPRSTP  
SW2 (5,6)  
SW2 (4, 7) PGDIN PIN  
MAX17410 OUTPUT  
FUNCTIONALITY  
VOUT remains at the boot  
voltage, CLKEN remains high,  
and PWRGD remains low.  
Connected  
Normal slew rate, 1- or 2-phase  
forced PWM mode (DPRSLPVR  
low ¡ DPRSTP is ignored)  
Off  
to GND  
Off (GND)  
On (GND)  
Connected VOUT transitions to selected VID  
to VDD voltage and CLKEN is pulled low.  
Normal slew rate, 1- or 2-phase  
Off (VDD) forced PWM mode (DPRSLPVR  
On  
Off (GND)  
On (VDD)  
On (VDD)  
low ¡ DPRSTP is ignored)  
Normal slew rate, 1-phase  
On (GND)  
automatic pulse-skipping mode  
Slew rate reduced to 1/4 of  
normal, 1-phase automatic pulse-  
skipping mode  
Off (VDD)  
PGDIN, SW2 (4, 7)  
PGDIN indicates the power status of other system rails  
and is used for power-supply sequencing. After power-  
up to the boot voltage, the output voltage remains at  
Evluates:MAX7410  
V
, CLKEN remains high, and PWRGD remains low  
BOOT  
as long as the PGDIN stays low. When PGDIN is pulled  
high, the output transitions to selected VID voltage, and  
CLKEN is pulled low. If the system pulls PGDIN low  
during normal operation, the MAX17410 immediately  
drives CLKEN high, pulls PWRGD low, and slews the  
output to the boot voltage (using 2-phase pulse-skip-  
ping mode). The controller remains at the boot voltage  
until PGDIN goes high again, SHDN is toggled, or the  
VDD is cycled. See Table 6.  
8
_______________________________________________________________________________________  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Figure 1a. MAX17410 EV Kit Schematic (Sheet 1 of 2)  
_______________________________________________________________________________________  
9
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Figure 1b. MAX17410 EV Kit Schematic (Sheet 2 of 2)  
10 ______________________________________________________________________________________  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Figure 2. MAX17410 EV Kit Component Placement Guide—Component Side  
______________________________________________________________________________________ 11  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Figure 3. MAX17410 EV Kit PCB Layout—Component Side  
12 ______________________________________________________________________________________  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Figure 4. MAX17410 EV Kit PCB Layout—Internal Layer 2 (VBATT/PGND Plane)  
______________________________________________________________________________________ 13  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Figure 5. MAX17410 EV Kit PCB Layout—Internal Layer 3 (Signal Layer)  
14 ______________________________________________________________________________________  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Figure 6. MAX17410 EV Kit PCB Layout—Internal Layer 4 (PGND Layer)  
______________________________________________________________________________________ 15  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Figure 7. MAX17410 EV Kit PCB Layout—Internal Layer 5 (AGND/PGND Layer)  
16 ______________________________________________________________________________________  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Figure 8. MAX17410 EV Kit PCB Layout—Internal Layer 6 (Signal Layer)  
______________________________________________________________________________________ 17  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Figure 9. MAX17410 EV Kit PCB Layout—Internal Layer 7 (PGND Layer)  
18 ______________________________________________________________________________________  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Figure 10. MAX17410 EV Kit PCB Layout—Solder Side  
______________________________________________________________________________________ 19  
MAX17410 Evaluation Kit  
Evluates:MAX7410  
Figure 11. MAX17410 EV Kit Component Placement Guide—Solder Side  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX17410GTM+

Dual-Phase, Quick-PWM Controller for IMVP6+ CPU Core Power Supplies
MAXIM

MAX17410GTM+T

暂无描述
MAXIM

MAX17411

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17411GTM+

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX1741EUB

SIM/Smart Card Level Translators in レMAX
MAXIM

MAX1741EUB+

Interface Circuit, PDSO10, 1.09 MM HEIGHT, ULTRA SMALL, EXPOSED PAD, MICRO MAX PACKAGE-10
MAXIM

MAX1741EUB+T

Interface Circuit, PDSO10, 1.09 MM HEIGHT, ULTRA SMALL, EXPOSED PAD, MICRO MAX PACKAGE-10
MAXIM

MAX1742

1A/2.7A, 1MHz, Step-Down Regulators with Synchronous Rectification and Internal Switches
MAXIM

MAX1742-MAX1842

1A/2.7A, 1MHz, Step-Down Regulators with Synchronous Rectification and Internal Switches
MAXIM

MAX1742EEE

1A/2.7A, 1MHz, Step-Down Regulators with Synchronous Rectification and Internal Switches
MAXIM

MAX1742EEE+

1A/2.7A, 1MHz, Step-Down Regulators with Synchronous Rectification and Internal Switches
MAXIM

MAX1742EEE-T

暂无描述
MAXIM