MAX17853 [MAXIM]

14-Channel High-Voltage Data-Acquisition System;
MAX17853
型号: MAX17853
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

14-Channel High-Voltage Data-Acquisition System

文件: 总315页 (文件大小:4043K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
General Description  
Benefits and Features  
AECQ-100 Grade 1 Temperature Range -40°C to  
The MAX17853 is a flexible data-acquisition system for  
the management of high-voltage and low-voltage battery  
modules. The system can measure 14 cell voltages and a  
combination of six temperatures or system voltage mea-  
surements with fully redundant measurement engines in  
263µs, or perform all inputs solely with the ADC measure-  
ment engine in 156µs. There are 14 internal balancing  
switches rated for > 300mA for cell-balancing current,  
each supporting extensive built-in diagnostics. Up to 32  
devices can be daisy-chained to manage 448 cells and  
monitor 192 temperatures.  
125°C  
65V Operating Voltage  
Ultra-Low-Power Operation  
• Standby Mode: 2mA  
• Shutdown Mode: 2µA  
Redundant ADC and Comparator (COMP) Acquisitions  
Simultaneous Cell and Bus-Bar Voltage Acquisitions  
14 Cell-Voltage Measurement Channels  
• 1mV Accuracy (3.6V, 25°C)  
Cell and bus-bar voltages ranging from -2.5V to +5V  
are measured differentially over a 65V common-mode  
range, with a typical accuracy of 1mV (3.6V cell, 25°C).  
If oversampling is enabled, up to 128 measurements per  
channel can be averaged internally with 14-bit resolution  
and combined with digital post-processing IIR filtering  
for increased noise immunity. The system can shut itself  
down in the event of a thermal overload by measuring its  
own die temperature.  
• 2mV Accuracy (5°C to 40°C)  
• 4.5mV Accuracy (-40°C to +125°C)  
14 Cell-Balancing Switches  
• > 300mA Software-Programmable Balancing Current  
• Optimized Driving and Parking Balancing Modes  
• Automated Balancing with Individual Cell Timers  
• Automated Balancing by Cell Voltage  
• Emergency Discharge Mode  
Six Configurable Auxiliary Inputs for Temperature,  
For robust communications, the system uses a Maxim  
battery-management UART or SPI protocol, and is  
optimized to support a reduced feature set of internal  
diagnostics and rapid-alert communication through both  
embedded communication and hardware-alert interfaces  
to support ASIL D and FMEA requirements.  
Voltage, or GPIO  
Integrated Die-Temperature Measurement  
Automatic Thermal Protection  
Individually Configurable Safety Alert  
• Overvoltage, Undertemperature Faults  
• Undervoltage, Overtemperature Faults  
• One Cell-Mismatch Alert  
Applications  
High-Voltage Battery Stacks  
Electric Vehicles (EVs)  
Hybrid Electric Vehicles (HEVs)  
Electric Bikes  
Support ASIL D Requirements for Cell Voltage,  
Temperature, Communication  
Selectable UART, Dual UART, or SPI Interface  
Battery-Management UART Protocol  
• Daisy-Chain Up to 32 Devices  
Battery-Backup Systems (UPS)  
Super-Cap Systems  
• Capacitive Communication-Port Isolation  
• Up to 2Mps Baud Rate (auto-detect)  
• 1.5µs Propagation Delay (per device)  
• Packet-Error Checking (PEC)  
Battery-Powered Tools  
Configurable Hardware-Alert Interfaces  
Factory-Trimmed Oscillator  
• No External Crystals Required  
Ordering Information appears at end of data sheet.  
32-Bit Unique Device ID  
64-Pin (10mm x 10mm) LQFP Package  
19-100355; Rev 5; 5/20  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
MAX17853 Simplified Application Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
UART Interface with Single-Ended Alert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
UART Interface with Differential Alert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SPI Interface with Single-Ended Alert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Terms, Definitions, and Data Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Data Acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Data Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Factory Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Factory-Programmed Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Flexible Battery-Pack Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Flexible-Pack Interaction with Acquisitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Power-Multiplexing Operation (Cell Balancing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Flexible Pack Alert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Cell Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Bus-Bar Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Block-Voltage Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Auxiliary Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Auxiliary Inputs: Ratiometric Temperature  
Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Ratiometric Auxiliary Input Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Computing Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Auxiliary Inputs: Absolute-Voltage Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Absolute Auxiliary Input Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Auxiliary Inputs: Mixed-Mode Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Auxiliary-Input Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Maxim Integrated │ 2  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
TABLE OF CONTENTS CONTINUED  
GPIO Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Operational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Power-On (Standby Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Shutdown-to-Standby State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Shutdown Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Shutdown State Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Power-On and Shutdown Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Active Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Precision Internal Voltage References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Scan Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
ADC Input Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Comparator Input Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Scan Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
ADC Configurations and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
ADC Polarity Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
ADC Acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Pyramid Mode Acqusition Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
ADC Pyramid Mode Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
ADC Acquisition Timing (Pyramid Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Pyramid Mode Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Ramp-Mode Acquisition Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
ADC Ramp-Mode Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Ramp-Mode Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
ADC Acquisition Timing (Ramp Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
ADC Acquisition Time Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Comparator Configuration and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Comparator-Scan Properities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Comparator Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Comparator-Acquisition Process ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 74  
Comparator Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Comparator Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Comparator Acquisition Timing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Comparator Scan Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
ADC+COMP Configuration and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
ADC+COMP Scan Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
ADC+COMP Acquisition Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
ADC+COMP Scan Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
ADC+COMP Acquisition Time Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Maxim Integrated │ 3  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
TABLE OF CONTENTS CONTINUED  
On-Demand Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Calibration Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
ADC Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Oversampling Watchdog Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Comparator Oversampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
100Hz and 120Hz Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Acquisition Watchdog Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Data Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Acquisition Data Transfer and Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Calibration Data Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
IIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Filter Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Filter Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
IIR Data Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
AMENDFILT and RDFILT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
ALRTFILTSEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
IIR Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Single-Buffer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Double-Buffer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Out-of-Scan Data Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Cell Balancing with  
Embedded-Measurement Data Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Measurement Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Voltage Alerts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Cell Mismatch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Cell Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Temperature Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Cell Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Cell-Balancing Mode Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Manual Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
AUTOBALSWDIS Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Manual Cell-Balancing Mode with FlexPack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Auto-Individual Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Auto-Group Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Emergency-Discharge Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Cell-Balancing Modes Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Auto-Even/Odd Cell Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Maxim Integrated │ 4  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
TABLE OF CONTENTS CONTINUED  
Cell-Balancing Timer (CBTIMER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
CBRESTART Usage in Manual Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Emergency-Discharge Mode and CBDUTY Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Notification Alerts Using CBNTFYCFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Cell-Balancing Expiration Timer Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Cell-Balancing UV Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Cell-Balancing Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Cell-Balancing IIR Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Cell-Balancing Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Calibration Out-of-Range During Cell Balancing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Transfer-Measurement Results Using CBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Cell-Balancing Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Automatic SHDNL Control Using HOLDSHDNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Cell Balancing with Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Cell-Balancing Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Cell-Balancing Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Example: Autonomous-Cell Balancing by Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Example: Autonomous-Cell Balancing  
with Programmable UV Threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Interface Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Single-UART Interface with External Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Single UART with Internal Loopback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Dual-UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Dual-UART Master Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Dual-UART Master/Slave Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
UART Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
UART Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
UART Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
SHDNL Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
UART Rx Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Baud-Rate Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Tx Adaptive Mode for Single-Ended Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Battery-Management UART Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Command Packet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Preamble Character. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Data Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Maxim Integrated │ 5  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
TABLE OF CONTENTS CONTINUED  
Stop Character. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
UART Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
UART Communication Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Command Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Command-Byte Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Register Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Register Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Data-Check Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
PEC Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Alive-Counter Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Fill Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Battery-Management UART  
Protocol Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
HELLOALL Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
HELLOALL Operation in Dual-UART Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
HELLOALL Operation In a  
Single-UART Configuraiton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
HELLOALL Address Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
WRITEALL Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
WRITEDEVICE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
READALL Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
READDEVICE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
READBLOCK Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
DOWNHOST Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
UPHOST Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
ALERTPACKET Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
System-Level Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Supported Transaction Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Safety Pulup/Pulldown Resistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
SPI Transactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
SPI Write-Mode Transcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
SPI Write-Mode Input Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Write Bit — R/WB = 0 (DI[31]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Address — A[7:0] (DI[30:23]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Address Cyclic-Redundancy Check — CRCA[2:0] (DI[22:20]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Maxim Integrated │ 6  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
TABLE OF CONTENTS CONTINUED  
Input Data — DIN[15:0] (DI[19:4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Repeated-Write Bit — R/WB‘ = 0 (DI3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Input Data Cyclic-Redundancy  
Check — CRCD[2:0] (DI[2:0]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
SPI Write-Mode Output Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Status Information — STAT[4:0] (DO[31:27]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Status Cyclic-Redundancy Check — CRCS[2:0] (DO[26:24]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Address Confirmation — A‘[7:0] (DO[23:16]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Input Data Confirmation — DIN‘[7:0] (DO[15:0]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
SPI Write-Mode Qualification Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
SPI Read-Mode Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
SPI Read-Mode Input-Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Read Bit — R/WB = 1 (DI[31]): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Address — A[7:0] (DI[30:23]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Address Cyclic Redundancy Check — CRCA[2:0] (DI[22:20]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Input Data — DIN[15:0] (DI[19:4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Repeated-Read Bit — R/WB‘ = 1 (DI[3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Input-Data Cyclic-Redundancy Check – CRCD[2:0] (DI[2:0]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
SPI Read-Mode Output-Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Status Information – STAT[4:0] (DO[31:27]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Status Cyclic-Redundancy Check — CRCS[2:0] (DO[26:24]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Read Confirmation Bits — F\h (DO[23:20]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Output Data — DOUT[15:0] (DO[19:4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Read OK Bit — ROK (DO[3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Output-Data Cyclic-Redundancy Check — CRCO[2:0] (DO[2:0]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
SPI Read-Mode Qualification Checks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
General-Transaction Information (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Status and Status CRC Output Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Status Information — STAT[4:0] (DO[31:27]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
SPI ALERT Bit-Masking Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Status Cyclic Redundancy Check — CRCS[2:0] (DO[26:24]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
SPI CRC Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
SPI CRC Pseudocode Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
SPI Timeout Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Alert Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
UART-Mode Alert Detection (UARTSEL=1'b1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
SPI Mode Alert Operation (UARTSEL=1'b0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Alert Interface Masking Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Maxim Integrated │ 7  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
TABLE OF CONTENTS CONTINUED  
Alert Packet Status Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Alert-Masking TOPCELL1/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Low-Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
HV Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
ALERTOUT Pin-to-Pin Short Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
CELL Pin Open Diagnositics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Die-Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Die-Temperature Alert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
V
AA  
Diagnostic Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
ALTREF Diagnostic Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Comparator Signal-Path Diagnostic Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Cell Gain-Calibration-Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Offset-Calibration Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
THRM Offset-Calibration Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
LSAMP Offset-Diagnostic Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Zero-Scale ADC Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Full-Scale ADC Diagnostic Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
DAC 1/4 Scale Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
DAC 3/4 Scale Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
BALSW Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
BALSW Short Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
BALSW Open Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Even/Odd Sense-Wire Open Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Examples of Normal Sense-Wire Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Examples of Broken Sense-Wire Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Sense-Wire Open-Fault-Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Examples of Broken Internal Switch and  
Trace-Fault Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
ADC End-of-Scan Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
MAX17853 User Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Register Map Usage Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Interface Protocol Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Unused Bitfields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
STATUS Registers ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 176  
Maxim Integrated │ 8  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
TABLE OF CONTENTS CONTINUED  
GENERAL CONFIGURATION Registers ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 177  
ALERT CONFIGURATION Registers ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 178  
THRESHOLD Registersꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 178  
DIAGNOSTIC THRESHOLD Registers ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 180  
CELL DATA Registers ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 180  
TOTAL DIAG AUX DATA Registersꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 181  
SCAN SETTINGS Registers ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 181  
SCAN CONTROL Registers ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 182  
DIAGNOSTIC SETTINGS Registers ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 182  
DIAGNOSTIC CONTROL Registers ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 182  
CELL-BALANCING Registersꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 182  
ROM SUPPORT Registersꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 184  
Reserved Bitfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Register Blocks and Transaction-Reject Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Register Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
VERSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
STATUS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
STATUS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
STATUS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
FMEA1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
FMEA2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
ALRTSUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198  
ALRTOVCELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
ALRTUVCELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
MINMAXCELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
ALRTAUXPRTCTREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202  
ALRTAUXOVREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203  
ALRTAUXUVREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
ALRTCOMPUVREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
ALRTCOMPAUXOVREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
ALRTCOMPAUXUVREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
ALRTBALSWREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
SWACTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
DEVCFG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
DEVCFG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
AUXGPIOCFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
GPIOCFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Maxim Integrated │ 9  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
TABLE OF CONTENTS CONTINUED  
PACKCFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
ALRTIRQEN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
ALRTOVEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
ALRTUVEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
ALRTAUXOVEN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
ALRTAUXUVEN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
ALRTCALTST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
OVTHCLRREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
OVTHSETREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
UVTHCLRREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
UVTHSETREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
MSMTCHREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
BIPOVTHCLRREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226  
BIPOVTHSETREG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226  
BIPUVTHCLRREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
BIPUVTHSETREG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
BLKOVTHCLRREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228  
BLKOVTHSETREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228  
BLKUVTHCLRREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
BLKUVTHSETREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
AUXROVTHCLRREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230  
AUXROVTHSETREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230  
AUXRUVTHCLRREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
AUXRUVTHSETREG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
AUXAOVTHCLRREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232  
AUXAOVTHSETREG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232  
AUXAUVTHCLRREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
AUXAUVTHSETREG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
COMPOVTHREG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
COMPUVTHREG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
COMPAUXROVTHREG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
COMPAUXRUVTHREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
COMPAUXAOVTHREG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
COMPAUXAUVTHREG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
COMPOPNTHREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
COMPAUXROPNTHREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
COMPAUXAOPNTHREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238  
COMPACCOVTHREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238  
Maxim Integrated │ 10  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
TABLE OF CONTENTS CONTINUED  
COMPACCUVTHREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
BALSHRTTHRREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
BALLOWTHRREG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240  
BALHIGHTHRREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
CELL1REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
CELL2REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
CELL3REG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
CELL4REG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243  
CELL5REG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243  
CELL6REG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244  
CELL7REG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244  
CELL8REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
CELL9REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
CELL10REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246  
CELL11REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246  
CELL12REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247  
CELL13REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247  
CELL14REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
BLOCKREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
TOTALREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
DIAG1REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
DIAG2REG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
AUX0REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
AUX1REG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
AUX2REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
AUX3REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
AUX4REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
AUX5REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
POLARITYCTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
AUXREFCTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
AUXTIMEREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255  
ACQCFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
BALSWDLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
MEASUREEN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
MEASUREEN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
SCANCTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
ADCTEST1AREG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
ADCTEST1BREG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
Maxim Integrated │ 11  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
TABLE OF CONTENTS CONTINUED  
ADCTEST2AREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
ADCTEST2BREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
DIAGCFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265  
CTSTCFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
AUXTSTCFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
DIAGGENCFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
BALSWCTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270  
BALEXP1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271  
BALEXP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272  
BALEXP3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272  
BALEXP4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273  
BALEXP5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273  
BALEXP6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274  
BALEXP7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274  
BALEXP8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275  
BALEXP9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275  
BALEXP10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
BALEXP11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
BALEXP12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277  
BALEXP13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277  
BALEXP14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278  
BALAUTOUVTHR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278  
BALDLYCTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279  
BALCTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
BALSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282  
BALUVSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
BALDATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284  
ID1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285  
ID2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285  
OTP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
OTP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
OTP4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
OTP5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
OTP6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288  
OTP7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288  
OTP8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289  
OTP9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289  
Maxim Integrated │ 12  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
TABLE OF CONTENTS CONTINUED  
OTP10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290  
OTP11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290  
OTP12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
Calibration-Alert Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
Supply Connection Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295  
Vehicle Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
Battery-Management Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
Daisy-Chain System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
Distributed CAN Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
Standard Module Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
Power-Supply Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
Connecting Cell Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
Flexible Pack Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296  
Power Supply, Cell Input Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296  
External Cell Balancing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
External Cell-Balancing using FET Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299  
External Cell-Balancing Using BJT Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299  
External Cell-Balancing Short-Circuit Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300  
UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301  
High-Z Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301  
UART Supplemental ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301  
Single-Ended Rx Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301  
UART Isolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301  
UART Transformer Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308  
UART Optical Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
ALERT Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
Device Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
Error Checking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
PEC Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
PEC Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
PEC Calculation Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311  
ROMCRC Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312  
PCB Layout Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
Layout Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
Maxim Integrated │ 13  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
LIST OF FIGURES  
Figure 1. MAX17853 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 2. MAX17853 ESD Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Figure 3. MAX17853 Analog Front-End. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 4. Flexible-Pack Configuration for 12-Cell Pack on 14-Channel CMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 5. Flexible-Pack Power-On Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 6. Cell Signal Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 7. Bus-Bar Switch Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 8. Block-Measurement Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 9. Auxiliary Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 10. Auxiliary-Temperature Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 11. Operational-Mode State Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 12. Power-On Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 13. Shutdown Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 14. UART Operation (Shutdown Timing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 15. SPI Operation (Shutdown Timing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 16. Power-On Timing (UART-Communication Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 17. Power-On Shutdown Timing (SPI Directed Control). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 18. Power-On and Shutdown Timing (UART Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 19. Power-On and Shutdown Timing (SPI Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 20. Acquisition (SCANCFG=0h, SCANMODE=0, OVSAMPL=0h, ALTMUXSEL=0, BLOCKEN=1, DIAGSEL1 >  
0h, DIAGSEL2 > 0h, AUXEN=3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 21. Acquisition (SCANCFG=0h, SCANMODE=0, OVSAMPL = 0h, TOPCELL1/2 = 14, ALTMUXSEL=1,  
BLOCKEN=1, DIAGSEL1 > 0h, DIAGSEL2 > 0h, AUXEN=3F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 22. Acquisition - SCANCFG=0h, SCANMODE=0, OVSAMPL > 0h, ALTMUXSEL=0, BLOCKEN=1, DIAGSEL1  
> 0h, DIAGSEL2 > 0h, AUXEN=3Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 23. Acquisition (SCANCFG=0h, SCANMODE=0, OVSAMPL > 0h, ALTMUXSEL=0, BLOCKEN=1, DIAGSEL1 >  
0h, AUXEN=03h, FOSR > 0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 24. Acquisition (SCANCFG=0h, SCANMODE=1, OVSAMPL=0h, ALTMUXSEL=0, BLOCKEN=1, DIAGSEL1 >  
0h, DIAGSEL2 > 0h, AUXEN=3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 25. Acquisition (SCANCFG=0h, SCANMODE=1, OVSAMPL = 0h, TOPCELL1/2=14, ALTMUXSEL=1,  
BLOCKEN=1, DIAGSEL1 > 0h, DIAGSEL2 > 0h, AUXEN=3Fh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 26. Comparator Single-Scan Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 27. Comparator Single-Scan with Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 28. Simultaneous ADC+COMP Scan Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 29. Simultaneous ADC+COMP Scan With Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 30. On-Demand Calibration Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 31. 100Hz Notch Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 32. 120Hz Notch Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 33. Acquisition-Mode Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Maxim Integrated │ 14  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
LIST OF FIGURES CONTINUED  
Figure 34. Data-Flow Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 35. IIR Filter Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 36. 100mV IIR Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 37. Single-Buffer Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 38. Double-Buffer Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 39. Cell Voltage-Alert Thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 40. Logic Diagram when Balancing Switches are Disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 41. AUTOBALSWDIS Measurement Settling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 42. Auto Even/Odd Cell Balancing without UV Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 43. Auto Even/Odd Cell Balancing with UV Detection, ADC with OVSAMPL . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 44. Cell-Balancing Expiration Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 45. Cell-Balancing UV-Threshold Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 46. Cell Balancing with No Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 47. Cell Balancing with Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 48. Cell-Balancing Stop Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 49. SHDNL Pullup Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 50. Internal Cell-Balancing Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 51. Typical Balancing-Current Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Figure 52. Single UART with External Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Figure 53. Single UART with Differential Alert Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
Figure 54. Dual-UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Figure 55. Dual-UART Master/Slave Interaction (Timing Considerations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Figure 56. Dual-UART Command Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Figure 57. UART Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Figure 58. UART Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Figure 59. SHDNL Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Figure 60. Command Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
Figure 61. Preamble Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Figure 62. Data Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Figure 63. Stop Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 64. Communication Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Figure 65. SPI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Figure 66. SPI Device Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Figure 67. SPI Supported Transaction Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Figure 68. SPI Write-Mode Transaction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Figure 69. SPI Read-Mode Transaction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Figure 70. SPI CRC Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Figure 71. UART-Mode Alert-Detection Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Maxim Integrated │ 15  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
LIST OF FIGURES CONTINUED  
Figure 72. Low-Voltage Regulator and Thermal-Shutdown Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
Figure 73. HV Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Figure 74. Die-Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Figure 75. VAA Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Figure 76. ALTREF Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Figure 77. Comparator Signal Path to ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Figure 78. Comparator Accuracy Diagnostic Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Figure 79. Comparator Accuracy End of Scan Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Figure 80. Cell Gain Calibration-Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Figure 81. Offset-Calibration Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Figure 82. THRM Offset-Calibration Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Figure 83. LSAMP Offset Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Figure 84. ADC Zero-Scale Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 85. Full-Scale ADC Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 86. DAC 1/4 and 3/4 Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Figure 87. Balancing Switch Short. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Figure 88. BALSW Short-Diagnostic Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Figure 89. BALSW Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Figure 90. Sense-Wire Open-Diagnostic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Figure 91. Cell Sense-Wire Open-Diagnostic Operations (Normal Operation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Figure 92. Cell Sense-Wire Open-Diagnostic Operations (Normal Operation, Including Bus Bars) . . . . . . . . . . . . .170  
Figure 93. Cell Sense-Wire Open-Diagnostic Operations (Example with Odd Sense-Wire Fault). . . . . . . . . . . . . . .171  
Figure 94. Cell Sense-Wire Open-Diagnostic Operations (Example with Even Sense-Wire Fault) . . . . . . . . . . . . . .171  
Figure 95. Cell Sense-Wire Open-Diagnostic Operations (Example with Broken BALSW or Internal Trace) . . . . . .174  
Figure 96. Electric Vehicle System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292  
Figure 97. Daisy-Chain System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293  
Figure 98. Distributed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294  
Figure 99. Power-Supply Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295  
Figure 100. External-Balancing FET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296  
Figure 101. External Cell-Balancing BJT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297  
Figure 102. UART Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298  
Figure 103. High-Z Idle Mode Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299  
Figure 104. External ESD Protection for UART Tx Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299  
Figure 105. External ESD Protection for UART Rx Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300  
Figure 106. Application Circuit for Single-Ended UART Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300  
Figure 107. UART Transformer Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301  
Figure 108. UART Optical Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302  
Figure 109. 5V SPI Supply from System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303  
Maxim Integrated │ 16  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
LIST OF FIGURES CONTINUED  
Figure 110. 3.3V SPI Supply from Device VAA LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304  
Figure 111. Single-End ALERT Interface in UART Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305  
Figure 112. Single-End ALERT Interface in SPI mode - Active Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306  
Figure 113. Single-End ALERT Interface in SPI mode - Passive Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
Figure 114. Device Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308  
Figure 115. PEC CRC Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310  
Figure 116. ROMCRC Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
LIST OF TABLES  
Table 1. System Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 2. Data-Acquisition Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 3. Numeric Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 4. THRM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 5. AUXTIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 6. Auxiliary-Temperature Input Range: ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 7. Auxiliary-Temperature Input Range: Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 8. Auxiliary-Voltage Input Range: ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 9. Auxiliary-Voltage Input Range: Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 10. GPIO/Auxiliary Enable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 11. GPIO Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 12. Shutdown Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 13. ADC Input Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 14. Comparator Input Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 15. ADC Pyramid Mode (SCANMODE = 0) Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Table 16. ADC Ramp Mode (SCANMODE = 1) Acquisition Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 17. ADC Acquisition Time Examples (with AUXTIME[9:0] = 000h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Table 18. Comparator Acquisition Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 19. Comparator Acquisition-Time Examples (with AUXTIME[9:0] = 000h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 20. ADC+COMP Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 21. ADC+COMP Acquisition Time Examples (with AUXTIME[9:0] = 000h) . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Table 22. Measurement Path Calibration Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Table 23. Comparator Faults for Alerts vs. Oversampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 24. Watchdog-Timeout Duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 25. FOSR Notch-Filter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Table 26. IIR 100mV Step Response Settling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Table 27. IIR Data-Control Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Table 28. Measurement Alerts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Maxim Integrated │ 17  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
LIST OF TABLES CONTINUED  
Table 29. Set- and Clear-Threshold Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Table 30. Temperature-Alert Threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Table 31. Cell-Balancing Register Write Behavior when Cell Balancing is Selected . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Table 32. Cell-Balancing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Table 33. Emergency-Discharge Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Table 34. Cell-Balancing Measurement Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Table 35. Cell-Balancing Calibration Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Table 36. Calibration Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Table 37. UART Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Table 38. UART Rx Modes (Post ALRTRST Being Cleared) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Table 39. UART Rx Modes (Prior to ALRTRST Being Cleared) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Table 40. Data Character Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Table 41. Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Table 42. Command Packet Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Table 43. Battery-Management Protocol (Command-Byte Encoding) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Table 44. Data-Check Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Table 45. HELLOALL Command Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Table 46. HELLOALL Up-Path Sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Table 47. HELLOALL Down-Path Sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Table 48. WRITEALL Sequencing (Unchanged by Daisy-Chain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Table 49. WRITEDEVICE Sequencing (Unchanged by Daisy-Chain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Table 50. READALL Command Sequencing In Single-UART or  
Dual-UART Up Path (z = Number of Devices). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Table 51. READALL Command Sequencing In Dual-UART Down Path  
(z = Number of Devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Table 52. READDEVICE Sequencing In Single-UART or Dual-UART Up Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Table 53. READDEVICE Sequencing In Dual-UART Down Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Table 54. READBLOCK Sequencing In Single-UART or Dual-UART Up Path (Block Size = 1) . . . . . . . . . . . . . . . 130  
Table 55. READBLOCK Sequencing In Single-UART or Dual-UART Up Path (Block Size = 1) . . . . . . . . . . . . . . . 130  
Table 56. READBLOCK Sequencing In Dual-UART Down Path (Block Size = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
Table 57. READBLOCK Sequencing In Single-UART or Dual-UART Down Path (Block Size = 2) . . . . . . . . . . . . .131  
Table 58. DOWNHOST Sequencing (z = Total Number of Devices). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Table 59. UPHOST Sequencing (z = total number of devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Table 60. ALERTPACKET Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Table 61. SPI CRC Operation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
Table 62. Alert-Interface Configuration in UART Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Table 63. Alert Output Driver Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Table 64. Low-Voltage Regulator Operating Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
Maxim Integrated │ 18  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(
)
LIST OF TABLES CONTINUED  
Table 65. Low-Voltage Regulator Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
Table 66. HV Charge-Pump Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Table 67. Oscillator Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Table 68. Summary of Built-In Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Table 69. Comparator Signal-Path Diagnostic Verification Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Table 70. BALSW Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Table 71. BALSW-Short Diagnostics Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Table 72. BALSW Short Diagnostic Auto-Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Table 73. BALSW Open-Diagnostic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Table 74. BALSW Open-Diagnostic Auto-Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Table 75. Sense-Wire Open-Diagnostic Automatic Configuration Overrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Table 76. Odd Sense-Wire Open-Measurement Results for Broken Sense Wires. . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Table 77. Even Sense-Wire Open-Measurement Results for Broken Sense Wires . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Table 78. Odd and Even Sense-Wire Open-Measurement Results Overlay for Broken Sense Wires. . . . . . . . . . . 173  
Table 79. Odd and Even Sense-Wire Open-Measurement Results Overlay for Broken Sense Wires. . . . . . . . . . . .174  
Table 80. FET-Balancing Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296  
Table 81. BJT Balancing Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297  
Maxim Integrated │ 19  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
MAX17853 Simplified Application Diagrams  
UART Interface with Single-Ended Alert  
4.7µF  
50V  
MODULE N+1  
CELL STACK  
10Ω  
100Ω  
HV  
DCIN  
VBLK  
CPP  
2.2µF  
100V  
V
AA  
0.1µF  
100V  
CPN  
UARTSEL  
SHDNL/  
10kΩ  
1.0nF  
25V  
V
AA  
BLOCK-FILTER  
MAX17853  
1.0µF  
NETWORK (OPTIONAL)  
AGND  
V
DDL1  
0.47µF  
0.47µF  
0.47µF  
GNDL1  
C14  
V
DDL2  
SW14  
C13  
CELL 14  
GNDL2  
SW13  
C12  
V
DDL3  
GNDL3  
SW12  
C11  
CELL 13  
CELL 12  
UART DAISY-CHAIN FROM  
UPPER MODULE OR SYSTEM  
CONTROLLER  
SW11  
C10  
MAX17853  
UPPER-UART  
INTERFACE  
SW10  
C9  
TXUP  
TXUN  
RXLP  
RXLN  
SW9  
C8  
RXUP  
RXUN  
TXLP  
TXLN  
MODULE N+1  
SW8  
C7  
CELL INPUT-FILTER  
NETWORK  
UART DAISY-CHAIN FROM  
LOWER MODULE OR  
SYSTEM CONTROLLER  
SW7  
C6  
CELL 4  
CELL 3  
CELL 2  
CELL 1  
SW6  
C5  
MAX17853  
TXLP  
TXLN  
RXUP  
RXUN  
LOWER-UART  
INTERFACE  
SW5  
C4  
RXLP  
RXLN  
TXUP  
TXUN  
SW4  
C3  
MODULE N-1  
SW3  
C2  
ALERTIN  
ALERTOUT  
THRM  
MODULE N+1  
MODULE N-1  
ALERT INTERFACE  
(OPTIONAL)  
SW2  
C1  
SW1  
AUXIN0/GPIO0  
AUXIN1/GPIO1  
AUXIN2/GPIO2  
AUXIN3/GPIO3  
AUXIN4/GPIO4  
AUXIN5/GPIO5  
C0  
AUXILLARY- /GPIO-/  
ABSOLUTE-  
MEASUREMENT  
CIRCUIT  
NTC NETWORK  
SW0  
AGND  
AUXGND  
CAPACITOR RATINGS SHOWN IN THIS DATA SHEET ARE BASED ON  
EXPECTED REFERENCE- CIRCUIT CONDITIONS AND MAY BE MODIFIED  
BASED ON FINAL APPLICATION REQUIREMENTS.  
