MAX1776EUA+T

更新时间:2024-09-18 13:07:47
品牌:MAXIM
描述:Switching Regulator, Current-mode, 2A, 200kHz Switching Freq-Max, BICMOS, PDSO8, MSOP-8

MAX1776EUA+T 概述

Switching Regulator, Current-mode, 2A, 200kHz Switching Freq-Max, BICMOS, PDSO8, MSOP-8 DC/DC转换器 开关式稳压器或控制器

MAX1776EUA+T 规格参数

是否无铅:不含铅是否Rohs认证:符合
生命周期:Active零件包装代码:MSOP
包装说明:TSSOP, TSSOP8,.19针数:8
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.39.00.01Factory Lead Time:6 weeks
风险等级:0.89Is Samacsys:N
模拟集成电路 - 其他类型:SWITCHING REGULATOR控制模式:CURRENT-MODE
最大输入电压:24 V最小输入电压:4.5 V
标称输入电压:12 VJESD-30 代码:S-PDSO-G8
JESD-609代码:e3长度:3 mm
湿度敏感等级:1功能数量:1
端子数量:8最高工作温度:85 °C
最低工作温度:-40 °C最大输出电流:2 A
封装主体材料:PLASTIC/EPOXY封装代码:TSSOP
封装等效代码:TSSOP8,.19封装形状:SQUARE
封装形式:SMALL OUTLINE, THIN PROFILE, SHRINK PITCH峰值回流温度(摄氏度):260
认证状态:Not Qualified座面最大高度:1.1 mm
子类别:Switching Regulator or Controllers表面贴装:YES
切换器配置:BUCK最大切换频率:200 kHz
技术:BICMOS温度等级:INDUSTRIAL
端子面层:Matte Tin (Sn)端子形式:GULL WING
端子节距:0.65 mm端子位置:DUAL
处于峰值回流温度下的最长时间:30宽度:3 mm
Base Number Matches:1

