MAX17671 [MAXIM]

Integrated 4V-60V, 150mA, High-Efficiency Synchronous Step-Down DC-DC Converter with 50mA Linear Regulator;
MAX17671
型号: MAX17671
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Integrated 4V-60V, 150mA, High-Efficiency Synchronous Step-Down DC-DC Converter with 50mA Linear Regulator

文件: 总25页 (文件大小:1122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here to ask about the production status of specific part numbers.  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
General Description  
Benefits and Features  
The Himalaya series of voltage regulator ICs, power  
modules, and chargers enable cooler, smaller, and sim-  
pler power-supply solutions. MAX17670, MAX17671, and  
MAX17672 are dual-output regulators integrating a 4V  
to 60V, 150mA high-voltage, high-efficiency, Himalaya  
synchronous step-down converter with internal MOSFETs  
and a high-PSRR, low-noise, 2.35V to 5.5V, 50mA linear  
regulator. The MAX17670 and MAX17671 provide fixed  
step-down converter output voltages of 3.3V and 5V,  
respectively. The output voltage of the MAX17672 step-  
Reduces External Components and Total Cost  
• No Schottky–Synchronous Operation  
• Internal Compensation  
• Built-In Soft-Start  
• All-Ceramic Capacitors, Compact Layout  
Protection against Inductive Short at Step-Down  
Converter Output  
Reduces Number of DC-DC Regulators to Stock  
• Wide 4V to 60V Input Range for the Step-Down  
Converter Regulator  
• Up to 98% Duty-Cycle Step-Down Operation  
• 200kHz to 2.2MHz Adjustable Switching Frequency  
with External Synchronization for Step-down  
Converter  
• 2.35V to 5.5V, Input Range for the Linear Regulator  
• Linear Regulator with up to 50mA Load Current  
Capability  
down converter is adjustable (0.8V up to 90% of V ).  
IN  
3.3V (MAX17671 and MAX17672 only), 3.0V, 2.5V, 1.8V,  
1.5V, and 1.2V linear regulator output voltage options are  
supported. See the Ordering Information for details.  
The feedback-voltage regulation accuracy over -40°C  
to +125°C temperature range for the linear regulator  
is ±1.3% and for the step-down converter is ±2%. The  
devices are available in a compact 10-pin (3mm x 3mm)  
TDFN package. Simulation models are available.  
Reduces Power Dissipation  
50μA No-Load Supply Current  
Applications  
Industrial Sensors and Process Control  
High-Voltage Linear Regulator Replacement  
Battery-Powered Equipment  
PFM Enables Enhanced Light-Load Efficiency  
2.5μA Shutdown Current  
Bootstrap Bias Input for Improved Efficiency  
Reliable Operation in Adverse Environments  
HVAC and Building Control  
• Peak Current-Limit Protection  
• Built-In Output-Voltage Monitoring with RESET  
• Resistor Programmable EN/UVLO Threshold  
• Monotonic Startup into Prebiased Load  
• Overtemperature Protection  
Ordering Information appears at end of data sheet.  
• High Industrial -40°C to +125°C Ambient Operating  
Temperature Range / -40°C to +150°C Junction  
Temperature Range  
Simplified Application Circuit  
L1  
V
OUT  
V
IN  
IN  
LX  
C1  
C3  
R1  
R2  
GND  
EN/UVLO  
MAX17670/  
MAX17671  
FBBUCK  
RESET  
INL  
OUTL  
V
OUTL  
C2  
MODE/SYNC  
RT  
EP  
19-100364; Rev 2; 4/20  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Absolute Maximum Ratings  
IN to GND..............................................................-0.3V to +70V  
LX, EN/UVLO to GND....................................-0.3V to IN + 0.3V  
RT, OUTL, MODE/SYNC, RESET to GND .............-0.3V to +6V  
Linear Regulator and Step-Down Converter  
Output Short-Circuit Duration................................Continuous  
Continuous Power Dissipation  
INL to GND.......................-5.5V to lower of (V + 0.6V) or +6V  
(T = +70°C, derate 24.4mW/°C above +70°C.).......1952mW  
IN  
A
FBBUCK to GND (MAX17670, MAX17671)............-5.5V to +6V  
FBBUCK to GND (MAX17672) ...............................-0.3V to +6V  
INL to FBBUCK ..........................................................-5V to +6V  
Operating Temperature Range (Note 1)........... -40°C to +125°C  
Junction Temperature....................................... -40°C to +150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Note 1: Junction temperature greater than +125°C degrades operating lifetimes.  
Package Information  
PACKAGE TYPE: 10-PIN TDFN  
Package Code  
T1033+1C  
21-0137  
90-0003  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD:  
Junction to Ambient (θ  
)
41°C/W  
9°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Electrical Characteristics  
(V = V  
= 24V, V = 5V, V  
= 1.05 x V  
, C  
= 2.2μF to GND, V  
= 0V, RT = LX = MODE/SYNC =  
GND  
IN  
EN/UVLO  
INL  
FBBUCK  
FBBUCK-REG OUTL  
RESET = unconnected, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
A
A
to GND, unless otherwise noted.) (Note 2)  
PARAMETER  
INPUT SUPPLY (IN)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Input-Voltage Range  
V
4
60  
V
IN  
Input-Shutdown Current  
I
V
V
= 0V, T = +25°C  
2.5  
70  
4.5  
μA  
IN-SH  
EN/UVLO  
FBBUCK  
A
I
Q-PFM  
= 0.95 x V  
, Normal  
, Normal  
FBBUCK-REG  
= 0V  
1336  
1000  
switching mode, V  
Input-Quiescent Current  
μA  
INL  
I
Q-PWM  
V
= 0.95 x V  
FBBUCK-REG  
FBBUCK  
switching mode, V  
= 5V  
INL  
ENABLE/UVLO (EN/UVLO)  
V
V
V
V
rising  
falling  
1.19  
1.068  
-100  
1.215  
1.09  
1.24  
1.112  
100  
ENR  
EN/UVLO  
EN/UVLO  
EN/UVLO  
EN/UVLO Threshold  
V
V
ENF  
EN/UVLO Input-Leakage Current  
EXTERNAL BIAS (INL)  
I
= 1.3V, T = 25°C  
nA  
ENLKG  
A
INL Switch Over Voltage  
V
INL rising  
2.725  
3.21  
3
3.21  
5.5  
V
V
V
INL_TH  
INL Switch Over Hysteresis  
INL Operating Voltage Range  
V
0.17  
INL_HYS  
HIGH-SIDE MOSFET AND LOW-SIDE MOSFET DRIVER  
High-Side pMOS  
On-Resistance  
R
I
I
= 0.1A (Sourcing)  
2.7  
5.1  
2.7  
+1  
Ω
Ω
DS-ONH  
LX  
LX  
Low-Side nMOS  
On-Resistance  
R
= 0.1A (Sinking)  
= 0V, V = (V  
1.33  
DS-ONL  
LX_LKG  
V
+1V) to (V - 1V),  
IN  
EN  
LX  
GND  
LX-Leakage Current  
I
-1  
μA  
T = 25°C  
A
SOFT-START  
Soft-Start Time  
t
4.4  
5.1  
5.8  
ms  
SS1  
STEP-DOWN CONVERTER FEEDBACK (FBBUCK)  
MODE/SYNC = GND, MAX17670  
MODE/SYNC = unconnected, MAX17670  
MODE/SYNC = GND, MAX17671  
MODE/SYNC = unconnected, MAX17671  
MODE/SYNC = GND, MAX17672  
MODE/SYNC = unconnected, MAX17672  
MAX17670, MAX17671  
3.216  
3.216  
4.887  
3.3  
3.35  
5
3.365  
3.425  
5.087  
V
FBBUCK-  
REG  
FBBUCK Regulation Voltage  
V
4.887 5.075 5.188  
0.782 0.8 0.814  
0.782 0.812 0.830  
10  
μA  
FBBUCK Input-Bias Current  
I
FBBUCK  
MAX17672  
-100  
100  
nA  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Electrical Characteristics (continued)  
(V = V  
= 24V, V = 5V, V  
= 1.05 x V  
, C  
= 2.2μF to GND, V  
= 0V, RT = LX = MODE/SYNC =  
GND  
IN  
EN/UVLO  
INL  
FBBUCK  
FBBUCK-REG OUTL  
RESET = unconnected, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
A
A
to GND, unless otherwise noted.) (Note 2)  
PARAMETER  
CURRENT LIMIT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Peak Current-Limit Threshold  
I
245  
65  
295  
105  
1
345  
145  
mA  
mA  
mA  
PEAK-LIMIT  
MODE/SYNC = GND  
Sink Current-Limit Threshold  
I
SINK-LIMIT  
PFM Current-Limit Threshold  
OSCILLATOR (RT)  
I
55  
92  
120  
PFM  
Switching Frequency Accuracy  
Switching Frequency  
f
= 200kHz to 2.2MHz  
-11  
+11  
680  
%
SW  
f
536  
610  
SW  
kHz  
Switching Frequency  
Adjustable Range  
See the Switching Frequency (RT)  
section for details  
200  
2200  
TIMING  
Minimum On-Time  
Minimum Off-Time  
t
75  
55  
128  
75  
ns  
ns  
ON_MIN  
t
40  
48  
OFF_MIN  
Minimum Off-Time during SYNC  
Mode of Operation  
t
OFF_  
MIN(SYNC)  
75  
51  
100  
ns  
HICCUP Timeout  
ms  
MODE/SYNC  
Mode = PFM  
Mode = PWM  
32  
MODE/SYNC Internal  
Pullup Resistor  
R
kΩ  
MODE  
1100  
1.1 x  
1.4 x  
f
SW  
SYNC Input Frequency  
f
SW  
Minimum SYNC Pulse Width  
100  
2.1  
ns  
V
V
IH  