MODULE N-1 CELL STACK  
OR CELL STACK GROUND  
Maxim Integrated │ 20  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
MAX17853 Simplified Application Diagrams (continued)  
UART Interface with Differential Alert  
4.7µF  
50V  
MODULE N+1  
CELL STACK  
10Ω  
100Ω  
HV  
DCIN  
VBLK  
CPP  
2.2µF  
100V  
V
AA  
0.1µF  
100V  
CPN  
UARTSEL  
SHDNL/  
10kΩ  
1.0nF  
25V  
BLOCK-FILTER  
V
AA  
NETWORK (OPTIONAL)  
MAX17853  
1.0µF  
AGND  
V
DDL1  
0.47µF  
0.47µF  
0.47µF  
GNDL1  
C14  
V
DDL2  
SW14  
C13  
CELL 14  
GNDL2  
SW13  
C12  
V
DDL3  
GNDL3  
SW12  
C11  
CELL 13  
CELL 12  
UART DAISY-CHAIN FROM  
UPPER MODULE OR SYSTEM  
CONTROLLER  
SW11  
C10  
MAX17853  
UPPER-UART  
INTERFACE  
SW10  
C9  
TXUP  
TXUN  
RXLP  
RXLN  
SW9  
C8  
RXUP (DIFF ALERT)  
RXUN (DIFF ALERT)  
TXLP (DIFF ALERT)  
TXLN (DIFF ALERT)  
MODULE N+1  
SW8  
C7  
CELL INPUT-FILTER  
NETWORK  
UART DAISY-CHAIN FROM  
LOWER MODULE OR  
SYSTEM CONTROLLER  
SW7  
C6  
CELL 4  
CELL 3  
CELL 2  
CELL 1  
SW6  
C5  
MAX17853  
RXUP (DIFF ALERT)  
RXUN (DIFF ALERT)  
TXLP (DIFF ALERT)  
TXLN (DIFF ALERT)  
LOWER-UART  
INTERFACE  
SW5  
C4  
RXLP  
RXLN  
TXUP  
SW4  
C3  
TXUN  
MODULE N-1  
SW3  
C2  
ALERTIN  
ALERTOUT  
THRM  
SW2  
C1  
SW1  
AUXIN0/GPIO0  
AUXIN1/GPIO1  
AUXIN2/GPIO2  
AUXIN3/GPIO3  
AUXIN4/GPIO4  
AUXIN5/GPIO5  
AUXILLARY- /GPIO-/  
ABSOLUTE-  
MEASUREMENT  
CIRCUIT  
C0  
NTC NETWORK  
SW0  
AGND  
AUXGND  
CAPACITOR RATINGS SHOWN IN THIS DATA SHEET ARE BASED ON  
EXPECTED REFERENCE CIRCUIT CONDITIONS AND MAY BE MODIFIED  
BASED ON FINAL APPLICATION REQUIREMENTS.  
MODULE N-1 CELL STACK  
OR CELL STACK GROUND  
Maxim Integrated │ 21  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
MAX17853 Simplified Application Diagrams (continued)  
SPI Interface with Single-Ended Alert  
4.7µF  
50V  
MODULE N+1  
CELL STACK  
10Ω  
100Ω  
HV  
DCIN  
VBLK  
CPP  
2.2µF  
100V  
0.1µF  
100V  
CPN  
UARTSEL  
SHDNL/  
10kΩ  
V
AA  
BLOCK-FILTER  
NETWORK (OPTIONAL)  
MAX17853  
1.0µF  
AGND  
V
DDL1  
0.47µF  
0.47µF  
0.47µF  
GNDL1  
C14  
V
V
or  
AA  
V
DDL2  
SW14  
C13  
MICRO  
CELL 14  
GNDL2  
SW13  
C12  
V
DDL3  
GNDL3  
SW12  
C11  
CELL 13  
CELL 12  
SW11  
C10  
SPI COMMUNICATION FROM  
SYSTEM CONTROLLER  
SW10  
C9  
TXUP/CSB  
TXUN/SCLK  
SW9  
C8  
RXUP  
RXUN  
MICROCONTROLLER  
GPO  
SW8  
C7  
CSB  
SCLK  
CELL INPUT-FILTER  
NETWORK  
SW7  
C6  
TXLP/SDO  
TXLN/ SDI  
MISO  
MOSI  
CELL 4  
CELL 3  
CELL 2  
CELL 1  
SW6  
C5  
SW5  
RXLP  
RXLN  
GPI  
C4  
SW4  
C3  
ALERTIN  
SW3  
C2  
ALERTOUT  
THRM  
SW2  
C1  
SW1  
AUXIN0/GPIO0  
AUXIN1/GPIO1  
AUXIN2/GPIO2  
AUXIN3/GPIO3  
AUXIN4/GPIO4  
AUXIN5/GPIO5  
AUXILLARY-/GPIO-/  
ABSOLUTE-  
MEASUREMENT  
CIRCUIT  
C0  
NTC NETWORK  
SW0  
AGND  
AUXGND  
MODULE N-1 CELL STACK  
OR CELL STACK GROUND  
CAPACITOR RATINGS SHOWN IN THIS DATASHEET ARE BASED  
ON EXPECTED REFERENCE CIRCUIT CONDITIONS AND MAY BE  
MODIFIED BASED ON FINAL APPLICATION REQUIREMENTS.  
Maxim Integrated │ 22  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Absolute Maximum Ratings  
HV to AGND..........................................................-0.3V to +80V  
DCIN, SWn, VBLK,  
RXLP, RXLN, RXUP, RXUN, ALERTIN to AGND...-30V to +30V  
TXLP, TXLN, ALERTOUT to GNDL2.......................-0.3V to +6V  
TXUP, TXUN to GNDL3 ..........................................-0.3V to +6V  
Cn to AGND........................-0.3V to min (V  
+ 0.3V or 72V)  
HV  
Cn to Cn-1..............................................................-72V to +72V  
UARTSEL to AGND.................................-0.3V to V  
+ 0.3V  
DDL1  
SWn to SWn-1.......................................................-0.3V to +16V  
CPP to AGND....................................... V  
- 1V to V  
+ 1V  
DCIN  
HV  
V
V
V
V
V
V
to AGND...........................................................-0.3V to +4V  
CPN to AGND.......................................... -0.3V to V  
Maximum Continuous Current  
into Any Pin (Note 1) .................................... -20mA to +20mA  
Maximum Continuous Current  
into SWn Pin (Note 2)............................... -650mA to +650mA  
Maximum Average Power for ESD Diodes (Note 3)... 14.4W/√T  
Package Continuous Power (Note 4)............... mW to 2000mW  
Operating Temperature Range......................... -40°C to +125°C  
Storage Temperature Range............................ -55°C to +150°C  
Junction Temperature (Continuous) ..................................150°C  
Soldering Lead Temperature (10s max)............................300°C  
+ 0.3V  
AA  
DDL2 DDL3  
DCIN  
, V  
to V ...........................................-0.3V to +6.0V  
AA  
to GNDL1.....................................................-0.3V to +4V  
to GNDL2.....................................................-0.3V to +6V  
to GNDL3.....................................................-0.3V to +6V  
DDL1  
DDL2  
DDL3  
AA  
to V  
.......................................................-0.3V to +0.3V  
DDL1  
AGND to GNDL1, GNDL2, GNDL3......................-0.3V to +0.3V  
AGND to AUXGND............................................................. -0.3V  
GPIOn/AUXINn........................................-0.3V to V  
THRM to AGND...........................................-0.3V to V + 0.3V  
+ 0.3V  
DDL2  
AA  
SHDNL to AGND..................................... -0.3V to V  
+ 0.3V  
DCIN  
Note 1: Balancing switches disabled.  
Note 2: One balancing switch enabled, 60s (max).  
Note 3: Average power for time period T, where T is the time constant (in µs) of the transient diode current during hot-plug event.  
For, example, if T is 330µs, the maximum average power is 0.793W. Peak current must never exceed 2A. Actual average  
power during hot-plug must be calculated from the diode current waveform for the application circuit and compared to the  
maximum rating.  
Note 4: Multilayer board. For T > +70°C, derate 25mW/°C.  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
LQFP  
Package Code  
C64+18  
21-0083  
90-0141  
Outline Number  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
40°C/W  
8°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated │ 23  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Electrical Characteristics  
(V  
= +56V, T = T  
to T  
unless otherwise noted, where T  
= -40°C and T  
= +125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER  
POWER REQUIREMENTS  
Supply Voltage, DCIN  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
9
65  
V
V
DCIN  
Supply Voltage, V  
, V  
V
, V  
V
AA  
5.5  
DDL2 DDL3  
DDL2 DDL3  
DCIN Current, Shutdown Mode  
I
V
V
= 0V  
0.1  
2.3  
µA  
DCSHDN  
SHDNL  
SHDNL  
> 1.8V, UART in idle mode,  
DCIN Current, Standby Mode  
(Note 6)  
not in acquisition mode, balance  
switches, test current sources, and  
alert interface disabled  
I
1.7  
2.9  
mA  
DCSTBY  
DCIN Current, ADC  
Acquisition Mode (Note 6)  
All cell and auxiliary measurements  
enabled, OVSAMPL[2:0]=000b  
I
5.4  
6
8.0  
7.7  
8.4  
mA  
mA  
mA  
DC_ADC  
DCIN Current, COMP  
Acquisition Mode (Note 6)  
All cell and auxiliary measurements  
enabled  
I
DC_COMP  
DCIN Current, ADC + COMP  
Acquisition Mode (Note 6)  
All cell and auxiliary measurements  
enabled  
I
6.8  
DC_ADCCOMP  
V
> 1.8V, all channels  
SHDNL  
DCIN Incremental Current, SPI  
Communication Mode (Note 6)  
I
disabled, all test current sources  
disabled, acquisition disabled  
170  
170  
300  
300  
1.3  
µA  
µA  
DCCOMM_SPI  
Baud rate = 2Mbps (0% idle time in  
preambles mode), 200pF load on  
TXUP and TXUN, TXL not active,  
not in acquisition mode, BALSWEN,  
CTSTEN = 0000h  
DCIN Incremental Current,  
UART Communication Mode  
(Note 6)  
I
DCCOMM_UART  
ADC-only acquisition, all cells and  
auxiliary channels enabled,  
HV Current, ADC  
Acquisition Mode  
I
0.9  
1.1  
1.8  
mA  
HVMEAS  
V
= V  
+ 5.5V  
HV  
DCIN  
COMP-only acquisition, all cells and  
auxiliary channels enabled,  
HV Current, Comparator  
(COMP) Scan Mode  
I
mA  
µA  
HVCOMP  
V
= V  
+ 5.5V  
HV  
DCIN  
Incremental HV Current,  
Cell-Balancing Mode  
V
= V  
+ 5.5V, n balancing  
(n + 1) (n + 1)  
(n + 1)  
x 26  
HV  
DCIN  
I
HVBAL  
switches enabled  
x 5  
x 15.5  
CELL VOLTAGE INPUTS (Cn, VBLK)  
Unipolar mode  
0
5
Differential Input Range  
(Note 7)  
V
V
CELLn  
Bipolar mode  
-2.5  
+2.5  
Common-Mode Input Range  
V
Not connected to SWn inputs  
0
65  
+100  
20  
V
CnCM  
Input Leakage Current  
VBLK Input Resistance  
HVMUX Switch Resistance  
I
Not in acquisition mode, V = 65V  
-100  
4.5  
1.7  
±10  
10  
nA  
MΩ  
kΩ  
LKG_Cn  
Cn  
R
V
= V  
= 57.6V  
VBLK  
VBLK  
DCIN  
R
CTSTDAC[3:0] = Fh  
3.3  
5
HVMUX  
Maxim Integrated │ 24  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Electrical Characteristics (continued)  
(V  
= +56V, T = T  
to T  
unless otherwise noted, where T  
= -40°C and T  
= +125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CELL-BALANCING INPUTS (SWn)  
Leakage Current  
I
V
= 0V, V  
= 5V, V -1 = 0V  
SWn  
-1  
+1  
µA  
LKG_SW  
SW0  
SWn  
Resistance, SWn to SWn-1  
R
BALSWEN[n-1] = 1, I  
= 100mA  
0.5  
1.25  
1.3  
2.25  
SW  
SW  
SWn  
Resistance, SWn to SWn-1  
(Note 8)  
R
BALSWEN[n-1] =1, I  
= 300mA  
SWn  
T = +125°C, CBMEASEN= 0x00,  
J
FLXPCKEN=0, all even or all odd  
channels enabled  
Maximum Allowed Balancing  
Current (Note 9)  
I
650  
mA  
BAL_MAX  
AUXILIARY INPUTS (AUXINn)  
V
= V  
or V  
based  
ADCREF  
THRM  
REF  
Input Voltage Range  
V
0
V
V
AUXIN  
ADCREF  
on AUXREFSEL  
Not in acquisition mode,  
Input Leakage Current  
I
-400  
10  
25  
+400  
nA  
LKG_AUX  
V
V
= 1.65V  
AUXINn  
THRM OUTPUT  
Switch Resistance, V to THRM  
AA  
R
70  
+1  
THRM  
Leakage Current  
I
= 3.3V  
-1  
µA  
LKG_THRM  
THRM  
MEASUREMENT ACCURACY  
Unipolar mode,V  
SCANMODE=0x0, 0x1  
= 3.6V,  
CELLn  
±0.45  
±0.45  
ADC Measurement  
Error, HVMUX Inputs  
(Note 10)  
V
mV  
CELLnERR  
Bipolar mode,V = 1.1V, SCAN-  
CELLn  
MODE=0x0, 0x1  
Unipolar mode, 0.2V ≤ VCELLn ≤ 4.8V,  
SCANMODE=0x0, 0x1  
-4.5  
-4.5  
+4.5  
+4.5  
ADC Measurement  
Error, HVMUX Inputs  
(Note 10)  
V
V
mV  
mV  
CELLnERR  
Bipolar mode, -2.3V ≤ VCELLn ≤ 2.3V,  
SCANMODE=0x0, 0x1  
ADC Measurement  
Error, HVMUX Inputs  
(Note 10)  
Unipolar mode, 1.9V ≤ VCELLn ≤ 4.2V,  
SCANMODE=0x0, 0x1,  
5°C < Temp < 40°C  
-2  
+2  
CELLnERR  
Unipolar mode,V  
SCANMODE=0x0, 0x1  
= 3.6V,  
CELLn  
±0.45  
±0.45  
Bipolar mode,V = 1.1V, SCAN-  
CELLn  
ADC Measurement  
Error, ALTMUX Inputs  
(Note 10)  
MODE=0x0, 0x1  
V
mV  
SWnERR  
Unipolar mode, 0.2V ≤ VCELLn ≤ 4.8V,  
SCANMODE=0x0, 0x1  
-4.5  
-4.5  
+4.5  
+4.5  
Bipolar mode, -2.3V ≤ VCELLn ≤ 2.3V,  
SCANMODE=0x0, 0x1  
Maxim Integrated │ 25  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Electrical Characteristics (continued)  
(V  
= +56V, T = T  
to T  
unless otherwise noted, where T  
= -40°C and T  
= +125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER SYMBOL  
CONDITIONS  
≤ 65V, V = 65V,  
MIN  
TYP  
MAX  
UNITS  
9V ≤ V  
BLK  
DCIN  
-110  
+110  
SCANMODE=0x0, 0x1  
ADC Measurement  
Error, VBLK Input (Note 11)  
V
mV  
BLKERR  
9V ≤ V ≤ 58.8V, V = 58.8V,  
DCIN  
BLK  
-100  
-3.5  
-2.5  
-5  
+100  
+3.5  
+2.5  
+5  
SCANMODE=0x0, 0x1  
ADC Measurement  
Error, AUXIN Inputs (Note 11)  
AUXREF[n] = 0b, SCANMODE = 0x0,  
0x1  
V
mV  
mV  
°C  
OS_AUX_RATIO  
ADC Measurement  
Error, AUXIN Inputs (Note 11)  
AUXREF[n]=1b, SCANMODE = 0x0,  
0x1  
V
OS_AUX_ABS  
Total Measurement Error, Die  
Temperature (Note 8)  
T = -40°C to +125°C,  
J
OVSAMPL[2:0] = 000b  
T
0
DIE_ERR  
Channel Noise (Note 8)  
V
OVSAMPL[2:0] = 0x3h  
250  
±1.0  
μV  
RMS  
CELLNOISE  
DNL  
Differential Nonlinearity  
(Any Conversion)  
LSbs  
bits  
ADC Resolution  
12  
Level-Shifting Amplifier Offset  
(Note 12)  
V
DIAGSEL[2:0] = 011b  
-200  
-10  
+200  
mV  
OS_LSAMP  
COMPARATOR  
Comparator Accuracy  
V
0.2V ≤ VCELLn ≤ 4.8V  
-20  
+20  
0.6  
mV  
OS_COMP  
SHDNL INPUT AND CHARGE PUMP  
Input Low Voltage  
Input High Voltage  
V
V
V
IL_SHDNL  
V
1.8  
8
IH_SHDNL  
V
V
≥ 12V  
9.5  
6.7  
4.7  
12  
DCIN  
DCIN  
Regulated Voltage  
V
V
SHDNLIMIT  
= 9V  
Pulldown Resistance  
Input Leakage Current  
R
FORCEPOR = 1  
2.5  
8
1
kΩ  
µA  
FORCEPOR  
V
V
V
= 3.3V  
= 65V  
SHDNL  
SHDNL  
SHDNL  
I
LKG_SHDNL  
40  
75  
Charge-Pump Current,  
UARTL/UARTU (Note 13)  
< V  
,
SHDNLIMIT  
I
15  
117  
350  
µA  
SHDNL  
baud rate = 2Mbps  
UARTSEL  
UARTSEL Input Low Voltage  
UARTSEL Input High Voltage  
UARTSEL Pullup Resistance  
GENERAL-PURPOSE I/O (GPIOn)  
Input Low Voltage  
V
0.3 x V  
V
V
IL_UARTSEL  
AA  
V
0.7 x V  
IH_UARTSEL  
AA  
R
100  
kΩ  
UARTSEL  
V
0.3 x V  
V
V
IL_GPIO  
DDL2  
Input High Voltage  
V
0.7 x V  
IH_GPIO  
DDL2  
Maxim Integrated │ 26  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Electrical Characteristics (continued)  
(V  
= +56V, T = T  
to T  
unless otherwise noted, where T  
= -40°C and T  
= +125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER  
Pulldown Resistance  
Output Low Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
7.5  
UNITS  
MΩ  
AUXINn/GPIOn configured as GPIO  
R
0.5  
2
GPIO  
input  
V
I
= 3mA  
0.4  
V
OL_GPIO  
OH_GPIO  
SINK  
V
DDL2  
- 0.4  
Output High Voltage  
V
I
= 3mA  
V
SOURCE  
ALERTIN  
ALERTIN High-Comparator  
Thershold  
-V /2  
AA  
- 0.4  
-V /2 +  
AA  
V
-V /2  
AA  
V
V
CH  
0.4  
ALERTIN Zero-Crossing  
Comparator Threshold  
V
-0.4  
0
+0.4  
ZC  
ALERTIN Low-Comparator  
Threshold  
V
- 0.4  
/2  
V
+ 0.4  
/2  
AA  
AA  
V
V /2  
AA  
V
CL  
ALERTIN Comparator  
Hysteresis  
V
75  
/3  
mV  
V
HYS_ALERTIN  
ALERTIN Common-Mode  
Voltage Bias  
V
V
CM  
AA  
Leakage Current  
Input Capacitance  
I
V
= 1.5V  
±1.0  
2
µA  
pF  
LKG_ALERTIN  
ALERTIN  
C
ALERTIN  
1/  
Bit Period (Note 14)  
t
8
BIT  
f
OSC_16M  
ALERTIN Fall Time  
(Notes 8, 15)  
t
0.5  
0.5  
t
t
ALERTIN_FALL  
ALERTIN_RISE  
BIT  
ALERTIN Rise Time  
(Notes 8, 15)  
t
BIT  
µs  
ALERTIN Qualification Time  
t
25  
ALERTIN_QUAL  
Propagation Delay (ALERTIN  
Port to ALERTOUT Port)  
t
2.5  
3
t
ALERT_PROP  
BIT  
Startup Time from SHNDL High  
and V = 0V to ALERTIN Valid  
AA  
t
1
ms  
ALERTIN_STARTUP  
ALERTOUT  
Output Low Voltage  
V
I
I
= 20mA  
0.4  
V
V
OL_ALERTOUT  
OH_ALERTOUT  
LKG_ALERTOUT  
SINK  
V
DDL2  
- 0.4  
Output High Voltage  
V
= 20mA  
SOURCE  
Leakage Current  
REGULATOR  
I
V
= 1.5V  
-1  
+1  
µA  
ALERTOUT  
Output Voltage  
V
0 ≤ I < 20mA  
3.2  
30  
3.3  
3.4  
V
AA  
AA  
Short-Circuit Current  
I
V
shorted to AGND  
AA  
mA  
AASC  
Maxim Integrated │ 27  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Electrical Characteristics (continued)  
(V  
= +56V, T = T  
to T  
unless otherwise noted, where T  
= -40°C and T  
= +125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER SYMBOL  
CONDITIONS  
MIN  
TYP  
2.95  
3
MAX  
3.02  
3.1  
UNITS  
V
V
V
V
falling  
rising  
2.85  
PORFALL  
AA  
AA  
V
POR Threshold  
PORRISE  
V
40  
mV  
°C  
PORHYS  
Thermal-Shutdown  
Temperature (Note 8)  
T
Temperature rising  
145  
SHDN  
Thermal-Shutdown Hysteresis  
(Note 8)  
T
15  
°C  
HYS  
HV CHARGE PUMP  
9V ≤ V  
≤ 12V, I  
= 1.5mA  
5.9  
5.9  
6.2  
6.2  
6.5  
6.5  
DCIN  
LOAD  
Output Voltage (V  
Output Voltage  
- V  
)
V
HV-DCIN  
V
HV  
DCIN  
12V ≤ V  
≤ 65V, I  
≤ 65V, I  
= 3mA  
= 3mA,  
DCIN  
DCIN  
LOAD  
14V ≤ V  
FLXPACKEN1/2  
LOAD  
V
10.2  
11  
V
HV-DCIN_FLEX  
(V  
- V  
)
HV  
TOPCELL  
Charge-Pump Efficiency  
(Note 16)  
Eff  
V
= 57.6V  
38  
%
HVCP  
DCIN  
OSCILLATORS  
32kHz Oscillator Frequency  
16MHz Oscillator Frequency  
f
32.11  
15.68  
32.768  
16  
33.42  
16.32  
kHz  
OSC_32K  
f
MHz  
OSC_16M  
DIAGNOSTIC TEST SOURCES  
CTSTDAC[3:0] = 9h, V < V  
-
-
C0  
AA  
50  
36  
62.5  
45  
75  
54  
1.4V, V = 3.3V  
AA  
CTSTDAC[3:0] = 6h, V < V  
C0  
AA  
1.4V, V = 3.3V  
AA  
Cell Test Source Current  
I
µA  
µA  
µA  
TSTCn  
CTSTDAC[3:0] = 6h, V  
>
C1–C14  
-54  
-75  
25  
-45  
-36  
-50  
37.5  
27  
V
+ 1.4V  
AGND  
CTSTDAC[3:0] = 9Fh, V  
>
C1–C14  
-62.5  
31.25  
22.5  
62.5  
45  
V
+ 1.4V  
AGND  
CTSTDAC[3:0] = 9h, V < V  
-
-
Cn  
HV  
HV  
1.4V, V  
= 53.5V  
HV  
HVMUX Test Source Current  
AUXIN Test Source Current  
I
TSTHVMUX  
CTSTDAC[3:0] = 6h, V < V  
Cn  
18  
1.4V, V  
= 53.5V  
HV  
CTSTDAC[3:0] = 9h, V  
<
<
>
>
AUXINn  
50  
75  
V
- 1.4V, V  
= 3.3V  
DDL2  
DDL2  
CTSTDAC[3:0] = 6h, V  
AUXINn  
36  
54  
V
- 1.4V, V  
= 3.3V  
DDL2  
DDL2  
I
TSTAUXIN  
CTSTDAC[3:0] = 6h, V  
AUXINn  
AUXINn  
-54  
-75  
-45  
-36  
-50  
V
+ 1.4V  
AGND  
CTSTDAC[3:0] = 9h, V  
+ 1.4V  
-62.5  
V
AGND  
Maxim Integrated │ 28  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Electrical Characteristics (continued)  
(V  
= +56V, T = T  
to T  
unless otherwise noted, where T  
= -40°C and T  
= +125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIAGNOSTIC REFERENCES  
ALTREF Voltage (Note 12)  
V
A
DIAGSEL[2:0]=001b  
1.23  
1.242  
±25  
1.254  
V
ALTREF  
ALTREF Temperature  
Coefficient (∆VALTREF/∆T)  
(Note 8)  
ppm/°C  
ALTREF  
PTAT Output Voltage (Note 8)  
V
T = +120°C  
1.2  
V
PTAT  
J
PTAT Temperature Coefficient  
(∆VPTAT/∆T) (Note 8)  
A
3.02  
mV/°C  
V_PTAT  
PTAT Temperature Offset  
(Note 8)  
T
-8.3  
°C  
OS_PTAT  
ALERTS  
ALRTVDDLn Threshold  
ALRTGNDLn Threshold  
V
V
= 3.3V  
AA  
3
3.15  
0.15  
3.25  
0.3  
V
V
VDDL_OC  
V
AGND = 0V  
0.05  
GNDL_OC  
V
- V  
falling, FLXPACK-  
DCIN  
HV  
4.5  
8.5  
4.75  
5.0  
EN1/2=0  
