MAX17673 [MAXIM]

Integrated 4.5V to 60V Synchronous 1.5A HV Buck and Dual 2.7V to 5.5V, 1A Buck Regulators;
MAX17673
型号: MAX17673
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Integrated 4.5V to 60V Synchronous 1.5A HV Buck and Dual 2.7V to 5.5V, 1A Buck Regulators

文件: 总27页 (文件大小:1306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX17673/MAX17673A Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
General Description  
Benefits and Features  
MAX17673/MAX17673A power management integrated  
circuits (PMIC) integrate a 60V high voltage (HV), high  
efficiency synchronous DC-DC buck regulator and two  
5.5V high efficiency synchronous DC-DC buck regulators.  
All three regulators offer integrated power MOSFETs.  
Reduces External Components and Total Cost  
Synchronous Operation for High Efficiency  
• Internal Compensation for a Wide Output Voltage  
Range  
• All-Ceramic Capacitors,Compact Layout  
Integrates Three DC-DC Regulators  
• Wide 4.5V to 60V Input Voltage Range for the HV  
Regulator. 2.7V to 5.5V Input Range for LV  
Regulators.  
The HV regulator operates from a 4.5V to 60V input volt-  
age range and the LV regulators operate from a 2.7V to  
5.5V input voltage range. The HV regulator supports load  
currents up to 1.5A, and can regulate output voltages from  
0.9V to 5.5V. The LV regulators support load currents up to  
1A, and can regulate output voltages from 0.75V to 4.8V.  
• Adjustable 0.9V to 5.5V Output for the HV Regula-  
tor and 0.75V up to 4.8V Output for LV Regulators  
• Delivers up to 1.5A Load Current for the HV Regu-  
lator and 1A Load Current for LV Regulators  
• Adjustable Switching Frequency: 250KHz to  
800KHz for HV Regulator and 1MHz to 4MHz for  
LV Regulators  
• Programmable LV / HV Switching Frequency Ratio  
(2, 3, 4, 5, 6, 7, 8)  
• EN/UVLO for HV buck and EN for LV regulators  
MAX17673/MAX17673A offer independent peak cur-  
rent mode control, hiccup mode overcurrent protection,  
ENABLE input and Power OK signal in the three regu-  
lators. The switching frequency is adjustable between  
1MHz and 4MHz in the LV regulators, and the HV regula-  
tor can be programmed to run at a fractional switching  
frequency of the LV regulators. The HV regulator offers  
an adjustable soft-start function, while the LV regulators  
present internally fixed soft-start. Users can choose to  
operate the devices in either pulse frequency modulation  
(PFM) or forced pulse width modulation (PWM) scheme.  
The MAX17673A offers external clock synchronization.  
Reduces Power Dissipation  
550μA in PFM and 10.2mA in PWM Mode  
Quiescent Current  
Peak Efficiency > 92%  
Auxiliary Bootstrap LDO for Improved Efficiency  
PFM Mode for High Light-Load Efficiency  
7.4μA Shutdown Current  
The devices are available in a 28-pin, 5mm x 5mm TQFN  
package and operates over a -40°C to +125°C tempera-  
ture range.  
Operates Reliably in Adverse Industrial Environments  
• Peak-Current Limit Protection  
Applications  
• Hiccup Mode Overload Protection  
• Soft-Start Reduces Inrush Current During Startup  
(Adjustable for HV Regulator)  
• Built-In Output-Voltage Monitoring with POKH,  
POKA, and POKB  
Industrial Control Power Supplies  
FPGA/CPLD Power Supplies  
Distributed Supply Regulation  
Base Station Power Supplies  
High Voltage Single Board Systems  
• Monotonic Startup into Prebiased Load  
• Overtemperature Protection  
• Dynamic Mode Change for On-the-Fly Shift  
Between PFM and PWM Mode  
• -40°C to +125°C Operating Temperature Range  
• Complies with CISPR22(EN55022) Class B  
Conducted and Radiated Emissions  
Ordering Information appears at end of data sheet.  
19-100403; Rev 2; 11/19  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Absolute Maximum Ratings  
INH to PGND.........................................................-0.3V to +65V  
ENH to GND..........................................................-0.3V to +65V  
BSTH to PGND .....................................................-0.3V to +70V  
SSH, RT, FDIV to GND ............................ -0.3V to (V  
+ 0.3V)  
CC  
LXH Total RMS Current......................................................±1.6A  
LXA, LXB Total RMS Current.............................................±1.1A  
PGNDA, PGNDB, PGNDH to GND........................-0.3V to 0.3V  
Output Short-Circuit Duration....................................Continuous  
Continuous Power Dissipation  
LXH to PGND.......................................... -0.3V to (V  
BSTH to LXH...........................................................-0.3V to +6V  
+ 0.3V)  
INH  
BSTH to V .........................................................-0.3V to +65V  
CC  
INA, INB to PGND...................................................-0.3V to +6V  
ENA, ENB to GND .................................................-0.3V to +6V  
(Multilayer Board) (T = +70°C, derate  
A
34.5mW/°C above +70°C.).....................................2758.6mW  
Operating Temperature Range (Note 1)........... -40°C to +125°C  
Storage Temperature Range............................ -65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
LXA to PGND .......................................... -0.3V to (V  
LXB to PGND.......................................... -0.3V to (V  
+ 0.3V)  
+ 0.3V)  
INA  
INB  
EXTVCC, V  
to GND............................................-0.3V to +6V  
CC  
FBH, FBA, FBB, POKH, POKA, POKB,  
MODE/SYNC to GND..........................................-0.3V to +6V  
Note 1: Junction temperature greater than +125°C degrades operating lifetimes.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 28 TQFN  
Package Code  
T2855+6C  
21-0140  
90-0026  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD:  
Junction to Ambient (θ  
)
+29° C/W  
+2° C /W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Electrical Characteristics  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= V  
= 5V, V  
= 1V, C  
= 2.2µF, R  
= 0Ω, RT = LX_ = SSH = POK_  
INH  
ENH  
EXTVCC  
INA  
INB  
ENA  
ENB  
FB_  
VCC  
FDIV  
= OPEN, V  
to V  
= 5V, V  
= V  
= V  
= V  
= 0V, T = T = -40°C to +125°C, unless otherwise noted.  
BST  
LXH  
MODE/SYNC  
PGND_  
GND  
SGND A J  
Typical values are at T = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2)  
A
PARAMETER  
INPUT SUPPLY (V  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
IN  
Input Voltage Range for  
HV Regulator  
V
4.5  
2.7  
60  
5.5  
15  
V
V
INH  
Input Voltage Range for  
LV Regulator A-B  
V
, V  
INA INB  
V
= V  
= V = 0V  
ENB  
ENH  
ENA  
INH Shutdown Current  
I
7.3  
µA  
µA  
IN_SH  
(shutdown mode), V  
= 0V)  
EXTVCC  
INA, INB Shutdown  
Current  
I
V
= V  
= V = 0V (shutdown mode)  
ENB  
0.25  
1.5  
INL_SH  
ENH  
ENA  
Normal switching, PWM mode,  
= 400kHz, V = 0.9V, MODE = 0V,  
INH Quiescent Current  
I
_
f
10.2  
8.8  
mA  
mA  
INH QPWM  
SW_HV  
FBH  
V
= 0V  
EXTVCC  
Normal switching, PWM mode,  
INA, INB Quiescent  
Current  
I
f
= 2MHz, V  
= V = 0.75V,  
INL_QPWM  
SW_LV  
FBA  
FBB  
MODE = 0V, V  
= 0V  
EXTVCC  
ENABLE/UVLO (EN)  
V
ENH rising  
ENH falling  
1.175  
1.055  
1.200  
1.080  
1.225  
1.105  
Enable Threshold for  
HV Regulator  
ENH_R  
V
V
ENH_F  
Enable Input Leakage  
Current for HV  
Regulator  
I
V
= 1.25V, T =25°C  
-100  
1.2  