SYNC Threshold  
V
0.8  
IL  
RESET  
RESET Output-Level Low  
400  
100  
mV  
nA  
I
= 10mA  
RESET  
-100  
92  
T
= +25°C, V  
= 5.5V  
RESET Output-Leakage Current  
A
RESET  
FBBUCK Threshold for RESET  
Rising  
V
FBBUCK rising (Note 3)  
FBBUCK falling (Note 3)  
OUTL rising (Note 3)  
OUTL falling (Note 3)  
95  
92  
98  
95  
FBBUCKR  
FBBUCK Threshold for RESET  
Falling  
V
89  
91.5  
88  
FBBUCKF  
%
OUTL Threshold for RESET  
Rising  
V
94.5  
91  
97.5  
94  
OUTLR  
OUTL Threshold for RESET  
Falling  
V
OUTLF  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Electrical Characteristics (continued)  
(V = V  
= 24V, V = 5V, V  
= 1.05 x V  
, C  
= 2.2μF to GND, V  
= 0V, RT = LX = MODE/SYNC =  
GND  
IN  
EN/UVLO  
INL  
FBBUCK  
FBBUCK-REG OUTL  
RESET = unconnected, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
A
A
to GND, unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
RESET Delay after FBBUCK  
See Reset Output (RESET) section  
for details  
t
2.1  
ms  
and V  
Reach 95%  
D
OUTL  
Regulation  
LINEAR REGULATOR INPUT SUPPLY (INL)  
Linear Regulator Input-Voltage  
Range  
V
2.35  
2.11  
5.5  
V
INL  
I
V
= 0A, V  
= 5, V  
= 0.95 ×  
OUTL  
INL  
FFBUCK  
710  
, Normal Switching mode.  
Linear Regulator Input-Quiescent  
Current  
FFBUCK-REG  
I
μA  
INL  
I
= 0A, V  
= 2.5  
35  
2.18  
50  
OUTL  
INL  
Linear Regulator UVLO  
V
2.25  
V
INL_UVLO  
Linear Regulator UVLO  
Hysteresis  
V
INL_  
UVLO(HYS)  
mV  
LINEAR REGULATOR OUTPUT VOLTAGE (OUTL)  
V
V
= 2.8V, I  
= 10mA,  
INL  
OUTL  
-1.5  
+1.5  
= 1.2V, 1.5V, 1.8V  
OUTL  
OUTL Accuracy  
Load Regulation  
%
%
V
V
= V  
+ 0.8V, I  
= 10mA,  
INL  
OUTL  
OUTL  
-1.33  
+1.33  
= 2.5V, 3.0V, 3.3V  
OUTL  
0.1mA < I  
V
< 50mA. V  
= 2.8V for  
OUTL  
INL  
= 1.2V, 1.5V, 1.8V; V  
= V  
OUTL  
0.5  
0.9  
OUTL  
INL  
+0.8V for V  
= 2.5V, 3.0V, 3.3V  
OUTL  
Dropout Voltage  
V
V
= V , I = 50mA (Note 4)  
OUTL OUTL  
200  
84  
400  
mV  
mA  
ms  
DO  
INL  
V
V
= 70% of nominal value,  
OUTL  
Linear Regulator Current Limit  
I
55  
LDO_LIM  
= V  
+ 2V  
INL  
OUTL  
Soft-Start Time  
t
1.1  
SS2  
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
Temperature rising  
160  
20  
°C  
°C  
Note 2: All the Electrical Specifications are 100% production tested at T = +25°C. Specifications over the operating temperature  
A
range are guaranteed by design and characterization.  
Note 3: Specifications are in respect to regulation voltage.  
Note 4: Applicable for linear regulators with nominal output voltages of 2.5V, 3.0V, and 3.3V.  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Typical Operating Characteristics  
(V = 24V, V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
IN  
GND  
A
A
to GND, unless otherwise noted.)  
MAX17671F, 5V OUTPUT  
LOAD AND LINE REGULATION  
FIGURE 4 CIRCUIT  
MAX17671F, 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 4 CIRCUIT  
MAX17671F, 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
toc03  
5.04  
FIGURE 4 CIRCUIT  
toc02  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
toc01  
100  
90  
80  
5.03  
5.02  
5.01  
5.00  
VIN = 36V  
VIN = 12V  
VIN = 60V  
VIN = 36V  
VIN = 60V  
70  
VIN = 48V  
VIN = 24V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 6.5V  
60  
VIN = 60V  
VIN = 12V  
VIN = 6.5V  
50  
40  
30  
20  
10  
0
VIN = 48V  
VIN = 24V  
VIN = 6.5V  
0.00  
0.05  
0.10  
0.15  
0.001  
0.010  
LOAD CURRENT (A)  
0.100  
0.00  
0.05  
0.10  
0.15  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
CONDITIONS: PWM MODE, fSW = 200kHz  
CONDITIONS: PFM MODE, fSW = 200kHz  
CONDITIONS: PWM MODE, fSW = 200kHz  
MAX17671F, 5V OUTPUT  
LOAD AND LINE REGULATION  
FIGURE 4 CIRCUIT  
MAX17670E, 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 5 CIRCUIT  
toc06  
MAX17670E, 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 5 CIRCUIT  
toc04  
5.15  
5.10  
5.05  
5.00  
4.95  
toc05  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 6.5V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
IN = 60V  
VIN = 36V  
VIN = 60V  
VIN = 48V  
VIN = 60V  
VIN = 24V  
VIN = 12V  
VIN = 4.5V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 4.5V  
V
0.00  
0.05  
0.10  
0.15  
0.001  
0.010  
LOAD CURRENT (A)  
CONDITIONS: PFM MODE, fSW = 200kHz  
0.100  
0.00  
0.05  
LOAD CURRENT (A)  
CONDITIONS: PFM MODE, fSW = 200kHz  
0.10  
0.15  
LOAD CURRENT (A)  
CONDITIONS: PWM MODE, fSW = 200kHz  
MAX17670E, 3.3V OUTPUT  
LOAD AND LINE REGULATION  
FIGURE 5 CIRCUIT  
MAX17670E, 3.3V OUTPUT  
LOAD AND LINE REGULATION  
FIGURE 5 CIRCUIT  
toc08  
toc07  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.45  
3.40  
3.35  
3.30  
3.25  
V
IN = 4.5V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 12V  
VIN = 60V  
VIN = 36V  
VIN = 48V  
VIN = 60V  
VIN = 48V  
VIN = 24V  
VIN = 4.5V  
0.00  
0.05  
LOAD CURRENT (A)  
CONDITIONS: PWM MODE, fSW = 200kHz  
0.10  
0.15  
0.00  
0.05  
LOAD CURRENT (A)  
CONDITIONS: PFM MODE, fSW = 200kHz  
0.10  
0.15  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
IN  
GND  
A
A
to GND, unless otherwise noted.)  
MAX17671F, 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 6 CIRCUIT  
MAX17671F, 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 6 CIRCUIT  
MAX17671F, 5V OUTPUT  
LOAD AND LINE REGULATION  
FIGURE 6 CIRCUIT  
toc10  
toc11  
toc09  
5.05  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
5.04  
5.03  
5.02  
5.01  
VIN = 12V  
VIN = 60V  
VIN = 36V  
VIN = 36V  
60  
VIN = 48V  
VIN = 48V  
VIN = 60V  
V
IN = 24V  
VIN = 12V  
VIN = 6.5V  
50  
40  
30  
20  
10  
0
VIN = 60V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 6.5V  
VIN = 48V  
VIN = 24V  
VIN = 6.5V  
0.00  
0.05  
0.10  
0.15  
0.00  
0.05  
0.10  
0.15  
0.001  
0.010  
LOAD CURRENT (A)  
0.100  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
CONDITIONS: PWM MODE, fSW = 600kHz  
CONDITIONS: PWM MODE, fSW = 600kHz  
CONDITIONS: PFM MODE, fSW = 600kHz  
MAX17670E, 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 7 CIRCUIT  
MAX17670E, 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 7 CIRCUIT  
MAX17671F, 5V OUTPUT  
LOAD AND LINE REGULATION  
FIGURE 6 CIRCUIT  
toc12  
toc13  
toc14  
5.15  
5.10  
5.05  
5.00  
4.95  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 6.5V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 36V  
VIN = 42V  
VIN = 48V  
VIN = 60V  
VIN = 42V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 4.5V  
VIN = 24V  
VIN = 12V  
VIN = 4.5V  
0.00  
0.05  
0.10  
0.15  
0.00  
0.05  
LOAD CURRENT (A)  
CONDITIONS: PWM MODE, fSW = 600kHz  
0.10  
0.15  
0.001  
0.010  
0.100  
LOAD CURRENT (A)  
CONDITIONS: PFM MODE, fSW = 600kHz  
LOAD CURRENT (A)  
CONDITIONS: PFM MODE, fSW = 600kHz  
MAX17670E, 3.3V OUTPUT  
LOAD AND LINE REGULATION  
FIGURE 7 CIRCUIT  
MAX17670E, 3.3V OUTPUT  
LOAD AND LINE REGULATION  
FIGURE 7 CIRCUIT  
toc15  
toc16  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.45  
3.40  
3.35  
3.30  
3.25  
VIN = 36V  
VIN = 12V  
VIN = 4.5V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 42V  
VIN = 42V  
VIN = 24V  
VIN = 4.5V  
0.00  
0.05  
LOAD CURRENT (A)  
CONDITIONS: PWM MODE, fSW = 600kHz  
0.10  
0.15  
0.00  
0.05  
0.10  
0.15  
LOAD CURRENT (A)  
CONDITIONS: PFM MODE, fSW = 600kHz  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
IN  
GND  
A
A
to GND, unless otherwise noted.)  
MAX17672C, 5V OUTPUT  
LOAD AND LINE REGULATION  
FIGURE 8 CIRCUIT  
MAX17672C, 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 8 CIRCUIT  
MAX17672C, 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 8 CIRCUIT  
toc17  
toc19  
toc18  
5.04  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
5.03  
5.02  
5.01  
5.00  
4.99  
VIN = 12V  
VIN = 60V  
VIN = 36V  
VIN = 36V  
60  
VIN = 48V  
VIN = 48V  
VIN = 60V  
V
IN = 24V  
VIN = 60V  
50  
40  
30  
20  
10  
0
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 6.5V  