MAX1776EUA+T 数据手册

通过下载MAX1776EUA+T数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
19-1975; Rev 2; 7/03  
24V, 600mA Internal Switch, 100% Duty Cycle,  
Step-Down Converter  
General Description  
Features  
The MAX1776 high-efficiency step-down converter pro-  
o Fixed 5V or Adjustable Output  
o 4.5V to 24V Input Voltage Range  
o Up to 600mA Output Current  
o Internal 0.4P-Channel MOSFET  
o Efficiency Over 95%  
vides an adjustable output voltage from 1.25V to V from  
IN  
supply voltages as high as 24V. An internal current-limit-  
ed 0.4MOSFET delivers load currents up to 600mA.  
Operation to 100% duty cycle minimizes dropout volt-  
age (240mV at 600mA).  
The MAX1776 has a low 15µA quiescent current to  
improve light-load efficiency and conserve battery life.  
The device draws only 3µA while in shutdown.  
o 15µA Quiescent Supply Current  
o 3µA Shutdown Current  
High switching frequencies (up to 200kHz) allow the  
use of tiny surface-mount inductors and output capaci-  
tors. The MAX1776 is available in an 8-pin µMAX pack-  
age, which uses half the space of an 8-pin SO. For  
increased output drive capability, use the MAX1626/  
MAX1627 step-down controllers, which drive an exter-  
nal P-channel MOSFET to deliver up to 20W.  
o 100% Maximum Duty Cycle for Low Dropout  
o Current-Limited Architecture  
o Thermal Shutdown  
o Small 8-µMAX Package  
Ordering Information  
Applications  
Notebook Computers  
PART  
TEMP RANGE  
PIN-PACKAGE  
Distributed Power Systems  
Keep-Alive Supplies  
Hand-Held Devices  
MAX1776EUA  
-40°C to +85°C  
8 µMAX  
Typical Operating Circuit  
Pin Configuration  
TOP VIEW  
V
IN  
IN  
SHDN  
ILIM  
V
OUT  
FB  
GND  
ILIM  
LX  
1
2
3
4
8
7
6
5
OUT  
SHDN  
ILIM2  
IN  
LX  
MAX1776  
MAX1776EUA  
ILIM2  
FB  
OUT  
GND  
µMAX  
µMAX  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
24V, 600mA Internal Switch, 100% Duty Cycle,  
Step-Down Converter  
ABSOLUTE MAXIMUM RATINGS  
IN, SHDN, ILIM, ILIM2 to GND .................................-0.3V to 25V  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin µMAX (derate 4.1mW/°C above +70°C).............330mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
LX to GND.......................................................-2V to (V + 0.3V)  
IN  
OUT, FB to GND .........................................................-0.3V to 6V  
Peak Input Current .................................................................. 2A  
Maximum DC Input Current.............................................. 500mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1, V = +12V, SHDN = IN, T = 0°C to +85°C, unless otherwise noted.)  
IN  
A
PARAMETER  
Input Voltage Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
24  
UNITS  
V
V
4.5  
IN  
IN  
Input Supply Current  
I
No load  
15  
50  
28  
µA  
Input Supply Current in Dropout  
Input Shutdown Current  
I
No load  
70  
µA  
IN(DROP)  
SHDN = GND  
3
7
µA  
V
V
rising  
falling  
3.6  
3.5  
4.0  
3.9  
5.00  
4.4  
4.3  
5.20  
IN  
IN  
Input Undervoltage Lockout  
Threshold  
V
V
UVLO  
Output Voltage (Preset Mode)  
V
FB = GND  
4.80  
V
V
OUT  
Feedback Set Voltage  
(Adjustable Mode)  
V
1.212  
1.65  
1.25  
3.5  
1.288  
FB  
OUT Bias Current  
V
V
= 5.5V  
6.25  
5.5  
µA  
V
OUT  
OUT Pin Maximum Voltage  
FB Bias Current  
I
= 1.3V  
= 1.3V  
-25  
50  
+25  
150  
0.62  
12  
nA  
mV  
µs  
µs  
FB  
FB  
FB  
FB Dual ModeThreshold Low  
LX Switch Minimum Off-Time  
LX Switch Maximum On-Time  
100  
0.42  
10  
t
0.22  
8
OFF(MIN)  
t
V
ON(MAX)  
ILIM = ILIM2 = GND  
ILIM = GND, ILIM2 = IN  
ILIM = IN, ILIM2 = GND  
ILIM = ILIM2 = IN  
1.6  
3.2  
0.8  
1.6  
V
= 6V  
IN  
0.4  
0.8  
0.4  
0.8  
LX Switch On-Resistance  
R
LX  
ILIM = ILIM2 = GND  
ILIM = GND, ILIM2 = IN  
ILIM = IN, ILIM2 = GND  
ILIM = ILIM2 = IN  
1.9  
3.8  
1.0  
1.9  
V
= 4.5V  
IN  
0.5  
0.95  
0.95  
180  
360  
720  
1440  
+75  
0.5  
ILIM = ILIM2 = GND  
ILIM = GND, ILIM2 = IN  
ILIM = IN, ILIM2 = GND  
ILIM = ILIM2 = IN  
120  
240  
480  
960  
-75  
150  
300  
600  
1200  
LX Current Limit  
I
mA  
LX(PEAK)  
LX Zero-Crossing Threshold  
Zero-Crossing Timeout  
mV  
µs  
LX does not rise above the threshold  
30  
T
A
T
A
= +25°C  
1
V
= 24V,  
IN  
LX Switch Leakage Current  
µA  
LX = GND  
= 0°C to +85°C  
10  
Dual Mode is a trademark of Maxim Integrated Products, Inc.  
2
_______________________________________________________________________________________  
24V, 600mA Internal Switch, 100% Duty Cycle,  
Step-Down Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = +12V, SHDN = IN, T = 0°C to +85°C, unless otherwise noted.)  
IN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 525mA, ILIM = ILIM2 = IN  
= 8V/24V, 200load  
MIN  
TYP  
0.2  
MAX  
UNITS  
V
Dropout Voltage  
V
I
DROPOUT OUT  
Line Regulation  
Load Regulation  
V
0.1  
%/V  
%
IN  
No load/full load  
0.9  
Low  
0.8  
Digital Input Level  