+100  
0.4  
nA  
ENH_LKG  
ENH  
A
V
ENA, ENB rising  
ENA, ENB falling  
Enable threshold for LV  
Regulator A-B  
ENL_R  
V
V
ENL_F  
Enable Hysteresis for  
LV Regulator A-B  
V
150  
mV  
ENL_HYS  
Enable Input Leakage  
Current for LV Regula-  
tor A-B  
I
T
= T = +25°C, V , V  
ENA ENB  
= 5.5V  
= 0V,  
-250  
250  
nA  
ENL_LKG  
A
J
V
LDO  
CC  
V
Output Voltage  
0mA ≤ I  
6V < V  
≤ 15mA, V  
CC  
VCC EXTVCC  
V
4.75  
20  
5.00  
54  
5.25  
V
CC  
Range  
< 60V  
INH  
V
V
Current Limit  
Dropout  
I
V
V
= 3.5V, V  
= 4.5V  
100  
0.5  
mA  
V
CC  
VCC_MAX  
VCC  
INH  
V
= 4.5V , I  
= 15mA  
CC  
CC_DO  
INH  
VCC  
V
Undervoltage lockout rising  
Undervoltage lockout falling  
2.50  
2.43  
2.62  
2.49  
2.70  
2.55  
CC_UVR  
V
UVLO  
V
CC  
V
CC_UVF  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Electrical Characteristics (continued)  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= V  
= 5V, V  
= 1V, C  
= 2.2µF, R  
= 0Ω, RT = LX_ = SSH = POK_  
INH  
ENH  
EXTVCC  
INA  
INB  
ENA  
ENB  
FB_  
VCC  
FDIV  
= OPEN, V  
to V  
= 5V, V  
= V  
= V  
= V  
= 0V, T = T = -40°C to +125°C, unless otherwise noted.  
BST  
LXH  
MODE/SYNC  
PGND_  
GND  
SGND A J  
Typical values are at T = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EXTERNAL POWER SUPPLY  
V
EXTVCC rising, V  
> 4.5V  
> 4.5V  
2.83  
2.80  
2.89  
2.86  
3.00  
2.95  
EXTVCC Switchover  
Voltage  
EXTVCC_R  
INH  
V
V
EXTVCC falling, V  
INH  
EXTVCC_F  
I
EXTVCC_  
MAX  
EXTVCC Current Limit  
EXTVCC Dropout  
V
= 3.3V, V  
= 3V,  
20  
40  
100  
125  
mA  
mV  
EXTVCC  
VCC  
V
V
= 3.3V, I  
= 15mA  
EXTVCC_DO  
EXTVCC  
VCC  
HIGH-SIDE MOSFET & LOW SIDE MOSFET DRIVER  
High-Side MOSFET  
On-Resistance for HV  
Regulator  
R
I
I
= 0.1A, V  
= 0.1A, V  
= 5V (Note 3)  
= 5V (Note 3)  
290  
170  
600  
mΩ  
HSH  
LXH  
LXH  
EXTVCC  
Low-Side MOSFET  
On-Resistance for HV  
Regulator  
R
350  
+1  
mΩ  
µA  
LSH  
EXTVCC  
LX Leakage Current for  
HV Regulator  
V
T
= (V  
- 1V) to (V  
+1 V);  
LXH  
INH  
PGNDH  
I
-1  
LXH_LKG  
= 25°C  
A
High-Side MOSFET  
On-Resistance for LV  
Regulator A-B  
V
V
, V  
= 5V, I  
= 3.6V (Note 3)  
, I  
= 190mA,  
= 190mA,  
INA INB  
LXA LXB  
R
120  
60  
300  
mΩ  
HSL  
EXTVCC  
Low-Side MOSFET  
On-Resistance for LV  
Regulator A-B  
V
V
, V  
= 5V, I  
, I  
INA INB  
LXA LXB  
R
100  
mΩ  
LSL  
= 3.6V (Note 3)  
EXTVCC  
LX Leakage Current for  
LV Regulator A-B  
I
LXA, LXB = GND, or V , V  
T = 25°C  
-0.5  
+0.5  
µA  
LXL_LKG  
INA INB. A  
SOFT-START  
Soft-Start Current for  
HV Regulator  
I
V
= 0.5V  
4.25  
5.00  
5.75  
µA  
SS_HV  
SSH  
Soft-Start Time for LV  
Regulators  
t
Time duration of output voltage ramp up  
4096  
cycles  
SS_LV  
FEEDBACK (FBH, FBA, FBB)  
FBH Regulation Voltage  
for HV Regulator  
V
0.888  
0.740  
-150  
0.900  
0.750  
0.912  
0.760  
+150  
V
V
FBH  
FBA, FBB Regulation  
Voltage  
V
FBL_REG  
FBH Input Bias Current  
for HV Regulator  
0 ≤ V  
INH valid  
≤ 1V, T = 25°C. EXTVCC or  
FBH A  
I
nA  
FB_HV  
FBA, FBB Input Bias  
Current for LV  
Regulator A-B  
0 < V  
or INH valid  
, V  
< 1V, T = 25°C. EXTVCC  
A
FBA FBB  
I
-150  
+150  
nA  
FB_LKG  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Electrical Characteristics (continued)  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= V  
= 5V, V  
= 1V, C  
= 2.2µF, R  
= 0Ω, RT = LX_ = SSH = POK_  
INH  
ENH  
EXTVCC  
INA  
INB  
ENA  
ENB  
FB_  
VCC  
FDIV  
= OPEN, V  
to V  
= 5V, V  
= V  
= V  
= V  
= 0V, T = T = -40°C to +125°C, unless otherwise noted.  
BST  
LXH  
MODE/SYNC  
PGND_  
GND  
SGND A J  
Typical values are at T = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PFM/HIBERNATE MODE  
FBH PFM Skip  
Threshold  
V
V
V
V
V
rising  
falling  
102  
102.75  
101  
103.7  
101.8  
103.6  
102.8  
%
%
%
%
FBH_PFMR  
FBH  
FBH PFM Resume  
Threshold  
V
100.4  
101.2  
100.5  
FBH_PFMF  
FBL_PFMR  
FBH  
FBA, FBB PFM Skip  
Threshold  
V
, V  
rising  
102.5  
101.7  
FBA FBB  
FBA, FBB PFM Resume  
Threshold  
V
, V  
falling  
FBL_PFMF  
FBA FBB  
CURRENT LIMIT  
Peak Current Limit  
Threshold for HV  
Regulator  
I
2.3  
2.7  
3.1  
A
LXH_PKLMT  
Negative Current Limit  
Threshold for HV  
Regulator  
I
Current entering into LXH pin  
1.1  
A
A
A
LIM_NEG_HV  
PFM Current Limit for  
HV Regulator  
I
0.82  
1.70  
LXH_PFM  
Peak Current Limit  
Threshold for LV  
Regulator A-B  
I
LX_PKLMT_  
LV  
1.40  
2.05  
Negative Current Limit  
Threshold for LV  
Regulator A-B  
I
Current entering into the LXA, LXB pin  
0.75  
0.54  
A
A
LIM_NEG_LV  
PFM Current Limit for  
LV Regulators A-B  
I
LXL_PFM  
RT/FDIV AND TIMINGS  
R
R
R
R
R
R
= 0Ω  
1.78  
3.36  
0.80  
356  
672  
220  
2.00  
4.00  
1.00  
400  
800  
250  
2.22  
4.64  
1.21  
444  
928  
298  
FDIV  
Switching Frequency  
for LV Regulator A-B  
f
= 29.93kΩ, R  
> 1.35kΩ (Note 3)  
> 1.35kΩ  
MHz  
kHz  
SW_LV  
RT  
FDIV  
FDIV  
= 229.4kΩ, R  
RT  
= 0Ω  
FDIV  
Switching Frequency  
for HV Regulator  
f
= 29.93kΩ, R  
= 15kΩ  
SW_HV  
RT  
RT  
FDIV  
= 90kΩ, R  
> 89kΩ  
FDIV  
V
Undervoltage Trip  
FB_  
V
In percentage of V  
60  
64  
70  
%
OUT_HICF  
FB_  
Level to Cause HICCUP  
HICCUP Timeout  
32768  
Cycles  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Electrical Characteristics (continued)  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= V  
= 5V, V  
= 1V, C  
= 2.2µF, R  
= 0Ω, RT = LX_ = SSH = POK_  
INH  
ENH  
EXTVCC  
INA  
INB  
ENA  
ENB  
FB_  
VCC  
FDIV  
= OPEN, V  
to V  
= 5V, V  
= V  
= V  
= V  
= 0V, T = T = -40°C to +125°C, unless otherwise noted.  
BST  
LXH  
MODE/SYNC  
PGND_  
GND  
SGND A J  
Typical values are at T = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum On-Time for  
HV Regulator  
t
V
= 5V, V  
= 24V  
73  
105  
ns  
ON_MIN_HV  
EXTVCC  
INH  
MAX Duty Cycle for HV  
Regulator  
D
93.2  
38  
%
ns  
ns  
MAX_HV  
Minimum On-Time for  
LV Regulator A-B  
t
V
V
= 5V, V  
= 5V, V  
= V  
= V  
= 5V  
55  
ON_MIN_LV  
EXTVCC  
INA  
INB  
Minimum OFF time for  
LV regulator A-B  
t
= 3.6V  
15  
OFF_MIN_LV  
EXTVCC  
INA  
INB  
MODE Threshold  
(MAX17673)  
MODE/SYNC Threshold  
(MAX17673A)  
V
1.4  
IH  
V
V
0.4  
IL  
Sync Frequency  
Capture Range  
f
= 1MHz and f  
= 4MHz  
SW_LV  
0.9 x  
1.1 x  
f
SW_LV  
SW_LV  
f
MHz  
ns  
SYNC  
MAX17673A Only  
f
SW_LV  
Sync Pulse High Time  
Sync Pulse Low Time  
t
SYNC_HIGH  
25  
25  
t
ns  
SYNC_LOW  
POKH, POKA, POKB (POK_)  
POK_ Output Level Low  
I
= 10mA  
250  
mV  
µA  
POK  
POK_ Output Leakage  
Current  
T
= T = 25°C  
-0.25  
89.0  
92  
+0.25  
A
J
V
Threshold for  
OUT  
V
V
falling  
rising  
92.0  
95.0  
2048  
95.5  
98.5  
%
%
OUT_OKF  
FB_  
FB_  
POK_ Assertion  
V
Threshold for  
OUT  
V
V
OUT_OKR  
POK_ Deassertion  
POK_ delay after FB  
reaches rising threshold  
Cycles  
THERMAL SHUTDOWN  
Thermal Shutdown  
Threshold  
T
Temp rising  
165  
20  
°C  
°C  
SHDNR  
Thermal Shutdown  
Hysteresis  
T
SHDNHY  
Note 2: All limits are production tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage  
A
range are guaranteed by design and characterization.  
Note 3: Not production tested. Guaranteed by design.  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Typical Operating Characteristics  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= FDIV = 0V, V  