VIN = 12V  
VIN = 6.5V  
VIN = 48V  
VIN = 24V  
VIN = 6.5V  
0.001  
0.010  
LOAD CURRENT (A)  
CONDITIONS: PFM MODE, fSW = 600kHz  
0.100  
0.00  
0.05  
0.10  
0.15  
0.00  
0.05  
0.10  
0.15  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
CONDITIONS: PWM MODE, fSW = 600kHz  
CONDITIONS: PWM MODE, fSW = 600kHz  
MAX17672C, 5V OUTPUT  
LOAD AND LINE REGULATION  
FIGURE 8 CIRCUIT  
MAX17671F, 5V OUTPUT  
NO-LOAD SUPPLY CURRENT vs.  
INPUT VOLTAGE, FIGURE 6 CIRCUIT  
MAX17671F, 5V OUTPUT  
SHUTDOWN CURRENT vs.  
INPUT VOLTAGE, FIGURE 6 CIRCUIT  
toc20  
toc21  
toc22  
5.15  
5.10  
5.05  
5.00  
4.95  
250  
200  
150  
100  
50  
8
6
4
2
0
VIN = 6.5V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 60V  
0
0.00  
0.05  
0.10  
0.15  
0
10  
20  
INPUT VOLTAGE (V)  
CONDITIONS: PFM MODE, fSW = 600kHz  
30  
40  
50  
60  
0
10  
20  
INPUT VOLTAGE (V)  
CONDITIONS: PFM MODE, fSW = 600kHz  
30  
40  
50  
60  
LOAD CURRENT (A)  
CONDITIONS: PFM MODE, fSW = 600kHz  
MAX17671F, 5V OUTPUT  
LOAD TRANSIENT BETWEEN 0mA AND 50mA  
MAX17671F, 5V OUTPUT  
LOAD TRANSIENT BETWEEN 100mA AND 150mA  
FIGURE 4 CIRCUIT  
FIGURE 4 CIRCUIT  
toc23  
toc24  
VOUT(AC)  
VOUT(AC)  
100mV/div  
100mV/div  
IOUT  
IOUT  
50mA/div  
50mA/div  
100µs/div  
100µs/div  
CONDITIONS: PWM MODE, fSW = 200kHz  
CONDITIONS: PWM MODE, fSW = 200kHz  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
IN  
GND  
A
A
to GND, unless otherwise noted.)  
MAX17671F, 5V OUTPUT  
LOAD TRANSIENT BETWEEN 1mA AND 50mA  
MAX17670E, 3.3V OUTPUT  
LOAD TRANSIENT BETWEEN 0mA AND 50mA  
MAX17670E, 3.3V OUTPUT  
LOAD TRANSIENT BETWEEN 100mA AND 150mA  
FIGURE 4 CIRCUIT  
FIGURE 5 CIRCUIT  
FIGURE 5 CIRCUIT  
toc26  
toc25  
toc27  
VOUT(AC)  
100mV/div  
VOUT(AC)  
VOUT(AC)  
100mV/div  
100mV/div  
IOUT  
50mA/div  
IOUT  
IOUT  
50mA/div  
50mA/div  
100µs/div  
400µs/div  
100µs/div  
CONDITIONS: PWM MODE, fSW = 200kHz  
CONDITIONS: PFM MODE, fSW = 200kHz  
CONDITIONS: PWM MODE, fSW = 200kHz  
MAX17671F, 5V OUTPUT  
LOAD TRANSIENT BETWEEN 100mA AND 150mA  
MAX17670E, 3.3V OUTPUT  
LOAD TRANSIENT BETWEEN 1mA AND 50mA  
MAX17671F, 5V OUTPUT  
LOAD TRANSIENT BETWEEN 0mA AND 50mA  
FIGURE 6 CIRCUIT  
FIGURE 5 CIRCUIT  
FIGURE 6 CIRCUIT  
toc30  
toc29  
toc28  
VOUT(AC)  
100mV/div  
VOUT(AC)  
VOUT(AC)  
100mV/div  
100mV/div  
IOUT  
50mA/div  
IOUT  
50mA/div  
IOUT  
50mA/div  
100µs/div  
200µs/div  
CONDITIONS: PWM MODE, fSW = 600kHz  
100µs/div  
CONDITIONS: PFM MODE, fSW = 200kHz  
CONDITIONS: PWM MODE, fSW = 600kHz  
MAX17670E, 3.3V OUTPUT  
LOAD TRANSIENT BETWEEN 0mA AND 50mA  
MAX17671F, 5V OUTPUT  
LOAD TRANSIENT BETWEEN 1mA AND 50mA  
FIGURE 7 CIRCUIT  
FIGURE 6 CIRCUIT  
toc32  
toc31  
VOUT(AC)  
VOUT(AC)  
100mV/div  
100mV/div  
IOUT  
50mA/div  
IOUT  
50mA/div  
100µs/div  
100µs/div  
CONDITIONS: PFM MODE, fSW = 600kHz  
CONDITIONS: PWM MODE, fSW = 600kHz  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
IN  
GND  
A
A
to GND, unless otherwise noted.)  
MAX17670E, 3.3V OUTPUT  
LOAD TRANSIENT BETWEEN 100mA AND 150mA  
MAX17670E, 3.3V OUTPUT  
LOAD TRANSIENT BETWEEN 1mA AND 50mA  
MAX17672C, 5V OUTPUT  
LOAD TRANSIENT BETWEEN 0mA AND 50mA  
FIGURE 7 CIRCUIT  
FIGURE 7 CIRCUIT  
FIGURE 8 CIRCUIT  
toc35  
toc33  
toc34  
VOUT(AC)  
VOUT(AC)  
100mV/div  
100mV/div  
VOUT(AC)  
100mV/div  
50mA/div  
IOUT  
IOUT  
IOUT  
50mA/div  
50mA/div  
100µs/div  
100µs/div  
100µs/div  
CONDITIONS: PWM MODE, fSW = 600kHz  
CONDITIONS: PWM MODE, fSW = 600kHz  
CONDITIONS: PFM MODE, fSW = 600kHz  
MAX17672C, 5V OUTPUT  
LOAD TRANSIENT BETWEEN 100mA AND 150mA  
MAX17672C, 5V OUTPUT  
LOAD TRANSIENT BETWEEN 1mA AND 50mA  
FIGURE 8 CIRCUIT  
FIGURE 8 CIRCUIT  
toc36  
toc37  
VOUT(AC)  
100mV/div  
VOUT(AC)  
100mV/div  
50mA/div  
IOUT  
IOUT  
50mA/div  
100µs/div  
100µs/div  
CONDITIONS: PWM MODE, fSW = 600kHz  
CONDITIONS: PFM MODE, fSW = 600kHz  
MAX17671F, 5V OUTPUT  
STEADY STATE AT 0mA LOAD  
FIGURE 6 CIRCUIT  
MAX17671F, 5V OUTPUT  
STEADY STATE AT 150mA LOAD  
FIGURE 6 CIRCUIT  
toc39  
toc38  
VOUT(AC)  
VOUT(AC)  
20mV/div  
20mV/div  
VLX  
VLX  
10V/div  
10V/div  
ILX  
100mA/div  
ILX  
100mA/div  
1µs/div  
1µs/div  
CONDITIONS: PWM MODE, fSW = 600kHz  
CONDITIONS: PWM MODE, fSW = 600kHz  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
IN  
GND  
A
A
to GND, unless otherwise noted.)  
MAX17671F, 5V OUTPUT  
SOFT-START THROUGH EN/UVLO  
FIGURE 6 CIRCUIT  
MAX17671F, 5V OUTPUT  
STEADY STATE AT 10mA LOAD  
FIGURE 6 CIRCUIT  
MAX17671F, 5V OUTPUT  
SHUTDOWN THROUGH EN/UVLO  
FIGURE 6 CIRCUIT  
toc41  
toc42  
toc40  
VOUT(AC)  
100mV/div  
VEN/UVLO  
VEN/UVLO  
5V/div  
5V/div  
VOUT  
2V/div  
VOUT  
ILX  
VLX  
10V/div  
2V/div  
100mA/div  
ILX  
100mA/div  
5V/div  
ILX  
VRESET  
VRESET  
5V/div  
100mA/div  
100µs/div  
1ms/div  
10µs/div  
CONDITIONS: PWM MODE, fSW = 600kHz, 33Ω RESISTIVE LOAD,  
RESET IS PULLED UP TO VOUT WITH A 10kΩ RESISTOR  
CONDITIONS: PFM MODE, fSW = 600kHz  
CONDITIONS: PWM MODE, fSW = 600kHz, 33Ω RESISTIVE LOAD,  
RESET IS PULLED UP TO VOUT WITH A 10kΩ RESISTOR  
MAX17670E, 3.3V OUTPUT  
SOFT-START THROUGH EN/UVLO  
MAX17671F, 5V OUTPUT  
SOFT-START WITH PREBIAS VOLTAGE OF 2.5V  
FIGURE 7 CIRCUIT  
FIGURE 6 CIRCUIT  
toc44  
toc43  
VEN/UVLO  
VEN/UVLO  
5V/div  
5V/div  
2V/div  
VOUT  
ILX  
2V/div  
VOUT  
100mA/div  
ILX  
100mA/div  
5V/div  
VRESET  
5V/div  
VRESET  
1ms/div  
1ms/div  
CONDITIONS: PWM MODE, fSW = 600kHz, 1kΩ RESISTIVE LOAD,  
RESET IS PULLED UP TO VOUT WITH A 10kΩ RESISTOR  
CONDITIONS: PWM MODE, fSW = 600kHz, 22Ω RESISTIVE LOAD,  
RESET IS PULLED UP TO VOUT WITH A 10kΩ RESISTOR  
MAX17671F, 5V OUTPUT  
EXTERNAL CLOCK SYNCHRONIZATION  
WITH 840kHz, FIGURE 6 CIRCUIT  
toc46  
MAX17672C, 5V OUTPUT  
SOFT-START THROUGH EN/UVLO  
FIGURE 8 CIRCUIT  
toc45  
VSYNC  
VEN/UVLO  
5V/div  
5V/div  
2V/div  
VOUT  
VOUT  
50mV/div  
20V/div  
ILX  
VLX  
100mA/div  
5V/div  
VRESET  
ILX  
200mA/div  
10µs/div  
1ms/div  
CONDITIONS: fSW = 600kHz, 150mA LOAD  
CONDITIONS: PWM MODE, fSW = 600kHz, 33Ω RESISTIVE LOAD,  
RESET IS PULLED UP TO VOUT WITH A 10kΩ RESISTOR  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
IN  
GND  
A
A
to GND, unless otherwise noted.)  
MAX17671F, 5V OUTPUT  
OVERLOAD PROTECTION  
FIGURE 6 CIRCUIT  
MAX17671F, 5V OUTPUT  
CLOSED LOOP BODE PLOT  
FIGURE 4 CIRCUIT  
MAX17670E, 3.3V OUTPUT  
CLOSED LOOP BODE PLOT  
FIGURE 5 CIRCUIT  
toc47  
toc48  
toc49  
40  
20  
0
100  
50  
40  
20  
0
100  
50  
PHASE  
PHASE  
1V/div  
0
VOUT  
0
GAIN  
GAIN  
-20  
-40  
-50  
-100  
GAIN CROSSOVER  
FREQUENCY = 12.2kHz  
PHASE MARGIN = 59.7°  
-20  
-40  
-50  
-100  
GAIN CROSSOVER  
FREQUENCY = 18.2kHz  
PHASE MARGIN = 62.9°  
ILX  
200mA/div  
10ms/div  
CONDITIONS: fSW = 600kHz  
1k  
10k  
100k  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
CONDITIONS: PWM MODE, f = 200kHz, 150mA LOAD  
CONDITIONS: PWM MODE, fSW = 200kHz, 150mA LOAD  
SW  
MAX17670E, 3.3V OUTPUT  
CLOSED LOOP BODE PLOT  
MAX17672C, 5V OUTPUT  
CLOSED LOOP BODE PLOT  
MAX17671F, 5V OUTPUT  
CLOSED LOOP BODE PLOT  
FIGURE 8 CIRCUIT  
FIGURE 7 CIRCUIT  
FIGURE 6 CIRCUIT  
toc52  
toc51  
toc50  
40  
20  
0
100  
80  
60  
40  
20  
40  
20  
0
100  
80  
60  
40  
20  
40  
100  
80  
60  
40  
20  
PHASE  
PHASE  
PHASE  
20  
0
GAIN  
GAIN  
GAIN  
-20  
-40  
GAIN CROSSOVER  
FREQUENCY = 23.8kHz  
PHASE MARGIN = 59.4°  
-20  
-40  
-20  
GAIN CROSSOVER  
FREQUENCY = 29.5kHz  
PHASE MARGIN = 61.7°  
GAIN CROSSOVER  
FREQUENCY = 23.4kHz  
PHASE MARGIN = 61.5°  
-40  
1k  
10k  
100k  
1k  
10k  
100k  
1k  
10k  
100k  
FREQUENCY (Hz)  
CONDITIONS: PWM MODE, fSW = 600kHz, 150mA LOAD  
FREQUENCY (Hz)  
CONDITIONS: PWM MODE, fSW = 600kHz, 150mA LOAD  
FREQUENCY (Hz)  
CONDITIONS: PWM MODE, fSW = 600kHz, 150mA LOAD  
MAX17671F, 3.3V LINEAR REGULATOR  
LOAD TRANSIENT BETWEEN 1mA AND 25mA  
MAX17671F, 3.3VLINEAR REGULATOR  