SHDN, ILIM2  
V
µA  
V
High  
2.4  
-1  
Digital Input Leakage Current  
ILIM Input Level  
V
, V  
, V  
= 0 or 24V, V = 24V  
+1  
SHDN ILIM ILIM2  
IN  
Low  
0.05  
High  
2.2  
Thermal Shutdown  
10°C hysteresis  
160  
°C  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1, V = +12V, SHDN = IN, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
IN  
A
PARAMETER  
Input Voltage Range  
SYMBOL  
CONDITIONS  
MIN  
MAX  
24  
UNITS  
V
V
4.5  
IN  
IN  
Input Supply Current  
I
No load  
28  
µA  
Input Supply Current in Dropout  
Input Shutdown Current  
I
No load  
70  
µA  
IN(DROP)  
SHDN = GND  
7
µA  
V
V
rising  
falling  
3.6  
3.5  
4.4  
4.3  
5.25  
IN  
IN  
Input Undervoltage Lockout  
Threshold  
V
V
V
V
UVLO  
Output Voltage (Preset Mode)  
V
FB = GND  
4.75  
OUT  
Feedback Set Voltage  
(Adjustable Mode)  
V
1.2  
1.3  
FB  
OUT Bias Current  
V
V
= 5.5V  
1.65  
6.25  
5.5  
µA  
V
OUT  
OUT Pin Maximum Voltage  
FB Bias Current  
I
= 1.3V  
= 1.3V  
-25  
45  
+25  
155  
0.64  
12.5  
3.2  
nA  
mV  
µs  
µs  
FB  
FB  
FB  
FB Dual Mode Threshold Low  
LX Switch Minimum Off-Time  
LX Switch Maximum On-Time  
t
0.22  
7.5  
OFF(MIN)  
t
V
ON(MAX)  
ILIM = ILIM2 = GND  
ILIM = GND, ILIM2 = IN  
ILIM = IN, ILIM2 = GND  
ILIM = ILIM2 = IN  
1.6  
V
= 6V  
IN  
0.8  
0.8  
LX Switch On-Resistance  
R
LX  
ILIM = ILIM2 = GND  
ILIM = GND, ILIM2 = IN  
ILIM = IN, ILIM2 = GND  
ILIM = ILIM2 = IN  
3.8  
1.9  
V
= 4.5V  
IN  
0.95  
0.95  
200  
400  
800  
1600  
ILIM = ILIM2 = GND  
ILIM = GND, ILIM2 = IN  
ILIM = IN, ILIM2 = GND  
ILIM = ILIM2 = IN  
100  
200  
400  
800  
LX Current Limit  
I
mA  
LX(PEAK)  
_______________________________________________________________________________________  
3
24V, 600mA Internal Switch, 100% Duty Cycle,  
Step-Down Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = +12V, SHDN = IN, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
IN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
MAX  
75  
UNITS  
mV  
LX Zero-Crossing Threshold  
LX Switch Leakage Current  
-75  
V
= 24V, LX = GND  
10  
µA  
IN  
Low  
0.8  
Digital Input Level  
SHDN, ILIM2  
, V  
V
µA  
V
High  
2.4  
-1  
Digital Input Leakage Current  
ILIM Input Level  
V
, V  
= 0 or 24V, V = 24V  
1
SHDN ILIM ILIM2  
IN  
Low  
0.05  
High  
2.2  
Note 1: Specifications to -40°C are guaranteed by design, not production tested.  
Typical Operating Characteristics  
(Circuit of Figure 1, components from Table 3, V = +12V, SHDN = IN, T = +25°C.)  
IN  
A
LOAD REGULATION,  
LOAD REGULATION,  
CIRCUIT 1, V = 5V  
LOAD REGULATION, CIRCUIT 2  
CIRCUIT 1, V  
= 3.3V  
OUTPUT  
OUTPUT  
0.6  
0.2  
0
0.2  
0
V
IN  
= 5V  
0.4  
0.2  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
V = 24V  
IN  
V
IN  
= 12V  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
V
IN  
= 15V  
V
IN  
= 24V  
V
IN  
= 12V  
100  
V
IN  
= 12V  
V
V
IN  
= 24V  
= 15V  
IN  
V
IN  
= 15V  
0
200  
300  
(mA)  
400  
500  
600  
0
100 200 300 400 500 600 700  
(mA)  
0
50 100 150 200 250 300 350 400  
(mA)  
I
I
LOAD  
I
LOAD  
LOAD  
V
vs. V ,  
IN  
V
OUTPUT  
LOAD REGULATION, CIRCUIT 5  
CIRCUIT 5, V  
= 5V  
CIRCUIT 5, V  
OUTPUT  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
1.0  
3
2.0  
1.5  
1.0  
0.5  
0
V
= 12V  
IN  
2
1
V
IN  
= 24V  
I
= 1mA  
LOAD  
I
= 50mA  
LOAD  
I
= 1mA  
LOAD  
0
I
= 10mA  
LOAD  
I
= 500mA  
LOAD  
-1  
-2  
-3  
V
= 15V  
IN  
-0.5  
-1.0  
I
= 50mA  
LOAD  
5
7
9
11 13 15 17 19 21 23 25  
(V)  
5
7
9
11 13 15 17 19 21 23 25  
(V)  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
V
IN  
V
IN  
I
(A)  
LOAD  
4
_______________________________________________________________________________________  
24V, 600mA Internal Switch, 100% Duty Cycle,  
Step-Down Converter  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, components from Table 3, V = +12V, SHDN = IN, T = +25°C.)  
IN  
A
V
vs. V ,  
IN  
V
vs. V ,  
EFFICIENCY vs. I  
, CIRCUIT 1,  
LOAD  
= 5V  
OUTPUT  
OUTPUT  
IN  
V
CIRCUIT 1, V  
= 5V  
CIRCUIT 1, V  
= 3.3V  
OUT  
OUTPUT  
OUTPUT  
0.6  
0.4  
0.2  
0
100  
0.4  
0.2  
V
IN  
= 6V  
I
= 10mA  
LOAD  
95  
90  
85  
80  
75  
70  
65  
60  
I
= 1mA  
LOAD  
I
= 1mA  
LOAD  
I
= 10mA  
LOAD  
V
IN  
= 12V  
0
V
IN  
= 24V  
V
IN  
= 15V  
-0.2  
-0.4  
-0.6  
-0.8  
1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
I
= 50mA  
LOAD  
I
= 50mA  
LOAD  
I
= 500mA  
I
= 500mA  
LOAD  
LOAD  
55  
50  
5
7
9
11 13 15 17 19 21 23 25  
5
0.10  
5
7
9
11 13 15 17 19 21 23 25  
0.10  
1
10  
(mA)  
100  
1000  
V
IN  
(V)  
V
IN  
(V)  
I
LOAD  
EFFICIENCY vs. I  
V
, CIRCUIT 5,  
EFFICIENCY vs. I  
V
, CIRCUIT 1,  
LOAD  
LOAD  
EFFICIENCY vs. V , I  
= 500mA  
= 3.3V  
= 3.3V  
IN LOAD  
OUTPUT  
OUTPUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
100  
V
IN  
= 6V  
95  
90  
85  
80  
75  
70  
65  
60  
95  
90  
85  
80  
75  
70  
65  
60  
CIRCUIT 5, 5V  
CIRCUIT 1, 5V  
V