ALRTHVUV Threshold  
V
V
V
HVUV  
V
- V  
falling, FLXPACK-  
rising  
DCIN  
HV  
DCIN  
9.25  
16  
9.5  
20  
EN1/2=1  
ALRTHVOV Threshold  
V
- V  
14  
4.7  
115  
V
V
HVOV  
HV  
ALRTHVHDRM Threshold  
ALRTTEMP Threshold (Note 8)  
ALRTTEMP Hysteresis (Note 8)  
V
ALRTHVHDRM=0  
HVHDRM  
T
120  
2
125  
0.4  
°C  
°C  
ALRTTEMP  
T
ALRTTEMPHYS  
UART OUTPUTS (TXLP, TXLN, TXUP, TXUN)  
Output Low Voltage  
V
I
I
= 20mA  
SINK  
V
V
OL  
Output High Voltage  
(TXLP, TXLN)  
V
DDL2  
- 0.4  
V
V
= 20mA  
= 20mA  
OH  
SOURCE  
SOURCE  
Output High Voltage  
(TXUP, TXUN)  
V
DDL3  
- 0.4  
I
V
OH  
Leakage Current  
I
V
= 1.5V  
TX  
-1  
+1  
µA  
LKG_TX  
UART INPUTS (RXLP, RXLN, RXUP, RXUN)  
Input Voltage Range  
V
-25  
+25  
V
V
RX  
CH  
Receiver High Comparator  
Threshold (Note 17)  
V
/2  
V
/2  
AA  
AA  
V
V
/2  
AA  
- 0.4  
+ 0.4  
Receiver Zero-Crossing  
Comparator Threshold  
(Note 17)  
V
-0.4  
0
+0.4  
V
V
ZC  
Receiver Low Comparator  
Threshold (Note 17)  
-V /2  
AA  
- 0.4  
-V /2  
AA  
+ 0.4  
V
-V /2  
AA  
CL  
Maxim Integrated │ 29  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Electrical Characteristics (continued)  
(V  
= +56V, T = T  
to T  
unless otherwise noted, where T  
= -40°C and T  
= +125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Receiver Comparator  
Hysteresis (Note 17)  
V
75  
mV  
HYS_RX  
Receiver Common-Mode  
Voltage Bias (Note 17)  
V
V
/3  
V
CM  
AA  
Leakage Current  
I
V
= 1.5V  
±1.0  
µA  
pF  
LKG_RX  
RX  
Input Capacitance  
(RXLP, RXLN)  
C
4
4
RXL  
Input Capacitance  
(RXUP, RXUN)  
C
pF  
RXU  
UART TIMING  
Baud rate = 2Mbps  
Baud rate = 1Mbps  
Baud rate = 0.5Mbps  
8
1/  
Bit Period (Note 14)  
t
16  
32  
BIT  
f
OSC_16M  
Rx Idle to Start Setup Time  
(Note 8)  
t
0
1
1
t
t
t
RXSTSU  
BIT  
BIT  
BIT  
STOP Hold Time to Idle  
(Note 8)  
t
0.5  
SPHD  
Rx Minimum Idle Time (Stop Bit  
to Start Bit) (Note 8)  
t
RXIDLESPST  
Rx Fall Time (Notes 8, 15)  
Rx Rise Time (Notes 8, 15)  
t
0.5  
0.5  
t
t
FALL  
BIT  
BIT  
t
RISE  
Propagation Delay  
(RX Port to Tx Port)  
t
2.5  
1
3
t
PROP  
BIT  
Startup Time from SHNDL High  
and V = 0V to RXUP/RXUN  
t
ms  
AA  
STARTUP  
Valid  
SERIAL PERIPHERAL INTERFACE (SPI)  
SPI ELECTRICAL CHARACTERISTICS: POWER REQUIREMENTS  
V
= V  
= V  
for SPI  
DDIO  
DDL2  
DDL3  
I/O Supply Voltage  
V
V
5
5.5  
V
DDIO  
AA  
applications  
Static I/O Supply Current  
(Note SPI-1)  
I
Static inputs, all outputs unloaded  
±25  
μA  
DDIO  
SPI ELECTRICAL CHARACTERISTICS: DIGITAL INPUT CHARACTERISTICS (SCLK, SDIN, CSB)  
Input High Voltage  
Input Low Voltage  
V
3.0V < V  
< 5.5V  
< 5.5V  
0.7 x V  
DDIO  
V
V
IH  
DDIO  
DDIO  
V
3.0V < V  
0.3 x V  
DDIO  
IL  
Input Leakage Current  
(Note SPI-2)  
I
V
= 0V or V  
±1  
μA  
kΩ  
IN  
IN  
DDIO  
R
R
SDI, SCLK pulldown to GND  
CSB pulup to V  
40  
40  
100  
100  
160  
160  
Internal Safety Impedance  
(Note SPI-3, SPI-4)  
PD  
PU  
DDIO  
Maxim Integrated │ 30  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Electrical Characteristics (continued)  
(V  
= +56V, T = T  
to T  
unless otherwise noted, where T  
= -40°C and T  
= +125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER SYMBOL  
Input Capacitance  
Hysteresis Voltage  
SPI ELECTRICAL CHARACTERISTICS: DIGITAL OUTPUT CHARACTERISTICS (SDO)  
CONDITIONS  
MIN  
TYP  
20  
MAX  
UNITS  
pF  
C
IN  
V
0.15  
V
H
V
DDIO  
- 0.4  
Output High Voltage  
Output Low Voltage  
V
V
V
> 3.0V, I  
= 5mA  
SOURCE  
V
OH  
DDIO  
DDIO  
V
> 3.0V, I = 5mA  
SINK  
0.4  
±1  
V
OL  
I
I
600  
220  
mA  
SOURCE  
SINK  
Output Short-Circuit Current  
I
OSS  
Output Three-State Leakage  
Output Three-State Capacitance  
SPI TIMING CHARACTERISTICS  
SCLK Frequency (Note SPI-5)  
SCLK Period  
I
µA  
pF  
OZ  
C
20  
OZ  
f
t
0.1  
100  
40  
10  
MHz  
ns  
SCLK  
t
10,000  
CP  
SCLK Pulse Width High  
t
ns  
CH  
SCLK Pulse Width Low  
t
40  
ns  
CL  
CSB Fall to SCLK Rise  
Setup Time  
Applies to 1st SCLK rising edge  
40  
25  
25  
15  
ns  
ns  
ns  
CSS0  
CSH0  
CSH1  
CSB Fall to SCLK Rise  
Hold Time  
Applies to inactive rising edge  
preceding 1st rising edge  
t
t
SCLK Rise to CSB Rise  
Hold Time  
Applies to 32nd rising edge  
Applies to 32nd rising edge, guarantees  
aborted (unqualified) sequence  
t
CSA  
CSB Rise to SCLK Rise  
ns  
Applies to 33rd rising edge,  
guarantees qualified sequence  
t
15  
CSQ  
CSB Pulse Width High  
t
400  
100  
ns  
CSPW  
CSB Pulse Width High After  
SWPOR  
Applies after an accepted/executed  
SWPOR command.  
t
μs  
CSPWSP  
SDI to SCLK Rise Setup Time  
SDI to SCLK Rise Hold Time  
SCLK Fall to SDO Transition  
SCLK Fall to SDO Hold  
t
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
DS  
t
DH  
t
C
C
C
= 20pF  
= 0pF  
30  
DOT  
LOAD  
LOAD  
LOAD  
t
2
DOH  
CSB Fall to SDO Transition  
CSB Rise to SDO Hi-Z  
t
= 20pF  
30  
25  
DOE  
t
Output disable time  
DOZ  
Transactions exceeding this duration  
be rejected  
Time Out Period (Note SPI-6)  
t
360  
μs  
TO  
Maxim Integrated │ 31  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Electrical Characteristics (continued)  
(V  
= +56V, T = T  
to T  
unless otherwise noted, where T  
= -40°C and T  
= +125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
Note 5:  
Unless otherwise noted, limits are 100% production tested at T = +25°C. Limits over the operating temperature range  
A
and relevant supply voltage range are guaranteed by design and characterization.  
Note 6:  
Acquisition mode (ADC conversions) is entered when the SCAN bit is set and ends when SCANDONE is set. With  
the typical acquisition duty cycle very low, the average current I  
is much less than I  
. Total supply current  
DCIN  
DCMEAS  
during communication I  
= I  
+ I  
.
DCIN  
DCCOMM  
DCSTBY  
Note 7:  
Note 8:  
Note 9:  
Measurement-accuracy range is guaranteed from V  
Guaranteed by design and not production tested.  
Not production tested. See the Cell-Balancing Current section for details on the maximum allowed balancing current.  
+ 0.2V and V  
- 0.2V.  
CELLn_min CELLn_max  
Duty cycle is calculated for a 10-year device lifetime.  
Note 10:  
V
= V - V  
, V  
= V  
, and V  
= 14 x │V  
│ (V  
= 9V minimum). Accuracy measure-  
DCIN  
CELLn  
Cn  
Cn-1 CELLn  
CELLn-1  
DCIN  
CELLn  
ment represents initial total measurement error with the input noise oversampled below 1LSB and over the tempera-  
ture range of -20°C to +125°C. For specific measurement criteria, contact Maxim.  
Accuracy measurement represents initial total measurementeror with the input noise oversampled below 1LSB.  
As measured during specified diagnostic mode.  
Note 11:  
Note 12:  
Note 13:  
Note 14:  
I
measured with V  
= 0.3V, STOP characters, zero idle time, V  
= 3.3V.  
SHDNL  
SHDNL  
RX_PEAK  
In daisy-chain applications, the bit time of the second stop bit may be less than specified to account for clock-rate  
variation and sampling error between devices.  
Note 15:  
Fall time measured 90% to 10%; rise time measured 10% to 90%.  
Note 16:  
Charge-pump efficiency = ∆I  
/∆I  
, where I  
is applied from HV to AGND; ∆I  
= 5mA, and  
LOAD  
LOAD SUPPLY  
LOAD  
∆I  
= I  
(for I  
= 5mA) - I  
(for I  
= 0).  
SUPPLY  
DCIN  
LOAD  
DCIN  
LOAD  
Note 17:  
Differential signal (V  
- V  
) where V  
and V  
do not exceed a common-mode voltage range of ±25V.  
RXP  
RXN  
RXP  
RXN  
Note SPI-1: Static logic inputs with V = GNDL2/GNDL3 and V = V  
(Note 1). CSB = V (if pullup active).  
IH  
IL  
IH  
DDIO  
Note SPI-2: No internal safety pullup/pulldown impedances active, input buffers only.  
Note SPI-3: Internal safety pullup/pulldown impedances available with enable function.  
Note SPI-4: If pulup is supported, note CSB connection and diode to V  
; this diode is present regardless of enable mode.  
DDL2  
Note SPI-5: Applications must afford time for the device to drive data on the SDO bus and meet the µC setup time prior to the  
µC latching in the result on the following SCLK rising edge. In practice, this can be determined by loading and µC  
characteristics, and the relevant t  
/t  
.
DOT DOE  
Note SPI-6: Minimum specification is 32 x T  
and must account for the fastest possible frequency of the internal 16MHz  
CP_MAX  
oscillator (proposed numbers assume 5% variation over T ).  
PV  
Maxim Integrated │ 32  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Typical Operating Characteristics  
(V  
= 56V, V = 3.3V, T = +25°C, unless otherwise noted.)  
AA A  
DCIN  
CELL ACCURACY  
vs. INPUT VOLTAGE  
VBLK ACCURACY  
vs. INPUT VOLTAGE  
toc02  
toc01  
110  
88  
2.0  
1.5  
66  
1.0  
44  
0.5  
22  
0
0.0  
-22  
-44  
-66  
-88  
-110  
-0.5  
-1.0  
-1.5  
-2.0  
ALL CELL AVERAGE  
OVSAMPL = 0x5  
OVSAMPL = 0x5  
51  
9
23  
37  
65  
0
1
2
3
4
5
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
SINGLE-CHANNEL BALANCING-SWITCH  
RESISTANCE vs. BALANCING CURRENT  
AUX ACCURACY  
vs. INPUT VOLTAGE  
toc04  
toc03  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
5
4
TA = +105C  
3
TA = +25C  
TA = -40⁰C  
2
1
0
-1  
-2  
-3  
-4  
-5  
AUXREFSEL = 0x0  
OVSAMPL = 0x5  
0
1
2
3
100  
200  
300  
400  
INPUT VOLTAGE (V)  
BALANCING CURRENT (mA)  
7 BALANCING SWITCHES ACTIVE,  
300mA PERSWITCH  
TEMPERATURE RISE  
vs. BALANCING CURRENT  
toc06  
toc05  
30  
25  
20  
15  
10  
5
VDCIN = 56V  
EVEN BALSW ENABLED  
0
50  
100  
150  
200  
250  
300  
BALANCING CURRENT(mA)  
Maxim Integrated │ 33  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Typical Operating Characteristics (continued)  
(V  
= 56V, V = 3.3V, T = +25°C, unless otherwise noted.)  
AA A  
DCIN  
DIE TEMP ERROR  
vs. AMBIENT TEMP  
CELL LEAKAGE  
vs. TEMPERATURE  
toc07  
toc08  
5
4
100  
80  
3
60  
2
40  
1
20  
0
0
-1  
-2  
-3  
-4  
-5  
-20  
-40  
-60  
-80  
-100  
DIAGSEL1/2 = 0x1  
OVSAMPL = 0x5  
-40  
-20  
0
20  
40  
60 80  
100  
-40 -20  
0
20  
40  
60  
80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
AUX LEAKAGE  
vs. TEMPERATURE  
VAA LOAD REGULATION  
toc10  
toc09  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
3.23  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
0
10  
20  
30  
40  
-40 -20  
0
20  
40  
60  
80 100 120  
IVAA (mA)  
TEMPERATURE (°C)  
CHARGE PER PREAMBLE BYTE  
KEEP-ALIVE OPERATION  
toc11  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
UART = 500Kbps  
UART = 1Mbps  
UART = 2Mbps  
3.0  
3.1  
3.2  
3.3  
3.4  
VAA (V)  
Maxim Integrated │ 34  
www.maximintegrated.com  
MAX17853  
Pin Configuration  
TOP VIEW  
14-Channel High-Voltage Data-Acquisition System  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
SHDNL  
AGND  
1
2
3
4
5
6
7
8
9
48 C9  
47 SW8  
46 C8  
V
AA  
UARTSEL  
45 SW7  
44 C7  
V
DDL1  
GNDL1  
ALERTIN  
43 SW6  
42 C6  
GNDL3  
41 SW5  
MAX17853  
TXUN/SCLK  
40 C5  
TXUP/CSB 10  
11  
39 SW4  
38 C4  
V
DDL3  
RXUN 12  
RXUP 13  
37 SW3  
36 C3  
GNDL2 14  
35 SW2  
34 C2  
TXLP/SDO 15  
TXLN/SDI 16  
33 SW1  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Maxim Integrated │ 35  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Pin Description  
REF  
SUPPLY  
PIN  
NAME  
FUNCTION  
TYPE  
Shutdown Active-Low Input. Drive > 1.8V to enable operation and drive < 0.6V to reset  
device and place in shutdown mode. +72V tolerant.  
UART Operation: If not driven externally, this input can be controlled solely through  
UART communication and software control. Bypass with a 1nF capacitor to AGND. For  
single-ended UART, SHDNL must be driven externally.  
1
SHDNL  
AGND  
AGND  
Input  
SPI Operation: SHDNL must be driven external  
2, 28  
3
Analog Ground. Connect to negative terminal of cell 1 and ground plane.  
DCIN  
Ground  
Power  
V
Output Used to Supply V  
, and optionally V  
and V  
. Bypass with a  
DDL3  
AA  
DDL1  
DDL2  
V
AGND  
AA  
1µF capacitor to AGND.  
UART/SPI Interface Selection. Connect to V for UART interface, pull to AGND for  
AA  
SPI interface.  
4
5
UARTSEL  
V
Input  
DDL1  
3.3V Digital Supply. Connect externally to V and bypass with 0.47µF capacitor to  
AA  
GNDL1.  
V
GNDL1  
Power  
DDL1  
6
7
8
GNDL1  
ALERTIN  
GNDL3  
Digital Ground. Connect to ground plane.  
V
Ground  
Input  
DDL1  
Fault Alert Input. Connect to upper daisy-chain device.  
Ground for Upper-Port Transmitter. Connect to ground plane.  
Negative Output for Upper-UART Transmitter or SCLK Input for SPI Interface  
V
AA  
V
Ground  
DDL3  
Output/  
Input  
9
TXUN/SCLK  
TXUP/CSB  
V
V
DDL3  
Depending on the UARTSEL Selection. Driven between V  
and GNDL3.  
DDL3  
Positive Output for Upper-UART Transmitter or CSB Input for SPI Interface Depending  
on UARTSEL Selection. Driven between V and GNDL3.  
Output/  
Input  
10  
DDL3  
DDL3  
Supply for Upper-UART Transceiver, SPI Multifunctional Pins, and ALERT Pins.  
Connect externally to VDDL2 and bypass with 0.47µF capacitor to GNDL3. V  
11  
12  
13  
V
GNDL3  
Power  
Input  
Input  
DDL3  
DDL3  
must be ≥ V  
AA  
Negative Input for Upper-UART Port Receiver. If not used, pins can be unconnected  
or connected to GNDL3. Tolerates ±30V.  
RXUN  
RXUP  
V
V
AA  
AA  
Positive Input for Upper-UART Port Receiver. If not used, pins can be left unconnected  
or connected to GNDL3. Tolerates ±30V. If configured for single-ended UART,  
connect to GNDL3.  
14  
15  
GNDL2  
Ground for Lower-Port Transmitter. Connect to ground plane.  
V
Ground  
Output  
DDL2  
DDL2  
Positive Output for Lower-UART Transmitter or SDO Output (MISO) for SPI Interface  
TXLP/SDO  
V
V
Depending on UARTSEL Selection. Driven between V  
and GNDL2.  
DDL2  
Negative Output for Lower-UART Transmitter or SDI (MOSI) Input for SPI Interface  
Depending on UARTSEL Selection. Driven between V and GNDL2.  
Output/  
Input  
16  
17  
TXLN/SDI  
RXLP  
DDL2  
DDL2  
Positive Input for Lower-UART Port Receiver. If not used pins can be left unconnected  
or connected to GNDL3. Tolerates ±30V. If configured for single-ended UART, connect  
to GNDL3.  
V
V
Input  
AA  
AA  
Negative Input for Lower-UART Port Receiver. If not used, pins can be unconnected or  
connected to GNDL2. Tolerates ±30V.  
18  
19  
RXLN  
Input  
Supply for Lower-UART Transceiver, SPI Multifunctional Pins, and ALERT Pins. Connect  
GNDL2  
Power  
V
DDL2  
externally to V  
and bypass with 0.47µF capacitor to GNDL2. V  
must be ≥ V  
.
DDL3  
DDL2  
AA  
Alert Output Interface. Configured using SPIDRVINT bit as daisy-chained CMOS output  
ALERTOUT (connected to ALERTIN), or open-drain output (connected to external 10kΩ pullup to  
, V ).  
20  
V
Output  
DDL2  
V
DDL2 DDL3  
Maxim Integrated │ 36  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Pin Description (continued)  
REF  
SUPPLY  
PIN  
NAME  
FUNCTION  
TYPE  
Configurable Between Auxiliary Input or General-Purpose I/O.  
When configured as a ratiometric auxiliary input for temperature measurement, connect  
to a voltage-divider consisting of a 10kΩ pullup to THRM and a 10kΩ NTC thermistor to  
AGND.  
AUXIN0/  
GPIO0  
Input/  
Output  
21  
V
V
V
V
DDL2  
DDL2  
DDL2  
DDL2  
If not used, connect to the pullup only.  
When configured to GPIO, it is driven between V  
2MΩ internal pulldown when the pin is configured as an input.  
and GNDL2.  
DDL2  
Configurable Between Auxiliary Input or General-Purpose I/O.  
When configured as a ratiometric auxiliary input for temperature measurement, connect  
to a voltage-divider consisting of a 10kΩ pullup to THRM and a 10kΩ NTC thermistor to  
AGND.  
AUXIN1/  
GPIO1  
Input/  
Output  
22  
23  
If not used, connect to the pullup only.  
When configured to GPIO, it is driven between V  
2MΩ internal pulldown when the pin is configured as an input.  
and GNDL2.  
DDL2  
Configurable Between Auxiliary Input or General-Purpose I/O.  
When configured as a ratiometric auxiliary input for temperature measurement, connect  
to a voltage-divider consisting of a 10kΩ pullup to THRM and a 10kΩ NTC thermistor to  
AGND.  
AUXIN2/  
GPIO2  
Input/  
Output  
If not used, connect to the pullup only.  
When configured to GPIO, it is driven between V  
2MΩ internal pulldown when the pin is configured as an input.  
and GNDL2.  
DDL2  
Configurable Between Auxiliary Input or General-Purpose I/O.  
When configured as a ratiometric auxiliary input for temperature measurement, connect  
to a voltage-divider consisting of a 10kΩ pullup to THRM and a 10kΩ NTC thermistor to  
AGND.  
AUXIN3/  
GPIO3  
Input/  
Output  
24  
25  
26  
If not used, connect to the pullup only.  
When configured to GPIO, it is driven between V  
pulldown when the pin is configured as input.  
and GNDL2. 2MΩ internal  
DDL2  
AUXGND  
Connect to AGND ground plane  
V
Power  
AA  
Configurable Between Auxiliary Input or General-Purpose I/O.  
When configured as a ratiometric auxiliary input for temperature measurement, connect  
to a voltage-divider consisting of a 10kΩ pullup to THRM and a 10kΩ NTC thermistor to  
AGND.  
AUXIN4/  
GPIO4  
Input/  
Output  
V
DDL2  
DDL2  
If not used, connect to the pullup only.  
When configured to GPIO, it is driven between V  
pulldown when the pin is configured as input.  
and GNDL2. 2MΩ internal  
DDL2  
Configurable Between Auxiliary Input or General-Purpose I/O.  
When configured as a ratiometric auxiliary input for temperature measurement, connect  
to a voltage-divider consisting of a 10kΩ pullup to THRM and a 10kΩ NTC thermistor to  
AGND.  
AUXIN5/  
GPIO5  
Input/  
Output  
27  
V
If not used, connect to the pullup only.  