DROPOUT VOLTAGE vs. LOAD CURRENT  
toc53  
MAX17671F, 3.3VLINEAR REGULATOR  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
FIGURE 6 CIRCUIT  
toc54  
toc55  
0.24  
3.6  
0.20  
0.16  
0.12  
0.08  
0.04  
0.00  
3.3  
V
OUTL(AC)  
50mV/div  
20mA/div  
LOAD = 1mA  
3.0  
LOAD = 5mA  
LOAD = 10mA  
2.7  
LOAD = 25mA  
2.4  
LOAD = 50mA  
I
OUTL  
2.1  
1.8  
2.35  
2.88  
3.41  
INPUT VOLTAGE (V)  
CONDITIONS: INL CONNECTED TO EXTERNAL SUPPLY  
3.94  
4.47  
5.00  
40µs/div  
0
10  
20  
30  
40  
50  
LOAD CURRENT (mA)  
CONDITIONS: INL CONNECTED TO V , PWM MODE  
OUT  
CONDITIONS: INL CONNECTED TO EXTERNAL SUPPLY  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
IN  
GND  
A
A
to GND, unless otherwise noted.)  
MAX17671F, 3.3V LINEAR REGULATOR  
LOAD TRANSIENT BETWEEN 25mA AND 50mA  
MAX17671F, 3.3VLINEAR REGULATOR  
START-UP FROM EN/UVLO  
FIGURE 6 CIRCUIT  
MAX17671F, 3.3V OUTPUT LINEAR REGULATOR,  
POWER SUPPLY REJECTION RATIO vs. FREQUENCY  
70  
FIGURE 6 CIRCUIT  
toc58  
toc56  
toc57  
60  
50  
VOUTL(AC)  
20mV/div  
VEN/UVLO  
5V/div  
2V/div  
VINL = 5V  
40  
VINL = VOUTL  
30  
20  
VOUTL  
IOUTL  
2V/div  
VINL = 4.3V  
10  
0
IOUTL  
20mA/div  
50mA/div  
100  
1k  
10k  
100k  
1Meg  
1ms/div  
20µs/div  
FREQUENCY (Hz)  
CONDITIONS: INL CONNECTED TO VOUT, PWM MODE  
CONDITIONS: fSW = 600kHz, 66Ω RESISTIVE LOAD,  
INL CONNECTED TO VOUT  
CONDITIONS: LOAD = 50mA, INL CONNECTED TO  
EXTERNAL SUPPLY  
MAX17671F, STEP-DOWN CONVERTER LOAD TRANSIENT  
ON 3.3V LINEAR REGULATOR OUTPUT,  
MAX17671F, 3.3V LINEAR REGULATOR  
OUTPUT VOLTAGE ACCURACY vs. TEMPERATURE,  
FIGURE 4 CIRCUIT  
MAX17671F, STEP-DOWN CONVERTER LOAD TRANSIENT  
ON 3.3V LINEAR REGULATOR OUTPUT,  
FIGURE 4 CIRCUIT  
FIGURE 4 CIRCUIT  
toc60  
toc59  
toc61  
3.34  
3.32  
VOUTL(AC)  
VOUTL(AC)  
20mV/div  
LOAD = 1mA  
LOAD = 100µA  
20mV/div  
3.30  
3.28  
3.26  
3.24  
VOUT(AC)  
200mV/div  
VOUT(AC)  
200mV/div  
100mA/div  
LOAD = 10mA  
LOAD = 50mA  
IOUT  
100mA/div  
IOUT  
400µs/div  
-40  
-10  
20  
50  
80  
110  
400µs/div  
TEMPERATURE (ºC)  
CONDITIONS: fSW = 200kHz, PWM MODE, IOUTL = 50mA,  
STEP-DOWN CONVERTER LOAD STEP BETWEEN 0mA AND 100mA  
CONDITIONS: fSW = 200kHz, PFM MODE, IOUTL = 1mA,  
STEP-DOWN CONVERTER LOAD STEP BETWEEN 0mA AND 100mA  
CONDITIONS: PWM MODE, INL CONNECTED TO V  
OUT  
RADIATED EMISSIONS PLOT  
5V OUTPUT, 150mA LOAD CURRENT  
toc63  
toc62  
70  
70  
CISPR22 CLASS B QP LIMIT  
60  
60  
50  
40  
30  
CISPR22 CLASS B AVG LIMIT  
50  
40  
30  
CISPR22 CLASS B QP LIMIT  
VERTICAL SCAN  
20  
10  
PEAK EMISSIONS  
AVERAGE EMISSIONS  
20  
10  
0
0
HORIZONTAL SCAN  
-10  
30  
1
10  
30  
1000  
100  
FREQUENCY (MHz)  
0.15  
FREQUENCY (MHz)  
MEASURED ON MAX17672CEVKIT#  
with L2 = SHORT, C10 = OPEN  
MEASURED ON MAX17672CEVKIT# with  
L2 = 8.2µH, C10 = 1µF/100V/X7R/1206  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Pin Configuration  
TOP VIEW  
IN  
1
10 LX  
9
8
7
6
GND  
EN/UVLO  
RT  
2
3
4
5
MAX17670  
MAX17671  
MAX17672  
MODE/SYNC  
RESET  
FBBUCK  
OUTL  
EP  
INL  
10-PIN TDFN 3mm x 3mm  
Pin Description  
PIN  
NAME  
FUNCTION  
1
IN  
Power Supply Input of the Step-Down Converter. Decouple the IN pin to GND with an X7R 1μF ceramic capacitor.  
Enable/Undervoltage Lockout Input. Drive EN/UVLO high to enable the output voltage. Connect to the midpoint  
of a resistor divider from IN to GND to set the input voltage at which the device turns ON. The allowed minimum  
turn ON input voltage is 4V. Pull low to GND for disabling the device. See Setting the Input Undervoltage-Lock-  
out Level section for more details.  
EN/  
UVLO  
2
3
Programmable Switching Frequency Input. Connect a resistor from RT to GND to program the switching fre-  
quency from 200kHz to 2.2MHz. Leave the RT pin unconnected for a default 600kHz switching frequency. See  
the Switching Frequency (RT) section for details.  
RT  
Step-down Converter Feedback Input. For MAX17670 and MAX17671, connect FBBUCK directly to the output  
4
5
FBBUCK node of the step-down converter. For the MAX17672, connect FBBUCK to a resistor-divider between the regu-  
lated buck-voltage node and GND. See the Adjusting the Output Voltage section for details.  
OUTL  
INL  
Linear Regulator Output Pin. Connect at least 2.2μF, 0603 capacitor across OUTL and GND.  
Linear Regulator Power-Supply Input. Connect this pin to the Step-down converter's output capacitor for output  
voltages up to 5.5V. Otherwise, the INL pin should be grounded. INL also acts as a bootstrap input to power up  
internal blocks for improved efficiency. INL switchover occurs only for INL voltages between 3.3V and 5.5V. See  
the Linear Regulator Power-Supply Input (INL) section for details.  
6
Open-Drain Reset Output. Pull up RESET to an external power supply with a resistor. The RESET pin is driven  
low if either FBBUCK voltage or OUTL voltage drops below 92% of their set value and also when  
7
RESET EN/UVLO voltage falls below its threshold value. RESET goes high 2.1ms after FBBUCK and OUTL voltages  
rise above 95% of their set value if INL is above V  
. Else, RESET considers only FBBUCK voltage for  
INL_UVLO  
its high impedance state.  
Mode Selection and External Clock Synchronization Input. Connect the MODE/SYNC pin to the GND pin to en-  
MODE/ able the fixed-frequency PWM operation. Leave MODE/SYNC unconnected for PFM operation. An external clock  
8
9
SYNC  
can be applied to the MODE/SYNC pin to synchronize the internal clock to the external clock.  
See the Mode Selection and External Synchronization (MODE/SYNC) section for details.  
Ground. Connect GND to the power ground plane. Connect all the circuit ground connections together at a  
single point. See the PCB Layout Guidelines Layout Guidelines section.  
GND  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Switching Node of the Step-Down Converter. Connect LX to the switching side of the inductor. LX is high  
impedance when the device is shut down.  
10  
LX  
Exposed Pad. Always connect EP to the GND pin of the IC. Also, connect EP to a large GND plane with  
several thermal vias for best thermal performance. Refer to the MAX17670, MAX17671, and MAX17672 EV kit  
datasheet for an example of the correct method for EP connection and thermal vias.  
EP  
Functional Diagrams  
MAX17670/MAX17671/MAX17672  
INTERNAL  
LINEAR REGULATOR  
IN  
INL  
BIAS SELECT  
POK  
CHIPEN  
V
CC  
EN/UVLO  
PEAK LIMIT  
V
ENR  
CURRENT  
CS  
CURRENT  
SENSE  
AMPLIFIER  
THERMAL  
SHUTDOWN  
SENSE  
LOGIC  
CLK  
RT  
PFM  
PWM/PFM  
CONTROL  
LOGIC  
OSCILLATOR  
SLOPE  
HIGH-SIDE  
DRIVER  
DH  
DL  
R
MODE  
LX  
V
CC  
LOW-SIDE  
DRIVER  
MODE/SYNC  
FBBUCK  
MODE SELECTION  
LOGIC  
*S1  
R1  
R2  
GND  
*S3  
*S2  
CURRENT  
SENSE  
AMPLIFIER  
SINK-LIMIT  
ERROR  
AMPLIFIER  
LOOP  
COMPENSATION  
SLOPE  
SINK CURRENT  
LIMIT  
CS  
INTERNAL  
SOFT-  
START  
CONTROL  
INL  
CHIPEN  
V
FBBUCKR  
FBBUCK  
RESET  
LDO UVLO  
LOGIC  
FET DRIVER WITH  
CURRENT LIMIT  
OUTL  
RESET  
LOGIC  
V
OUTLR  
R3  
R4  
OUTL  
LDO INTERNAL  
SOFT-START  
CONTROL  
V
INL-UVLO  
INL  
* S1: CLOSE, S2, S3: OPEN FOR MAX17672  
* S1: OPEN, S2, S3: CLOSE FOR MAX17670, MAX17671  
R1 = 257.60KΩ, R2 = 82.2KΩ FOR MAX17670  
R1 = 432.43KΩ, R2 = 82.2KΩ FOR MAX17671  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
a falling edge is detected, the change from PFM to PWM  
mode is instantaneous.  
Detailed Description  
MAX17670, MAX17671, and MAX17672 are dual-output  
regulators integrating a 4V to 60V, 150mA high volt-  
age, high efficiency, Himalaya synchronous step-down  
converter with internal MOSFETs and a high PSRR, low  
noise, 2.35V to 5.5V, 50mA linear regulator. MAX17670  
and MAX17671 are the fixed 3.3V and 5V step-down con-  
verter output voltage devices, respectively. MAX17672 is  
the adjustable step-down converter output voltage (0.8V  
PWM operation is useful in frequency-sensitive applica-  