IN  
= 6V  
V
IN  
= 12V  
CIRCUIT 1, 3.3V  
V
IN  
= 12V  
CIRCUIT 5, 3.3V  
V
IN  
= 24V  
V
IN  
= 15V  
V
IN  
= 24V  
55  
50  
55  
50  
0.10  
1
10  
(mA)  
100  
1000  
7
8
9
10 11 12 13 14 15 16  
(V)  
1
10  
(mA)  
100  
1000  
I
V
IN  
I
LOAD  
LOAD  
SWITCHING FREQUENCY vs.  
LOAD CURRENT, CIRCUIT 1  
SWITCHING FREQUENCY vs.  
, CIRCUIT 1  
V
V
ACCURACY vs. TEMPERATURE  
OUTPUT  
IN  
200  
180  
160  
140  
120  
100  
80  
140  
120  
100  
80  
1.5  
1.0  
0.5  
0
V
IN  
= 15V  
I
= 500mA  
= 375mA  
LOAD  
I
LOAD  
LOAD  
V
= 24V  
IN  
I
= 250mA  
60  
I
= 5mA  
LOAD  
-0.5  
-1.0  
-1.5  
60  
40  
V
IN  
= 12V  
I
= 10mA  
LOAD  
I
= 50mA  
LOAD  
40  
20  
20  
0
0
0
100 200 300 400 500 600 700 800 900  
(mA)  
10  
15  
(V)  
20  
25  
-40 -20  
0
20  
40  
60  
80 100  
I
V
IN  
TEMPERATURE (°C)  
LOAD  
_______________________________________________________________________________________  
5
24V, 600mA Internal Switch, 100% Duty Cycle,  
Step-Down Converter  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, components from Table 3, V = +12V, SHDN = IN, T = +25°C.)  
IN  
A
QUIESCENT SUPPLY CURRENT  
vs. TEMPERATURE  
QUIESCENT SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
14.20  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
14.15  
14.10  
14.05  
14.00  
13.95  
13.90  
13.85  
13.80  
13.75  
13.70  
-40  
-20  
0
20  
40  
60  
80  
5
7
9
11 13 15 17 19 21 23 25  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
PEAK SWITCH CURRENT  
vs. INPUT VOLTAGE, CIRCUIT 3, 0.3A  
LOAD-TRANSIENT RESPONSE,  
CIRCUIT 5  
MAX1776 toc19  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
L = 10µH  
1A  
0
I
L
L = 22µH  
10V  
V
LX  
0
L = 47µH  
AC COUPLED  
50mV/div  
V
OUT  
L = 100µH  
500mA  
I
LOAD  
10mA  
0
5
10  
15  
20  
25  
10µs/div  
V
IN  
(V)  
LINE-TRANSIENT RESPONSE,  
CIRCUIT 5, I = 50mA  
LINE-TRANSIENT RESPONSE,  
CIRCUIT 5, I = 500mA  
LOAD  
LOAD  
MAX1776 toc21  
MAX1776 toc20  
AC-COUPLED  
200mv/div  
V
OUT  
AC-COUPLED  
200mv/div  
V
OUT  
15V  
10V  
V
IN  
10V  
5V  
V
IN  
10V  
5V  
0
V
LX  
5V  
0
V
LX  
200µs/div  
200µs/div  
6
_______________________________________________________________________________________  
24V, 600mA Internal Switch, 100% Duty Cycle,  
Step-Down Converter  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, components from Table 3, V = +12V, SHDN = IN, T = +25°C.)  
IN  
A
LX WAVEFORM, CIRCUIT 1  
STARTUP WAVEFORM, CIRCUIT 1,  
= 100  
V
= 15V, I  
= 500mA  
R
LOAD  
IN  
LOAD  
MAX1776 toc22  
MAX1776 toc23  
5V  
0
V
1A  
0
SHDN  
I
L
1A  
0
I
L
10V  
0
V
LX  
6V  
4V  
2V  
0
V
OUT  
V
OUT  
50mV/div  
2µs/div  
2µs/div  
EFFICIENCY vs. I  
, CIRCUIT 3, V = 12V  
IN  
EFFICIENCY vs. I  
, CIRCUIT 3, V = 12V  
IN  
LOAD  
LOAD  
100  
95  
90  
85  
80  
100  
95  
90  
85  
80  
L = 22µH  
L = 22µH, 0.6A  
L = 47µH, 0.3A  
L = 47µH  
L = 100µH  
L = 10µH, 1.2A  
75  
75  
0.10  
1
10  
(mA)  
100  
1000  
0.10  
1
10  
(mA)  
100  
1000  
I
I
LOAD  
LOAD  
_______________________________________________________________________________________  
7
24V, 600mA Internal Switch, 100% Duty Cycle,  
Step-Down Converter  
Pin Description  
PIN  
NAME  
FUNCTION  
Dual-Mode Feedback Input. Connect to GND for the preset 5V output. Connect to a resistive divider  
1
2
3
FB  
between OUT and GND to adjust the output voltage between 1.25V and V  
.
IN  
GND  
ILIM  
Ground  
Peak Current Control Input. Connect to IN or GND to set peak current limit. ILIM and ILIM2 together set  
the peak current limit. See Setting Current Limit.  
4
5
LX  
IN  
Inductor Connection. Connect LX to external inductor and diode as shown in Figure 1.  
Input Supply Voltage. Input voltage range is 4.5V to 24V.  
Peak Current Control Input 2. Connect to IN or GND. ILIM and ILIM2 together set the peak current limit.  
See Setting Current Limit.  
6
7
8
ILIM2  
SHDN  
OUT  
Shutdown Input. A logic low shuts down the MAX1776 and reduces the supply current to 3µA. LX is high  
impedance in shutdown. Connect to IN for normal operation.  
Regulated Output Voltage High-Impedance Sense Input. Internally connected to a resistive divider.  
Do not connect for output voltages higher than 5.5V. Connect to GND when not used.  
Current-Limited Control Architecture  
The MAX1776 uses a proprietary current-limited control  
Detailed Description  
The MAX1776 step-down converter is designed primar-  
ily for battery-powered devices and notebook comput-  
ers. The unique current-limited control scheme  
provides high efficiency over a wide load range.  
Operation up to 100% duty cycle allows the lowest pos-  
sible dropout voltage, increasing the usable supply  
voltage range. Under no load, the MAX1776 draws only  
15µA, and in shutdown mode, it draws only 3µA to fur-  
ther reduce power consumption and extend battery life.  
Additionally, an internal 24V switching MOSFET, inter-  
nal current sensing, and a high switching frequency  