= V  
= V  
= V  
= 5V, R = OPEN, C  
=
INH  
ENH  
GND  
PGNDH  
PGNDA  
PGNDB  
INA  
INB  
ENA  
ENB  
RT  
VCC  
2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are  
BSTH  
SS  
A
A
referenced to GND, unless otherwise noted.)  
HV BUCK EFFICIENCY vs. LOAD CURRENT  
(VOUT = 3.3V, MODE = PWM, fSW = 400kHz)  
HV BUCK EFFICIENCY vs. LOAD CURRENT  
LV BUCK EFFICIENCY vs. LOAD CURRENT  
(VOUT = 5.0V, MODE = PWM, fSW = 400kHz)  
(VOUT = 1.0V, MODE = PWM, fSW = 2MHz)  
toc03  
toc02  
toc01  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
VIN = 12V  
VIN = 24V  
70  
VIN = 5V  
VIN = 3.3V  
VIN = 5.0V  
VIN = 12V  
VIN = 24V  
60  
VIN = 36V  
VIN = 48V  
50  
VIN = 36V  
40  
VIN = 48V  
30  
20  
10  
0
0.0  
0.5  
1.0  
1.5  
0.0  
0.5  
1.0  
1.5  
0.0  
0.3  
0.5  
0.8  
1.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LV BUCK EFFICIENCY vs. LOAD CURRENT  
LV BUCK EFFICIENCY vs. LOAD CURRENT  
LV BUCK EFFICIENCY vs. LOAD CURRENT  
(VOUT = 1.8V, MODE = PWM, fSW = 2MHz)  
(VOUT = 2.5V, MODE = PWM, fSW = 2MHz)  
(VOUT = 3.3V, MODE = PWM, fSW = 2MHz)  
toc06  
toc04  
toc05  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.3V  
VIN = 5.0V  
VIN = 3.3V  
VIN = 5.0V  
VIN = 5.0V  
0.0  
0.3  
0.5  
0.8  
1.0  
0.0  
0.3  
0.5  
0.8  
1.0  
0.0  
0.3  
0.5  
0.8  
1.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
HV BUCK EFFICIENCY vs. LOAD CURRENT  
HV BUCK EFFICIENCY vs. LOAD CURRENT  
LV BUCK EFFICIENCY vs. LOAD CURRENT  
(VOUT = 5V, MODE = PFM, fSW = 400kHz)  
(VOUT = 3.3V, MODE = PWM, fSW = 400kHz)  
(VOUT = 1.0V, MODE = PFM, fSW = 2MHz)  
toc07  
toc08  
toc09  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 48V  
VIN = 36V  
VIN = 3.3V  
VIN = 5.0V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 24V  
VIN = 12V  
VIN = 5V  
0.010  
0.100  
1.000  
0.010  
0.100  
LOAD CURRENT (A)  
1.000  
0.010  
0.100  
1.000  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Typical Operating Characteristics (continued)  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= FDIV = 0V, V  
= V  
= V  
= V  
= 5V, R = OPEN, C  
=
INH  
ENH  
GND  
PGNDH  
PGNDA  
PGNDB  
INA  
INB  
ENA  
ENB  
RT  
VCC  
2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are  
BSTH  
SS  
A
A
referenced to GND, unless otherwise noted.)  
LV BUCK EFFICIENCY vs. LOAD CURRENT  
LV BUCK EFFICIENCY vs. LOAD CURRENT  
(VOUT = 1.8V, MODE = PFM, fSW = 2MHz)  
LV BUCK EFFICIENCY vs. LOAD CURRENT  
(VOUT = 3.3V, MODE = PFM, fSW = 2MHz)  
(VOUT = 2.5V, MODE = PFM, fSW = 2MHz)  
toc12  
toc10  
toc11  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
VIN = 5.0V  
VIN = 5.0V  
VIN = 3.3V  
VIN = 3.3V  
VIN = 5.0V  
60  
50  
40  
30  
20  
10  
0
0.01  
0.1  
LOAD CURRENT (A)  
1
0.01  
0.1  
LOAD CURRENT (A)  
1
0.010  
0.100  
1.000  
LOAD CURRENT (A)  
HV BUCK OUTPUT VOLTAGE vs. LOAD CURRENT  
HV BUCK OUTPUT VOLTAGE vs. LOAD CURRENT  
HV BUCK OUTPUT VOLTAGE vs. LOAD CURRENT  
(VOUT = 5V, MODE = PWM)  
(VOUT = 3.3V, MODE = PFM)  
(VOUT = 3.3V, MODE = PWM)  
toc13  
toc14  
toc15  
3.34  
5.02  
3.42  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
VIN = 36V  
VIN = 48V  
VIN = 48V  
VIN = 48V  
VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 24V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 12V  
0.0  
0.5  
1.0  
1.5  
0.0  
0.5  
1.0  
1.5  
0.0  
0.5  
1.0  
1.5  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
HV BUCK OUTPUT VOLTAGE vs. LOAD CURRENT  
LV BUCK OUTPUT VOLTAGE vs. LOAD CURRENT  
(VOUT = 5V, MODE = PFM)  
(VOUT = 1.8V, MODE = PWM)  
toc16  
toc17  
1.82  
5.14  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
1.81  
1.80  
1.79  
1.78  
5.09  
5.04  
4.99  
4.94  
VIN = 5.0V  
VIN = 3.3V  
0.0  
0.5  
1.0  
1.5  
0.0  
0.3  
0.5  
0.8  
1.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Typical Operating Characteristics (continued)  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= FDIV = 0V, V  
= V  
= V  
= V  
= 5V, R = OPEN, C  
=
INH  
ENH  
GND  
PGNDH  
PGNDA  
PGNDB  
INA  
INB  
ENA  
ENB  
RT  
VCC  
2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are  
BSTH  
SS  
A
A
referenced to GND, unless otherwise noted.)  
LV BUCK OUTPUT VOLTAGE vs. LOAD CURRENT  
LV BUCK OUTPUT VOLTAGE vs. LOAD CURRENT  
(VOUT = 3.3V, MODE = PWM)  
(VOUT = 1.8V, MODE = PFM)  
toc18  
toc19  
3.38  
1.88  
3.37  
3.36  
3.35  
3.34  
3.33  
3.32  
1.87  
1.86  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
VIN = 5.0V  
3.31  
VIN = 5.0V  
3.30  
3.29  
3.28  
VIN = 3.3V  
0.0  
0.3  
0.5  
0.8  
1.0  
0.0  
0.3  
0.5  
LOAD CURRENT (A)  
0.8  
1.0  
LOAD CURRENT (A)  
LV BUCK OUTPUT VOLTAGE vs. LOAD CURRENT  
HV BUCK OUTPUT VOLTAGE vs. INPUT VOLTAGE  
(VOUT = 3.3V, MODE = PFM)  
(VOUT = 3.3V, MODE = PWM)  
toc20  
toc21  
3.42  
3.320  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.315  
3.310  
3.305  
3.300  
3.295  
IOUT = 1.5A  
IOUT = 1A  
IOUT = 0A  
IOUT = 0.5A  
VIN = 5.0V  
0.0  
0.3  
0.5  
LOAD CURRENT (A)  
0.8  
1.0  
10  
20  
30  
INPUT VOLTAGE (V)  
40  
50  
HV BUCK LOAD TRANSIENT RESPONSE  
(VIN = 24V, VOUT = 5V, MODE = PWM  
HV BUCK OUTPUT VOLTAGE vs. INPUT VOLTAGE  
(VOUT = 5.0V, MODE = PWM)  
LOAD CURRENT STEPPED FROM 0mA TO 750mA)  
toc23  
toc22  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
4.980  
4.975  
VOUT (AC)  
100mV/div  
IOUT = 0A  
IOUT = 1.5A  
IOUT = 1A IOUT = 0.5A  
IOUT  
500mA/div  
10  
20  
30  
40  
50  
100µs/div  
INPUT VOLTAGE (V)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Typical Operating Characteristics (continued)  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= FDIV = 0V, V  
= V  
= V  
= V  
= 5V, R = OPEN, C  
=
INH  
ENH  
GND  
PGNDH  
PGNDA  
PGNDB  
INA  
INB  
ENA  
ENB  
RT  
VCC  
2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are  
BSTH  
SS  
A
A
referenced to GND, unless otherwise noted.)  
LV BUCK LOAD TRANSIENT RESPONSE  
(VIN = 5V, VOUT = 3.3V, MODE = PWM  
HV BUCK LOAD TRANSIENT RESPONSE  
(VIN = 24V, VOUT = 5V, MODE = PWM  
LOAD CURRENT STEPPED FROM 0mA TO 500mA)  
LOAD CURRENT STEPPED FROM 750mA TO 1.5A)  
toc25  
toc24  
VOUT (AC)  
VOUT (AC)  
50mV/div  
100mV/div  
500mA/div  
IOUT  
IOUT  
500mA/div  
100µs/div  
100µs/div  
LV BUCK LOAD TRANSIENT RESPONSE  
(VIN = 5V, VOUT = 1.8V, MODE = PWM  
LV BUCK LOAD TRANSIENT RESPONSE  
(VIN = 5V, VOUT = 3.3V, MODE = PWM  
LOAD CURRENT STEPPED FROM 0mA TO 500mA)  
LOAD CURRENT STEPPED FROM 500mA TO 1A)  
toc26  
toc27  
50mV/div  
VOUT (AC)  
50mV/div  
VOUT (AC)  
500mA/div  
500mA/div  
IOUT  
IOUT  
100µs/div  
100µs/div  
LV BUCK LOAD TRANSIENT RESPONSE  
(VIN = 5V, VOUT = 1.8V, MODE = PWM  
HV BUCK LOAD TRANSIENT RESPONSE  
(VIN = 24V, VOUT = 5V, MODE = PFM  
LOAD CURRENT STEPPED FROM 500mA TO 1A)  
LOAD CURRENT STEPPED FROM 10mA TO 750mA)  
toc28  
toc29  
VOUT (AC)  
100mV/div  
50mV/div  
VOUT (AC)  
500mA/div  
IOUT  
500mA/div  
IOUT  
400µs/div  
100µs/div  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Typical Operating Characteristics (continued)  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= FDIV = 0V, V  
= V  
= V  
= V  
= 5V, R = OPEN, C  
=
INH  
ENH  
GND  
PGNDH  
PGNDA  
PGNDB  
INA  
INB  
ENA  
ENB  
RT  
VCC  
2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are  
BSTH  
SS  
A