tions and provides fixed switching frequency at all loads.  
However, PWM mode of operation gives lower efficiency  
at light loads compared to PFM mode of operation.  
PFM mode disables negative inductor current and  
additionally skips pulses at light loads for high efficiency.  
In PFM mode, the inductor current is forced to a fixed  
to 90%V ) device. All three devices feature internal  
IN  
peak (I  
) of 92mA (typ) every clock cycle until the  
PFM  
compensation. The feedback-voltage regulation accuracy  
over -40°C to +125°C temperature range for the linear  
regulator is ±1.3% for 3.3V, 3.0V, 2.5V linear regulator  
outputs; ±1.5% for 1.8V, 1.5V, 1.2V linear regulator out-  
puts; and, ±2% for the step-down converter.  
output rises to 102% (typ) of the nominal voltage. Once  
the output reaches 102% (typ) of the nominal voltage,  
both high-side and low-side FETs are turned off and the  
device enters hibernate operation until the load discharg-  
es the output to 101% (typ) of the nominal voltage. Most  
of the internal blocks are turned off in hibernate operation  
to reduce quiescent current. After the output falls below  
101% (typ) of the nominal voltage, the device comes  
out of hibernate operation, turns on all internal blocks,  
and again commences the process of delivering pulses  
of energy to the output until it reaches 102% (typ) of the  
nominal output voltage. The advantage of PFM mode is  
higher efficiency at light loads due to the lower quiescent  
currents in PFM mode.  
The step-down converter uses an internally compensat-  
ed, peak-current mode control architecture. On the rising  
edge of the internal clock, the high-side p-MOSFET turns  
on. An internal error amplifier compares the feedback volt-  
age to a fixed internal reference voltage and generates an  
error voltage. The error voltage is compared to a sum of  
the current-sense voltage and a slope-compensation volt-  
age by a PWM comparator to set the on-time. During the  
on-time of the p-MOSFET, the inductor current ramps up.  
For the remainder of the switching period (off-time), the  
p-MOSFET is kept off and the low-side n-MOSFET turns  
on. During the off-time, the inductor releases the stored  
energy as the inductor current ramps down, providing cur-  
rent to the output.  
The device naturally exits PFM mode when the load cur-  
rent demands inductor peak current above I  
(92mA  
PFM  
typ). The device enters PFM mode when the load current  
is less than half the peak-to-peak inductor ripple current.  
The internal oscillator of the device can be synchro-  
nized to an external clock signal on the MODE/SYNC  
pin. The external synchronization clock frequency must  
The step-down converter has a 5.1ms fixed internal  
soft-start to reduce the inrush currents. An EN/UVLO pin  
allows the user to turn the device on/off at the desired  
input-voltage level greater than 4V. An open-drain  
RESET pin allows output-voltage monitoring.  
be between 1.1 x f  
and 1.4 x f , where f  
is the  
SW  
SW  
SW  
switching frequency programmed by the resistor connect-  
ed to the RT pin. When an external clock is applied to the  
MODE/SYNC pin, the internal clock synchronizes to the  
external clock frequency (from original frequency based  
on the RT pin setting) after 8 external pulses are detected  
within 16 internal clock cycles. Mode of operation can  
Mode Selection and External Synchronization  
(MODE/SYNC)  
The device features a MODE/SYNC pin for selecting  
either forced PWM or PFM mode of operation. If the  
MODE/SYNC pin is grounded, the device operates in a  
constant-frequency PWM mode at all loads. If the MODE/  
SYNC pin is unconnected, the device operates in PFM  
mode at light load. When a rising edge is detected at the  
MODE/SYNC pin, the internal logic changes the mode  
from PWM to PFM after 16 internal clock cycles. When  
be reset with a V power cycle or EN/UVLO cycle. The  
IN  
minimum external clock on-time and off-time pulse-widths  
should be greater than 100ns. See the Mode Selection  
and External Synchronization (MODE/SYNC) section in  
the Electrical Characteristics table for details.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Linear Regulator Power-Supply Input (INL)  
Startup Into a Prebiased Step-Down Convert-  
er Output  
The INL pin can be tied to the step-down converter output  
node for voltages up to 5.5V. Otherwise, INL should be  
connected to GND.  
The device supports monotonic startup into a prebiased  
step-down converter output. When the device starts into a  
prebiased output, both the high-side and low-side switch-  
es are turned off so that the converter does not sink cur-  
rent from the output. High-side and low-side switches do  
not start switching until the PWM comparator commands  
the first PWM pulse, at which switching commences. The  
output voltage is then smoothly ramped up to the target  
The linear regulator operates from 2.35V to 5.5V input-  
voltage range and the linear regulator is enabled when  
V
INL  
is more than V  
.
INL_UVLO  
The INL pin also functions as bootstrap input to power up  
the internal blocks. Switchover to bootstrap input occurs  
when V  
is above V  
. This improves the overall  
INL  
INL_TH  
value in alignment with the internal reference. Such a  
feature is useful in applications where digital integrated  
circuits with multiple rails are powered.  
efficiency, since the internal blocks are being powered  
from the step-down converter output which has the volt-  
age less than the input voltage.  
RESET Output  
Enable/Undervoltage-Lockout Input  
(EN/UVLO) and Soft-Start  
When EN/UVLO voltage increases above V  
The device includes an open-drain RESET output to  
monitor step-down converter output voltage and linear  
regulator output voltage. The RESET pin should be pulled  
up with an external resistor to the desired external power  
supply.  
(1.215V  
ENR  
typ), the device initiates a built-in 5.1ms (typ) soft-start  
period after an internal delay of 400μs (t ), allowing a  
1
monotonic increase of the output voltage to the final set  
value.  
RESET goes to high impedance 2.1ms after both step-  
down converter and linear regulator outputs rise above  
EN/UVLO can be used as an input-voltage UVLO adjust-  
ment input, to set the turn-on/off input-voltage level. The  
allowed minimum turn-on/off input voltage is 4V. See the  
Setting the Input Undervoltage-Lockout Level section  
for details. Driving EN/UVLO low disables both power  
MOSFETs, as well as other internal circuitry, and reduces  
quiescent current to around 2.5μA. If the EN/UVLO pin is  
driven from an external signal source, a series resistance  
of 1kΩ (min) is recommended to be placed between  
the output of the signal source and the EN/UVLO pin to  
reduce voltage ringing on the line.  
95% of their nominal set value, if V  
Otherwise, RESET only considers step-down converter  
output voltage for its high impedance state.  
is above V  
.
INL  
INL_UVLO  
RESET pulls low after 4μs (t ) if one of the either output  
2
voltages fall below 92% of their set value. RESET is  
also driven low when EN/UVLO voltage falls below its  
threshold value. Figure 1 shows the RESET output timing  
diagram.  
V
ENR  
V
ENF  
EN/UVLO  
t
1
V
V
FBBUCKR  
FBBUCKF  
*a  
V
=V  
INL OUT  
t
SS1  
V
V
OUTLR  
OUTLF  
V
OUTL  
t
SS2  
RESET  
t
t
2
t
D
D
t
2
*a : V  
IS POWERED UP AFTER V HAS REACHED V  
INL INL-UVLO  
OUTL  
Figure 1. RESET Output Logic Diagram  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
I
= Maximum load current,  
Switching Frequency (RT)  
OUT(MAX)  
Switching frequency of the device can be programmed  
from 200kHz to 2.2MHz by using a resistor connected  
R
= Maximum DC resistance of the inductor,  
DCR(MAX)  
f
= Maximum switching frequency,  
SW(MAX)  
from RT to GND. The switching frequency (f ) is related  