When configured to GPIO, it is driven between V  
pulldown when the pin is configured as input.  
and GNDL2. 2MΩ internal  
DDL2  
Switched Output Connected Internally to V . THRM is used to drive the external NTC  
AA  
29  
30  
THRM  
C0  
voltage-divider for the auxiliary inputs. The output is enabled only during measurements AUXGND Power  
or as configured by THRMMODE[1:0]. This output can source up to 2mA.  
Voltage Input for Cell 1 Negative. Connect to AGND.  
Input  
Maxim Integrated │ 37  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Pin Description (continued)  
REF  
SUPPLY  
PIN  
NAME  
FUNCTION  
TYPE  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
SW0  
C1  
Balance Input for Cell 1 Negative  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Voltage Input for Cell 1 Positive (Cell 2 Negative)  
Balance Input for Cell 1 Positive (Cell 2 Negative)  
Voltage Input for Cell 2 Positive (Cell 3 Negative)  
Balance Input for Cell 2 Positive (Cell 3 Negative)  
Voltage Input for Cell 3 Positive (Cell 4 Negative)  
Balance Input for Cell 3 Positive (Cell 4 Negative)  
Voltage Input for Cell 4 Positive (Cell 5 Negative)  
Balance Input for Cell 4 Positive (Cell 5 Negative)  
Voltage Input for Cell 5 Positive (Cell 6 Negative)  
Balance Input for Cell 5 Positive (Cell 6 Negative)  
Voltage Input for Cell 6 Positive (Cell 7 Negative)  
Balance Input for Cell 6 Positive (Cell 7 Negative)  
Voltage Input for Cell 7 Positive (Cell 8 Negative)  
Balance Input for Cell 7 Positive (Cell 8 Negative)  
Voltage Input for Cell 8 Positive (Cell 9 Negative)  
Balance Input for Cell 8 Positive (Cell 9 Negative)  
Voltage Input for Cell 9 Positive (Cell 10 Negative)  
Balance Input for Cell 9 Positive (Cell 10 Negative)  
Voltage Input for Cell 10 Positive (Cell 11 Negative)  
Balance Input for Cell 10 Positive (Cell 11 Negative)  
Voltage Input for Cell 11 Positive (Cell 12 Negative)  
Balance Input for Cell 11 Positive (Cell 12 Negative)  
Voltage Input for Cell 12 Positive (Cell 13 Negative)  
Balance Input for Cell 12 Positive (Cell 13 Negative)  
Voltage Input for Cell 13 Positive (Cell 14 Negative)  
Balance Input for Cell 13 Positive (Cell 14 Negative)  
Voltage Input for Cell 14 Positive  
SW1  
C2  
SW2  
C3  
SW3  
C4  
SW4  
C5  
SW5  
C6  
SW6  
C7  
SW7  
C8  
SW8  
C9  
SW9  
C10  
SW10  
C11  
SW11  
C12  
SW12  
C13  
SW13  
C14  
SW14  
VBLK  
Balance Input for Cell 14 Positive  
Block Voltage Positive Input. Internal pulldown resistor of R  
.
DCIN  
VBLK  
DC Supply for the Low-Voltage Regulator, HV Charge Pump, and SHDNL Charge  
Pump. Connect to a voltage source between 9V and 65V through a 100Ω series  
resistor. Bypass with a 100V, 2.2μF capacitor to ground.  
61  
DCIN  
Power  
62  
63  
CPN  
CPP  
Negative Capacitor Connection for the HV Charge Pump  
Power  
Power  
Positive Capacitor Connection for the HV Charge Pump. Connect a 100V, 0.1µF  
capacitor from CPP to CPN.  
Decoupling Capacitor Connection for the HV Charge Pump. Bypass with a 50V, 4.7µF  
capacitor to DCIN.  
64  
HV  
Power  
Maxim Integrated │ 38  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Detailed Description  
The data-acquisition system consists of the major blocks shown in Figure 1 and described in Table 1.  
Table 1. System Blocks  
BLOCK  
DESCRIPTION  
Analog-to-digital converter. Uses a 12-bit successive-approximation register (SAR) with a reference  
ADC  
voltage of 2.307V and is supplied by V  
.
AA  
HVMUX  
14-channel high-voltage (65V) differential multiplexer for the C0–C14 inputs.  
High-voltage charge-pump supply for the HVMUX, ALTMUX, BALSW, and LSAMP circuits that must  
switch high-voltage signals. Supplied by DCIN.  
HV CHARGE PUMP  
Level-shifting amplifier with a gain of 6/13. The result is a 5V differential signal attenuated to 2.307V,  
which is the reference voltage for the ADC.  
LSAMP1  
LVMUX  
Multiplexes various low-voltage signals including the level-shifted signals and temperature signals to  
the ADC for subsequent A-to-D conversion.  
ALTMUX  
BALSW  
12-channel, high-voltage differential multiplexer for the SW0–SW14 inputs.  
Cell-balancing switches.  
LINREG  
3.3V (V ) linear regulator used to power the ADC and digital logic. Supplied by DCIN.  
AA  
REF  
2.307V precision reference voltage for ADC and LINREG. Temperature-compensated.  
1.242V precision reference voltage used for diagnostics.  
ALTREF  
16MHz OSC  
32kHz OSC  
16MHz oscillator with 2% accuracy for clocking state machines and UART timing.  
32,768Hz oscillator for driving charge pumps and timers.  
Differential UART for communication with host or down-stack devices. Autodetects baud rates of  
0.5Mbps, 1Mbps, or 2Mbps.  
LOWER PORT  
UPPER PORT  
Differential UART for communication with up-stack devices.  
CONTROL AND STATUS ALUs, control logic, and data registers.  
DIE TEMP  
A proportional-to-absolute-temperature (PTAT) voltage source used to measure the die temperature.  
COMPARATOR  
A comparator path to detect OV/UV for cell voltage and AUXIN.  
Level-shifting amplifier with a gain of 1. The result is a 5V differential signal that is compared against  
programmable OV and UV DAC thresholds.  
LSAMP2  
SPI INTERFACE  
SPI interface for communication with host.  
Maxim Integrated │ 39  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Block Diagrams  
DCIN  
VAA  
16MHZ  
OSC  
32kHZ  
OSC  
LINEAR  
REGULATOR  
+3.3V  
THRM  
VBLK  
HV CHARGE  
PUMP  
RXUP  
RXUN  
POR  
HV  
DIE  
TEMPERATURE  
C14  
C13  
ALTVREF  
1.23V  
VBLKP  
VREF 2.307V  
UART UP  
PATH  
C12  
C11  
VAA  
VREF  
C10  
C9  
TXUP  
TXUN  
CELL  
CALIBRATION  
C8  
LSAMP1  
ADC CONFIGURATION/ DATA  
REGISTERS  
C7  
ADC  
C6  
RXLP (SCLK)  
RXLN (CS)  
C5  
C4  
C3  
C2  
AUX  
CALIBRATION  
C1  
C0  
UART DOWN  
PATH  
TXLP (SDO)  
TXLN (SDI)  
AUXIN5/GPIO5  
AUXIN4/GPIO4  
AUXIN3/GPIO3  
AUXIN2/GPIO2  
AUXIN1/GPIO1  
AUXIN0/GPIO0  
UARTSEL  
PROGRAMMABLE  
VOLTAGE REFERENCE  
TXUN  
(SCLK)  
AUXIN/GPIO  
MUX  
COMP  
TXUP  
(CSB)  
LSAMP2  
COMP CONFIGURATION/DATA  
REGISTERS  
SPI  
TXLP  
(SDO)  
GPIO CONTROL  
TXLN  
(SDI)  
FAULT DETECTION  
SUPPORT CIRCUITRY  
ALTMUX  
HV  
ALERTIN  
ALERT  
CELL BALANCING  
ALERTOUT  
AGND  
Figure 1. MAX17853 Functional Block Diagram  
Maxim Integrated │ 40  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Block Diagrams (continued)  
HV  
CPP  
ESD DIODES  
DCIN  
SHDNL, CPN  
V
AA  
THRM  
RXUn  
SW14  
SW13  
V
DDL3  
TXUP, TXUN  
GNDL3  
SW2 TO SW12  
MATCH OTHER  
SWn INPUT  
STRUCTURES  
RXLn  
SW1  
V
DDL2  
GPIOn/AUXINn  
TXLP, TXLN  
GNDL2  
SW0  
Cn, VBLK  
C1 THRU C13  
HAVE  
IDENTICAL  
STRUCTURES  
V
DDL1  
GNDL1  
AGND  
AUXGND  
Figure 2. MAX17853 ESD Diodes  
Notes:  
1) All diodes are rated for ESD-clamping conditions; they are not intended to accurately clamp DC voltages.  
2) All diodes have a parasitic diode from AGND to their cathode that is omitted for clarity. These parasitic diodes have  
their anode at AGND.  
Maxim Integrated │ 41  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Block Diagrams (continued)  
VBLK/28.25  
VBLK  
HVMUX  
INPUT TEST SOURCE  
CTST14  
AGND  
C14  
C13  
C12  
ALTREF  
REF  
CTST13  
CTST12  
C11  
C10  
CTST11  
CTST10  
CTST9  
CTST8  
CTST7  
CTST6  
CTST5  
CTST4  
CTST3  
CTST2  
CTST1  
CTST0  
C9  
C8  
C7  
+
CELL CAL  
LSAMP1  
C6  
C5  
NETWORK  
VAA  
-
THRM  
REF  
C4  
C3  
C2  
AUXIN CAL  
NETWORK  
ADC IN +  
ADC IN -  
LV  
MUX  
C1  
C0  
ADC  
VAA  
DIE TEMPERATURE  
AGND  
HVMUX TEST SOURCES  
AUXTST5  
AUXTST4  
GPIO4  
GPIO4  
AUXIN5  
AUXIN4  
AUXTST3  
AUXTST2  
GPIO3  
GPIO2  
AUXIN3  
AUXIN2  
AUXTST1  
AUXTST0  
GPIO1  
GPIO0  
AUXIN1  
THRM  
REF  
AUXIN0  
+
-
LSAMP2  
DAC  
AUXGND  
COMPARATOR  
Figure 3. MAX17853 Analog Front-End  
Maxim Integrated │ 42  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Terms, Definitions, and Data Conventions  
Data Acquisition  
Data acquisition is composed of the distinct processes  
defined in Table 2 and controlled by various configuration  
registers described in this section.  
Factory Trimming  
The acquisition system is trimmed at the factory. The  
trim parameters are stored in a ROM consisting of 11  
read-only registers (OTP2–OTP12). ROMCRC is an 8-bit  
CRC value based on the calibration ROM and is stored  
in OTP12[15:8] at the factory. ROMCRC can be used  
to check the integrity of the trim, as described in the  
Diagnostics section.  
Configuration changes should be made prior to the acqui-  
sition in which the changes are to be effected.  
Data Conventions  
The factory trim can be further supplemented with a user  
on-demand calibration when used in a specific customer  
application.  
Representation of data follows the conventions shown in  
Table 3. All registers are 16-bit words.  
Table 2. Data-Acquisition Process  
PROCESS  
DESCRIPTION  
Conversion  
Scan  
The ADC samples a single input channel, converts it into a 12-bit binary value, and stores it in an ALU register.  
The ADC sequentially performs conversions on all enabled cell-input channels.  
The ADC performs two scans for the purpose of minimizing errors in uncalibrated configurations. The conver-  
sions (two for each input channel) are averaged together to form a single 14-bit binary value called a measure-  
ment or sample.  
Measurement  
Cycle or Sample  
If oversampling is enabled, the ADC takes sequential measurements and averages them together to form one  
14-bit binary value for each input channel sampled. If there is no oversampling, the acquisition is essentially a  
single measurement cycle.  
Acquisition or  
Acquisition Mode  
The measurement and correction factor applied to a measurement cycle or sample based on current operating  
conditions.  
Calibration can be applied to a single scan in addition to the two-scan process to minimize errors in the same  
fashion as a measurement cycle or sample  
Calibration  
Note: A single scan should not be implement without a valid calibration for the accuracy requirements defined  
in the Electrical Characteristics section.  
Table 3. Numeric Conventions  
DESCRIPTION  
Binary number  
CONVENTION  
0b prefix  
EXAMPLE  
0b01100001 = 61h  
0x61  
Hexadecimal address  
Hexadecimal data  
Decimal data  
0x prefix  
h suffix  
61h  
d suffix  
61d  
Register bitfield  
Register name [x]  
Field name [x:y]  
Register name:bitfield  
{xxxx, yyyy}  
STATUS15 = 1  
DA[4:0] = 0b01100 = 0Ch = 12d  
ADDRESS:DA  
{DA[4:0], 0b001} = 61h  
Register field  
Register field and bitfield  
Concatenated numbers  
Maxim Integrated │ 43  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
disables the flexible battery-pack configuration. Prior to  
Factory-Programmed Device ID  
SDHNL being actively controlled, the DCIN voltage is  
driven towards HV and clamped at the highest voltage  
applied at the SW8–SW14 inputs. When SHDNL is assert-  
ed, DCIN is driven to within 1V below the highest stacked  
cell, if no external DCIN is provided. In this case, the host  
must define the TOPCELL1[3:0] and TOPCELL2[3:0]  
of the stack by writing to the PACKCFG register and  
by asserting the FLXPCKEN1 and FLXPCKEN2 bits.  
TOPCELL_[3:0] selection configures the top-cell position  
if less than 14 channels are used. TOPCELL_[3:0] selec-  
tions 0x0–0x7 and 0xF are not supported and are mapped  
to an OFF position (power-on default).  
The ID1 register together with ID2 provides a 32-bit  
manufacturing identification number, DEVID[31:0]. This  
ID will be unique among all devices with the same model  
type and version (VERSION:MOD,VER, respectively);  
taken together, VERSION, ID1, and ID2 provide a means  
to uniquely identify all devices shipped by the factory.  
Although not required, the manufacturing date informa-  
tion provided on the package provides further means of  
device tracking. A device ID of zero is invalid.  
Introduction  
The MAX17853 is a software-configured ASIL D data-  
acquisition system for both high-voltage- and low-voltage  
(48V)-rated applications, supporting a flexible configura-  
tion of cell-voltage measurements, pack-voltage measure-  
ments, temperature measurements, and auxiliary-voltage  
measurements. All measurements are synchronously sam-  
pled within an acquisition and have minimal delay between  
acquired samples. Additional programmability is available  
for balancing currents, as well as system-interconnect  
measurements (bus bars) to provide a complete measure-  
ment solution independent of hardware configuration.  
If FLXPACKEN1/2 is unintentionally deasserted while the  
SHDNL is driven high with no external DCIN connection,  
it is expected that voltage seen at the DCIN pin will fall at  
a rate proportional to the current consumption of the part  
and the external decoupling capacitance, until the POR  
threshold is reached. This resets the digital logic and  
returns the FLXPCKEN return to the desired power-on  
reset state.  
If FLEXPCKEN1 and FLEXPCKEN2, or TOPCELL1 and  
TOPCELL2 are not the same, the power-on default values  
will be applied.  
The following sections describe device operation, feature  
set, and programming of the MAX17853.  
Note: It is important that TOPCELL1 and TOPCELL2  
select the highest applied cell input, as an invalid configu-  
ration can create an internal path that would connect the  
highest battery voltage to the selected TOPCELL1/2 input.  
Flexible Battery-Pack Configuration  
The main supply voltage (DCIN) can be routed internally  
using the SW8–SW14 inputs of the highest stacked cell.  
This allows for a single hardware configuration to serve  
multiple battery modules without requiring external hard-  
ware or wiring-harness changes.  
A second mux internally connects VBLK to a selected  
cell input after the host defines the TOPCELL_[3:0] of the  
stack and asserts the FLXPCKEN_ bit. TOPBLOCK[3:0]  
selects the Cn pin to be connected to the VBLOCK  
resistive divider. 0xF (default) selects the VBLK pin.  
TOPBLOCK_ selections 0x0–0x7 are not supported and  
will be mapped to 0xF (VBLK, default).  
The flexible battery-pack configuration is enabled by  
default using the FLXPACKEN1/2 bit, to allow for internal  
powering conditions. If this configuration is not required,  
the DCIN can still be driven externally, which effectively  
Maxim Integrated │ 44  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
HV  
C17  
4.7uF  
R15  
100Ω  
DCIN  
R14  
100Ω  
C17  
2.2uF  
VBLK  
C14  
R14  
1kΩ  
C17  
0.47uF  
R14  
1kΩ  
C14  
100nF  
R34  
22Ω  
SW14  
C13  
R13  
1kΩ  
C13  
100nF  
R33  
22Ω  
SW13  
C12  
R12  
1kΩ  
C12  
100nF  
R32  
CELL 12  
CELL 11  
CELL 10  
CELL 9  
CELL 8  
CELL 7  
CELL 6  
CELL 5  
CELL 4  
CELL 3  
CELL 2  
CELL 1  
22Ω  
SW12  
C11  
C26  
100nF  
R11  
1kΩ  
C11  
100nF  
R31  
22Ω  
SW11  
C10  
C25  
100nF  
R10  
1kΩ  
C10  
100nF  
R30  
22Ω  
SW10  
C9  
C24  
100nF  
R9  
1kΩ  
C9  
100nF  
R29  
22Ω  
SW9  
C8  
C23  
100nF  
R8  
1kΩ  
C8  
100nF  
R28  
22Ω  
SW8  
C7  
C22  
100nF  
R7  
1kΩ  
C7  
100nF  
R27  
22Ω  
SW7  
C6  
C21  
100nF  
R6  
1kΩ  
C6  
100nF  
R26  
22Ω  
SW6  
C5  
C20  
100nF  
R5  
1kΩ  
C5  
100nF  
R25  
22Ω  
SW5  
C4  
C19  
100nF  
R4  
1kΩ  
C4  
100nF  
R24  
22Ω  
SW4  
C3  
C18  
100nF  
R3  
1kΩ  
C3  
100nF  
R23  
22Ω  
SW3  
C2  
C17  
100nF  
R2  
1kΩ  
C2  
100nF  
R22  
22Ω  
SW2  
C1  
C16  
100nF  
R1  
1kΩ  
C1  
100nF  
R21  
22Ω  
SW1  
C0  
C15  
100nF  
R0  
1kΩ  
C0  
100nF  
R20  
22Ω  
SW0  
C14  
1uF  
AGND  
Figure 4. Flexible-Pack Configuration for 12-Cell Pack on 14-Channel CMC  
Maxim Integrated │ 45  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
the internal power multiplexing is configured. This configu-  
ration creates a voltage drop in the DCIN supply equivalent  
to a cell voltage that can result in large measurement errors  
of the top-cell reading with both the HVMUX and ALTMUX  
configured.  
Flexible-Pack Interaction with Acquisitions  
If FLXPACKEN1/2 and FLXPCKSCAN are asserted, the  
switch input denoted in the TOPCELL1 and TOPCELL2  
bitfields is disconnected from DCIN and the internal  
power consumption will be supplied by the external  
decoupling/hold-up capacitance on the DCIN pin. A 30µs  
delay will be inserted prior to the TOPCELL conversion,  
allowing the external switch-filter network to settle before  
converting the input voltage.  
TOPCELL_[3:0] and FLXPCKEN_ must refer to the top  
cell in the pack and not a bus bar, if the top-used channel  
in the pack is a bus bar. TOPBLOCK_ can refer to cells  
above TOPCELL_.  
Note: FLXPCKSCAN only affects ALTMUX acquisitions.  
If the ALTMUX accuracy is not required for the applica-  
tion, no changes are required to the application circuit  
regardless of the FLXPCKSCAN setting. It is however,  
recommended to set FLXPCKSCAN=0 to ensure the  
quickest sampling rate is achieved.  
Flexible Pack Alert  
An ALRTDCINMUX is triggered to indicate a fault in the  
DCINMUX switch. A high condition indicates the enabled  
DCINMUX is not functioning properly in a Flex Pack appli-  
cation. Performance may be impacted, and/or other relat-  
ed faults may be issued. The ALRTDCINMUX is gated  
until clear of ALRTRST after power-up has occurred.  
Power-Multiplexing Operation (Cell Balancing)  
The top two balancing switches should not be configured  
simultaneously while in manual Cell-Balancing mode when  
HV  
HOT PLUG  
(SW PINS  
CONNECTED TO  
BATTERY STACK)  
HVCP TURNS ON  
SW_TOPCELL1/2  
HV (SW_TOP – 1V)  
DCIN  
SW(TOPCELL1/2) ENABLED  
SHDNL  
V
AA  
FLXPACKEN1/2  
USER WRITE TO SET TOPCELL1/2  
TOPCELL[3:0]  
0B0000  
Figure 5. Flexible-Pack Power-On Timing  
Maxim Integrated │ 46  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
filter. Due to the parallelism of the external filter network,  
as well as the internal block structures, the ALTMUX  
path selection also allows for independent measurement  
redundancy improving safety performance and device  
robustness.  
Cell Inputs  
Up to 14 voltage measurements can be sampled dif-  
ferentially from the 15 cell inputs. The differential signal  
V
is defined as V - V  
where n = 1 to 14.  
CELLn  
Cn  
Cn-1  
The cell inputs are selected by the corresponding CELLEN  
bits in the MEASUREEN1 register. Additionally, the input  
path for the measurement acquisition is selected using  
SCANCTRL:ALTMUXSEL. The ALTMUXSEL bit allows  
for two different measurement configurations: HVMUX  
and ALTMUX acquisitions. The HVMUX path selection is  
used for the primary measurement acquisition due to the  
higher filtering achieved by the external input network.  
Alternatively, the ALTMUX path selection is primarily used  
for cell balancing and typically does not have a large RC  
During the scan, the selected signal is multiplexed into the  
level-shifting amplifier (LSAMP1 or LSAMP2) as shown  
in Figure 6. Since the common-mode range of the input  
signals is 0V to 65V, the signal must be level-shifted to  
the common-mode range of the amplifier. Both ADC and  
comparator signal paths have a gain of 6/13 so that a 5V  
differential signal is attenuated to the ADC and Comparator  
full-scale reference voltage (V  
).  
REF  
R
R
FILTER  
FILTER  
C14  
C13  
+
LSAMP1  
-
TO ADC  
R
R
FILTER  
FILTER  
C2  
C1  
R
FILT  
C0  
R
R
BALANCE  
BALANCE  
SW14  
SW13  
+
LSAMP2  
-
TO COMP  
R
BALANCE  
SW2  
SW1  
R
BALANCE  
BALANCE  
R
SW0  
Figure 6. Cell Signal Path  
Maxim Integrated │ 47  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Once the signal is properly conditioned, the ADC starts  
the conversion. The 12-bit conversion is stored in an  
ALU register where it can be averaged with subsequent  
conversions for increased resolution. The ALU output is a  
14-bit value, relating to a 305μV voltage resolution, and is  
ultimately stored in a 16-bit register, CELLnREG, with the  
two least-significant bits 0. Disabled channels maintain  
their previous measurement result. Unless stated other-  
wise, measurement values are assumed to be 14-bit val-  
ues. The 16-bit register values can be converted to 14-bit  
values by dividing by 4 (and vice-versa). To convert the  
measurement value in register CELLnREG to a voltage,  
convert the 14-bit hexadecimal value to a decimal value  
and then convert to voltage as follows:  
Bus-Bar Inputs  
Bus-bar inputs can be applied to any of the 14 cell inputs.  
Due to the resistive nature of the bus bar, the current  
applied to the battery pack or discharged from the battery  
pack affect the polarity of the voltage measurement. To  
support this requirement, the POLARITY bits correspond-  
ing to the bus-bar location must be configured for bipolar  
conversion (POLARITY[n] = 1b).  
Due to the negative voltage that can be generated across  
the bus bars SW to SW  
inputs, it is recommended to  
n
n-1  
place an external Schottky diode in across these inputs to  
the reverse voltage see by the body diode of the internal  
balancing switch as shown below to shunt current away  
from the internal conduction path.  
V
= CELLnREG[15:2] x 5 V/16384 =  
CELLn  
CELLnREG[15:2] x 305.176µV  
TO CELL  
N+1  
MAX1785x  
SENSE WIRE  
R
C
N
FILTER  
TO  
HVMUX  
C
FILTER  
R
SW  
N
BIAS  
TO  
ALTMUX  
HV  
BALSW  
N
RBUSBAR  
R
SW  
N-1  
BIAS  
TO  
ALTMUX  
SENSE WIRE  
R
C
N-1  
FILTER  
TO  
HVMUX  
C
FILTER  
AGND  
TO CELL  
N-1  
Figure 7. Bus-Bar Switch Configuration  
Maxim Integrated │ 48  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Auxiliary Inputs: Ratiometric Temperature  
Measurement  
Block-Voltage Input  
The VBLK input pin to the MAX17853 allows for the pack  
voltage (total cell voltage) to be measured independently  
of summing the individual cell voltages from an acquisi-  
tion. This comparison provides an extra layer of measure-  
ment redundancy within the system.  
Individual auxiliary ports can be configured to measure  
external temperatures through enabling auxiliary mea-  
surements using the AUXEN bits in the MEASUREEN2  
register as well as configuring the conversion voltage  
as ratiometric using the AUXREFSEL bits in the  
AUXREFCTRL register.  
The VBLK voltage is attenuated by a voltage-divider of  
28.17 for the acquisition process to translate the 65V  
full-scale block input voltage into the full-scale ADC input  
Note: If the individual auxiliary port is configured as a  
GPIO using GPIOEN bits in the AUXGPIOCFG register  
while the corresponding AUXEN bit is high, then the aux-  
iliary setting be ignored and the port be configured as a  
GPIO.  
voltage (V  
)
REF  
Outside of the acquisition the VBLK input path is opened to  
avoid power consumption from the internal 10MΩ divider.  
The measurement is enabled in a an acquisition by  
asserting BLOCKEN in MEASUREEN1 register. The  
measurement is stored in the VBLOCK[13:0] bits of the  
BLOCKREG register where each bit has a resolution of  
3.967mV.  
The ratiometric configuration selects the conversion volt-  
age of both the ADC and Comparator to V  
while also  
AA,  
outputting V  
on the THRM pin. An external resistive  
AA  
divider can then be created with a pullup resistor to the  
THRM pin and a NTC connected to the AUXGND pin as  
shown in Figure 9:  
Auxiliary Inputs  
The MAX17853 has 6 auxiliary ports that can be used to  
measure external temperatures, measure external voltag-  
es, or that can be re-purposed for digital functions (GPIO).  