A
referenced to GND, unless otherwise noted.)  
LV BUCK LOAD TRANSIENT RESPONSE  
(VIN = 5V, VOUT = 3.3V, MODE = PFM  
LV BUCK LOAD TRANSIENT RESPONSE  
(VIN = 5V, VOUT = 1.8V, MODE = PFM  
LOAD CURRENT STEPPED FROM 10mA TO 500mA)  
LOAD CURRENT STEPPED FROM 10mA TO 500mA)  
toc30  
toc31  
VOUT (AC)  
VOUT (AC)  
50mV/div  
50mV/div  
500mA/div  
500mA/div  
IOUT  
IOUT  
40µs/div  
100µs/div  
HV BUCK STEADY-STATE SWITCHING WAVEFORMS  
LV BUCK STEADY-STATE SWITCHING WAVEFORMS  
(VIN = 24V, VOUT = 5V, MODE = PWM, LOAD = 1.5A)  
(VIN = 5V, VOUT = 3.3V, MODE = PWM, LOAD = 1A)  
toc33  
toc32  
20mV/div  
VOUT (AC)  
20mV/div  
VOUT (AC)  
2V/div  
1A/div  
10V/div  
1A/div  
VLX  
VLX  
ILX  
ILX  
2µs/div  
400ns/div  
LV BUCK STEADY-STATE SWITCHING WAVEFORMS  
(VIN = 5V, VOUT = 1.8V, MODE = PWM  
LOAD = 1A)  
toc34  
20mV/div  
VOUT (AC)  
2V/div  
VLX  
1A/div  
ILX  
400ns/div  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Typical Operating Characteristics (continued)  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= FDIV = 0V, V  
= V  
= V  
= V  
= 5V, R = OPEN, C  
=
INH  
ENH  
GND  
PGNDH  
PGNDA  
PGNDB  
INA  
INB  
ENA  
ENB  
RT  
VCC  
2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are  
BSTH  
SS  
A
A
referenced to GND, unless otherwise noted.)  
HV BUCK STEADY-STATE SWITCHING WAVEFORMS  
LV BUCK STEADY-STATE SWITCHING WAVEFORMS  
(VIN = 24V, VOUT = 5V, MODE = PFM, LOAD = 15mA)  
(VIN = 5V, VOUT = 3.3V, MODE = PFM, LOAD = 10mA)  
toc36  
toc35  
50mV/div  
VOUT (AC)  
VOUT (AC)  
200mV/div  
5V/div  
1A/div  
20V/div  
1A/div  
VLX  
VLX  
ILX  
ILX  
20µs/div  
100µs/div  
HV BUCK STARTUP THROUGH ENABLE  
LV BUCK STEADY-STATE SWITCHING WAVEFORMS  
(VIN = 24V, VOUT = 5V, MODE = PWM, LOAD = 1.5A)  
(VIN = 5V, VOUT = 1.8V, MODE = PFM, LOAD = 10mA)  
toc38  
toc37  
5V/div  
ENH  
50mV/div  
VOUT (AC)  
2V/div  
1A/div  
5V/div  
5V/div  
1A/div  
VOUT  
ILX  
VLX  
POKH  
ILX  
2ms/div  
20µs/div  
LV BUCK STARTUP THROUGH ENABLE  
LV BUCK STARTUP THROUGH ENABLE  
(VIN = 5V, VOUT = 3.3V, MODE = PWM, LOAD = 1.0A)  
(VIN = 5V, VOUT = 1.8V, MODE = PWM, LOAD = 1.0A)  
toc39  
toc40  
2V/div  
2V/div  
500mA/div  
500mA/div  
ENA  
ILX  
ENB  
ILX  
2V/div  
5V/div  
2V/div  
5V/div  
VOUT  
VOUT  
POKA  
POKB  
2ms/div  
2ms/div  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Typical Operating Characteristics (continued)  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= FDIV = 0V, V  
= V  
= V  
= V  
= 5V, R = OPEN, C  
=
INH  
ENH  
GND  
PGNDH  
PGNDA  
PGNDB  
INA  
INB  
ENA  
ENB  
RT  
VCC  
2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are  
BSTH  
SS  
A
A
referenced to GND, unless otherwise noted.)  
LV BUCK STARTUP FROM INPUT  
HV BUCK STARTUP FROM INPUT  
(VIN = 5V, VOUT = 3.3V, MODE = PWM, LOAD = 1.0A)  
(VIN = 24V, VOUT = 5V, MODE = PWM, LOAD = 1.5A)  
toc42  
toc41  
20V/div  
5V/div  
20V/div  
VIN  
VLX  
VIN  
5V/div  
2V/div  
2V/div  
2V/div  
VLX  
VOUT  
VCC  
5V/div  
VOUT  
POKA  
2ms/div  
2ms/div  
HV STARTUP THROUGH ENABLE, 3.3V PREBIAS  
LV BUCK STARTUP FROM INPUT  
(VIN = 24V, VOUT = 5V, MODE = PWM, LOAD = 10mA)  
(VIN = 5V, VOUT = 1.8V, MODE = PWM, LOAD = 1.0A)  
toc43  
toc44  
5V/div  
5V/div  
20V/div  
VIN  
VLX  
ENH  
VLX  
5V/div  
2V/div  
1V/div  
5V/div  
5V/div  
VOUT  
VOUT  
POKB  
POKH  
2ms/div  
4ms/div  
LV STARTUP THROUGH ENABLE, 1.5V PREBIAS  
LV STARTUP THROUGH ENABLE, 0.8V PREBIAS  
(VIN = 5V, VOUT = 3.3V, MODE = PWM, LOAD = 10mA)  
(VIN = 5V, VOUT = 1.8V, MODE = PWM, LOAD = 10mA)  
toc45  
toc46  
2V/div  
2V/div  
ENA  
VLX  
ENB  
VLX  
5V/div  
5V/div  
2V/div  
5V/div  
1V/div  
5V/div  
VOUT  
VOUT  
POKA  
POKB  
2ms/div  
2ms/div  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Typical Operating Characteristics (continued)  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= FDIV = 0V, V  
= V  
= V  
= V  
= 5V, R = OPEN, C  
=
INH  
ENH  
GND  
PGNDH  
PGNDA  
PGNDB  
INA  
INB  
ENA  
ENB  
RT  
VCC  
2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are  
BSTH  
SS  
A
A
referenced to GND, unless otherwise noted.)  
LV BUCK STARTUP WITH OUTPUT SHORT-CIRCUIT  
HV BUCK STARTUP WITH OUTPUT SHORT-CIRCUIT  
(VIN = 5V, VOUT = 3.3V, MODE = PWM, LOAD = 1.0A)  
(VIN = 24V, VOUT = 5V, MODE = PWM, LOAD = 1.5A)  
toc48  
toc47  
10V/div  
5V/div  
VIN  
VOUT  
VIN  
2V/div  
VOUT  
2V/div  
VLX  
5V/div  
2A/div  
VLX  
ILX  
20V/div  
5A/div  
ILX  
4ms/div  
20ms/div  
LV BUCK STARTUP WITH OUTPUT SHORT-CIRCUIT  
HV OUTPUT SHORT-CIRCUIT DURING STEADY-STATE  
(VIN = 5V, VOUT = 1.8V, MODE = PWM, LOAD = 1.0A)  
(VIN = 24V, VOUT = 5V, MODE = PWM, LOAD = 1.5A)  
toc49  
toc50  
VOUT  
5V/div  
5V/div  
VIN  
VOUT  
2V/div  
10V/div  
2A/div  
VLX  
VLX  
5V/div  
2A/div  
ILX  
ILX  
4ms/div  
40ms/div  
OUTPUT SHORT-CIRCUIT DURING STEADY-STATE  
LV OUTPUT SHORT-CIRCUIT DURING STEADY-STATE  
(VIN = 5V, VOUT = 1.8V, MODE = PWM, LOAD = 1A)  
(VIN = 5V, VOUT = 3.3V, MODE = PWM, LOAD = 1A)  
toc52  
toc51  
5V/div  
5V/div  
VIN  
VIN  
VOUT  
2V/div  
5V/div  
2A/div  
VOUT  
1V/div  
5V/div  
VLX  
VLX  
2A/div  
ILX  
ILX  
10ms/div  
10ms/div  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Typical Operating Characteristics (continued)  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= FDIV = 0V, V  
= V  
= V  
= V  
= 5V, R = OPEN, C  
=
INH  
ENH  
GND  
PGNDH  
PGNDA  
PGNDB  
INA  
INB  
ENA  
ENB  
RT  
VCC  
2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are  
BSTH  
SS  
A
A
referenced to GND, unless otherwise noted.)  
EXTERNAL CLOCK SYNCHRONIZATION  
(VIN = 5V, VOUT = 3.3V, LOAD = 1.0A)  
EXTERNAL CLOCK SYNCHRONIZATION  
(VIN = 24V, VOUT = 5V, LOAD = 1.5A)  
toc53  
toc54  
5V/div  
5V/div  
VSYNC  
VSYNC  
20V/div  
VOUT(AC)  
20mV/div  
5V/div  
VLX  
VOUT(AC)  
50mV/div  
1A/div  
VLX  
1A/div  
ILX  
ILX  
10us/div  
10us/div  
EXTERNAL CLOCK SYNCHRONIZATION  
(VIN = 5V, VOUT = 1.8V, LOAD = 1.0A)  
HV BUCK BODE PLOT  
(VIN = 24V, VOUT = 5.0V, MODE = PWM, LOAD = 1.5A)  
toc55  
toc56  
40  
30  
20  
10  
0
110  
90  
5V/div  
70  
VSYNC  
50  
VOUT(AC)  
20mV/div  
5V/div  
PHASE  
30  
10  
GAIN  
VLX  
-10  
-30  
-50  
1A/div  
-10  
-20  
CROSSOVER FREQUENCY = 43.6kHz  
PHASE MARGIN = 69.1o  
ILX  
1k  
10k  
100k  
10us/div  
FREQUENCY (Hz)  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Typical Operating Characteristics (continued)  
(V  
= V  
= 24V, V  
= V  
= V  
= V  
= FDIV = 0V, V  
= V  
= V  
= V  
= 5V, R = OPEN, C  
=
INH  
ENH  
GND  
PGNDH  
PGNDA  
PGNDB  
INA  
INB  
ENA  
ENB  
RT  
VCC  
2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are  
BSTH  
SS  
A
A
referenced to GND, unless otherwise noted.)  
LV BUCK BODE PLOT  
(VIN = 5V, VOUT = 1.8V, MODE = PWM, LOAD = 1A)  
HV BUCK BODE PLOT  
(VIN = 24V, VOUT = 3.3V, MODE = PWM, LOAD = 1.5A)  
LV BUCK BODE PLOT  
(VIN = 5V, VOUT = 3.3V, MODE = PWM, LOAD = 1A)  
toc57  
toc58  
toc59  
40  
30  
30  
70  
80  
70  
PHASE  
20  
10  
30  
20  
10  
50  
60  
50  
20  
30  
PHASE  
40  
PHASE  
30  
0
10  
10  
0
20  
0
10  
-10  
-20  
-30  
-40  
GAIN  
0
-10  
-30  
-50  
-70  
GAIN  
GAIN  
-10  
-30  
-50  
-10  
-20  
-10  
-20  
-20  
-40  
CROSSOVER FREQUENCY = 153.0kHz  
PHASE MARGIN = 57.0o  
CROSSOVER FREQUENCY = 46.5kHz  
PHASE MARGIN = 59.8o  
CROSSOVER FREQUENCY = 125.5kHz  