minimize PC board space and component costs.  
scheme with operation to 100% duty cycle. This DC-DC  
converter pulses as needed to maintain regulation,  
resulting in a variable switching frequency that increas-  
es with the load. This eliminates the high supply cur-  
rents associated with conventional constant-frequency  
pulse-width-modulation (PWM) controllers that switch  
the MOSFET unnecessarily.  
When the output voltage is too low, the error comparator  
sets a flip-flop, which turns on the internal P-channel  
MOSFET and begins a switching cycle (Figure 2). As  
shown in Figure 3, the inductor current ramps up linear-  
ly, storing energy in a magnetic field while charging the  
output capacitor and servicing the load. The MOSFET  
turns off when the peak current limit is reached, or when  
the maximum on-time of 10µs is exceeded and the out-  
put voltage is in regulation. If the output is out of regula-  
tion and the peak current is never obtained, the  
MOSFET remains on, allowing a duty cycle up to 100%.  
This feature ensures the lowest possible dropout volt-  
age. Once the MOSFET turns off, the flip-flop resets, the  
inductor current is pulled through D1, and the current  
through the inductor ramps back down, transferring the  
stored energy to the output capacitor and load. The  
MOSFET remains off until the 0.42µs minimum off-time  
expires, and the output voltage drops out of regulation.  
OUTPUT  
5V  
INPUT  
4.5V TO 24V  
L1  
IN  
LX  
C
IN  
D1  
C
OUT  
SHDN  
J1  
J2  
MAX1776  
ILIM  
ILIM2  
OUT  
FB  
J3  
J4  
GND  
C : 10µF, 25V CERAMIC  
IN  
NOTE: HIGH-CURRENT PATHS SHOWN WITH BOLD LINES.  
SEE TABLE 3 FOR OTHER COMPONENT VALUES  
Figure 1. Typical Application Circuit  
8
_______________________________________________________________________________________  
24V, 600mA Internal Switch, 100% Duty Cycle,  
Step-Down Converter  
MAX1776  
L1  
OUTPUT  
D
LX  
C
IN  
D1  
C
OUT  
OUT  
FB  
Q
R
S
SHDN  
MAXIMUM  
ON-TIME  
DELAY  
100mV  
ILIM  
ILIM  
SET  
V
SET  
1.25V  
ILIM2  
MINIIMUM  
OFF-TIME  
DELAY  
GND  
Figure 2. Simplified Functional Diagram  
Input-Output (Dropout) Voltage  
A step-down converters minimum input-to-output volt-  
age differential (dropout voltage) determines the lowest  
usable supply voltage. In battery-powered systems,  
this limits the useful end-of-life battery voltage. To maxi-  
mize battery life, the MAX1776 operates with duty  
cycles up to 100%, which minimizes the dropout volt-  
age and eliminates switching losses while in dropout.  
When the supply voltage approaches the output volt-  
age, the P-channel MOSFET remains on continuously to  
supply the load.  
LX WAVEFORM, CIRCUIT 1  
V
= 15V, I  
= 500mA  
IN  
LOAD  
1A  
I
L
0
10V  
0
V
LX  
Dropout voltage is defined as the difference between  
the input and output voltages when the input is low  
enough for the output to drop out of regulation. For a  
step-down converter with 100% duty cycle, dropout  
depends on the MOSFET drain-to-source on-resistance  
and inductor series resistance; therefore, it is propor-  
tional to the load current:  
V
OUT  
50mV/div  
2µs/div  
Figure 3. Discontinuous-Conduction Operation  
V
= I  
(R  
R
)
DROPOUT  
OUT  
DS(ON) + INDUCTOR  
_______________________________________________________________________________________  
9
24V, 600mA Internal Switch, 100% Duty Cycle,  
Step-Down Converter  
SHDN  
Shutdown (  
)
Table 1. Current-Limit Configuration  
A logic low level on SHDN shuts down the MAX1776  
converter. When in shutdown, the supply current drops  
to 3µA to maximize battery life, and the internal P-chan-  
nel MOSFET turns off to isolate the output from the input.  
The output capacitance and load current determine the  
rate at which the output voltage decays. A logic level  
high on SHDN activates the MAX1776. Do not leave  
SHDN floating. If unused, connect SHDN to IN.  
CURRENT  
LIMIT (mA)  
ILIM  
ILIM2  
CONNECTED TO  
CONNECTED TO  
150  
300  
GND  
GND  
IN  
GND  
IN  
600  
GND  
IN  
1200  
IN  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipa-  
tion in the MAX1776. When the junction temperature  
Choose a current limit that realistically reflects the maxi-  
mum load current. The maximum output current is half  
of the peak current limit. Although choosing a lower  
current limit allows using an inductor with a lower cur-  
rent rating, it requires a higher inductance (see  
Inductor Selection) and does little to reduce inductor  
package size.  
exceeds T = +160°C, a thermal sensor turns off the  
J
pass transistor, allowing the IC to cool. The thermal sen-  
sor turns the pass transistor on again after the ICs junc-  
tion temperature cools by 10°C, resulting in a pulsed  
output during continuous thermal-overload conditions.  
Design Information  
Inductor Selection  
When selecting the inductor, consider these four para-  