V
REF  
VBLK  
C14  
THRM  
C8  
10.5MΩ  
ADC IN +  
VBLK/28.17  
L
V
M
U
X
ADC  
ADC IN -  
385kΩ  
AGND  
Figure 8. Block-Measurement Path  
Maxim Integrated │ 49  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
THRM  
THERMISTOR  
WIRE  
HARNESS  
10kΩ  
10kΩ  
10kΩ  
NTC  
THERMISTORS  
R
AUX_FILTER  
AUXINn  
R
R
AUX_FILTER  
AUX_FILTER  
AUXIN1  
AUXIN0  
T
T
T
C
C
C
C
AUX_FILTER  
THRM  
AUX_FILTER  
AUX_FILTER  
R
R
R
THn  
TH0  
TH1  
AUXGND  
Figure 9. Auxiliary Application Circuit  
V
AA  
AUXREFSEL  
THRMMODE  
AUXREFSEL=0  
THRM  
AUXREFSEL=1  
V
REF  
AUXIN0  
AUXIN1  
ADC  
REFERENCE  
INPUT  
ADC IN  
LV  
MUX  
ADC  
AUXINn  
AUXGND  
AUXDIAGSEL  
AGND  
Figure 10. Auxiliary-Temperature Measurements  
Maxim Integrated │ 50  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Explicit control on the THRM pin output is provided using  
the THRMMODE bits in the ACQCFG register. Setting  
THRMMODE to 00b or 01b enables automatic mode  
where the THRM switch be closed at the beginning of an  
acquisition. Setting THRMMODE = 11b enables manual  
mode where the THRM switch is always closed. The abil-  
ity to configure THRMMODE allows for the application  
tradeoffs between the external NTC network's power con-  
to the first AUXINn measurement. For an acquisition with  
nondeterministic scan rates the AUXTIME be allowed to  
settle through the cell, block, and diagnostic measurement  
intervals of the first scan. However, for acquisitions requir-  
ing deterministic timing, such as 50Hz/100Hz rejection and  
60Hz/120Hz rejection, the AUXTIME be applied prior to  
the beginning of the acquisiton. Refer to the Oversampling  
section for further details on FOSR and deterministic  
acquisitions.  
sumption on V and the need to settle the external NTC  
AA  
network to achieve the highest accuracy measurements.  
The auxiliary measurements are oversampled to 14-bit  
values using the OVSAMPL bits in the SCANCTRL  
register and the output of each auxiliary measurement  
is stored in the corresponding AUX0 to AUX6 registers.  
Refer to the Oversampling section and ADC, Comparator,  
and ADC+COMP Acquisitions sections for further details.  
Depending on the external temperature network, there  
may be insufficient settling time to provide accurate mea-  
surements. To support the flexibility for different networks,  
the AUXTIME bits in the AUXTIMEREG register may be  
configured to impose a fixed delay of 0ms to 6.14ms prior  
Table 4. THRM Output  
MODE  
THRM MODE  
DESCRIPTION  
00b  
01b  
10b  
11b  
THRM outputs V (dynamically enabled at the beginning of the acquisition and  
AA  
disabled at the end of the acquisition)  
Automatic  
THRM output disabled (static)  
Manual  
THRM outputs V (static)  
AA  
Table 5. AUXTIME  
ADDITIONAL SETTLING TIME PER ENABLED  
AUXILIARY CHANNEL = (AUXTIME x 6µs)  
AUXTIME[9:0]  
0x000  
0x001  
0x002  
0μs  
6μs  
12μs  
0x3FF  
6138μs  
Maxim Integrated │ 51  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
The resistance of an NTC thermistor increases as the  
Ratiometric Auxiliary Input Range  
temperature decreases and is typically specified by its  
resistance R = 10kΩ at T = 25°C = 298.15K and a  
material constant β (3400K typical). To the first order, the  
Temperature measurements are converted ratiometrically  
to eliminate error due to the biasing of the NTC network.  
Thus, the conversion range is proportional to the VTHRM  
0
0
resistance R at a temperature T in Kelvin can be com-  
TH  
(V ) reference as shown below.  
AA  
puted as follows:  
Both ADC and comparator conversions use the same  
reference during the conversion and thus have the same  
input range; however, the resolution for both differ in  
accordance with Table 6 and Table 7.  
1
1
β×  
T T  
0   
R
= R × e  
0
TH  
Computing Temperature  
As shown in Figure 9:  
The temperature T of the thermistor (in °C) can then be  
calculated as follows:  
V
= V  
x R /(10kΩ + R  
)
TH  
AUXINn  
THRM  
TH  
This measurement is stored in the AUXn register. The  
thermistor resistance can then be solved as follows:  
T (in °C) = (β/(ln(R /10kΩ)  
+(β/298.15K)) - 273.15K  
TH  
R
= (V  
x 10kΩ)/(V  
- V  
)
TH  
AUXINn  
THRM  
AUXINn  
where V  
= 3.3V (nom)  
THRM  
Table 6. Auxiliary-Temperature Input Range: ADC  
AUXILIARY INPUT  
AUXn  
(14 BITS)  
AUXNREG[15:0]  
VOLTAGE  
(16 BITS)  
Ratiometric mode  
0V  
Hexadecimal  
0000h  
Decimal  
0d  
0000h  
8000h  
FFFCh  
V
/2  
2000h  
8192d  
16383d  
AA  
V
3FFFh  
AA  
Table 7. Auxiliary-Temperature Input Range: Comparator  
COMPOVTH, COMPUVTH,  
COMPAUXROVTH, COMPAUXRUVTH  
COMPAUXAOTH, COMPAUXAUVTH (10 BITS)  
COMPOVTHREG[15:0], COMPUVTHREG[15:0]  
COMPAUXROVTHREG[15:0],  
AUXILIARY INPUT  
VOLTAGE  
COMPAUXRUVTHREG[15:0]  
COMPAUXAOTHREG[15:0],  
COMPAUXAUVTHREG[15:0] (16 BITS)  
Ratiometric mode  
0V  
Hexadecimal  
Decimal  
000h  
200h  
3FFh  
0d  
0000h  
8000h  
FFC0h  
V
/2  
512d  
1024d  
AA  
V
AA  
Maxim Integrated │ 52  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
will saturate and result in a loss of resolution. Both ADC  
and comparator conversions use the the same reference  
during the conversion but have different resolutions as  
shown in Table 8 and Table 9.  
Auxiliary Inputs: Absolute-Voltage Measurements  
Individual auxiliary ports can be configured to measure  
absolute voltages through enabling auxiliary measure-  
ments using the AUXEN bits in the MEASUREEN2 register  
as well as configuring the conversion voltage as absolute  
using the AUXREFSEL bits in the AUXREFCTRL register.  
Auxiliary Inputs: Mixed-Mode Measurements  
Ratiometric measurements and absolute-voltage measure-  
ments can both be performed during the same acquisition.  
Each measurement type has individual OV and UV alert-  
threshold settings, as described in the Measurement Alerts  
section.  
The absolute configuration selects the conversion voltage  
of both the ADC and Comparator to V  
An external  
REF.  
voltage can be accurately measured as long as the volt-  
age remains below V . If higher voltages are required  
REF  
to be measured, a resistive divider must be used to  
ensure that maximum auxiliary input does not exceed  
Note: Auxiliary mixed-mode measurement data for the  
ADC is output to the AUXn registers. The appropriate con-  
version, as determined by the AUXREFSEL configuration,  
must be applied to obtain correct voltage reading.  
V
REF  
; otherwise, the voltage measurements saturate  
to full scale. Additionally, the user should be careful, so  
if a single-point failure on the external network occurs,  
the maximum auxiliary input doesn't exceed the absolute  
maximum rating on the port.  
Ratiometric-Voltage Conversion:  
V
AUXn  
= AUXn[14:0] x V /16384d = AUXn[14:0] x  
AA  
201.42μV, or alternatively AUXnREG[15:2] x 201.42μV  
If all AUXREFSEL bits are set to 0b1 (using V  
for the  
REF  
ADC reference), it is recommended that THRMMODE be  
set to 0b10 (THRM switch always OFF).  
where V is nominally 3.3V  
AA  
Absolute-Voltage Conversion:  
Absolute Auxiliary Input Range  
V
= AUXn[14:0] x V  
/16384d = AUXn[14:0] x  
AUXn  
REF  
Absolute voltage measurements are converted using a  
140.81μV, or alternatively AUXnREG[15:2] x 140.81μV  
fixed precision reference (V  
). All voltages must meet  
REF  
the input-range requirements; otherwise, the digital output  
Table 8. Auxiliary-Voltage Input Range: ADC  
AUXILIARY-INPUT  
AUXn  
(14 BITS)  
AUXNREG[15:0]  
VOLTAGE  
(16 BITS)  
Absolute Mode  
Hexadecimal  
0000h  
Decimal  
0d  
0V  
0000h  
8000h  
FFFCh  
V
2
2000h  
8192d  
16383d  
REF/  
V
3FFFh  
REF  
Table 9. Auxiliary-Voltage Input Range: Comparator  
COMPOVTH, COMPUVTH,  
COMPOVTHREG[15:0], COMPUVTHREG[15:0]  
COMPAUXROVTHREG[15:0],  
AUXILIARY-INPUT  
COMPAUXROVTH, COMPAUXRUVTH  
COMPAUXAOTH,COMPAUXAUVTH  
(10 BITS)  
VOLTAGE  
COMPAUXRUVTHREG[15:0]  
COMPAUXAOTHREG[15:0],  
COMPAUXAUVTHREG[15:0] (16 BITS)  
Absolute mode  
Hexadecimal  
000h  
Decimal  
0d  
0V  
0000h  
8000h  
FFC0h  
V
/2  
200h  
512d  
REF  
V
3FFh  
1024d  
REF  
Maxim Integrated │ 53  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Auxiliary-Input Protection  
Table 10. GPIO/Auxiliary Enable Selection  
The voltage on the AUXIN0–AUXIN5 pins should never  
exceed V when configured as an auxiliary input.  
GPIOEN  
FUNCTION  
Auxiliary Input  
GPIO  
AA  
0
1
If this condition does occur, the affected input self-  
protects, becoming an open circuit. The associated  
ALRTAUXPRTCT bit will be set indicating the overvoltage  
condition. To retry AUX operation and clear the fault con-  
dition, the user must rewrite the desired configuration to  
the AUXGPIOCFG register.  
Table 11. GPIO Configuration  
GPIOEN  
GPIODIR  
FUNCTION  
Auxiliary Input  
Digital Input  
All six ALRTAUXPRTCT bits will be logically OR'd togeth-  
er to form the ALRTAUXPRTCTSUM bit in the FMEA2  
register.  
0
1
1
x
0
1
Digital Output  
GPIO Configuration  
Any of the six auxiliary ports can be configured as a  
general-purpose input/output (GPIO) using the GPIOEN  
bits in the AUXGPIOCFG register. When a GPIOEN bit  
is high, the corresponding auxiliary port is configured as  
a GPIO. When a GPIOEN bit is low, the corresponding  
GPIO buffer is three-stated, and the pin is configured as  
an auxiliary-voltage input.  
Operational Modes  
There are three different operational modes supported,  
shutdown mode, standby mode, and acquisition mode.  
Shutdown mode is controlled by the applied voltage  
on the SHDNL pin. When the applied voltage is below  
V
the device is in an ultra-low-power shutdown  
IL_SHDNL  
mode, and the various elements of the internal circuitry  
are disabled. If the voltage is above V , the  
In the GPIO configuration, the I/O status is determined by  
the GPIODIR bits of the AUXGPIOCFG register. When a  
GPIODIR bit is programmed to 0b0, the corresponding  
port is configured as a digital input. The digital input has  
a 2MΩ pulldown resistance to ensure the input does not  
float and cause excessive power dissipation. When the  
GPIODIR bit is programmed to 0b1, the pin is config-  
ured as a digital output. Each GPIO port configured as a  
digital output can be configured to drive a logic-high level  
or logic-low level determined by the assignment in the  
GPIODRV bits of the GPIOCFG register.  
IH_SHDNL  
device is in standby mode and act upon qualified interface  
commands. The device remains in standby mode until the  
user commands an acquisition, at which point the device  
transitions into acquisition mode until completed, as sig-  
naled by SCANDONE. Alternatively, the transition from  
sleep mode to acquisition mode will be handled indepen-  
dent of user interaction, only when long-term autonomous  
cell balancing with voltage measurements are enabled  
(see the Cell Balancing section for further information).  
The sections that follow further detail the operational  
modes and device interactions.  
The GPIORD bits in the GPIOCFG register monitor the  
pin logic level, regardless of whether the port is defined as  
an input or an output. If a pin is configured as an auxiliary-  
voltage input (GPIOEN=0b0), the corresponding GPIORD  
bit always reads back 0b0.  
Maxim Integrated │ 54  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
SHUTDOWN  
MODE  
SHDNL < V  
OR  
DEVICE POR  
OR  
IL_SHDNL  
SHDNL > V  
IH_SHDNL  
THERMAL SHUTDOWN  
SHDNL < V  
OR  
IL_SHDNL  
DEVICE POR  
OR  
THERMAL SHUTDOWN  
STANDBY  
MODE  
SCANDONE=1  
OR  
AUTO CELL  
BALANCING  
EVEN/ODD  
SCAN =1  
OR  
AUTO CELL BALANCING  
MEASUREMENT PHASE  
ACQUISITION  
MODE  
Figure 11. Operational-Mode State Diagram  
Note: When configured as a single-ended UART inter-  
face, the SHDNL pin must be driven by an external con-  
nection to a host controller. The power-on of the device  
can then be controlled by the host driving the SHDNL pin  
Power-On (Standby Mode)  
The configuration of the communication interface, as  
defined by the UARTSEL pin, determine the appropriate  
method to transition the device from shutdown mode into  
standby mode.  
above the V  
threshold.  
IH_SHDNL  
When configured as an SPI interface selection (UARTSEL  
)
When configured as a differential UART interface  
< V , the SHDNL input must be driven externally, as done  
IL  
(UARTSEL > V ), the SHNDL input can be driven exter-  
IH  
with the single-ended UART configuration. It is recom-  
mended that the unused RXLP/RXLN and RXUP/RXUN  
inputs should be pulled low to ensure that the charge pump  
remains inactive and does not inadvertently contend with  
the external driver.  
nally above the V  
threshold, or driven using inter-  
IH_SHDNL  
nal charge pumps on the UART RXLP/RXLN and RXUP/  
RXUN inputs. If the SHDNL pin has no external connection  
to a host controller, the device must rely on the UART inter-  
face to drive the external network on the SHDNL pin. The  
recommended configuration with a 1nF capacitor allows  
the device to drive the SHDNL pin above V  
200µs. The charge pump self-regulates to V  
and can maintain V  
UART idles 98% of the time. The internal charge-pump  
operation requires a differential UART signal.  
Once the V  
threshold is reached, the LDO out-  
IH_SHDNL  
in  
put is enabled and V output voltage begins to rise. At  
IH_SHDNL  
AA  
3V (typ), the POR signal is deasserted and the oscillators  
and HV charge pump enabled. Once the HV charge pump  
is stable, the logic is enabled and the ALRTRST status  
bit set. The device is fully operational (standby mode)  
within 1ms from the time communication is first received  
in shutdown mode. Figure 12 details the power-on state  
transition.  
SHDNLIMIT  
at a logic one even with the  
SHDNL  
Maxim Integrated │ 55  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Shutdown-to-Standby State Diagram  
REGULATOR  
DISABLED  
VOLTAGE APPLIED TO  
DCIN  
POR CLEARED  
CHECK DIE  
TEMPERATURE  
32kHz OSCILLATOR  
ENABLED  
YES  
DIE TEMP > 145ºC ?  
NO  
906µs  
CHECK SHDNL  
CHARGE PUMP AND  
DIGITAL LOGIC  
ENABLE  
YES  
SHDNL ACTIVE ?  
NO  
ALRTRST BIT SET  
REGULATOR  
ENABLED  
3ms DELAY  
CHECK V  
AA  
CHARGE PUMP  
SETTLED  
YES  
V
< V  
AA  
POR_RISING  
NO  
DIE TEMP > 145ºC ?  
SHDNL ACTIVE  
REGULATOR  
DISABLED  
Figure 12. Power-On Sequence  
Maxim Integrated │ 56  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
the FORCEPOR bitfield can be utilized, which enables a  
Shutdown Mode  
4.7kΩ pulldown to create a 4.7µs time constant.  
Shutdown mode is entered when SHDNL < V  
.
IL_SHNDL  
In shutdown, the low-voltage regulator and HV charge  
pump are disabled as soon as the SHDNL pin goes low.  
Note: When deciding on an external pulldown resistor  
to control the shutdown time, attention should be paid  
as this resistor creates a voltage-divider with the internal  
Emergency-Discharge mode pullup resistance and could  
force the device into shutdown unintentionally when  
HOLDSHNDL is enabled. It is therefore recommended to  
use a minimum 4.7kΩ resistor to avoid any interaction.  
When the V and V  
decoupling capacitors discharge  
AA  
DDL  
below the POR threshold (2.95V, typ) the device registers  
are reset. The device is then in an ultra-low-power state  
until SHDNL is brought high. The control to enter this state  
is achieved using separate methods depending on the  
interface configuration which has been optimized for the  
end application.  
If only a register reset is required, the host can issue a  
soft-reset by enabling the SWPOR bitfield. This resets  
all non-interface-related device bitfields (UARTCFG,  
TXUIDLEHIZ, TXLIDLEHIZ, ADAPTTXEN, UARTHOST,  
SFTYCSB, SFTYSCLK, SFTYSDI, SPIDRVINT,  
ALERTEN).  
When the device is configured in UART communica-  
tion (UARTSEL > V ), shutdown is enabled  
IH_UARTSEL  
by externally driving SHDNL low, stopping commanded  
and keep-alive communication through the differential  
UART, or commanding a register write to enable the  
FORCEPOR bit. In the latter two conditions, the rate at  
which shutdown mode is entered is controlled by the time  
When the device is configured for SPI communication  
(UARTSEL < V ), the recommended method  
IL_UARTSEL  
to enter shutdown is enabled by externally driving SHDNL  
low. Although, not recommended, if the FORCEPOR bit-  
field will be utilized, the external driver must have some  
series-limiting resistance to ensure that a voltage-divider  
constant associated with the external C  
and the  
SHDNL  
equivalent resistance. Through halting communication to  
the device, there is no charge pumping and the capacitor  
discharges through an internal 10MΩ resistor with a 10ms  
time constant. If a faster shutdown rate is required, a  
200kΩ resistor can be connected externally from SHDNL  
to AGND to create a 200µs time constant. Alternatively,  
is created to allow SHDNL to fall below V  
IL_SHNDL.  
Table 12. Shutdown Timing  
SHUTDOWN METHOD  
1. External controller  
R
C
RC  
N/A  
PULLDOWN  
SHDNL  
N/A  
External  
2. External SHDNL resistance to AGND  
3. Register configured FORCEPOR  
4. Disconnect DCIN  
4.7kΩ  
4.7kΩ  
External  
Internal  
External  
Internal  
4.7µs  
1nF  
4.7µs  
200kΩ  
10MΩ  
200µs  
10,000µs  
5. Host places UART in idle mode  
Maxim Integrated │ 57  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Shutdown State Diagram  
POR INACTIVE  
CHECK V  
AA  
YES  
V
> V  
AA  
POR_RISING  
NO  
POR ACTIVE  
OSCILLATOR,  
CHARGE PUMP,  
DIGITAL LOGIC  
DISABLED  
Figure 13. Shutdown Sequence  
Maxim Integrated │ 58  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
RXLP  
RXLN  
RXUP  
RXUN  
t
FORCEPOR  
FRPOR  
SHDNL  
V
IH  
V
IL  
t
RXFD-VAA  
V
AA  
V
PORFALL  
t
VAAFD-POR  
POR  
Figure 14. UART Operation (Shutdown Timing)  
Maxim Integrated │ 59  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
V
, V  
≥ V  
DDL2 DDL3 AA  
V
V
DDL2  
DDL3  
SCLK  
SDI  
SDO  
CSB  
t
FORCEPOR  
FRPOR  
SHDNL  
V
IH  
V
IL  
t
SHDNL-VAA  
V
AA  
V
PORFALL  
t
VAAFD-POR  
POR  
Figure 15. SPI Operation (Shutdown Timing)  
Maxim Integrated │ 60  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
as discussed in the Single-Ended Rx Mode section. In  
Power-On and Shutdown Timing  
this case the directed control of the SHDNL pin remain  
the same.  
The following diagrams provide details regarding the  
power-on control and shutdown timing as well as supply  
sequencing in a high-voltage daisy-chained system con-  
trolled by UART communication, as well as a low-voltage  
(48V) system with directed control over the SHDNL pin.  
It is important to note that the UART can also be used in  
low-voltage systems with single-ended communication,  
Note: As shown in Figure 14 and Figure 15, the shutdown  
can also be controlled by writing the specific FORCEPOR  
bit. If SHDNL is actively driven, the application circuit  
should ensure there is no contention and this is driven  
below V  
IL_SHDNL.  
RXLP  
RXLN  
RXUP  
RXUN  
V
IL  
SHDNL  
V
SHDNLIMIT  
V
IH  
t
RXRU-VAA  
t
RXFD-VAA  
VPORRISE  
V
AA  
V
PORFALL  
t
VAARU-POR  
t
VAAFD-POR  
POR  
t
PORUP-TX  
TXUP  
TXUN  
Figure 16. Power-On Timing (UART-Communication Control)  
Maxim Integrated │ 61  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
V
, V  
≥ V  
DDL2 DDL3 AA  
V
V
DDL2  
DDL3  
V
IL  
SHDNL  
V
SHDNLIMIT  
t
V
IH  
SHDNL-VAA  
t
SHDNL-VAA  
VPORRISE  
V
AA  
V
PORFALL  
t
VAA-POR  
t
VAAFD-POR  
POR  
t
PORUP-SPI  
SCLK  
SDI  
SDO  
CSB  
t
SDO_STOP  
Figure 17. Power-On Shutdown Timing (SPI Directed Control)  
Maxim Integrated │ 62  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
RXLP  
RXLN  
RXUP  
RXUN  
V
IL  
SHDNL  
V
SHDNLIMIT  
V
IH  
t
RXRU-VAA  
t
RXFD-VAA  
VPORRISE  
V
AA  
V
PORFALL  
t
VAARU-POR  
t
VAAFD-POR  
POR  
t
PORUP-TX  
TXUP  
TXUN  
Figure 18. Power-On and Shutdown Timing (UART Control)  
Maxim Integrated │ 63  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
V
, V  
≥ V  
DDL2 DDL3 AA  
V
V
DDL2  
DDL3  
V
IL  
SHDNL  
V
SHDNLIMIT  
t
V
SHDNL-VAA  
IH  
t
SHDNL-VAA  
V
PORRISE  
V
AA  
V
PORFALL  
t
VAAFD-POR  
t
VAA-POR  
POR  
t
PORUP-SPI  
SCLK  
SDI  
SDO  
CSB  
t
SDO_STOP  
Figure 19. Power-On and Shutdown Timing (SPI Control)  
Maxim Integrated │ 64  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
POLARITY[13:0] bits in the POLARITYCTRL register. In  
Active Mode  
the unipolar configuration the input range is nominally 0V  
to 5V. In the bipolar configuration, the nominal input range  
is nominally -2.5V to 2.5V. Through combining the conver-  
sion data from the two scan configurations the input range  
can effectively be extended from -2.5V to 5V where any  
bipolar measurements over 2.3V should be supplemented  
with the unipolar measurements.  
The device enter acquisition mode upon receiving a  
SCAN command or during cell-balancing operation with  
UV threshold detection. The overall time spent in acquisi-  
tion mode is determined by the settings defined by the  
SCANCTRL and ACQCFG registers. Once the acquisition  
is completed (signified by SCANDONE and DATARDY),  
the device enter the low power standby mode opera-  
tion. During any point within acquisition mode, SHDNL  
The flexibility to support both unipolar and bipolar con-  
versions ensures that both cell measurements as well  
as bus-bar measurements are able to be simultaneously  
captured within the same acquisition which help optimize  
acquisition time and interface throughput.  
is pulled below V  
, T  
is exceeded, or  
IL_SHDNL  
SHDNL  
V
AA  
transitions below the POR threshold, the device exit  
acquisition and enter shutdown mode.  
Precision Internal Voltage References  
Note: Conversions for some diagnostic modes automati-  
cally preconfigure the device to use either bipolar or uni-  
polar mode regardless of the POLARITY_n bit value in  
the POLARITYCTRL register.  
The measurement system uses two precision, tempera-  
ture-compensated voltage references. The references are  
completely internal to the device and do not require any  
external components. The primary voltage reference, or  
REF, is used to derive the linear regulator output voltage  
and to supply the ADC reference. An alternate, indepen-  
dent reference (ALTREF) can be used to verify the primary  
reference voltage as described in the Diagnostics section.  
The ADC also supports both ratiometric and absolute  
acquisitions for the auxiliary inputs through the con-  
figuration setting of the AUXREFSEL[5:0] bits in the  
AUXREFCTRL register. Ratiometric acquisitions are pri-  
marily used for NTC based temperature measurements  
Scan Methods  
and support an input range of 0V to V . Absolute  
AA  
The MAX17853 has two parallel measurements engines  
(ADC and Comparator) that are capable of providing  
three different acquisitions (ADC Acquisition, Comparator  
Acquisition, and Simultaneous ADC + Comparator  
Acquisition). The combination of both measurement block  
provides hardware redundancy to accelerate fault detec-  
tion and ensure added system reliability.  
acquisitions can be used for any on supplemental voltage  
measurement required by the application and supports  
an input range of 0V to V  
. To ensure the highest  
REF  
accuracy for the application, the appropriate mode should  
be configured (it is not recommended to perform an ratio-  
metric acquisition for an absolute measurement such as  
a supply voltage as the variability in the reference (V  
can introduce unwanted measurement error).  
)
AA  
All modes are able to process the cell and auxiliary temper-  
ature/auxiliary-voltage measurements and each have their  
own unique alert threshold settings to accelerate the com-  
munication of a system fault. Alert settings are described in  
further detail in the Measurement Alerts section.  