PHASE MARGIN = 51.5o  
1k  
10k  
100k  
10k  
100k  
1Meg  
10k  
100k  
1Meg  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
RADIATED EMISSION PLOT  
(C12, C19 = 220pF, C27, C28, C29 = 150pF,  
toc61  
L3 = SHORT, C15 = C20 = OPEN)  
60  
50  
CISPR-22 CLASS B QP LIMIT  
40  
30  
VERTICAL  
SCAN  
20  
10  
0
HORIZONTAL  
SCAN  
30  
1000  
100  
FREQUENCY (MHz)  
CONDITIONS: VIN = 24V, VOH = VINA = VINB = 5V,  
IOH = 0.37A, IOA = IOB = 1A; FROM MAX17673AEVKIT#  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Pin Configuration  
TOP VIEW  
21 20 19 18 17 16 15  
21 20 19 18 17 16 15  
22  
23  
24  
25  
26  
27  
28  
14  
22  
23  
24  
25  
26  
27  
28  
14  
SGND  
EXTVCC  
FDIV  
SGND  
EXTVCC  
FDIV  
N.C.  
13 FBH  
12  
N.C.  
13 FBH  
12  
SSH  
11 ENA  
SSH  
11 ENA  
MAX17673  
MAX17673A  
ENB  
ENB  
10  
9
10  
9
INB  
INA  
INB  
INA  
PGNDA  
LXA  
PGNDA  
LXA  
PGNDB  
LXB  
PGNDB  
LXB  
EP  
6
EP  
6
+
+
8
8
1
2
3
4
5
7
1
2
3
4
5
7
TQFN  
5mm x 5mm  
TQFN  
5mm x 5mm  
Pin Description  
PIN  
NAME  
FUNCTION  
Feedback Inputs for LV Regulators. Connect FBA/FBB to the center of the external resistor-divider from  
the output of LV regulators to GND to set the output voltage.  
1, 7  
FBB, FBA  
Open-Drain Power Good to Monitor the Output of the HV Regulator. The POKH output is driven low if  
FBH drops below 92% of its set value. POKH goes high 2048 clock cycles after FBH rises above 95%  
of its set value. POKH is valid only if INH or EXTVCC is present.  
2
POKH  
Open-Drain Power Good to Monitor the Output of the LV Regulators. The POKA/POKB output is driven  
low if FBA/FBB drops below 92% of its set value. POKA/POKB goes high 2048 clock cycles after FBA/  
FBB rises above 95% of its set value. POKA/POKB is valid only if INH or EXTVCC is present.  
POKB,  
POKA  
3, 5  
Mode Selection Pin. The MODE/SYNC pin configures the devices to operate in PWM and PFM modes  
of operation. Leave the MODE/SYNC pin unconnected or connected to V  
for PFM operation. Con-  
CC  
MODE  
/SYNC  
4
nect MODE/SYNC to SGND for constant-frequency PWM operation at all loads. MAX17673A can be  
synchronized to an external clock using this pin. See the MODE Selection and External Clock  
Synchronization section for more details.  
LV Regulator Switching Frequency Selection Input. Connect a resistor from RT to GND to program the  
LV regulator switching frequency from 1MHz to 4MHz.  
6
RT  
Switching Node of LV Regulators. Connect LXA and LXB pins to the switching node of the inductors.  
LXA and LXB are high impedance when the devices are in shutdown mode.  
8, 28  
LXA, LXB  
PGNDA,  
PGNDB  
9, 27  
Power Grounds for LV Regulators.  
10, 26  
INA, INB  
Power Supply Input for LV Regulators. The input supply range is 2.7V to 5.5V.  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Pin Description (continued)  
PIN  
11, 25  
12  
NAME  
ENA, ENB  
SSH  
FUNCTION  
LV Regulator Enable Input. Drive ENA/ENB high to enable the LV regulators output voltage.  
Soft-Start Input for HV regulator. Connect a capacitor from SSH to GND to set the soft-start time.  
Feedback Input for HV Regulator. Connect FBH to the center of the resistive divider between the HV  
regulator output voltage and GND.  
13  
14  
FBH  
N.C.  
No Connection.  
Enable Input. Drive ENH high to enable the HV regulator output voltage. Connect ENH to the center of  
a resistive divider between INH and GND to set the input voltage (undervoltage threshold) at which the  
devices turn on. Pull up to INH for always on operation.  
15  
ENH  
16  
17  
INH  
Power-Supply Input for the HV Regulator. The input supply range is from 4.5V to 60V.  
Power Ground for the HV Regulator. Connect PGNDH externally to the power ground plane. Connect all  
GND and PGND pins together at one single point.  
PGNDH  
Switching Node of the HV Regulator. Connect LXH to the switching side of the inductor. LXH is high  
impedance when the devices are in shutdown mode.  
18  
LXH  
19  
20  
BSTH  
GND  
Bootstrap Capacitor for the HV Regulator. Connect a 0.1μF ceramic capacitor between BSTH and LXH.  
Analog Ground.  
Internal LDO Output. Bypass V  
The internal regulator is turned on if ENH, ENA, or ENB is high.  
with 2.2μF ceramic capacitance to GND to enable proper operation.  
CC  
21  
22  
23  
V
CC  
SGND  
Substrate Ground. Connect to GND.  
External Power Supply Input for the Internal LDO. Applying a voltage between 2.7V and 5.5V at the  
EXTVCC pin bypasses the internal LDO. If INH is present, EXTVCC is used only if it is above 3V (typ).  
EXTVCC  
HV Regulator Frequency Selection. Connect a resistor from FDIV to GND to select an LV/HV regulator  
frequency ratio (2, 3, 4, 5, 6, 7, 8). Pin read only at startup (first rise of ENH, ENA, or ENB).  
24  
FDIV  
EP  
Exposed pad. Connect to the GND pin. Connect a large copper plane below the IC to improve heat dis-  
sipation capability. Add thermal vias below the exposed pad. Refer to the MAX17673/MAX17673A EV  
kit data sheet for a layout example.  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Functional Diagram  
INH  
EXTVCC  
THERMAL  
TSD  
SHUTDOWN  
V
CC  
LDO SELECT  
POK  
BSTH  
V
CC_INT  
ENH  
PEAK-LIMIT  
CURRENT  
SENSE LOGIC  
CHIPEN  
CURRENT-  
SENSE  
CS  
1.2V  
AMPLIFIER  
TSD  
HIGH-SIDE  
DRIVER  
DH  
DL  
LXH  
PFM/PWM  
CONTROL LOGIC  
LOW-SIDE  
DRIVER  
SLOPE  
HV  
FBH  
CS  
PWM  
ERROR  
AMPLIFIER  
PGNDH  
EXTERNAL  
SOFT-START  
CONTROL  
SSH  
ZX/ILIMIN  
COMP  
SINK LIMIT  
NEGATIVE  
CURRENT  
REF  
CLK  
HV  
CLKHV  
FDIV  
FREQUENCY  
DIVIDER  
POKH  
GND  
SLOPE  
HV  
0.855V  
FB  
4096  
CYCLES  
CLKLV  
MODE/SYNC*  
TSD  
TSD  
ENB  
1.2V  
CHIPEN  
ENA  
INA  
1.2V  
UVLO  
INB  
UVLO  
CURRENT-  
SENSE  
AMPLIFIER  
PEAK-LIMIT  
CURRENT  
SENSE LOGIC  
CS2  
CURRENT-  
SENSE  
AMPLIFIER  
PEAK-LIMIT  
CURRENT  
SENSE LOGIC  
CS1  
PFM/PWM  
CONTROL LOGIC  
PFM/PWM  
CONTROL LOGIC  
HIGH-SIDE  
DRIVER  
DH  
LXA  
HIGH-SIDE  
DRIVER  
DH  
DL  
LOW-SIDE  
DRIVER  
DL  
LXB  
LOW-SIDE  
DRIVER  
ZX/ILIMIN  
COMP  
PGNDA  
PGNDB  
NEGATIVE  
CURRENT  
REF  
NEGATIVE  
CURRENT  
REF  
ZX/ILIMIN  
COMP  
V
REF  
CLK  
LV  
PWM  
PWM  
CS1  
SOFT-  
START  
ERROR  
AMPLIFIER  
CLK  
LV  
CLK  
LV  
SLOPE  
LV  
SLOPE  
LV  
FBA  
SLOPE  
LV  
FBB  
CS2  
ERROR  
AMPLIFIER  
SOFT-  
START  
CLK  
LV  
SLOPE  
LV  
OSCILLATOR  
SLOPE  
V
LV  
REF  
CLK  
LV  
POKA  
POKB  
0.7125V  
FBA  
RT  
4096  
CYCLES  
0.7125V  
FBB  
SGND  
4096  
CYCLES  
* SYNC FEATURE IS AVAILABLE ON MAX17673A  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
limit feature on the V  
54mA load current.  
pin, and can handle a typical  
CC  
Detailed Description  
MAX17673/MAX17673A power management integrated  
circuits (PMIC) integrate a 60V high voltage (HV), high effi-  
ciency synchronous DC-DC buck regulator and two 5.5V  
Low Voltage (LV) high efficiency synchronous DC-DC buck  
regulators. All three regulators offer integrated MOSFETs.  
The output of the HV regulator may be applied to the  
EXTVCC pin, if it is above the switchover threshold.  
Powering the quiescent current through the EXTVCC input  
reduces the current drawn from the high voltage input INH,  
and hence reduces the losses in the INH LDO. When not  