meters: inductance value, saturation rating, series  
resistance, and size. The MAX1776 operates with a  
wide range of inductance values. For most applica-  
tions, values between 10µH and 100µH work best with  
the controllers high switching frequency. Larger induc-  
tor values will reduce the switching frequency and  
thereby improve efficiency and EMI. The trade-off for  
improved efficiency is a higher output ripple and slower  
transient response. On the other hand, low-value induc-  
tors respond faster to transients, improve output ripple,  
offer smaller physical size, and minimize cost. If the  
inductor value is too small, the peak inductor current  
exceeds the current limit due to current-sense com-  
parator propagation delay, potentially exceeding the  
inductors current rating. Calculate the minimum induc-  
tance value as follows:  
Output Voltage Selection  
The feedback input features dual-mode operation.  
Connect FB to GND for the 5.0V preset output voltage.  
Alternatively, adjust the output voltage by connecting a  
voltage-divider from the output to GND (Figure 4).  
Select a value for R2 between 10kand 100k.  
Calculate R1 with the following equation:  
V
OUTPUT  
R1 = R2 ×  
-1  
V
FB  
where V  
= 1.25V, and V  
may range from  
FB  
OUTPUT  
1.25V to V .  
IN  
Setting Current Limit  
The MAX1776 has an adjustable peak current limit.  
Configure this peak current limit by connecting ILIM  
and ILIM2 as shown in Table 1.  
VIN(MAX) - V  
× t  
(
)
OUTPUT  
ON(MIN)  
L
(MIN) =  
I
)
LX (PEAK  
where t  
= 1µs.  
ON(MIN)  
OUTPUT  
1.25V TO V  
INPUT  
L1  
4.5V TO 24V  
IN  
The inductors saturation current rating must be greater  
than the peak switch current limit, plus the overshoot  
due to the 250ns current-sense comparator propaga-  
tion delay. Saturation occurs when the inductors mag-  
netic flux density reaches the maximum level the core  
can support and the inductance starts to fall. Choose  
IN  
LX  
C
IN  
D1  
C
OUT  
SHDN  
ILIM  
ILIM2  
R1  
R2  
MAX1776  
FB  
an inductor with a saturation rating greater than I  
in the following equation:  
PEAK  
GND  
OUT  
I
= I  
+ (V - V  
) 250ns / L  
OUTPUT  
PEAK  
LX(PEAK)  
IN  
Figure 4. Adjustable Output Voltage  
10 ______________________________________________________________________________________  
24V, 600mA Internal Switch, 100% Duty Cycle,  
Step-Down Converter  
Inductor series resistance affects both efficiency and  
dropout voltage (see Input-Output (Dropout) Voltage).  
High series resistance limits the maximum current avail-  
able at lower input voltages, and increases the dropout  
voltage. For optimum performance, select an inductor  
with the lowest possible DC resistance that fits in the  
allotted dimensions. Some recommended component  
manufacturers are listed in Table 2.  
Input Capacitor  
The input filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the circuits switching.  
The input capacitor must meet the ripple-current  
requirement (I  
) imposed by the switching current  
RMS  
defined by the following equation:  
I
V
4
3
V
LOAD OUTPUT  
IN  
V
OUTPUT  
Maximum Output Current  
The MAX1776 converters output current determines  
the regulators switching frequency. When the convert-  
er approaches continuous mode, the output voltage  
falls out of regulation. For the typical application, the  
maximum output current is approximately:  
I
=
×
1  
RMS  
V
IN  
For most applications, nontantalum chemistries (ceram-  
ic, aluminum, polymer, or OS-CON) are preferred due to  
their robustness to high inrush currents typical of sys-  
tems with low-impedance battery inputs. Alternatively,  
connect two (or more) smaller value low-ESR capacitors  
in parallel to reduce cost. Choose an input capacitor  
that exhibits less than +10°C temperature rise at the  
RMS input current for optimal circuit longevity.  
I
= 1/2 I  
LX (PEAK)(MIN)  
LOAD(MAX)  
For low-input voltages, the maximum on-time may be  
reached and the load current is limited by:  
I
= 1/2 (V - V  
) 10µs / L  
OUT  
LOAD  
IN  
Output Capacitor  
Table 2. Component Suppliers  
Choose the output capacitor to service the maximum  
load current with acceptable voltage ripple. The output  
ripple has two components: variations in the charge  
stored in the output capacitor with each LX pulse, and  
the voltage drop across the capacitors equivalent  
series resistance (ESR) caused by the current into and  
out of the capacitor:  
SUPPLIER  
DIODES  
WEBSITE  
Central Semiconductor  
Fairchild  
www.centralsemi.com  
www.fairchildsemi.com  
www.gensemi.com  
www.irf.com  
General Semiconductor  
International Rectifier  
V
V  
+ V  
RIPPLE  
RIPPLE(ESR) RIPPLE(C)  
The output voltage ripple as a consequence of the ESR  
and output capacitance is:  
www.niec.co.jp/engver2/  
niec.co.jp_eg.htm  
Nihon  
V
=ESR×I  
PEAK  
RIPPLE(ESR)  
On Semi  
www.onsemi.com  
2   
www.vishay.com/brands/siliconix/  
main.html  