The auxiliary configuration supports simultaneous acqui-  
sition of both absolute and ratiometric measurements to  
help optimize acquisition time and interface throughput.  
Note: In all ADC configurations, reduced linearity may  
occur near the zero-scale and full-scale limits. Refer to  
the Electrical Characteristics table for device accuracy  
specification.  
ADC Input Range  
The ADC supports unipolar and bipolar cell input  
acquisitions through the configuration settings of the  
Table 13. ADC Input Range  
CELLn[15:2]  
AUXn[15:2]  
(14 BITS)  
AUX RATIO AUX ABSOLUTE  
CELLn[15:0]  
AUXn[15:0]  
(16 BITS)  
CELL INPUT VOLTAGE  
INPUT  
INPUT  
VOLTAGE  
VOLTAGE  
BIPOLAR MODE UNIPOLAR MODE  
HEXADECIMAL  
DECIMAL  
0d  
-2.5V  
0V  
0V  
2.5V  
5V  
0V  
0V  
0000h  
2000h  
3FFFh  
0000h  
8000h  
FFFCh  
V
/2  
V
/2  
8192d  
16383d  
AA  
REF  
2.5V  
V
V
REF  
AA  
Maxim Integrated │ 65  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
OVSAMPL allows for specific frequency rejection at either  
Comparator Input Range  
50Hz/100Hz or 60Hz/120Hz. If not configured, the user  
may specifically control the sample interval through the  
timing of the interface to support any desired post pro-  
cessing on the host controller.  
The comparator supports a unipolar cell input range  
from 0V to 5V input through the configuration of the  
POLARITY[13:0] bit in the POLARITYCTRL registers. If  
the individual POLARITY bit is configured for a bipolar  
acquisition the comparator cell measurement be omitted  
from the scan.  
Note: The Balance Switch and Cell Sense acquisitions  
immediately configure the internal balance switches once  
the SCANCFG bitfield is written. Refer to the BALSW  
Diagnostic Section for details on the operation of this  
acquisition mode  
The comparator also supports ratiometric and absolute  
acquisition for the auxiliary input that follows the same  
configuration as described in the ADC Input Range sec-  
tion. Ratiometric acquisitions support an input range of 0V  
ADC Configurations and Properties  
ADC Polarity Configuration  
to V and absolute acquisitions supports an input range  
AA  
of 0V to V  
.
REF  
Unipolar and bipolar measurements are supported within  
a single acquisitions to capture all cell and bus bar data  
without the need to reconfigure multiple scan configura-  
tion registers or perform multiple acquisitions. Cell polarity  
is configured using the POLARITYCTRL register where all  
cells are defaulted to unipolar measurements (POLARITY  
[13:0] = 0000h).  
Scan Configuration  
The SCANCFG bits in the SCANCTRL register selects  
the acquisition that is to be performed. All available con-  
figurations are listed below.  
1) ADC Acquisition  
2) ADC and Comparator (ADC+COMP) Acquisition  
3) Comparator Acquisition  
4) Calibration  
Bipolar cells are fault masked during BALSWDIAG ADC  
Measurement scans. MINMAXPOL determines wheth-  
er Bipolar cells are included in MIN/MAXCELL and  
ALRTMSMTCH calculations.  
5) Balancing Switch Short  
6) Balancing Switch Open  
7) Cell Sense Open Odds  
8) Cell Sense Open Evens  
Bipolar cell measurements are checked against BIPOVTH  
and BIPUVTH thresholds rather than OVTH and UVTH  
thresholds.  
Bipolar cells are not included in Comparator Measurement  
scans, and ALRTCOMPOV/ALRTCOMPUV alerts are not  
evaluated.  
ADC, Comparator, and ADC+COMP acquisitions have  
programmable sample intervals through the configura-  
tion of the FOSR bit. This setting when coupled with the  
Table 14. Comparator Input Range  
COMPOVTH, COMPUVTH,  
COMPAUXROVTH, COMPAUXRUVTH  
COMPAUXAOTH,COMPAUXAUVTH  
(10 BITS)  
COMPOVTH[15:0],  
COMPUVTH[15:0] COMPAUX  
ROVTH[15:0],COMPAUXRUV  
TH[15:0] COMPAUXAOTH[15:0],  
COMPAUXAUVTH[15:0]  
(16 BITS)  
AUX RATIO AUX ABSOLUTE  
CELL INPUT  
VOLTAGE  
INPUT  
INPUT  
VOLTAGE  
VOLTAGE  
HEXADECIMAL  
DECIMAL  
0V  
2.5V  
5V  
0V  
0V  
000h  
200h  
3FFh  
0d  
0000h  
8000h  
FFC0h  
V
/2  
V
/ 2  
REF  
512d  
1024d  
AA  
V
V
REF  
AA  
Maxim Integrated │ 66  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
4) All enabled cell conversions (second phase), if  
ADC Acquisition  
enabled  
ADC acquisitions can be configured for the {adc_blocks}.  
The acquisition is initiated by writing a logic one to the  
SCAN bit in the SCANCTRL register. This write acts as a  
strobe, and the SCAN bit content is automatically cleared  
reading back a logic zero is polled. In daisy-chained  
devices, acquisitions in either UART path (depending  
on the Master configuration) be delayed by the propaga-  
a) descending order (14 through 1)  
5) VBLK conversion (second phase), if enabled  
6) <End of Pyramid>  
7) DIAG1 conversion (first phase), if enabled  
8) DIAG1 conversion (second phase), if enabled  
9) DIAG2 conversion (first phase), if enabled  
10) DIAG2 conversion (second phase), if enabled  
11) Auxiliary conversions, if enabled  
tion delay, t , of the command packet through each  
PROP  
device. The acquisition for device is signaled complete  
when SCANDONE bit is a logic one.  
Note: If any additional write to the SCANCFG is issued  
prior to the SCANDONE bit being cleared this command  
be ignored.  
12) Enable HV charge pump for recovery period unless  
a) OVSAMPL = 000b (no oversampling) or  
b) all oversample measurements are complete  
Pyramid Mode Acqusition Sequence  
13) Repeat steps 1 through 11 until all oversamples are  
done  
The ADC acquisition process for Pyramid Mode  
(SCANMODE = 0) is outlined below:  
14) Set SCANDONE bit  
1) Disable HV charge pump  
2) VBLK conversion (first phase), if enabled  
3) All enabled cell conversions (first phase), if enabled  
a) ascending order (1 through 14)  
ADC Pyramid Mode Figures  
INPUT  
CHANNEL  
SIMULTANEOUS CELL  
SAMPLING POINT  
TIME  
T0  
Figure 20. Acquisition (SCANCFG=0h, SCANMODE=0, OVSAMPL=0h, ALTMUXSEL=0, BLOCKEN=1, DIAGSEL1 > 0h,  
DIAGSEL2 > 0h, AUXEN=3Fh)  
Maxim Integrated │ 67  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
SIMULTANEOUS CELL  
SAMPLING POINT  
INPUT  
CHANNEL  
TIME  
T0  
Figure 21. Acquisition (SCANCFG=0h, SCANMODE=0, OVSAMPL = 0h, TOPCELL1/2 = 14, ALTMUXSEL=1, BLOCKEN=1,  
DIAGSEL1 > 0h, DIAGSEL2 > 0h, AUXEN=3F)  
INPUT  
CHANNEL  
SIMULTANEOUS CELL  
SAMPLING POINT  
54µs  
HVCP  
REFRESH  
TIME  
T0  
Figure 22. Acquisition - SCANCFG=0h, SCANMODE=0, OVSAMPL > 0h, ALTMUXSEL=0, BLOCKEN=1, DIAGSEL1 > 0h,  
DIAGSEL2 > 0h, AUXEN=3Fh  
Maxim Integrated │ 68  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
INPUT  
CHANNEL  
SIMULTANEOUS CELL  
SAMPLING POINT  
HVCP  
REFRESH TIMEOUT  
FOSR  
+
TIME  
T0  
625µs (FOSR = 01)  
520µs (FOSR = 1x)  
Figure 23. Acquisition (SCANCFG=0h, SCANMODE=0, OVSAMPL > 0h, ALTMUXSEL=0, BLOCKEN=1, DIAGSEL1 > 0h,  
AUXEN=03h, FOSR > 0h)  
Maxim Integrated │ 69  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Pyramid Mode Acquisition Time  
The total time for ADC Pyramid Mode acquisitions can be calculated by summing all the conditional process times as  
shown in following tables. There is one measurement cycle per oversample acquisition.  
ADC Acquisition Timing (Pyramid Mode)  
Table 15. ADC Pyramid Mode (SCANMODE = 0) Acquisition Time  
PROCESS  
Initialization  
TIME (µs)  
CONDITION  
FREQUENCY  
15  
Always  
Once per Acquisition  
THRMMODE = Automatic Mode and  
FOSR = 1.6kHz, 1.92kHz Mode  
6 * AUXTIME[9:0]  
6 * AUXTIME[9:0]  
AUXIN Settling  
(if enabled)  
- t  
- t  
- t  
Initialization  
VBLK  
Once per Acquisition  
THRMMODE = Automatic Mode and  
FOSR = Free Run Mode  
Cell_Scan_Setup  
t
- Cell_Scan  
- t  
Diag_Total  
VBLK Measurement  
(if enabled)  
27.75  
BLOCKEN =1  
Cell Scan Setup  
6.38  
For any cell(s) enabled  
Cell Measurement  
9 x y  
32.44  
23.81  
8.44  
For y = # of enabled cell inputs  
Die Temperature Diagnostic  
V
Diagnostic  
AA  
DIAG1 Measurement  
AND/OR  
DIAG2 Measurement  
(if enabled)  
Comp Signal Path Diagnostic  
Cell Gain Calibration Diagnostic  
Every Measurement Cycle  
24.28  
86.44  
19.5  
V
Diagnostic  
ALTREF  
DAC 3/4, DAC 1/4  
5.44  
All Other Diagnostics  
AUXIN Measurement  
(if enabled)  
5.44 * x  
57 * (z-1)  
11.2  
For x = # of enabled AUXIN Inputs  
For z = # of oversamples  
ADCZSFSEN = 1  
HV Recovery  
(if oversampling enabled)  
Every Measurement Cycle  
Except Last  
ADCZSFS Diagnostic  
(if enabled)  
End of Acquisition  
End of Acquisition  
COMPACC Diagnostic  
(if enabled)  
13.5  
COMPACCEN = 1  
Maxim Integrated │ 70  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
6) DIAG1 conversion, if enabled  
Ramp-Mode Acquisition Sequence  
TheADCacquisitionprocessforRampMode(SCANMODE  
= 0) is outlined below:  
7) DIAG2 conversion, if enabled  
8) Auxiliary conversions, if enabled  
1) Disable HV charge pump  
9) Enable HV charge pump for recovery period unless  
a) OVSAMPL = 000b (no oversampling) or  
2) VBLK conversion (first phase), if enabled  
3) All enabled cell conversions (1 through 14), if enabled  
4) VBLK conversion (second phase), if enabled  
5) <End of Ramp>  
b) all oversample measurements are complete  
10) Repeat steps 1 through 7 until all oversamples are  
done  
11) Set SCANDONE bit  
ADC Ramp-Mode Figures  
INPUT  
CHANNEL  
TIME  
T0  
Figure 24. Acquisition (SCANCFG=0h, SCANMODE=1, OVSAMPL=0h, ALTMUXSEL=0, BLOCKEN=1, DIAGSEL1 > 0h,  
DIAGSEL2 > 0h, AUXEN=3Fh)  
Maxim Integrated │ 71  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
INPUT  
CHANNEL  
TIME  
T0  
Figure 25. Acquisition (SCANCFG=0h, SCANMODE=1, OVSAMPL = 0h, TOPCELL1/2=14, ALTMUXSEL=1, BLOCKEN=1,  
DIAGSEL1 > 0h, DIAGSEL2 > 0h, AUXEN=3Fh)  
Maxim Integrated │ 72  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Ramp-Mode Acquisition Time  
The total time for ADC ramp-mode acquisitions can be calculated by summing all the conditional process times, as shown  
in Table 16. There is one measurement cycle per oversample acquisition.  
ADC Acquisition Timing (Ramp Mode)  
Table 16. ADC Ramp Mode (SCANMODE = 1) Acquisition Time  
PROCESS  
Initialization  
TIME (µs)  
CONDITION  
FREQUENCY  
15  
Always  
Once Per Acquisition  
THRMMODE = Automatic  
mode,  
FOSR = 1.6kHz, 1.92kHz  
mode  
6 * AUXTIME[9:0]  
AUXIN Settling  
(if enabled)  
6 * AUXTIME[9:0]  
Once Per Acquisition  
- t  
- t  
- t  
Initialization  
VBLK  
THRMMODE = Automatic  
mode  
FOSR = Free-run mode  
Cell_Scan_Setup  
t
- Cell_Scan  
- t  
Diag_Total  
VBLK Measurement  
(if enabled)  
27.75  
BLOCKEN=1  
Cell Scan Setup  
3.19  
For any cell(s) enabled  
Cell Measurement  
4.5 * y  
32.44  
23.81  
8.44  
For y = # of enabled cell inputs  
Die Temperature Diagnostic  
V
Diagnostic  
AA  
Comp Signal-Path Diagnostic  
DIAG1 Measurement  
and/or  
DIAG2 Measurement  
(if enabled)  
Every Measurement Cycle  
Cell-Gain Calibration  
Diagnostic  
24.44  
86.44  
19.5  
5.44  
V
Diagnostic  
ALTREF  
DAC 3/4, DAC 1/4  
All Other Diagnostics  
AUXIN Measurement  
(if enabled)  
For x = # of enabled AUXIN  
Inputs  
5.44 * x  
57 * (z-1)  
11.2  
HV Recovery  
(if oversampling enabled)  
Every Measurement Cycle  
Except Last  
For z = # of oversamples  
ADCZSFSEN=1  
ADCZSFS Diagnostic  
(if enabled)  
End of Acquisition  
End of Acquisition  
COMPACC Diagnostic  
(if enabled)  
13.5  
COMPACCEN=1  
Maxim Integrated │ 73  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ADC Acquisition Time Example  
Table 17 provides an example of common configuration and the associated acquisition time that can be achieved.  
Table 17. ADC Acquisition Time Examples (with AUXTIME[9:0] = 000h)  
ENABLED  
MEASUREMENTS  
NO OVERSAMPLING  
(OVSAMPL[2:0] = 0h)  
8x OVERSAMPLING  
(OVSAMPL[2:0] = 2h)  
16x OVERSAMPLING  
(OVSAMPL[2:0] = 3h)  
Pyramid Scan  
148.3μs  
Ramp Scan  
82.1μs  
Pyramid Scan  
1480.5μs  
Ramp Scan  
951μs  
Pyramid Scan  
3003.1μs  
Ramp Scan  
1944μs  
14 Cells  
14 Cells, VBLK  
14 Cells, 6 Aux  
175.7μs  
181μs  
109.5μs  
114.8μs  
1699.5μs  
1741.7μs  
1170μs  
3441.1μs  
3525.3μs  
2382μs  
1212.1μs  
2466.3μs  
14 cells, VBLK, 6  
Aux  
208.3μs  
240.6μs  
142.1μs  
174.4μs  
1960.7μs  
2218.7μs  
1431.1μs  
1689.1μs  
3963.3μs  
4479.3μs  
2904.3μs  
3420.3μs  
14 cells, VBLK, Die  
Temp DIAG, 6 Aux  
Comparator-Acquisition Process  
1) Disable HV charge pump  
2) Perform overvoltage conversion on all enabled Cell  
Inputs (MEASUREEN1) against COMPOVTH  
threshold  
a) ascending order (1 through 14)  
3) Update ALRTCOMPOV Register (MEASUREEN1 &  
ALRTOVEN)  
4) Perform undervoltage conversion on all enabled Cell  
Inputs (MEASUREEN1) against COMPUVTH  
threshold  
b) descending order (14 through 1)  
5) Update ALRTCOMPUV Register (MEASUREEN1  
and ALRTUVEN)  
6) Perform overvoltage conversion on all enabled  
Auxiliary Inputs (MEASUREEN2) against  
COMPAUXOVTH  
Comparator Configuration and Properties  
Comparator-Scan Properities  
The comparator acquisition can be configured for uni-  
polar Cell measurements and Auxiliary measurements.  
If a cell input is configured for bipolar operation in  
the POLARITYCTRL register, the comparator measure-  
ment is idle for this acquisition period and the associ-  
ated alert reporting in the ALRTCOMPOVREG and  
ALRTCOMPUVREG register not be updated. If acqui-  
sition time is of critical importance for a comparator  
scan, it is recommended to disable bipolar inputs in the  
MEASUREEN1 register to prior to issuing a SCAN as this  
omit these measurements from the acquisition.  
The SCANMODE bit configuration also does not apply to  
the comparator acquisition and the comparator operate  
only on the inputs indicated by the MEASUREEN1 and  
ALRTOVEN, ALRTUVEN registers. This is illustrated in  
the comparator acquisition process defined below.  
c) ascending order (0 through 5)  
7) Update ALRTCOMPAUXOV Register  
(MEASUREEN2 and ALRTAUXOVEN)  
8) Perform undervoltage conversion on all enabled  
Auxiliary Inputs (MEASUREEN2) against  
COMPAUXUVTH  
d) ascending order (0 through 5)  
9) Update ALRTCOMPAUXUV Register (MEASU-  
REEN2 and ALRTAUXUVEN)  
Comparator Acquisition  
The acquisition is initiated by writing a logic one to the  
SCAN bit in the SCANCTRL register. This write acts as a  
strobe, and the SCAN bit content is automatically cleared  
reading back a logic zero if polled. In daisy-chained  
devices, acquisitions in either UART path (depending  
on the Master configuration) be delayed by the propaga-  
tion delay, t , of the command packet through each  
PROP  
10) HV charge-pump refresh  
11) Repeat steps 2-6 until all oversamples complete  
device. The acquisition for device is signaled complete  
when SCANDONE bit is a logic one.  
12) Compare results against comparator thresholds and  
update alert status  
13) Enable HV Charge Pump  
Note: Comparator results are only available when the  
corresponding OV/UV alerts are enabled.  
Note: If any additional write to the SCANCFG is issued  
prior to the SCANDONE bit being cleared this command  
be ignored.  
Maxim Integrated │ 74  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
measurements respectively. Note: for the auxiliary inputs  
Comparator Thresholds  
since the full scale is dependent on V this may have an  
impact on the resolution of the comparator over loading  
and temperature conditions.  
AA  
The comparator cell measurements and auxiliary mea-  
surements can be programmed with OV and UV thresh-  
olds that are independent of the ADC OV and UV thresh-  
olds. However, all cell measurements share the same  
threshold settings as defined by the COMPOVTHand  
COMPUVTHregisters. Additionally, all ratiometric auxil-  
iary measurement share the same thresholds settings as  
defined by the COMPAUXROVTH and COMPAUXRUVTH  
registers and all absolute auxiliary measurements  
share the same threshold settings as defined by the  
COMPAUXAOVTH and COMPAUXAUVTH registers.  
If the pin configuration for the auxiliary inputs is set to  
GPIO mode, both ALRTAUXOVEN and ALRTAUXUVEN  
are disabled (logic 0).  
Comparator Acquisition Time  
The total time for Comparator acquisitions can be calcu-  
lated by summing all the conditional process times (see  
Table 18). There is one measurement cycle per overs-  
ample acquisition.  
As defined in the Compartor Input Range section, each  
threshold register is programmable up to 10 bits allow-  
ing for 4.9mV, 3.2mV, and 2.2mV of adjustable resolution  
on the cell, ratiometric auxiliary, and abosulte auxiliary  
Comparator Acquisition Timing Example  
Table 18 provides an example of common configuration  
and the associated acquisition time that can be achieved  
Table 18. Comparator Acquisition Time  
PROCESS  
Initialization  
TIME (µs)  
CONDITION  
FREQUENCY  
15  
Always  
Once per Acquisition  
THRMMODE = Automatic  
mode and  
FOSR = 1.6kHz, 1.92kHz  
mode  
6 * AUXTIME[9:0]  
AUXIN Settling  
(if enabled)  
6 * AUXTIME[9:0]  
Once per Acquisition  
- t  
- t  
- t  
Initialization  
VBLK  
THRMMODE = Automatic  
mode and  
FOSR = Free-Run mode  
Cell_Scan_Setup  
t
- Cell_Scan  
- t  
Diag_Total  
Cell Scan Setup  
6.38  
For any cell(s) enabled  
Cell Measurement  
12 * y  
For y = # of enabled cell inputs  
Every Measurement Cycle  
AUXIN Measurement  
(if enabled)  
For x = # of enabled AUXIN  
Inputs  
12.56 x  
57 * (z-1)  
13.5  
HV Recovery  
(if oversampling enabled)  
Every Measurement Cycle  
Except Last  
For z = # of oversamples  
COMPACCEN=1  
COMPACC Diagnostic  
(if enabled)  
End of Acquisition  
Table 19. Comparator Acquisition-Time Examples (with AUXTIME[9:0] = 000h)  
ENABLED  
MEASUREMENTS  
NO OVERSAMPLING  
(OVSAMPL[2:0] = 0h)  
8x OVERSAMPLING  
(OVSAMPL[2:0] = 2h)  
16x OVERSAMPLING  
(OVSAMPL[2:0] = 3h)  
14 Cells  
190.3μs  
265.7μs  
1816.5μs  
2419.4μs  
3675.1μs  
4880.8μs  
14 Cells, 6 Aux  
Maxim Integrated │ 75  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Comparator Scan Figures  
INPUT  
CHANNEL  
CELL OV QUALIFICATION  
CELL UV QUALIFICATION  
AUX OV/UV QUAL  
TIME  
T0  
Figure 26. Comparator Single-Scan Mode  
INPUT  
CHANNEL  
HVCP  
REFRESH  
CELL OV QUALIFICATION  
CELL UV QUALIFICATION  
AUX OV/UV QUAL  
TIME  
T0  
Figure 27. Comparator Single-Scan with Oversampling  
Maxim Integrated │ 76  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
applied to both ADC and comparator with each capable  
of setting it unique threshold. If any OV or UV Alert is  
disabled the ADC measurement still occurs, however the  
comparator is idle during this portion of the acquisition.  
ADC+COMP Configuration and Properties  
ADC+COMP Scan Mode  
ADC+COMP acquisitions can be applied to the Cell,  
Auxiliary, Block, and Diagnostics measurements. Each  
measurement engine (ADC or Comparator) retain the  
functionality discussed previously with additional clarifica-  
tion detailed below.  
In ADC+COMP scan mode, the ADC acquisition only  
operates in pyramid mode and the SCANMODE bit is  
ignored.  
ADC+COMP Acquisition Time  
The comparator acquisition is applied to the unipolar Cell  
and Auxiliary inputs and be idle during bipolar Cell, Block,  
and Diagnostics measurements. OV and UV alerts for  
the the cell path, (OVALRTEN and UVALERTEN) and  
Auxiliary path (AUXOVALRTEN and AUXUVALRTEN) are  
The total time for ADC+COMP acquisitions can be cal-  
culated by summing all the conditional process times as  
shown in following tables. There is one measurement  
cycle per oversample acquisition  
Table 20. ADC+COMP Acquisition Time  
PROCESS  
Initialization  
TIME (µs)  
CONDITION  
FREQUENCY  
15  
Always  
Once per Acquisition  
THRMMODE = Automatic mode and  
FOSR = 1.6kHz, 1.92kHz mode  
6 * AUXTIME[9:0]  
6 * AUXTIME[9:0]  
AUXIN Settling  
(if enabled)  
- t  
- t  
- t  
Initialization  
VBLK  
Once per Acquisition  
THRMMODE = Automatic mode and  
FOSR = Free Run Mode  
Cell_Scan_Setup  
t
- Cell_Scan  
- t  
Diag_Total  
VBLK Measurement  
(if enabled)  
27.75  
BLOCKEN=1  
Cell Scan Setup  
6.38  
For any cell(s) enabled  
Cell Measurement  
12 * y  
32.44  
23.81  
8.44  
For y = # of enabled cell inputs  
Die Temperature Diagnostic  
V
Diagnostic  
AA  
DIAG1 Measurement  
AND/OR  
DIAG2 Measurement  
(if enabled)  
Comp Signal Path Diagnostic  
Cell Gain Calibration Diagnostic  
Every Measurement Cycle  
24.44  
86.44  
19.50  
5.44  
V
Diagnostic  
ALTREF  
DAC 3/4, DAC 1/4  
All Other Diagnostics  
AUXIN Measurement  
(if enabled)  
12.56 * x  
57 * (z-1)  
11.2  
For x = # of enabled AUXIN Inputs  
For z = # of oversamples  
ADCZSFSEN=1  
HV Recovery  
(if oversampling enabled)  
Every Measurement Cycle  
Except Last  
ADCZSFS Diagnostic  
(if enabled)  
End of Acquisition  
End of Acquisition  
COMPACC Diagnostic  
(if enabled)  
13.5  
COMPACCEN=1  
Maxim Integrated │ 77  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ADC+COMP Acquisition Time Example  
Table 21 provides examples of common configuration and the associated acquisition time that can be achieved.  
Table 21. ADC+COMP Acquisition Time Examples (with AUXTIME[9:0] = 000h)  
ENABLED  
MEASUREMENTS  
NO OVERSAMPLING  
(OVSAMPL[2:0] = 0h)  
8x OVERSAMPLING  
(OVSAMPL[2:0] = 2h)  
16x OVERSAMPLING  
(OVSAMPL[2:0] = 3h)  
14 Cells  
187.1μs  
214.5μs  
262.5μs  
1791μs  
2010μs  
3624μs  
4062μs  
14 Cells, VBLK  
14 Cells, 6 Aux  
2393.9μs  
4829.8μs  
14 Cells, VBLK,  
6 Aux  
289.9μs  
2612.9μs  
5267.8μs  
14 Cells, VBLK,  
Die Temp DIAG,  
6 Aux  
322.1μs  
2870.9μs  
5783.8μs  
ADC+COMP Scan Figures  
INPUT  
CHANNEL  
ADC SIMULTANEOUS CELL  
SAMPLING POINT  
CELL OV QUALIFICATION  
CELL UV QUALIFICATION  
AUX OV/UV QUAL  
TIME  
T0  
Figure 28. Simultaneous ADC+COMP Scan Mode  
Maxim Integrated │ 78  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
INPUT  
CHANNEL  
ADC SIMULTANEOUS CELL  
SAMPLING POINT  
HVCP  
REFRESH  
CELL OV QUALIFICATION  
CELL UV QUALIFICATION  
AUX OV/UV QUAL  
TIME  
T0  
Figure 29. Simultaneous ADC+COMP Scan With Oversampling  
Maxim Integrated │ 79  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Note: The calibration acquisition is independent of the  
Scan Control Registers and Scan Setting Registers  
(POLARITYCTRL, SCANCTRL, ACQCFG) .  