used, the EXTVCC pin must be connected to GND.  
The HV regulator and LV regulators are offered with inde-  
pendent input pins (INH, INA, and INB), ENABLE input  
pins (ENH, ENA, and ENB), switching nodes (LXH, LXA,  
and LXB pins), power ground pins (PGNDH, PGNDA,  
and PGNDB), and Power OK pins (POKH, POKA, and  
POKB). The controllers inside the devices are powered  
by linear regulators that generate the V  
the INH input or from the EXTVCC input. A valid INH or  
EXTVCC is required for operation of all the regulators.  
Enabling the Regulators  
The devices offer independent ENABLE pins for the three  
internal regulators. The HV regulator enable input (ENH)  
offers a programmable UVLO threshold. The LV ENABLE  
inputs (ENA and ENB) offer a digital logic threshold to  
enable or disable the regulators.  
supply from  
CC  
Switching Frequency Selection  
The switching frequency of the LV regulators is set by  
the internal clock of the devices and can be set between  
1MHz to 4MHz by connecting a resistor (R ) between  
the RT pin and GND. The switching frequency (f ) is  
SW  
The devices feature a peak current-mode control architec-  
ture. Output voltage regulation is achieved by sensing the  
output voltage through independent feedback pins (FBH,  
FBA, and FBB), comparing them against internal references,  
and setting the peak-current references for the independent  
peak current-mode control logic blocks. Stable operation is  
guaranteed by three independent internal error amplifiers  
with their compensation networks, and appropriate slope  
compensation in the peak current-mode controllers.  
RT  
related to the R resistor by the following equation:  
RT  
R
= (266/f ) - 36.58  
SW_LV  
RT  
Where f  
is in MHz, and R is in kΩ. The LV regu-  
RT  
SW_LV  
lators are internally clocked 180° apart to minimize the  
ripple current drawn from the low voltage input source.  
The RT pin offers adjustable switching frequency of the  
LV regulators. The FDIV pin allows selection of HV regula-  
tor switching frequency as a fraction of the LV regulators  
switching frequency. The MODE and MODE/SYNC pins  
allow selection of operating mode of the three regulators,  
between pulse width modulation (PWM) and pulse fre-  
quency modulation (PFM) modes. The MODE/SYNC pin  
on the MAX17673A can be used to synchronize the inter-  
nal oscillator to an external system clock. The HV regu-  
lator offers a programmable soft-start function through  
the SSH pin, while the LV regulators offer an internally  
clocked soft-start function.  
The switching frequency of the HV regulator is derived  
by dividing the LV regulator switching frequency by a pro-  
grammable factor. The HV regulator switching frequency  
can be programmed by connecting a resistor (R  
)
FDIV  
between the FDIV pin and GND. This resistor is read only  
at startup. The following table lists the value of R  
different frequency division factors.  
for  
FDIV  
Table 1. Switching Frequency Selection  
for HV Regulator  
Linear Regulator and External Supply  
Input (EXTVCC)  
FDIV RESISTOR  
(kΩ)  
HV DIVIDING FACTOR  
(f  
/ f  
)
SW_LV SW_HV  
The devices offer an internal low dropout (LDO) linear  
regulator, to power the internal functions by generating  
Internal RT  
< 1.35  
(f  
= 2MHz, f  
= 400kHz  
SW_LV  
SW_HV  
the V  
Supply. The V  
can be generated either from  
CC  
CC  
2.40  
4.70  
8.2  
15  
2
3
4
5
6
7
8
the INH supply, with an internal LDO or from the EXTVCC  
pin. The LDO are enabled only when at least one of the  
ENABLE inputs (ENH, ENA, or ENB) are asserted. The  
internal LDO uses INH when INH is above EXTVCC and  
EXTVCC is below the switchover threshold (3V). If INH  
is below EXTVCC, the LDO is disabled and EXTVCC is  
33  
56  
used to generate V . A 2.2µF capacitor must be con-  
CC  
> 89  
nected from the V  
pin to GND for proper operation of  
CC  
the linear regulators. The linear regulators offer a current  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
external clocks. The user must apply a valid clock frequency  
Operating Input Voltage  
The minimum and maximum operating input voltages for  
a given output voltage should be calculated as follows:  
for at least “t  
” time:  
min_sync  
t
= 1024/f  
+ 90us  
min_sync  
sw_LV  
Where, f  
= LV buck frequency in Hz.  
SW_LV  
V
+ I  
R
+ R  
DCR LS  
(
)
O
OUT  
MAX  
(
)
V
=
+ I  
R
R  
(
)
IN(MIN)  
OUT(MAX) HS LS  
PWM  
D
MAX  
V
Pulse width modulation (PWM) mode operation provides  
constant switching frequency at all load conditions, and is  
useful in frequency sensitive applications. In PWM mode,  
the inductor current is allowed to go negative, and hence  
remains continuous. PWM mode results in lower efficiency  
at light loads, compared to PFM mode.  
O
× t  
V
=
IN(MAX)  
f
SW(MAX)  
ON(MIN)  
where,  
V
O
= Steady-state output voltage  
I
= Maximum load current  
OUT(MAX)  
PFM  
R
= DC resistance of the inductor  
DCR  
Pulse frequency modulation (PFM) mode operation disables  
the negative inductor current and additionally skips pulses at  
light loads for high efficiency. In PFM mode, the inductor current  
is forced to a fixed peak of 820mA for HV buck and 540mA for  
LV bucks, every clock cycle until the output rises to the PFM  
skip threshold (i.e., 102.75% typ for HV buck and 102.5% typ  
for LV bucks) of the nominal voltage. Once the output reaches  
the PFM skip threshold of the nominal voltage, both the high-  
side and low-side FETs are turned off and the devices enter  
hibernate operation until the load current discharges the output  
voltage to the PFM resume threshold (i.e., 101% typ for HV  
buck and 101.7% typ for LV Buck) of the nominal voltage. Most  
of the internal blocks are turned off in hibernate operation to  
save quiescent current. After the outputs fall below the PFM  
resume threshold of the nominal voltage, the devices come out  
of hibernate operation, turns on all internal blocks, and again  
commences the process of delivering pulses of energy to the  
output until it reaches the PFM skip threshold of the nominal  
output voltage. The advantage of the PFM mode is higher effi-  
ciency at light loads because of lower quiescent current drawn  
from supply. The disadvantage is that the output-voltage ripple  
is higher compared to PWM modes of operation and switching  
frequency is not constant at light loads.  
f
t
= Maximum switching frequency  
= Minimum switch on-time.  
SW(MAX)  
ON(MIN)  
MODE Selection and External Clock  
Synchronization  
The devices offer programmable PWM and PFM modes of  
operation. Connecting the MODE pin of MAX17673 or the  
MODE/SYNC pin of MAX17673A to GND operates the part  
in PWM operation. Connecting the MODE pin of MAX17673  
or the MODE/SYNC pin of MAX17673A to V , or leaving  
the pin open, enables the part to operate in PFM mode. The  
chosen operating mode applies to all the three regulators.  
CC  
The MAX17673A offers external clock synchronization.  
The internal oscillator of the device can be synchronized to  
an external clock signal applied on the MODE/SYNC pin.  
The external synchronization frequency must be between  
0.9 x f  
and 1.1 x f . Where f  
SW_LV  
is the  
SW_LV  
SW_LV  
LV buck frequency programmed by the RT resistor. The  