SW  
t
= Worst case minimum switch off-time (75ns),  
OFF_MIN(MAX)  
to the resistor (R ) connected at the RT pin by the fol-  
RT  
t
= Worst-case minimum switch on-time (128ns),  
lowing equation:  
RRT  
ON_MIN(MAX)  
R
and R  
= Maximum on-state  
DS-ONL(MAX)  
DS-ONH(MAX)  
500  
resistances of the low-side and high-side MOSFETs,  
respectively.  
11.6  
0.045  
0.5  
t
SW  
Overcurrent Protection  
1
The device implements a hysteretic peak current-limit  
protection scheme to protect the internal FETs and induc-  
tor under output short-circuit conditions. When the induc-  
tSW  
=
f
SW  
Where R  
is in kΩ and t  
is in μs. Leave the RT pin  
SW  
tor peak current exceeds I  
(0.295A typ), the  
RT  
PEAK-LIMIT  
unconnected for the default 600kHz switching frequency.  
The value of R in the range of 165kΩ (308kHz) and  
248kΩ (215kHz) is not allowed for user programming to  
ensure proper configuration of the internal adaptive-loop  
compensation scheme. The maximum allowable switch-  
ing frequency for PFM mode of operation is 900kHz.  
high-side switch is turned off and the low-side switch is  
turned on to reduce the inductor current. After the current  
is reduced to 150mA (typ), the high-side switch is turned  
on at the rising edge of the next clock pulse. The device  
RT  
enters hiccup mode if the inductor current hits I  
PEAK-  
for 16 consecutive times. After the hiccup time-out  
LIMIT  
period, the device auto retries to startup and the same  
operation continues until the short is removed and the  
Operating Input-Voltage Range  
The maximum operating input voltage is determined by  
the minimum on-time, and the minimum operating input  
voltage is determined by the maximum duty cycle and  
circuit voltage drops. The minimum and maximum oper-  
ating input voltages for a given output voltage should be  
calculated as follows:  
inductor peak current goes below I  
. Since the  
PEAK-LIMIT  
inductor current is bounded between the two values, the  
inductor current runaway never happens in this scheme.  
Low Side-Switch Protection  
Hysteretic-sink current limit controls the low-side switch  
sink current to I  
50mA.  
(105mA typ) with a ripple of  
SINK-LIMIT  
V
+ ( I  
×(R  
+ R  
))  
OUT  
OUT(MAX)  
DCR(MAX)  
DS-ONL(MAX)  
× f  
SW(MAX)  
VIN(MIN)  
=
1 – t  
OFF_MIN(MAX)  
Thermal-Shutdown Protection  
+ (I  
× (R  
– R  
))  
DS – ONL(MAX)  
OUT(MAX)  
DS-ONH(MAX)  
Thermal-shutdown protection limits the junction tem-  
perature in the IC. This feature is present in PWM mode.  
When the junction temperature exceeds +160°C, an on-  
chip thermal sensor shuts down the device, turns off the  
internal power MOSFETs and the linear regulator, allow-  
ing the device to cool down. The device turns on with  
soft-start after the junction temperature reduced by 20°C.  
V
OUT  
VIN(MAX)  
=
f
× t  
ON_MIN(MAX)  
SW(MAX)  
where:  
= Steady-state output voltage,  
V
OUT  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
D = V  
/V is the duty ratio of the controller,  
OUT IN  
Applications Information  
f
= Switching frequency,  
SW  
Inductor Selection  
Three key inductor parameters must be specified for  
operation with the device: inductance value (L), inductor  
∆V = Allowable input voltage ripple,  
IN  
η = Efficiency  
saturation current (I  
switching frequency and output voltage determine the  
inductor value as follows:  
), and DC resistance (R  
). The  
SAT  
DCR  
In applications where the source is located distant from the  
device input, an electrolytic capacitor should be added in  
paralleltotheceramiccapacitortoprovidenecessarydamp-  
ingforpotentialoscillationscausedbytheinductanceofthe  
longer input power path and input ceramic capacitor.  
8150× V  
OUT  
L=  
f
SW  
Output Capacitor Selection for Step-Down  
Converter  
where:  
L = Inductance in μH,  
= Output voltage  
X7R ceramic output capacitors are recommended for the  
device due to their stability over the temperature in indus-  
trial applications. The output capacitor has two functions.  
It stores sufficient energy to support the output voltage  
under load transient conditions and stabilizes the device’s  
internal control loop. The output capacitor is sized to sup-  
port a step load of 50mA such that the output-voltage  
deviation is less than 3%. The minimum required output  
capacitance can be calculated as shown in Table 1.  
V
OUT  
f
= Switching frequency in kHz  
SW  
Select a low-loss inductor closest to the calculated value  
with acceptable dimensions and having the lowest pos-  
sible DC resistance. The saturation current rating (I  
the inductor must be high enough to ensure that saturation  
can occur only above the peak current-limit (I  
) of  
SAT  
).  
PEAK-LIMIT  
Input Capacitor Selection  
It should be noted that dielectric materials used in ceramic  
capacitors exhibit capacitance loss due to DC bias levels.  
It should be that the derated value of the selected capaci-  
tance meets the minimum required output capacitance.  
The input-filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the circuit’s switching.  
The input capacitor RMS current requirement (I  
defined by the following equation:  
) is  
RMS  
Linear Regulator Output Capacitor Selection  
For stable operation over the full temperature range, use  
a low-ESR 2.2μF X7R ceramic capacitor at the OUTL pin.  
Ceramic capacitors exhibit capacitance and ESR varia-  
tions over temperature. Ensure that the minimum capaci-  
tance under worst-case conditions does not drop below  
1μF for linear regulator output stability.  
V
× V – V  
(
)
OUT  
IN  
OUT  
I
= I  
×
OUT(MAX)  
RMS  
V
IN  
where, I  
is the maximum load current. I  
a maximum value when the input voltage equals twice  
the output voltage (V = 2 x V ), so I  
has  
RMS  
OUT(MAX)  
=
RMS(MAX)  
IN  
OUT  
I
/1.414. Choose an input capacitor that exhibits  
OUT(MAX)  
Table 1. Output Capacitor Selection  
less than +10°C temperature rise at the RMS input cur-  
rent for optimal long-term reliability. Use low-ESR ceramic  
capacitors with high ripple-current capability at the input.  
X7R capacitors are recommended in industrial applica-  
tions for their temperature stability. Calculate the input  
capacitance using the following equation:  
FREQUENCY RANGE  
(KHZ)  
MINIMUM OUTPUT  
CAPACITANCE (μF)  
20  
200 to 215  
V
V
OUT  
I
× D ×(1– D)  
13  
OUT(MAX)  
C
=
308 to 2200  
IN  
η × f  
× ∆V  
OUT  
SW  
IN  
where:  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Setting the Input Undervoltage-Lockout Level  
Linear Regulator Output Voltage Options  
The device offers an adjustable input undervoltage-lock-  
out level. Set the voltage at which the device turns on with  
a resistive voltage-divider connected from IN to GND (see  
Figure 2). Connect the center node of the divider to EN/  
UVLO. Choose R1 to be 3.3MΩ (max) and then calculate  
R2 as follows:  
3.3V (MAX17671 and MAX17672 only), 3.0V, 2.5V, 1.8V,  
1.5V, and 1.2V linear regulator output voltage options are  
supported. See Ordering Information for details.  
Power Dissipation  
At a particular operating condition, the power losses that  
lead to the temperature rise of the device are estimated  
as follows:  
R1×1.215  
R2=  
V
– 1.215  
(
)
INU  
P
= P  
+ P  
LOSS  
BUCK LDO  
where V  
is the voltage greater than 4V above which  
INU  
1  
2
the device is required to turn on.  
P
= V  
× I  
×
– 1 – I  
× R  
OUT DCR  
)
BUCK  
OUT  
OUT  
(
η
P
Adjusting the Output Voltage  
= V  
(
– V  
×I  
)
LDO  
INL  
OUTL  
OUTL  
For MAX17670 and MAX17671, connect FBBUCK directly  
to the output node of the step-down converter. The output  
voltage of MAX17672 can be programmed from 0.8V to  
where:  
0.9 x V . Set the output voltage by connecting a resistor  
IN  
V
I
= Step-down converter output voltage,  
= Step-down converter load current,  
OUT  