L × IPEAK -I  
(
)
V
OUTPUT  
Vishay-Siliconix  
IN  
V
=
RIPPLE(C)  
2C  
× V  
V -V  
IN OUTPUT  
OUT  
OUTPUT  
www.zetex.com  
Zetex  
where I  
is the peak inductor current (see Inductor  
CAPACITORS  
AVX  
PEAK  
Selection). The worst-case ripple occurs at no-load.  
These equations are suitable for initial capacitor selec-  
tion, but final values should be set by testing a proto-  
type or evaluation circuit. As a general rule, a smaller  
amount of charge delivered in each pulse results in  
less output ripple. Since the amount of charge deliv-  
ered in each oscillator pulse is determined by the  
inductor value and input voltage, the voltage ripple  
increases with larger inductance, and as the input volt-  
age decreases. See Table 3 for recommended capaci-  
tor values and Table 2 for recommended component  
manufacturers.  
www.avxcorp.com  
www.kemet.com  
Kemet  
Nichicon  
www.nichicon-us.com  
www.sanyo.com  
Sanyo  
Taiyo Yuden  
INDUCTORS  
Coilcraft  
www.t-yuden.com  
www.coilcraft.com  
www.cooperet.com  
www.pulseeng.com  
www.sumida.com  
www.tokoam.com  
Coiltronics  
Pulse Engineering  
Sumida USA  
Toko  
______________________________________________________________________________________ 11  
24V, 600mA Internal Switch, 100% Duty Cycle,  
Step-Down Converter  
Table 3. Recommended Components  
MAXIMUM  
INPUT  
VOLTAGE  
(V)  
I
LX(PEAK)  
CURRENT  
(A)  
LOAD  
CURRENT  
(mA)  
CIRCUIT  
INDUCTOR  
CAPACITOR  
10µH, 1.56A, 70mΩ  
Toko D75F 646FY-100M,  
10µH, 1.70A, 48mΩ  
100µF, 6.3V  
Sanyo POSCAP 6TPC100M  
1
10 to 24  
10 to 24  
600  
300  
1.20  
0.60  
Sumida CDRH6D28-100NC,  
or 10µH, 1.63A, 55mΩ  
Toko D75C 646CY-100M 0.055  
22µH, 1.17A, 120mΩ  
Toko D75F 646FY-220M,  
22µH, 1.09A, 115mΩ  
Toko D75C 646CY-220M,  
or 22µH, 1.20A, 95mΩ  
Sumida CDRH6D28-220NC  
47µF, 6.3V  
Sanyo POSCAP 6TPA47M  
2
47µH, 0.54A, 440mΩ  
Sumida CDRH5D18-470  
22µF, 6.3V, 1210 case  
Taiyo Youden JMK325BJ226MM  
3
4
5
6
7
8
10 to 24  
10 to 24  
5 to 15  
5 to 15  
5 to 15  
5 to 15  
150  
75  
0.30  
0.15  
1.20  
0.60  
0.30  
0.15  
100µH, 0.29A, 766mΩ  
Sumida CDRH4D28-101  
10µF, 6.3V, X7R, 1206 case  
Taiyo Youden JMK316BJ106ML  
5.4µH, 1.6A, 56mΩ  
Sumida CDRH5D18-5R4  
100µF, 6.3V  
Sanyo POSCAP 6TPC100m  
600  
300  
150  
75  
10µH, 1.04A, 80mΩ  
Toko D73LC 817CY-100M  
47µF, 6.3V  
Sanyo POSCAP 6TPA47M  
22µH, 0.41A, 294mΩ  
Sumida CDRH4D18-220  
22µF, 6.3V, 1210 case  
Taiyo Youden JMK325BJ226MM  
47µH, 0.33A, 230mΩ  
Coilcraft DS1608C-473  
10µF, 6.3V, X7R, 1206 case  
Taiyo Youden JMK316BJ106ML  
Diode Selection  
MAX1776 Stability  
The current in the external diode (D1 in Figure 1)  
changes abruptly from zero to its peak value each time  
the LX switch turns off. To avoid excessive losses, the  
diode must have a fast turn-on time and a low forward  
voltage.  
Instability is frequently caused by excessive noise on  
OUT, FB, or GND due to poor layout or improper com-  
ponent selection. Instability typically manifests itself as  
motorboating,which is characterized by grouped  
switching pulses with large gaps and excessive low-  
frequency output ripple during no-load or light-load  
conditions.  
Make sure that the diodes peak current rating exceeds  
the peak current limit set by the current limit, and that  
its breakdown voltage exceeds V . Use Schottky  
IN  
PC Board Layout and Grounding  
High switching frequencies and large peak currents  
make PC board layout an important part of the design.  
Poor layout introduces switching noise into the feed-  
back path, resulting in jitter, instability, or degraded  
performance. High-power traces, highlighted in the  
diodes when possible.  
12 ______________________________________________________________________________________  
24V, 600mA Internal Switch, 100% Duty Cycle,  
Step-Down Converter  
Typical Application Circuit (Figure 1), should be as  
short and wide as possible. Additionally, the current  
loops formed by the power components (CIN, COUT,  
L1, and D1) should be as short as possible to avoid  
radiated noise. Connect the ground pins of these  
power components at a common node in a star-ground  
configuration. Separate the noisy traces, such as the  
LX node, from the feedback network with grounded  
copper. Furthermore, keep the extra copper on the  
board and integrate it into a pseudo-ground plane.  
When using external feedback, place the resistors as  
close to the feedback pin as possible to minimize noise  
coupling.  
Chip Information  
TRANSISTOR COUNT: 932  
PROCESS: BiCMOS  
Package Information  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
ÿ 0.50 0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6 0.1  
E
H
0.116  
0.188  
0.016  
0∞  
0.120  
2.95  
4.78  
0.41  
0∞  
3.05  
5.03  
0.66  
6∞  
0.198  
0.026  
6∞  
L
1
1
α
S
0.6 0.1  
0.0207 BSC  
0.5250 BSC  
BOTTOM VIEW  
D
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