MAX17673A operates in PWM mode when synchronized  
to an external clock.  
The MAX17673A highlights a phase-locked-loop (PLL) clock  
generator that allows seamless on-the-fly synchronization to  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
parator commands the first PWM pulse, at which point switch-  
ing commences. The output voltage is then smoothly ramped  
up to the target value in alignment with the internal reference.  
Power Good Signal (POK)  
The devices offer individual power good signals (POKH,  
POKA, and POKB) for the three internal regulators. The  
POK_ pins are open-drain output pins. The POK_ pins  
must be pulled up to the desired logic level voltages  
externally. The power good signals are driven high when  
the output voltage of the regulators reach 95% (typ) of the  
set values after soft-start is completed. The power good  
signals are pulled low during the soft-start period, and  
under fault conditions (thermal shutdown, or any of the  
corresponding ENABLE inputs are held low).  
Thermal Shutdown Protection  
Thermal shutdown protection limits total power dissipation in  
the devices. When the junction temperature of the devices  
exceeds +165°C, an on-chip thermal sensor shuts down the  
devices, allowing the devices to cool. The thermal sensor is  
common to all three regulators. The thermal sensor turns  
the devices on again after the junction temperature cools by  
20°C. All three regulator soft-start cycle resets during ther-  
mal shutdown. Carefully evaluate the total power dissipa-  
tion (see the Power Dissipation section) to avoid unwanted  
triggering of the thermal shutdown during normal operation.  
Overcurrent and Hiccup Mode  
The devices are provided with a robust overcurrent pro-  
tection scheme that protects the devices during overload  
and output short-circuit conditions. A cycle-by-cycle peak  
current limit turns off the high-side MOSFET whenever the  
high-side switch current exceeds an internal limit of 2.7A  
(typ) for HV buck and 1.7A (typ) for LV bucks. In addition,  
if due to a fault condition, feedback voltage (at FBH, FBA,  
or FBB pins) drops to 64% of the typical feedback voltage  
of the regulated value any time after soft-start is complete,  
hiccup mode is triggered. In hiccup mode, the convert-  
ers are protected by suspending switching for a hiccup  
timeout period of 32,768 switching cycles. Once the hic-  
cup timeout period expires, soft-start is attempted again.  
Hiccup mode of operation ensures low power dissipation  
under output short-circuit conditions. The overcurrent and  
hiccup mode operation for the HV regulator and LV regu-  
lators work independent of each other.  
Applications Information  
Input Capacitor Selection  
The devices offer independent input terminals for the  
three internal regulators. Input capacitors must be placed  
near each of these input terminals (INH, INA, and INB)  
to reduce the peak currents drawn from the input power  
source, and to reduce the noise and voltage ripple on the  
input terminals. The input capacitor RMS current require-  
ment (I  
) is calculated using following equation:  
RMS  
(V − V  
IN  
) × V  
OUT  
OUT  
×
OUT(MAX)  
I
=
I
RMS  
V
IN  
where, I  
is the maximum load current. I  
RMS  
OUT(MAX)  
has a maximum value when the input voltage equals  
twice the output voltage (V = 2 x V ), so I  
RMS(MAX)  
Prebiased Output  
IN  
OUT  
When the devices start into a prebiased output, both the  
high-side and the low-side switches are turned off so that the  
converter does not sink current from the output. High-side and  
low-side switches do not start switching until the PWM com-  
= I /2.  
OUT(MAX)  
Choose an input capacitor that exhibits less than +10°C  
temperature rise at the RMS input current for optimal  
long-term reliability. Use low-ESR ceramic capacitors with  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
high-ripple-current capability at the input. X7R capacitors  
are recommended in industrial applications for their tem-  
perature stability. Calculate the input capacitance using  
the following equation:  
0.33  
1
t
=
(
+
)
RESPONSE  
f
f
C
SW  
where,  
I
× D × (1 − D)  
C
is in Farad  
OUT(MAX)  
=
η × f  
OUT  
C
IN  
× ∆ V  
IN  
SW  
I
t
= Load current step  
STEP  
= Response time of the controller  
= Allowable output voltage deviation  
RESPONSE  
where,  
D = V  
∆V  
/V is the duty ratio of the controller  
= Switching frequency  
OUT  
OUT IN  
f
= Target closed-loop crossover frequency in Hz  
= Switching frequency in Hz  
f
C
SW  
f
∆V = Allowable input voltage ripple  
SW  
IN  
Select f to be 1/10th of the switching frequency.  
C
η = efficiency  
DC and AC bias derating characteristics of ceramic  
capacitors must be considered while selecting output  
capacitors. Derating curves are available from all major  
ceramic capacitor manufacturers.  
In applications where the source is located distant from  
the device input, an electrolytic capacitor should be added  
in parallel to the ceramic capacitor to provide necessary  
damping for potential oscillations caused by the inductance  
of the longer input power path and input ceramic capacitor.  
Soft-Start Capacitor Selection  
Inductor Selection  
The devices implement adjustable soft-start operation  
for the HV regulator and fixed soft-start time for the LV  
regulators to reduce inrush current. A capacitor connected  
from the SSH pin to GND programs the soft-start time for  
The inductors for the three regulators must be speci-  
fied for operation with the MAX17673/MAX17673A. The  
switching frequency and output voltage determine the  
inductance value as follows  
the HV regulator. The selected output capacitance (C  
)
SEL  
and the output voltage (V  
required soft-start capacitor as follows:  
) determine the minimum  
1.5× V  
OUT  
OUT  
L =  
f
SW  
−06  
where f  
is in Hertz. Select low DC resistance (DCR)  
SW  
C
56 × 10  
× C  
× V  
SS  
SEL OUT  
inductors close to the calculated values. The saturation  
current rating (I ) of the inductor must be above the  
peak current limit of the regulator.  
SAT  
The soft-start time (t ) is related to the capacitor con-  
nected at SS (C ) by the following equation:  
SS  
SS  
Output Capacitor Selection  
C
SS  
t
=
X7R ceramic output capacitors are preferred due to their  
stability over temperature in industrial applications. The  
output capacitors are typically sized to support a step load  
of 50% of the maximum output current in the application,  
so the output voltage deviation is contained to 3% of the  
output voltage setpoint. The minimum required output  
capacitance can be calculated as follows:  
SS  
−06  
5.55 × 10  
For example, to program a 2ms soft-start time, a 12nF  
capacitor should be connected from the SSH pin to GND.  
I
× t  
STEP RESPONSE  
C
=
OUT  
2 × ∆ V  
OUT  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Setting the Input Undervoltage Lockout  
Level of the HV Regulator  
The devices offer an adjustable input undervoltage lock-  
out level for the HV regulator. Set the voltage at which the  
device turns on with a resistive voltage-divider connected  
V
INH  
R1  
R2  
from V  
to GND (Figure 1). Connect the center node of  
INH  
the divider to the ENH pin.  
ENH  