On-Demand Calibration  
The MAX17853 supports an integrated "On-Demand" cal-  
ibration procedure which can be commanded by the user  
to improve the internal measurement accuracy from inac-  
curacies of the internal signal chain. It should however be  
noted that the calibration process not correct for inaccura-  
cies within the external application components. The cali-  
brated accuracy are described within the measurement  
accuracy section of the electrical characteristics.  
The ADCCALEN bit must be set for the calibration coef-  
ficients to be applied to the measurement results. If  
ADCCALEN disabled, even with the successful comple-  
tion of a calibration acquisition, the measurement results  
not have the calibration coefficients applied.  
Note: The "On-Demand" calibration is independent of the  
factory calibration. In the event that the "On-Demand" cal-  
ibration is applied, the device retain its factory calibration  
setting. The factory calibration setting can never be over-  
written and can be verified using the ROM CRC diagnos-  
tic in the Diagnostics section. See ADC Scan Properties  
for details on using calibration to maintain Ramp Mode  
accuracy over DCIN voltage range; factory calibration  
defaults are programmed using a 50V DCIN voltage.  
For a valid "On-Demand" calibration, a calibration acqui-  
sition must be commanded using the SCANCFG bits of  
the SCANCTRL register. The calibration acquisition auto-  
matically configures the internal calibration sources and  
performs ADC acquisitions to calculate and store calibra-  
tion coefficients for the Cell Inputs, Auxiliary Inputs, and  
Block Input. The completion of the calibration acquisition  
be signaled by the issuance of the SCANDONE bit like  
any other acquisition. Any commands that are sent before  
the calibration acquisiton is completed be ignored but still  
propagate through the daisy-chain.  
Table 22 indicates which calibration alerts are associated  
to the various measurement path  
The calibration time is 3.75ms.  
Table 22. Measurement Path Calibration Alerts  
MEASUREMENT PATH  
CALIBRATION ALERTS  
Cell Input - Pyramid  
(SCANMODE = 0b)  
ALRTCALGAINP, ALRTCALOSADC  
Cell Input - Ramp  
(SCANMODE = 1b)  
ALRTCALGAINR, ALRTCALOSR  
ALRTCALOSADC  
Auxiliary Input - Absolute  
(REFSEL = 1b)  
Auxiliary Input - Ratio metric  
(REFSEL = 0b)  
ALRTCALOSTHRM  
Block Input  
CSA Input  
ALRTCALOSADC  
ALRTCALOSADC  
The "On-Demand" calibration adjustments can be verified by using the Cell Calibration and Offset Calibration commands  
in the DIAGSEL1 and DIAGSEL2 bits. See the Diagnostics section for further details.  
Maxim Integrated │ 80  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
VBLK  
AGND  
DIE  
HVMUX  
TEMPERATURE  
C14  
C13  
VREF  
VAA  
ADC OFFSET  
VREF  
Cn  
CALIBRATION  
+
-
Cn-1  
LSAMP  
ADC IN+  
ADC IN-  
ADC  
C2  
C1  
LV  
MUX  
C0  
AGND  
SIGNAL PATH  
CALIBRATION NETWORK  
AUXINn  
AUXINn-1  
AUXIN1  
DIGITAL  
CONTROL  
AUXIN0  
Figure 30. On-Demand Calibration Block Diagram  
Calibration Alerts  
Oversampling  
Internal safety mechanisms are implemented to ensure  
that the applied calibration coefficients are within pre-  
determined bounds. If a calibration coefficient were to  
fall outside of these bounds, this would immediately  
raise an fault in the ALRTSUM register for the affected  
calibration process (ALRTCALOSADC, ALRTCALOSR,  
ALRTCALOSTHRM,ALRTCALGAINP,ALRTCALGAINR).  
This fault condition then propagates to the STATUS1 alert  
register which is capable of flagging an issue within the  
Data Check Byte or within the hardware alert interface.  
ADC Oversampling  
Oversampling performs multiple measurement cycles in  
a single acquisition and averages the samples to reduce  
the measurement noise and effectively increase the reso-  
lution of each acquisition. The net increase of the mea-  
surement resolution depends on the number of oversam-  
2n  
ples. To add n bits of measurement resolution at least 2  
oversamples are required. Since the ADC resolution is 12  
bits, 13-bit resolution requires at least 4 oversamples. In  
order to achieve the maximum 14-bit resolution, at least  
16 oversamples are required. Therefore with no overs-  
ampling, only the higher 12 bits of the measurement are  
statistically significant. With 4 or 8 oversamples, only the  
highest 13-bits are statistically significant. Taking more  
than 16 oversamples further reduces the measurement  
variation. With no oversampling, measurements can be  
averaged externally to achieve increased resolution but  
at a higher computational cost for the host.  
If the integrity of the calibration coefficients is question-  
able, it is recommended to issue an new calibration to  
verify and/or correct the fault, or to de-assert ADCCALEN  
and use the factory default calibration.  
Maxim Integrated │ 81  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
shown in Table 23. Thus, an OVSAMPL setting of 8 afford  
Comparator Oversampling  
1 sample outside of the OV/UV condition before setting  
an alert. It is recommended for higher noise immunity that  
the OVSAMPL setting should be configured to 8 or higher  
for comparator acquisition with oversampling. When the  
ADC and comparator are simultaneously sampled, the  
oversampling normally be set by the noise reduction  
required for ADC measurements.  
To effectively mitigate high frequency noise from affect-  
ing the comparator measurement, the output can be  
oversampled using the OVSAMPL bits in the SCANCTRL  
register. The accumulated oversamples are digitally aver-  
aged from the comparator output to gauge if a valid OV,  
UV condition is present. An OV, UV condition require the  
comparator readings to meet or exceed the threshold  
listed in the table below for an alert to be generated as  
Table 23. Comparator Faults for Alerts vs. Oversampling  
OVSAMPL  
COMPARATOR FAULTS FOR ALERT  
1
4
1
1
8
2
16  
32  
64  
128  
3
5
10  
20  
Note: The comparator acquisition can be performed using the cell input path (C ) or the switch input path (SW ) as configured  
n
n
by the ALTMUXSEL bit. In the event that the comparator acquisition is performed on the switch input path, it is recommended to  
increase the oversampling to account for the lessened noise attenuation from the inputs due to the higher lowpass cutoff frequency.  
Oversampling Watchdog Timeout  
Table 24. Watchdog-Timeout Duration  
OVSAMPL  
0b000  
SAMPLES  
THEORETICAL RESOLUTION  
ACQUISITION WATCHDOG TIMEOUT  
1
4
12 bits  
13 bits  
13 bits  
14 bits  
14 bits  
14 bits  
14 bits  
750μs  
3ms  
0b001  
0b010  
8
6ms  
0b011  
16  
32  
64  
128  
12ms  
24ms  
48ms  
96ms  
0b100  
0b101  
0b110  
Note 1: When AUTOBALSWDIS=1, the watchdog timeout duration is extended by SWDLY or CELLDLY (depending on ALTMUXSEL).  
Note 2: When AUXTIME is > 0, the timeout duration is extended by AUXTIME.  
Maxim Integrated │ 82  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
The FOSR settings of 0b01, 0b10 or 0b11 enables a  
100Hz and 120Hz Filtering  
notch filter at a frequency of 50Hz, 60Hz, 100Hz, or  
120Hz. This mode can be particularly useful for accurate  
voltage detection during vehicle charging where noise  
from the power mains effect the voltage seen by the bat-  
tery pack. To enable proper filtering for 50Hz or 100Hz,  
the FOSR must be set to 0b01. For 60Hz or 120Hz filter-  
ing, the FOSR must be set to either 0b10 or 0b11.  
There are two types of scan configurations in which  
oversampling frequency can be utilized, each providing a  
different benefit to the system performance.  
The first configuration is entered through FOSR = 0b00,  
which performs the acquisition with minimal time delay  
between measurement cycles to recharge the HV charge  
pump. The FOSR=0b00 mode yields the highest number  
of measurements per sample period allowing for higher  
oversampling rates and further noise reduction. The total  
acquisition time is proportional to the number of oversam-  
ples configured by OVSAMPL and the type and number  
of enabled channels.  
Note: When configuring the FOSR the acquisition period  
automatically be preconifgured to 625us for 50Hz/100Hz  
and 520μs for 60Hz/120Hz.  
Table 25. FOSR Notch-Filter Setting  
REJECTION FREQUENCY (Hz)  
FOSR  
0x1  
OVSAMPL  
0x4  
50  
60  
0x2 or 0x3  
0x1  
0x4  
100  
120  
None  
0x4 or 0x3  
0x4 or 0x3  
don't care  
0x2 or 0x3  
0x0  
Note: The typical notch-filter responses are shown for both 100Hz (Figure 31) and 120Hz (Figure 32), respectively.  
100Hz FOSRREJECTION vs. FREQUENCY  
120Hz FOSRREJECTION vs. FREQUENCY  
-20  
-20  
-25  
-25  
-30  
-35  
-40  
-45  
-50  
-30  
-35  
-40  
-45  
-50  
FOSR = 0X3  
OVSAMPL = 0X3  
FOSR = 0X1  
OVSAMPL = 0X3  
110  
115  
120  
FREQUENCY (Hz)  
125  
130  
90  
95  
100  
FREQUENCY (Hz)  
105  
110  
Figure 31. 100Hz Notch Filter  
Figure 32. 120Hz Notch Filter  
Maxim Integrated │ 83  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
If double-buffer mode is enabled (DBLBUFEN = 1), the  
ALU registers are cleared but the data registers remain  
Acquisition Watchdog Timeout  
If the acquisition does not finish within a predetermined  
time interval, the SCANTIMEOUT bit is set, the ADC logic  
is reset, the ALU registers are cleared, and the measure-  
ment data registers are also cleared. The acquisition  
watchdog timeout interval depends on the oversampling  
configuration as shown in Table 24.  
unchanged as these are known good values previously  
stored. Once a move operation is evoked (SCAN = 1),  
the previously cleared ALU data is moved from the ALU  
registers to the data registers and the data registers now  
show as cleared. Refer to the Double Buffer section for  
detailed information on the data control in mode.  
STANDBY MODE  
NO  
COMPARE MEASUREMENTS  
TO THRESHOLDS AND  
UPDATE ALERTS  
SCAN = 1?  
YES  
LATCH ACQUISITION  
CONFIGURATION;  
DISABLE  
YES  
DBLBUFEN = 1?  
HV CHARGE PUMP  
NO  
SET WATCHDOG  
TIMEOUT PERIOD  
MOVE ALU DATA  
TO DATA REGISTERS;  
SET DATARDY=1  
YES  
SET SCANDONE  
DBLBUFEN = 1?  
MOVE ALU DATA  
TO DATA REGISTERS;  
SET DATARDY = 1  
NO  
ENABLE  
HV CHARGE PUMP  
CLEAR ALL INTERNAL  
ALU REGISTERS  
STANDBY MODE  
PERFORM  
SCAN MEASUREMENTS  
ENABLE  
HV CHARGE PUMP  
NO  
ALL SAMPLES  
DONE?  
YES  
Figure 33. Acquisition-Mode Flowchart  
Maxim Integrated │ 84  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Calibration  
IIR Filter  
Data Control  
Acquisition Data Transfer and Control  
Single-Buffer Data Transfer  
The ADC data flow, Figure 34, can be directed through  
multiple data processing paths until it reaches the register  
space(CELLnREG,AUXnREG,BLOCKREG,DIAG1REG,  
DIAG2REG, TOTALREG, and MINMAXCELL) depending  
on the enabled configuration. The following sections detail  
the data flow through:  
Double-Buffer Data Transfer  
Cell balancing with Embedded Measurements  
ALU REGISTERS  
USER REGISTER MAP  
14  
ALU1  
ADC IN +  
CELL1REG  
12  
ADC  
14  
ADC IN -  
ALU2  
CELL2REG  
12  
CALIBRATION  
12  
ADCTEST1A[11:0]  
12  
12  
ADCTEST1B[11:0]  
ADCTEST2A[11:0]  
ADCTEST2B[11:0]  
12  
12  
14  
ADCCALEN  
ALU14  
CELL14REG  
FILTER REGISTERS  
RDFILT  
ADC_CHOP  
OVSAMP_EVEN_ODD  
ADCTSTEN  
ALU1_IIR  
USER INTERFACE  
COMMUNICATION  
ALU2_IIR  
IIR  
ALU14_IIR  
Figure 34. Data-Flow Diagram  
Maxim Integrated │ 85  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Calibration Data Control  
Filter Description  
The ADC data is either directly output to the ALU or acted  
upon by the Calibration block depending on the state  
of the ADCCALEN bit. See the Calibration sections for  
details on the configuration and application of calibration.  
The IIR filter is implemented per the following transfer  
function, Figure 35:  
Equation 1:  
Y(n) = FC*X(n) + (1-FC)*Y(n-1)  
IIR Filter  
FC is a 3-bit user-programmable filter coefficient. The  
default value of 0b010 has a weight of 3/8.  
To augment the accuracy performance over multiple  
measurement cycles, the user can enable the embed-  
ded IIR filter. The filter acts upon all enabled CELLn and  
VBLOCK inputs according to the user defined settings in  
the MEASUREEN1 register. The TOTAL register does not  
have a unique IIR filter, but is instead directly computed  
from the sum of the IIR data registers as selected through  
RDFILT.  
The detailed filter coefficient settings are defined in the  
IIRFC register. The smaller that coefficient is, the more  
the history represented by Y(n-1) outputs in Equation 1. It  
is a trade-off between response times to change in input  
value versus the noise attenuation.  
The filter can be turned off by setting the filter coef-  
ficient to 1 (IIRFC=0b111). The filter can be temporarily  
bypassed by setting AMENDFILT=0; this is useful when  
performing periodic safety and diagnostic checks, as the  
filtered main measurement results be preserved within the  
filter memory registers. Both filtered and raw result data  
can be read back using the RDFILT option.  
Additionally, when oversampling is enabled, the system  
response of the measurement data is the combination of  
the IIR filter and oversampling noise reduction.  
Although the IIR filter can be updated dynamically on  
any individual acquisition through AMENDFILT, it is rec-  
ommended to always allow non-diagnostic acquisitions  
into the IIR filter. Using the IIR filter leads to the greatest  
benefit in noise reduction with the external hardware filter  
combined with the digital filtering.  
X(n)  
Diagnostics (including BALSWDIAG results) or higher  
noise data from ALTMUXSEL=1 should not be processed  
within the IIR as this corrupt the desired measure-  
ment result. This involves (but is not limited to) con-  
figuration with the diagnostic current sources (CTSTCFG,  
MUXDIAGEN).  
INTERNAL REGISTER  
COMBINATIONAL LOGIC  
Y(n)  
Y(n-1)  
Note: IIR filtering is always applied to the measurement  
cycle during automatic cell balancing. In the event the  
IIRFC=111b (off) in automatic Cell-Balancing modes, the  
IIR filter is internally forced to 000b (1/8). All other selection  
of IIRFC are valid.  
USER REGISTER  
Figure 35. IIR Filter Algorithm  
Maxim Integrated │ 86  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(ex. 0V to 100mV Unipolar Cell transition) to 12-bit and  
Filter Response  
14-bit accuracy. Note: This settling time can be sig-  
nificantly shortened after power-up, or when operating  
mode changes require large step responses by using the  
MEASUREEN2:SCANIIRINIT or BALCTRL:CBIIRINIT ini-  
tialization options, which accelerate settling by loading the  
next acquired sample into the filter's accumulated result  
memory.  
The IIR Filter provides a means to improve measure-  
ment noise rejection at a cost of increased settling time.  
This tradeoff can be managed by selecting the proper  
IIR Filter Coefficient for the application. [[IIR 100mV  
Scale Step Response Settling]] shows the number of  
samples taken by the IIR Filter to settle a full-scale step  
Table 26. IIR 100mV Step Response Settling  
IIRFC SETTING:  
IIR FILTER COEFFICIENT (FC):  
12-BIT SETTLING (# SAMPLES):  
14-BIT SETTLING (# SAMPLES):  
0b000  
1/8  
0b001  
1/4  
0b010  
3/8  
0b011  
0b100  
0b101  
0b110  
0b111  
1/2  
7
5/8  
5
3/4  
4
7/8  
3
1
1
1
33  
16  
10  
44  
21  
13  
9
6
5
3
IIR FILTER RESPONSE – 100mV STEP  
FC = 1/8  
FC = 1/4  
FC = 3/8  
FC = 1/2  
FC = 5/8  
FC = 3/4  
FC = 7/8  
FC = 1  
Figure 36. 100mV IIR Step Response  
Maxim Integrated │ 87  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
If DBLBUFEN=x and SCAN=0, the ALU results are load-  
IIR Data Control  
ed into the IIR during the requested data move sequence  
if DATARDY=0.  
The control of ADC data into and around the IIR filter is  
performed using dedicated register bits (AMDENDFILT,  
RDFILT, ALRTFILT) in the SCANCTRL register. The fol-  
lowing sections detail this operation.  
Table 27 shows the interactions that can occur between  
the IIR Data Control Setting:  
AMENDFILT and RDFILT  
ALRTFILTSEL  
The AMENDFILT bit directs the ALU data into the IIR for  
filtering operations or around the IIR filter to the output  
data registers (CELLn and BLOCKREG).  
When IIR filter operation is enabled, there are two pos-  
sible data sources for user access, the raw sequencer  
outputs (oversampling still applies), or the IIR filtered  
outputs. The Alert Filtering Selection bit (ALRTFILTSEL)  
is used to select one of these outputs to generate the  
relevant alerts.  
When the AMENDFILT bit is deasserted, the ADC acquisi-  
tion in the ALU is not transferred into the IIR accumulator  
at the end of the scan sequence. This setting should be  
used for diagnostic operations which disrupt the input data  
or for operations which utilize a different measurement  
path, as both operations would corrupt the normal data.  
Examples of measurement modes which disrupt the input  
data are when the cell test current sources or HVMUX  
test current sources are enabled using the CTSTEN bit  
and MUXDIAGEN bits respectively. Alternatively, when  
AMENDFILT is asserted, the ADC acquisition in the ALU  
is automatically scaled and transferred into the IIR accu-  
mulator at the end of the scan sequence.  
When ALRTFILTSEL=0, the raw sequencer outputs are  
used. This data source is used to assert all related alert bit  
assertions, calculate MINMAXCELL and TOTAL registers,  
and cell mismatch MSMTCH checks.  
When ALRTFILTSEL=1, the IIR filtered data is used. This  
IIR data is used to assert all related alert bit assertions,  
calculate MINMAXCELL and TOTAL registers, and cell  
mismatch MSMTCH checks.  
Regardless of the ALRTFILTSEL settling, DIAG1 and  
DIAG2 register always come from the unfiltered sequenc-  
er outputs.  
The RDFILT bit determines if IIR filtered data or normal  
acquisition data is read from the output data registers is  
issued (CELLn and BLOCKREG). See the Single-Buffer  
Mode and Double-Buffer Mode sections for details on  
how the RDFILT affects data transfer.  
IIR Initialization  
When IIR operation is engaged, the data to be oper-  
ated upon initially is controlled by the Sequencer IIR  
Initialization Request bit (SCANIIRINIT).  
Note: If DBLBUFEN=0 and SCAN=1, the ALU results  
are loaded into the IIR automatically at the end of the  
requested measurement sequence.  
By default, SCANIIRINIT=0, IIR filter is in continuation  
mode. In Continuation mode, the current value in the IIR  
accumulators is kept (presumably from previous cell mea-  
surements) and sequencer measurements are amended  
normally.  
If DBLBUFEN=1 and SCAN=1, the ALU results are  
loaded into the IIR automatically at the beginning of the  
following sequence.  
Table 27. IIR Data-Control Settings  
AMENDFILT  
RDFILT  
USAGE  
0
0
IIR Filter Disabled  
Potential Stale-Data Fetch  
0
1
IIR is not updated but IIR results read.  
Note: This operation is not recommended.  
Reads Current Unfiltered Acquisition Data:  
IIR is updated but current acquisition read.  
See the Out-of-Scan Data Transfer section for information on reading both filtered and  
unfiltered results  
1
1
0
1
IIR Filter Updated and IIR Filter Read  
Maxim Integrated │ 88  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
When SCANIIRINIT=1, IIR filter is in initialization mode. In Initialization mode, the IIR accumulators be reinitialized to the  
first measurement taken, and further cell-balancing measurements are amended normally.  
Single-Buffer Mode  
Single-buffer Mode (Figure 37) is activated when DBLBUFEN=0. In this mode data is moved to the CELLnREG,  
AUXnREG, BLOCKREG, DIAG1REG, DIAG2REG, TOTALREG, and MINMAXCELL registers at the end of the scan  
indicated by SCANDONE=1 and DATARDY=1.  
SINGLE-BUFFER DATA TRANSFER: DBLBUFEN= 0 , RDFILT= 0  
SCAN=1  
SCANDONE=1  
SCAN=1  
SCANDONE=1  
TIME  
SCAN SEQUENCE # 1  
IDLE  
SCAN SEQUENCE # 2  
IDLE  
ALU DATA  
MEASUREMENT RESULTS  
TRANSFERED  
MEASUREMENT RESULTS  
TRANSFERED  
DATA REGISTER  
MEASUREMENT RESULTS FROM SCAN #2  
MEASUREMENT RESULTS FROM SCAN #1  
SINGLE-BUFFER DATA TRANSFER: DBLBUFEN=0, RDFILT=1  
SCAN=1  
SCANDONE=1  
SCAN=1  
SCANDONE=1  
TIME  
SCAN SEQUENCE # 1  
IDLE  
SCAN SEQUENCE # 2  
IDLE  
IIR DATA (POST FILTERING)  
MEASUREMENT RESULTS  
TRANSFERED  
MEASUREMENT RESULTS  
TRANSFERED  
DATA REGISTER  
MEASUREMENT RESULTS FROM SCAN #2  
MEASUREMENT RESULTS FROM SCAN #1  
Figure 37. Single-Buffer Data Transfer  
Maxim Integrated │ 89  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Double-Buffer Mode  
With DBLBUFEN = 1, the Double Buffer Mode, Figure 38, is activated. In this mode data is moved to the CELLnREG,  
AUXnREG, BLOCKREG, DIAG1REG, DIAG2REG, TOTALREG, and MINMAXCELL registers at the start of the next scan  
when SCAN = 1 and is indicated by DATARDY = 1. This allows the host to read data from the last scan while the cur-  
rent scan is in progress. In the event that a final measurement is requested prior to a sleep or shutdown event, the host  
would need to issue another SCAN request to force the data transfer from the last acquisition or move the data through  
the Out-of-Scan data transfer method.  
DOUBLE-BUFFER DATA TRANSFER: DBLBUFEN=1, RDFILT=0  
SCAN=1  
SCANDONE=1  
SCAN=1  
SCANDONE=1  
SCAN=1  
SCANDONE=1  
TIME  
SCAN SEQUENCE # 1  
IDLE  
SCAN SEQUENCE # 2  
IDLE  
SCAN SEQUENCE # 3  
ALU DATA  
MEASUREMENT RESULTS  
TRANSFERED  
MEASUREMENT RESULTS  
TRANSFERED  
DATA REGISTER  
MEASUREMENT RESULTS FROM SCAN #1  
MEASUREMENT RESULTS FROM SCAN #2  
DOUBLE-BUFFER DATA TRANSFER: DBLBUFEN=1, RDFILT=1  
SCAN=1  
SCANDONE=1  
SCAN=1  
SCANDONE=1  
SCAN=1  
SCANDONE=1  
TIME  
SCAN SEQUENCE # 1  
IDLE  
SCAN SEQUENCE # 2  
IDLE  
SCAN SEQUENCE # 3  
IIR DATA (POST FILTERING)  
MEASUREMENT RESULTS  
TRANSFERED  
MEASUREMENT RESULTS  
TRANSFERED  
DATA REGISTER  
MEASUREMENT RESULTS FROM SCAN #1  
MEASUREMENT RESULTS FROM SCAN #2  
Figure 38. Double-Buffer Data Transfer  
Maxim Integrated │ 90  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Upon writing CBSCAN (and after any auto cell-balancing  
Out-of-Scan Data Transfer  
measurement operation in complete), all enabled con-  
version parameters are updated in the CELLnREG,  
AUXnREG, BLOCKREG, DIAG1REG, DIAG2REG,  
TOTALREG, and MINMAXCELL output registers. See the  
Cell Balancing section for further detail.  
Out-of-Scan data transfer occurs in the period after a scan  
is complete, indicated by SCANDONE=1, and before a  
new scan request, SCAN=1, is issued by the host. Since  
data exists in both the ALU and IIR accumulator but only  
one set is transferred to the data registers depending on  
the RDFILT setting, this procedure allows access to the  
other set of data that was not transferred to the data reg-  
isters. By setting DATARDY=0, RDFILT=0 and SCAN=0,  
data from the ALU is transferred to the data registers. By  
setting DATARDY=0, RDFILT=1 and SCAN=0, data from  
the IIR accumulator is transferred to the data registers.  
Measurement Alerts  
After the acquisition, the ALU compares the enabled  
measurement data to the enabled OV/UV thresholds  
for both measurement paths (ADC and Comparator) as  
shown in Table 28. If outside of the configured threshold,  
the associated alert bit is set during data transfer into the  
ALU or IIR ALU blocks. In the event that calibration is  
enabled using the ADCCALEN bit, the digital correction is  
performed prior to the alert generation. This ensures that  
the alert is generated from the correct accuracy results.  