divider from output node to FBBUCK to GND (see Figure 3).  
Choose R2 less than or equal to 100kΩ and calculate R1  
with the following equation:  
OUT  
η = Efficiency of step-down converter power conversion,  
V
V
V
= LDO-input voltage,  
= LDO-output voltage,  
OUT  
0.8  
INL  
R1= R2 ×  
– 1  
OUTL  
OUTL  
I
= LDO load current  
R
= DC resistance of the output inductor.  
DCR  
V
IN  
IN  
See the Typical Operating Characteristics for the  
power-conversion efficiency or measure the efficiency  
to determine the total power dissipation. For a typical  
multi-layer board, the thermal performance metrics for the  
package are given below:  
MAX17670  
MAX17671  
MAX17672  
R1  
R2  
EN/UVLO  
°
θ
JA  
= 41 C/W  
°
GND  
θ
JC  
= 9 C/W  
The junction temperature (T ) of the device can be esti-  
J
Figure 2. Adjustable EN/UVLO Network  
mated at any ambient temperature (T ) from the following  
A
equation:  
T = T + (θ x P )  
LOSS  
V
OUT  
J
A
JC  
If the application has a thermal-management system that  
ensures that the exposed pad of the device is maintained  
R1  
MAX17672  
at a given temperature (T  
) by using proper heat  
EP(MAX)  
FBBUCK  
sinks, then the junction temperature of the device can be  
estimated at any given maximum ambient temperature as  
R2  
GND  
T
= T  
+ (θ x P  
)
J(MAX)  
EP(MAX)  
JC  
LOSS  
°
Note: Junction Temperature greater than +125 C degrades  
operating lifetimes  
Figure 3. Setting the Output Voltage  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Route the high-speed switching node (LX) away from  
PCB Layout Guidelines  
the signal pins  
Careful PCB layout is critical to achieve clean and stable  
operation. The switching power stage requires particular  
attention.  
Place the linear regulator output capacitor close to  
the OUTL pin  
The following are the guidelines for a good PCB layout:  
A number of thermal throughputs that connect to a  
large ground plane should be provided under the  
exposed pad of the device for efficient heat  
dissipation.  
Place the input ceramic capacitor as close as  
possible to the IN and GND pins  
Minimize the area formed by the LX pin and inductor  
For a sample layout that ensures first pass success, refer  
to the MAX17670, MAX17671 and MAX17672 evaluation  
kit PCB layout available at www.maximintegrated.com.  
connection to reduce the radiated EMI  
Ensure that all feedback connections are short and  
direct  
Typical Application Circuits  
MAX17671 High-Efficiency 5V Output  
L1  
220µH  
V
IN  
6.5V TO 60V  
V
OUT  
IN  
LX  
5V, 100mA  
C3  
10µF  
R1  
3.32MΩ  
C1  
1µF  
EN/UVLO  
R2  
GND  
787kΩ  
MAX17671F  
V
OUTL  
3.3V, 50mA  
OUTL  
FBBUCK  
C2  
2.2µF  
RESET  
MODE/SYNC  
RT  
INL  
EP  
R1  
274kΩ  
L1 : LPS6235-224MR  
C1 : 1.0µF/X7R/100V/1206  
C2 : 2.2µF/X7R/10V/0603 (GRM188R71A225KE15)  
C3 : 10µF/X7R/25V/0805 (GRM21BZ71E106KE15)  
MODE/SYNC:  
CONNECT TO GND FOR PWM MODE  
UNCONNECTED FOR PFM MODE  
f
: 200kHz  
SW  
Figure 4. Fixed 5V Step-Down Converter Output at 200kHz Switching Frequency and 3.3V Linear Regulator Output  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Typical Application Circuits (continued)  
MAX17670 High-Efficiency 3.3V Output  
L1  
150µH  
V
IN  
4.5V TO 60V  
V
OUT  
IN  
LX  
3.3V, 130mA  
C3  
10µF  
R1  
3.32MΩ  
C1  
1µF  
EN/UVLO  
R2  
GND  
1.27MΩ  
MAX17670E  
V
OUTL  
3V, 20mA  
OUTL  
FBBUCK  
C2  
2.2µF  
RESET  
MODE/SYNC  
RT  
INL  
R1  
274kΩ  
EP  
L1 : LPS6235-154MR  
C1 : 1.0µF/X7R/100V/1206  
MODE/SYNC:  
CONNECT TO GND FOR PWM MODE  
UNCONNECTED FOR PFM MODE  
C2 : 2.2µF/X7R/10V/0603 (GRM188R71A225KE15)  
C3 : 10µF/X7R/10V/0805 (GRM21BR71A106KA73)  
f
: 200kHz  
SW  
Figure 5. Fixed 3.3V Step-Down Converter Output at 200kHz Switching Frequency and 3.0V Linear Regulator Output  
MAX17671 Small-Footprint 5V Output  
L1  
68µH  
V
IN  
6.5V TO 60V  
V
OUT  
IN  
LX  
5V, 100mA  
C3  
4.7µF  
R1  
3.32MΩ  
C1  
1µF  
EN/UVLO  
R2  
GND  
787kΩ  
MAX17671F  
V
OUTL  
3.3V, 50mA  
OUTL  
FBBUCK  
C2  
2.2µF  
RESET  
MODE/SYNC  
RT  
INL  
EP  
L1 : LPS3015-683MR  
C1 : 1.0µF/X7R/100V/1206  
MODE/SYNC:  
CONNECT TO GND FOR PWM MODE  
UNCONNECTED FOR PFM MODE  
C2 : 2.2µF/X7R/10V/0603 (GRM188R71A225KE15)  
C3 : 4.7µF/X7R/16V/0603 (GRM188Z71C475KE21)  
f
: 600kHz  
SW  
Figure 6. Fixed 5.0V Step-Down Converter Output at 600kHz Switching Frequency and 3.3V Linear Regulator Output  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Typical Application Circuits (continued)  
MAX17670 Small-Footprint 3.3V Output  
L1  
47µH  
V
IN  
4.5V TO 42V  
V
OUT  
IN  
LX  
3.3V, 130mA  
C3  
4.7µF  
R1  
3.32MΩ  
C1  
1µF  
EN/UVLO  
R2  
GND  
1.27MΩ  
OUTL  
MAX17670E  
V
3V, 20mA  
OUTL  
FBBUCK  
C2  
2.2µF  
RESET  
MODE/SYNC  
INL  
RT  
EP  
L1 : LPS3015-473MR  
C1 : 1.0µF/X7R/100V/1206  
MODE/SYNC:  
CONNECT TO GND FOR PWM MODE  
UNCONNECTED FOR PFM MODE  
C2 : 2.2µF/X7R/10V/0603 (GRM188R71A225KE15)  
C3 : 4.7µF/X7R/16V/0603 (GRM188Z71C475KE21)  
f
: 600kHz  
SW  
Figure 7. Fixed 3.3V Step-Down Converter Output at 600kHz Switching Frequency and 3.0V Linear Regulator Output  
MAX17672 Small-Footprint 5V Output  
L1  
68µH  
V
IN  
6.5V TO 60V  
V
OUT  
IN  
LX  
5V, 100mA  
C3  
4.7µF  
R1  
3.32MΩ  
C1  
1µF  
EN/UVLO  
R2  
GND  
787kΩ  
MAX17672C  
R3  
261kΩ  
V
OUTL  
1.8V, 50mA  
OUTL  
FBBUCK  
R4  
49.9kΩ  
C2  
2.2µF  
RESET  
MODE/SYNC  
RT  
V
INL  
OUT  
EP  
L1 : LPS3015-683MR  
C1 : 1.0µF/X7R/100V/1206  
MODE/SYNC:  
CONNECT TO GND FOR PWM MODE  
UNCONNECTED FOR PFM MODE  
C2 : 2.2µF/X7R/10V/0603 (GRM188R71A225KE15)  
C3 : 4.7µF/X7R/16V/0603 (GRM188Z71C475KE21)  
f
: 600kHz  
SW  
Figure 8. Adjustable 5.0V Step-Down Converter Output at 600kHz Switching Frequency and 1.8V Linear Regulator Output  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Ordering Information  
BUCK OUTPUT  
VOLTAGE (V)  
LINEAR REGULATOR OUTPUT  
PIN PACKAGE  
PART NUMBER  
VOLTAGE (V)  
MAX17670AATB+*  
MAX17670BATB+*  
MAX17670CATB+*  
MAX17670DATB+*  
MAX17670EATB+  
MAX17670EATB+T  
MAX17671AATB+*  
MAX17671BATB+*  
MAX17671CATB+*  
MAX17671DATB+*  
MAX17671EATB+*  
MAX17671FATB+  
MAX17671FATB+T  
MAX17672AATB+*  
MAX17672BATB+*  
MAX17672CATB+  
MAX17672CATB+T  
MAX17672DATB+*  
MAX17672EATB+*  
MAX17672FATB+  
MAX17672FATB+T  
3.3  
1.2  
1.5  
1.8  
2.5  
3.0  
3.0  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
3.3  
1.2  
1.5  
1.8  
1.8  
2.5  
3.0  
3.3  
3.3  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
10-Pin TDFN  
3.3  
3.3  
3.3  
3.3  
3.3  
5
5
5
5
5
5
5
Adjustable  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
*Future product—contact factory for availability.  
+Denotes a lead(Pb)-free/RoHS compliant package.  
T=Tape-and-reel.  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX17670, MAX17671,  
MAX17672  
Integrated 4V-60V, 150mA, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
with 50mA Linear Regulator  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
6/18  
Initial release  
Updated Absolute Maximum Ratings, Electrical Characteristics, TOC55–TOC56,  
TOC58, Pin Description, Functional Diagram, Linear Regulator Power-Supply Input  
(INL), Figure 1, and Figure 8; added TOC59–TOC61; Removed future product  
designation from MAX17670EATB+ and MAX17672CATB+  
2–3, 13–15  
17, 23–24  
1
2
11/18  
4/20  
Updated the General Description, Benefits and Features, Simplified Block Diagram,  
Electrical Characteristics, Pin Description, Detailed Description, Linear Regulator Power-  
Supply Input (INL), and RESET Output sections; Updated TOC41–TOC42, TOC44–  
TOC45 and TOC48–TOC52, and added TOC62–TOC63; Removed future product  
designation from MAX17672FATB+, and added MAX17670EATB+T, MAX17671FATB+T,  
MAX17672CATB+T and MAX17672FATB+T to the Ordering Information table  
1, 3, 5, 11–14  
16–17, 24  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2020 Maxim Integrated Products, Inc.  
25  