MAX1776EUA+T CAD模型

  • 引脚图

  • 封装焊盘图

  • MAX1776EUA+T 替代型号

    型号 制造商 描述 替代类型 文档
    MAX1776EUA+ MAXIM 暂无描述 完全替代
    MAX1776EUA-T MAXIM Switching Regulator, Current-mode, 2A, 200kHz Switching Freq-Max, BICMOS, PDSO8, MSOP-8 完全替代
    MAX1776EUA MAXIM 24V, 600mA Internal Switch, 100% Duty Cycle, Step-Down Converter 类似代替

    MAX1776EUA+T 相关器件

    型号 制造商 描述 价格 文档
    MAX1776EUA-T MAXIM Switching Regulator, Current-mode, 2A, 200kHz Switching Freq-Max, BICMOS, PDSO8, MSOP-8 获取价格
    MAX1776EVKIT MAXIM Evaluation Kit for the MAX1776 获取价格
    MAX1777 MAXIM High-Efficiency, Quad Output, Main Power- Supply Controllers for Notebook Computers 获取价格
    MAX1777-MAX1999 MAXIM High-Efficiency, Quad Output, Main Power- Supply Controllers for Notebook Computers 获取价格
    MAX1777EEI MAXIM High-Efficiency, Quad Output, Main Power- Supply Controllers for Notebook Computers 获取价格
    MAX1777EEI+T MAXIM Dual Switching Controller, Current-mode, 300kHz Switching Freq-Max, BICMOS, PDSO28, 0.150 INCH, 0.025 INCH PITCH, QSOP-28 获取价格
    MAX1777EEI-T MAXIM Dual Switching Controller, Current-mode, 300kHz Switching Freq-Max, BICMOS, PDSO28, 0.150 INCH, 0.025 INCH PITCH, QSOP-28 获取价格
    MAX1778 MAXIM Quad-Output TFT LCD DC-DC Converters with Buffer 获取价格
    MAX17783C ADI 4.5V至60V、2.5A、高效、降压型DC-DC转换器 获取价格
    MAX1778EUG MAXIM Quad-Output TFT LCD DC-DC Converters with Buffer 获取价格

    MAX1776EUA+T 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6