Choose R1 to be 3.3MΩ and then calculate R2 as follows:  
R1 × 1.2  
R2 =  
(V  
− 1.2)  
INU  
where, V  
is the voltage at which the device must turns  
INU  
on. Ensure that V  
is higher than 0.8 x V  
.
INU  
OUT  
To reduce voltage ringing, a minimum damping resistance  
of 1kΩ should be placed in series with the ENH pin, when  
driven from an external signal source.  
Figure 1. Setting the Input Undervoltage Lockout Level for the  
HV Regulator  
Adjusting Output Voltage  
The devices offer independent control of output voltages,  
by allowing individual sense and feedback inputs. Set the  
output voltage of the three regulators by using a resistive  
divider from the output voltages to the respective feed-  
back (FB_) pins (Figure 2). Use the following expressions  
to choose the resistive divider values.  
V
OUT  
R
U
For the HV regulator:  
FB  
R
= 2165/(C  
× f  
)
U
OUT  
SW_HV  
× 0.9  
− 0.9)  
R
U
R
B
R
=
B
(V  
OUT  
For LV regulators:  
R
= (721.5/(f  
× C  
)) ( 8.7× V  
)
OUT  
U
SW_LV  
OUT  
Figure 2. Setting the Output Voltage  
R
× 0.75  
U
R
=
B
(V  
− 0.75)  
OUT  
where V  
is in V, R and R are in kΩ, C  
is in µF,  
OUT  
OUT  
U
B
f
and f  
are in MHz.  
SW_HV  
SW_LV  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
maintained at a given temperature (T ) by using proper  
EP  
heat sinks, the junction temperature of the device can be  
estimated as:  
Power Dissipation  
The power dissipation inside the chip leads to an  
increase in the junction temperature of the MAX17673/  
MAX17673A. At a given operating condition, ensure that  
the junction temperature of the devices do not exceed  
+125°C. The power loss from the IC at full load can be  
calculated as follows:  
T
= T + θ × P  
EP JC ICLOSS  
(
)
J(MAX)  
Junction temperatures greater than +125°C degrade  
operating lifetimes.  
2
OH  
PCB Layout Guidelines  
P
= I  
D × 120m + 170m  
[ ]  
[
]
ICLOSS  
All connections carrying pulsed currents must be very  
short and as wide as possible. The inductance of these  
connections must be kept to an absolute minimum due to  
the high di/dt of the currents. Since inductance of a cur-  
rent-carrying loop is proportional to the area enclosed by  
the loop, if the loop area is made very small, inductance  
is reduced. Additionally, small-current loop areas reduce  
radiated EMI.  
+f  
28.515n + V  
[
× I  
× 9n  
]
SW_HV  
[
INH  
OH  
]
2
2
OB  
2
2
+60m I  
× D + I  
× D + 60m I  
+ I  
OA OB  
OA  
A
B
(
)
(
)
+f  
24.41n + 4n V  
× I + V  
× I  
[
]
]
SW_LV  
[
INA  
OA  
INB OB  
A ceramic input filter capacitor should be placed close  
to the IN_ pins of the IC. This eliminates as much trace  
inductance effects as possible and gives the IC a cleaner  
where,  
D, D , and D = Duty cycle of the HV, LVA, and LVB  
regulators, respectively  
A
B
voltage supply. A bypass capacitor for the V  
pin also  
CC  
f
and f = HV buck and LV buck switching  
should be placed close to the pin to reduce effects of trace  
impedance.  
SW_HV  
SW_LV  
frequencies  
I
, I and I  
= Output currents of the HV buck, LVA,  
OB  
When routing the circuitry around the IC, the analog  
small-signal ground and the power ground for switching  
currents must be kept separate. They should be con-  
nected together at a point where switching activity is at a  
OH OA,  
and LVB buck converter.  
For more information regarding power losses at different  
load current, switching frequency, output voltage, and  
input voltage refer to EE-sim model of the MAX17673/  
MAX17673A.  
minimum, typically the return terminal of the V  
bypass  
CC  
capacitor. This helps to keep the analog ground quiet.  
The ground plane should be kept continuous/unbroken  
as far as possible. No trace carrying high switching cur-  
rent should be placed directly over any ground plane  
discontinuity.  
For a typical multilayer board, the thermal performance  
metrics for the package are given below:  
θ
= 29°C/W  
= 2°C/W  
JA  
PCB layout also affects the thermal performance of the  
design. A number of thermal vias that connect to a large  
ground plane should be provided under the exposed pad  
of the part, for efficient heat dissipation.  
θ
JC  
The junction temperature of the device can be estimated  
at any given maximum ambient temperature (T  
from the following equation:  
)
A(MAX)  
For a sample layout that ensures first pass success, refer  
to the MAX17673/MAX17673A evaluation kits layout  
available at www.maximintegrated.com.  
T
= T  
+ θ × P  
(
)
J(MAX)  
A(MAX) JA ICLOSS  
If the application has a thermal-management system  
that ensures that the exposed pad of the devices are  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Typical Application Circuit  
V
BSTH  
LXH  
INH  
INH  
C4  
0.1μF  
L1  
C1  
4.7μF  
`
22μH  
V
OUT  
ENH  
PGNDH  
5V/1.5A  
EXTV  
CC  
C3  
47μF  
R1  
249kΩ  
PGNDH  
R9  
1Ω  
C9  
1μF  
V
CC  
R7  
0Ω  
FBH  
POKH  
SSH  
C2  
2.2μF  
FDIV  
R2  
54.9kΩ  
C10  
MODE/SYNC*  
RT  
5600pF  
MAX17673  
MAX17673A  
V
/ V  
INA  
ENA  
INA OUT  
C5  
2.2μF  
V
/ V  
INB OUT  
INB  
C7  
PGNDA  
2.2μF  
PGNDB  
V
OUTA  
ENB  
LXB  
LXA  
L2  
2.2μH  
3.3V/1A  
C6  
22μF  
V
OUTB  
R3  
PGNDA  
L3  
1.5μH  
1.8V/1A  
9.76kΩ  
C8  
22μF  
R5  
12.10kΩ  
PGNDB  
FBB  
FBA  
POKA  
GND  
R4  
2.87kΩ  
R6  
8.66kΩ  
POKB  
SGND  
EP  
* THE SYNC FEATURE IS AVAILABLE ON MAX17673A  
f
= 400kHz, f  
= 2MHz  
SW_LV  
SW_HV  
L1: XAL6060 223ME  
C3: GRM32ER71A476KE15  
L2: IHHP1008ABER2R2M01  
C6,C8: GRM21BZ70J226ME44  
L3: IHHP1008ABER1R5M01  
Ordering Information  
PART  
MAX17673ATI+  
MAX17673AATI+  
PIN-PACKAGE  
28 TQFN  
PACKAGE SIZE  
5mm x 5mm  
FUNCTIONALITY  
28 TQFN  
5mm x 5mm  
SYNC Feature  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX17673/MAX17673A  
Integrated 4.5V to 60V Synchronous 1.5A HV Buck  
and Dual 2.7V to 5.5V, 1A Buck Regulators  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
10/18  
Initial release  
Updated the title, and the General Description, Benefits and Features, Electrial  
Characteristics, Typical Operating Characteristics, Pin Configuration and Pin  
Description, Functional Diagram, Detailed Description, Operating Input Voltage, PFM,  
Power Dissipation, Typical Application Circuit section, and added MAX17673AATI+ to  
the Ordering Information  
1
2
10/19  
11/19  
1‒22  
Updated TOC60 and TOC61, MODE Selection and External Clock Synchronization  
section, and Typical Application Circuit; corrected typo  
16, 21, 26  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
27  

相关型号:

MAX17673AATI

Integrated 4.5V to 60V Synchronous 1.5A HV Buck and Dual 2.7V to 5.5V, 1A Buck Regulators
MAXIM

MAX17673AATI+

Switching Regulator/Controller,
MAXIM

MAX17673ATI

Integrated 4.5V to 60V Synchronous 1.5A HV Buck and Dual 2.7V to 5.5V, 1A Buck Regulators
MAXIM

MAX17673ATI+

Switching Regulator,
MAXIM

MAX17681

4.5V to 42V Input, High-Efficiency
MAXIM

MAX17681AATB+

4.5V to 42V Input, High-Efficiency
MAXIM

MAX17681ATB+

4.5V to 42V Input, High-Efficiency
MAXIM

MAX17681ATB+T

IC REG BUCK ISO ADJ SYNC 10TDFN
MAXIM

MAX17681_18

4.5V to 42V Input, High-Efficiency
MAXIM

MAX17682

4.5V to 42V Input, Ultra-Small
MAXIM

MAX17682ATP+

4.5V to 42V Input, Ultra-Small
MAXIM

MAX17686

4.5V to 60V Input, High-Efficiency, Iso-Buck DC-DC Converter
MAXIM