相关型号:

MAX17671AATB

Integrated 4V-60V, 150mA, High-Efficiency Synchronous Step-Down DC-DC Converter with 50mA Linear Regulator
MAXIM

MAX17671AATB+

Switching Regulator,
MAXIM

MAX17671BATB

Integrated 4V-60V, 150mA, High-Efficiency Synchronous Step-Down DC-DC Converter with 50mA Linear Regulator
MAXIM

MAX17671CATB

Integrated 4V-60V, 150mA, High-Efficiency Synchronous Step-Down DC-DC Converter with 50mA Linear Regulator
MAXIM

MAX17671DATB

Integrated 4V-60V, 150mA, High-Efficiency Synchronous Step-Down DC-DC Converter with 50mA Linear Regulator
MAXIM

MAX17671EATB

Integrated 4V-60V, 150mA, High-Efficiency Synchronous Step-Down DC-DC Converter with 50mA Linear Regulator
MAXIM

MAX17671FATB

Integrated 4V-60V, 150mA, High-Efficiency Synchronous Step-Down DC-DC Converter with 50mA Linear Regulator
MAXIM

MAX17671FATB+

Switching Regulator,
MAXIM

MAX17671FATB+T

Switching Regulator, Current-mode, 0.345A, 2200kHz Switching Freq-Max, PDSO10, TDFN-10
MAXIM

MAX17671FATBT

Integrated 4V-60V, 150mA, High-Efficiency Synchronous Step-Down DC-DC Converter with 50mA Linear Regulator
MAXIM

MAX17672

Integrated 4V-60V, 150mA, High-Efficiency Synchronous Step-Down DC-DC Converter with 50mA Linear Regulator
MAXIM

MAX17672AATB

Integrated 4V-60V, 150mA, High-Efficiency Synchronous Step-Down DC-DC Converter with 50mA Linear Regulator
MAXIM