IfanOut-of-ScandatatransferisissuedtheMINMAXCELL,  
TOTAL, and MSMTCH registers are not updated when  
changing RDFILT and SCAN=0. Additionally, Out-of-  
Scan alert processing not be updated when changing  
ALRTFILTSEL and SCAN=0. If updated data process-  
ing is required a new acquisition (SCAN=1) must be  
requested.  
Note: The ALRTFILTSEL bit for the IIR data control deter-  
mine if the alerts be generated upon filtered or unfiltered  
data.  
Cell Balancing with  
The data control settings impact the management of alert  
signaling. The aforementioned alert handling details the  
Single Buffer Mode data control. Since Double Buffered  
Mode allow for simultaneous data offload and acquisi-  
tion, it is recommended to read alert status after the  
SCANDONE for the current acquisition and prior to initiat-  
ing the next acquisition.  
Embedded-Measurement Data Control  
The data control for cell balancing with embedded  
measurements is controlled by the CBSCAN bit in the  
BALDATA register. This bit acts as a strobe, and the  
CBSCAN bit content is automatically cleared, reading  
back a logic zero when polled.  
Table 28. Measurement Alerts  
CONDITION OR  
DESCRIPTION  
SIGNAL PATH  
ALERT BIT  
LOCATION  
STATUS1,  
ALRTSUM,  
ALRTOVCELL  
RESULT  
ALRTCELLOVST,  
ALRTADCOVST,  
ALRTOVn  
V
- V  
> V  
Cn  
Cn-1 OVTHSET  
Cell overvoltage (OV)  
ADC  
for POLARITYn=0  
ALRTCELLOVST,  
ALRTADCOVST,  
ALRTCOMPOVn  
STATUS1,  
ALRTSUM,  
ALRTCOMPOVREG  
Cell overvoltage (OV)  
Cell undervoltage (UV)  
Cell undervoltage (UV)  
COMP  
ADC  
V
V
- V  
- V  
> V  
< V  
Cn  
Cn-1  
COMPOVTH  
ALRTCELLUVST,  
ALRTADCUVST,  
ALRTUVn  
STATUS1,  
ALRTSUM,  
ALRTUVCELL  
Cn  
Cn-1  
UVTHSET  
for POLARITYn=0  
ALRTCELLUVST,  
ALRTADCUVST,  
ALRTCOMPUVn  
STATUS1,  
ALRTSUM,  
ALRTCOMPUVREG  
COMP  
V
- V  
< V  
Cn  
Cn-1  
COMPUVTH  
ALRTCELLOVST,  
ALRTADCOVST,  
ALRTOVn  
STATUS1,  
ALRTSUM,  
ALRTOVCELL  
Bipolar cell/bus-bar  
overvoltage (OV)  
V
- V  
> V  
Cn  
Cn-1  
BIPOVTHSET  
ADC ONLY  
for POLARITYn=1  
Maxim Integrated │ 91  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Table 28. Measurement Alerts (continued)  
CONDITION OR  
DESCRIPTION  
SIGNAL PATH  
ALERT BIT  
LOCATION  
STATUS1,  
ALRTSUM,  
ALRTUVCELL  
RESULT  
ALRTCELLUVST,  
ALRTADCUVST,  
ALRTUVn  
Bipolar Cell/Bus-bar  
undervoltage (UV)  
V
- V  
< V  
Cn  
Cn-1 BIPUVTHSET  
ADC Only  
for POLARITYn=1  
Block overvoltage (OV)  
ADC Only  
ADC Only  
ADC Only  
V
V
V
> V  
< V  
- V  
ALRTBLKOV  
ALRTBLKUV  
ALRTMSMTCH  
STATUS1  
STATUS1  
STATUS1  
BLK  
BLK  
MAX  
BLKOVTHSET  
Block undervoltage  
(UV)  
BLKUVTHSET  
Cell Mismatch  
> V  
MSMTCH  
MIN  
n where V  
Unipolar if MINMAXPOL=0  
else Bipolar  
= V  
MIN  
CELLn  
Cell with minimum  
voltage  
ADC Only  
None  
MINMAXCELL  
n where V  
Unipolar if MINMAXPOL=0  
else Bipolar  
= V  
MAX  
CELLn  
Cell with maximum  
voltage  
ADC Only  
ADC Only  
ADC  
None  
None  
MINMAXCELL  
TOTAL  
Σ V  
for n=1 to  
CELLn  
Total of all Cell voltages  
TOPCELL1/2  
ALRTAUXOVST,  
ALRTADCAUXOVST,  
ALRTAUXOVn  
STATUS1,  
ALRTSUM,  
ALRTAUXOV  
AUXINn overvoltage  
(undertemperature)  
V
V
> (V  
or  
AUXINn  
AUXAOVTHSET  
AUXROVTHSET  
)
ALRTAUXOVST,  
ALRTCOMPAUXOVST, ALRTSUM,  
ALRTCOMPAUCOVn  
STATUS1,  
AUXINn overvoltage  
(undertemperature)  
V
OR V  
> (V  
AUXINn  
COMPAUXROVTH  
COMP  
ADC  
)
COMPAUXAOVTH  
ALRTCOMPAUXOV  
ALRTAUXUVST,  
ALRTADCAUXUVST,  
ALRTAUXUVn  
STATUS1,  
ALRTSUM,  
ALRTAUXUV  
AUXINn undervoltage  
(overtemperature)  
V
< (V  
AUXINn  
AUXRUVTHSET  
OR V  
)
AUXAUVTHSET  
ALRTAUXUVST,  
ALRTCOMPAUXUVST, ALRTSUM,  
ALRTCOMPAUCUVn ALRTCOMPAUXUV  
STATUS1,  
AUXINn undervoltage  
(overtemperature)  
V
OR V  
< (V  
AUXINn  
COMPAUXRUVTH  
COMP  
)
COMPAUXAUVTH  
Table 29. Set- and Clear-Threshold Selection  
OVERVOLTAGE  
THRESHOLD  
UNDERVOLTAGE  
THRESHOLD  
DESCRIPTION  
SIGNAL PATH  
OV HYSTERESIS  
UV HYSTERESIS  
Cell  
Cell  
ADC  
COMP  
ADC  
OVTHSET  
UVTHSET  
COMPUVTH  
BIPUVTHSET  
BLKUVTHSET  
OVTHCLR  
Not Applicable  
BIPOVTHCLR  
BLKOVTHCLR  
UVTHCLR  
COMPOVTH  
BIPOVTHSET  
BLKOVTHSET  
Not Applicable  
BIPUVTHCLR  
BLKUVTHCLR  
Bus bar  
Block  
ADC  
Maxim Integrated │ 92  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
set threshold to full-scale, or setting the undervoltage set  
Voltage Alerts  
threshold to zero-scale, effectively disables voltage alerts  
independent of the ALRTOVEN and ALRTUVEN.  
The ALRTOVEN and ALRTUVEN registers are config-  
ured to enable voltage alerts for the CELL and Block  
inputs. These alerts have programmable OV and UV set  
thresholds as well as programmable OV and UV clear  
thresholds allowing for programmable hysteresis in both  
OV or UV measurements as mentioned in below Table 29.  
This is beneficial for the programming of alert detection in  
lithium ion cells where the different characteristics at fully  
charged and discharged states.  
Alert conditions for the individual ADC Cell inputs are sum-  
marized using the ALRTADCOVST and ALRTADCUVST  
bits in the ALRTSUM register and occur when any alert  
bit is set in the ALRTOVCELL or ALRTUVCELL reg-  
isters, respectively. Similarly, alert conditions for the  
individual Comparator Cell inputs are set using the  
ALRTCOMPOVST and ALRTCOMPUVST bits in the  
ALRTSUM register when any alert bit is set in the  
ALRTCOMPOVREG or ALRTCOMPUVREG registers,  
respectively. To ease identification of any OV or UV  
alerts, both ADC summary alerts and Comparator sum-  
mary alerts are further logically OR'ed and summarized  
in the ALRTCELLOVST and ALRTCELLUVST bits in  
the STATUS1. This enables the alert information to get  
propagate using the hardware alert interface or the data  
check byte.  
Overvoltage alerts in the ALRTOVCELL or  
ALRTCOMPOVREG registers are set when the CELLn  
voltage exceeds the programmed threshold voltages  
V
and V  
respectively. Alternatively,  
OVTHSET  
COMPOVTH  
undervoltage alerts in the ALRTUVCELL and  
ALRTCOMPUVREG registers are set when the CELLn volt-  
age exceeds the programmed threshold voltage V  
UVTHSET  
and V  
respectively. It is important to note that  
COMPUVTH  
due to the different resolutions of the ADC and compara-  
tor (described in the ADC Input Range and Comparator  
Input Range sections) the user may experience a condition  
where the alert for the ADC may be set while the alert for  
the comparator my be cleared and vice versa.  
Alert conditions for the Block input are directly sum-  
marized using the ALRTBLKOVST and ALRTBLKUVST  
bits in the STATUS1 register when the acquired BLOCK  
voltage is over V  
respectively.  
or under V  
BLKOVTHSET  
BLKUVTHSET  
Note: ADC alerts provide the most accurate indications  
of the acquisition.  
If an alert does not need to be propagated using the alert  
interface or data check byte, these can be individually  
masked. See the Alert interface for further details on the  
masking.  
Alerts are cleared when the cell voltage moves in the oppo-  
site direction and crosses the OVTHCLR, COMPOVTH  
and UVTHCLR, COMPUVTH thresholds.The voltage must  
cross the threshold; if it is equal to a threshold, the alert  
flag does not change. Therefore, setting the overvoltage  
The cell and block voltage hysteresis diagram is as shown  
in below Figure 39.  
V
OVERVOLTAGE ALERT  
SET  
OVERVOLTAGE SET AND CLEAR  
THRESHOLDS  
POR DEFAULT VALUE (+5.0V)  
OVERVOLTAGE SET THRESHOLD  
(OVTHRSET)  
OVERVOLTAGE CLEAR THRESHOLD  
(OVTHRCLR)  
OVERVOLTAGE  
ALERT  
CLEARED  
CELLN  
VOLTAGE  
UNDERVOLTAGE  
ALERT  
UNDERVOLTAGE CLEAR THRESHOLD  
(UVTHCLR)  
CLEARED  
UNDERVOLTAGE SET THRESHOLD  
(UVTHRSET)  
UNDERVOLTAGE  
ALERT  
UNDERVOLTAGE SET AND CLEAR  
THRESHOLDS  
POR DEFAULT VALUE (+0.0V)  
SET  
T
Figure 39. Cell Voltage-Alert Thresholds  
Maxim Integrated │ 93  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
The measured values after the acquisition reads 2V, 2V,  
Cell Mismatch  
-1V, and 2.5V, respectively.  
Enable the mismatch alert to signal when the mini-  
mum and maximum cell voltages differ by more than a  
specified voltage. The MSMTCHREG register sets the  
The TOTALREG register reads:  
TOTALREG = 2 + 2 -1 +2.5 = 5.5V  
14-bit threshold (V  
) for the mismatch alert,  
MSMTCHREG  
The MINCELL bitfields read CELL1 and the MAXCELL  
register read CELL4.  
ALRTMSMTCH. WheneverV  
-V  
>V  
,
MAX MIN  
MSMTCHREG  
then ALRTMSMTCH = 1. The alert bit be cleared when a  
new acquisition does not exceed the threshold condition.  
To disable the alert, write 3FFFh to the MSMTCHREG  
register bitfield (default value).  
Temperature Alerts  
The ALRTAUXOVEN and ALRTAUXUVEN registers are  
configured to enable the temperature alerts for the  
enabled AUXn inputs. Like the cell-voltage alerts, the  
temperature alerts have programmable OV and UV set  
thresholds, as well as programmable OV and UV clear  
thresholds, to provide user-programmable hysteresis to  
avoid unwanted alerts in the presence of measurement  
noise, as shown in Table 30.  
Cell Statistics  
The cell numbers corresponding to the lowest and highest  
enabled voltage measurements are stored in the MINCELL  
and MAXCELL bitfields. When multiple cells have the same  
minimum or same maximum voltage, only the lowest cell  
position having that voltage is reported. For acquisitions  
with no enabled cell inputs, the MINCELL and MAXCELL  
bitfields, and the TOTALREG register are not updated.  
Overvoltage alerts in the ALRTAUXOVEN or  
ALRTCOMPAUXOV registers are set when the AUXn  
voltage exceeds the programmed threshold volt-  
The RDFILT bit determines the source data (filtered/unfil-  
tered) used for the MINCELL and MAXCELL bitfields, and  
the TOTALREG register.  
ages of V  
or V  
, and  
, respectively.  
AUXAOVTHSET  
AUXROVTHSET  
V
or V  
COMPAUXAOVTH  
COMPAUXROVTH  
The appropriate threshold used is determined by the  
AUXREFSEL bits which can be different per channel.  
Alternatively, undervoltage alerts in the ALRTAUXUVREG  
and ALRTCOMPAUXUVREG registers are set when  
the AUXn voltage exceeds the programmed thresh-  
The MINMAXPOL bit ensures that only like measure-  
ments are used for the statistical processing of MINCELL,  
MAXCELL and ALRTMSMTCH. This ensures that bus bars  
do not affect the cell statistics in mixed-mode acquisitions.  
When MINMAXPOL = 0 only unipolar measurements are  
used. When MINMAXPOL = 0b1, only bipolar mearure-  
ments are used upon unipolar or bipolar measurements.  
old voltage V  
or V  
, and  
AUXUVTHSET  
AUXRUVTHSET  
V
or V  
, respectively. It  
COMPAUXRUVTH  
COMPAUXAUVTH  
is important to note that due to the different resolutions  
of the ADC and comparator (described in the ADC Input  
Range and Comparator Input Range sections), the user  
may experience a condition where the alert for the ADC  
is set, while the alert for the comparator is cleared, and  
vice versa.  
Note: For lithium-ion applications, MINMAXPOL should be  
configured for unipolar statistics, while fuel-cell application  
should be configured for bipolar statistics.  
The sum of all enabled cell voltages, irrespective of the  
POLARITY configuration, are stored in the TOTALREG  
register as a 16-bit value.  
Note: An OV alert for the ratiometric acquisition signal an  
undertemperature (UT) event for the NTC measurement  
and an UV alert signal an overtemperature (OT) event for  
the NTC measurement.  
Example:  
Assume four cell inputs are enabled (CELL1, CELL2,  
CELL3, and CELL4, where CELL1 and CELL2 are config-  
ured as unipolar, CELL3 is bipolar, and CELL4 is unipolar.  
Table 30. Temperature-Alert Threshold  
OVERVOLTAGE  
THRESHOLD/UNDER THRESHOLD/OVER  
UNDERVOLTAGE  
SIGNAL  
HYSTERESIS  
HYSTERESIS  
DESCRIPTION  
TYPE  
PATH  
ADC  
ADC  
OV  
UV  
TEMPERATURE  
TEMPERATURE  
AUXROVTH-  
CLR  
AUXINn  
AUXINn  
Ratio metric  
Absolute  
AUXROVTHSET  
AUXRUVTHSET  
AUXRUVTHCLR  
AUXAUVTHCLR  
AUXAOVTH-  
CLR  
AUXAOVTHSET  
AUXAUVTHSET  
AUXINn  
AUXINn  
COMP  
COMP  
Ratiometric  
Absolute  
COMPAUXROVTH  
COMPAUXAOVTH  
COMPAUXRUVTH  
COMPAUXAUVTH  
Not Applicable  
Not Applicable  
Not Applicable  
Not Applicable  
Maxim Integrated │ 94  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Alerts are cleared when the cell voltage moves in the  
opposite direction and crosses the AUXROVTHCLR,  
AUXAOVTHCLR and AUXRUVTHCLR, AUXAUVTHCLR  
thresholds. The voltage must cross the threshold; if it  
is equal to a threshold, the alert flag does not change.  
Therefore, setting the overvoltage set threshold to full-  
scale, or setting the undervoltage set threshold to zero-  
scale, effectively disables voltage alerts independent of  
the ALRTAUXOVEN and ALRTAUXUVEN.  
selected and started, the device remains in this mode until  
a new value is written to CBMODE, or until a successful  
exit criteria is achieved from all enabled conditions (UV  
threshold, timer, and thermal).  
To determine the current state of cell balancing, the  
CBACTIVE bits can be polled using the BALCTRL,  
BALSTAT or BALUVSTAT registers. The current timer  
value can be read through CBTIMER, a 1Hz alive counter  
can be read through CBCNTR. The timer units (i.e., sec-  
ond, minute, hour) can be read through CBUINT. These  
status registers are only cleared when CBMODE is writ-  
ten to a new mode or disabled. The combination of these  
bitfields allow for user verification that the cell balancing  
machine is responsive, meanwhile an internal health  
check is performed prior to verify a hardware integrity  
prior to balancing. ALRTCBTIMEOUT notifies the user a  
health check failure (if one is found).  
Alert conditions for the individual ADC auxiliary inputs  
are summarized using the ALRTADCAUXOVST and  
ALRTADCAUXUVST bits in the ALRTSUM register and  
occur when any alert bit is set in the ALRTAUXOV or  
ALRTAUXUV bitfields, respectively.  
Note: The ALRTSUM alert status does not specify the  
auxiliary input measurement mode in AUXREFSEL, how-  
ever, this can be determined from polling the alert channel  
within ALRTAUXOV or ALRTAUXUV  
Once a CBMODE mode is selected and started, the  
device remains in this mode until a new value is written  
to CBMODE. Note that all CBMODE active operations  
automatically end due to either timer expiration(s), ther-  
mal faults, and/or cell UV thresholds being met. In these  
cases, the CBMODE is still engaged, although the bal-  
ancing operation is ended (the status of the operation can  
be checked by reading the BALSTAT and BALUVSTAT  
registers).  
Similarly, alert conditions for the individual comparator  
auxiliary inputs are set using the ALRTCOMPAUXOV and  
ALRTCOMPAUXUV bits in the ALRTSUM register when  
any alert bit is set in the ALRTCOMPAUXOVSTREG or  
ALRTCOMPAUXUVREG registers, respectively.  
To ease identification of any OV or UV alerts, both ADC  
summaryalertsandComparatorsummaryalertsarefurther  
logically OR'ed and summarized in the ALRTAUXOVST  
and ALRTAUXUVST bits in the STATUS1. This enables  
the alert information to get propagated using the hard-  
ware alert interface or the data check byte.  
After cell balancing is initiated, write access to specific  
cell-balancing registers is blocked; if a write to a blocked  
register is attemped, it is ignored and the ALRTRJCT  
flag set in the STATUS2 register. See Table 31 for spe-  
cific register behavior. Note that blockage operations are  
implemented at the register level.  
Cell Balancing  
Cell balancing can be performed using any combination  
of the 14 internal cell-balancing switches according to the  
programming of the enabled BALSWCTRL:BALSWEN  
configuration and POLARITYCTRL configuration. Each  
configured channel performs cell balancing according to  
the configured operational mode, which includes manual  
or automatic balancing-discharge control using a timer  
and/or undervoltage threshold, as well as well as duty-  
cycle configuration.  
Notes: The CBRESTART is a strobe bit to manually  
restart/refresh the watchdog timer during a cell-balancing  
operation in manual mode. Although this can be written in  
other balancing modes, no internal action is taken.  
Writes to the BALSWEN bitfields during manual Cell-  
Balancing mode are expected and supported.  
Writes to BALAUTOUVTHR with CBUVMINCELL=1 are  
rejected if a measurement scan is in progress (since  
data from the last completed scan is used to populate  
CBUVTHR).  
Cell-Balancing Mode Configurations  
Cell balancing is initiated using the CBMODE bits in  
the BALCTRL register. This selection defines automatic  
versus manual balancing control, channel timer configu-  
ration, and timer resolution. Once a CBMODE mode is  
Any value rewritten to CBMODE other than 000 (disable)  
restarts the CBTIMER at zero and relaunches the request-  
ed mode of operation.  
Maxim Integrated │ 95  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Table 31. Cell-Balancing Register Write Behavior when Cell Balancing is Selected  
AUTO (INDIVIDUAL OR  
GROUP) MODE (1xx)  
EMERGENCY-DISCHARGE  
MODE (001)  
MANUAL MODE (01x)  
Data  
Write  
Data  
Write  
Data  
Write  
REGISTER  
BITFIELD  
ALRT-  
RJCT  
Status  
ALRT-  
RJCT  
Status  
ALRT-  
RJCT  
Status  
applicable accepted  
in this  
mode?  
applicable accepted  
in this  
mode?  
applicable accepted  
in this  
mode?  
in this  
mode?  
in this  
mode?  
in this  
mode?  
CBRESTART  
BALSWEN  
BALEXP1  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
No  
No  
Yes  
No  
No  
Yes  
Yes  
No  
BALSWCTRL  
BALEXP1  
1
1
1
1
1
BALEXP2-14 BALEXP2-14  
Yes  
Yes  
Yes  
Yes  
CBUVTHR  
No  
BALAUTOU-  
1
1
1
CBUVMIN-  
VTHR  
Yes  
No  
No  
Yes  
No  
Yes  
CELL  
CBNTFYCFG  
BALDLYCTRL  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
CBCALDLY  
Notes: Writing 1 to CBRESTART after the cell-balancing  
timer expiration has no effect. To perform another manual-  
mode cell-balancing event, the user must issue a separate  
write to the BALCTRL register.  
Manual Mode  
In manual mode, balance switches (BALSWn) are con-  
trolled directly by BALSWEN[14:1] with a watchdog time-  
out set by CBEXP1 as follows:  
Manual balancing allows for adjacent balancing switches  
to turn on simultaneously according to the application  
requirement. Enabling adjacent balancing switches simul-  
taneously under manual Cell-Balancing mode increases  
the balancing current significantly, so care must be taken  
not to exceed the device’s maximum operating conditions.  
BALSWn = BALSWEN[n] & (CBTIMER ≤ CBEXP1) &  
~(AUTOBALSWDIS & measurement in progress)  
CBTIMER is incremented on a real-time basis, regard-  
less of BALSWEN settings or suspensions for ADC or  
CAL events. This means the watchdog timeout is set in  
CBEXP1 once manual cell balancing is initiated.  
AUTOBALSWDIS Feature  
Manual cell-balancing operations can be temporarily sus-  
pended during measurements using theAUTOBALSWDIS  
feature.  
Configuring AUTOBALSWDIS=1 automatically disables  
the balancing switches (in manual Cell-Balancing modes  
only) during measurements to eliminate the additional  
voltage drop caused due to the cell-balancing application  
circuit. This ultimately allows the system to achieve higher  
accuracy cell measurements to help calculate higher  
accuracy of state-of-charge (SOC).  
In certain instances, as defined by the AUTOBALSWDIS  
operation or other manual diagnostic operation, the user  
may wish to have explicit control of the BALSWEN without  
wanting to refresh the CBTIMER watchdog. In this case,  
the user can configure CBEXP1=3FFh to disable the  
timer. Thus, balancing will be controlled only using the  
BALSWEN; this is also equivalent to the cell-balancing  
behavior supported in Maxim legacy battery-management  
devices.  
Measurement settling-time control for cell measurement  
(CELLDLY) and BALSW diagnostic/ALTMUX (SWDLY) is  
configured in the BALSWDLY register. These delay regis-  
ters provides programmable settling (wait) times from 0µs  
up to 24.57ms, in steps of 96μs, between the time when  
the acquisition is enabled and the start of actual measure-  
ment to allow for the external application circuit to settle to  
accurate voltages. In the BALSWDLY register, CELLDLY  
is the upper 8-bit delay setting for cell-recovery time while  
SWDLY is the lower-delay setting for certain diagnostics  
CBRESTART is provided as a means to refresh the active  
balancing switches or the watchdog timer during normal  
BALSWn cycling operations. CBUVTHR exit settings are  
ignored, measurements and calibrations operations are  
requested through normal scan-control registers allowing  
for simultaneous measurements and balancing.  
Maxim Integrated │ 96  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
such as sense-wire open. When AUTOBALSWDIS=1  
and ALTMUXSEL=0, CELLDLY is selected. When  
AUTOBALSWDIS=1 and ALTMUXSEL=1, SWDLY is  
selected. Hence, this feature can be used during normal  
cell measurements as well as during diagnostic measure-  
ments with two separate delay timers that can be inde-  
pendently set. Any write to the BALSWDLY register be  
ignored, signaled by ALRTRJCT, while a measurement  
sequence or an automated Cell-Balancing mode is active.  
Manual Cell-Balancing Mode with FlexPack  
During manual cell balancing, the top two consecutive  
cells should not be enabled for manual cell balancing. This  
creates a situation where SW  
, SW  
,
TOPCELL1/2  
TOPCELL1  
and SW  
could potentially all be 5V below the  
TOPCELL2  
TOPCELL1/2 cell input voltage. Although, the MAX17853  
digital logic does not prevent users from using such a  
configuration, ALRTHVUV is expected to trip and the  
TOPCELL1/2 cell input measurements will not be valid.  
Note: The appropriate delay time is dependent on the  
application circuit and the level of accuracy required. For  
the typical application circuit on the cell input, utilizing a  
input filter network of 1kΩ and 0.1μF, it is recommended  
to choose a settling time of 960μs to achieve calibrated  
accuracy specified in the Electrical Characteristics table.  
Auto-Individual Mode  
Auto-individual mode performs cell balancing in a con-  
trolled manner so that the cells can be individually dis-  
charged for a duration and/or to a specific voltage level,  
as required in the end application. The host initiates  
an auto-individual mode by setting CBMODE to 0b100  
(duration is seconds) or 0b101 (duration in minutes), con-  
figuring CBEXPn to the desired value (where the LSB =  
1 second or minute, respectively), and setting individual  
BALSWENn bits, a group voltage target can also be set  
using CBUVTHR.  
Note: AUTOBALSWDIS affects cell-balancing switch  
behavior in manual Cell-Balancing modes only.  
Note: The cell-balancing timer incrementing/expiration  
behavior is not affected by the AUTOBALSWDIS setting.  
HOST  
HOST  
BALSWEN[n]  
ONE ADC ACQUISTION  
ONE ADC ACQUISTION  
MEASUREMENT  
AUTOBALSWDIS=11  
AUTOBALSWDIS=1  
BALSWN  
Figure 40. Logic Diagram when Balancing Switches are Disabled  
Maxim Integrated │ 97  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
t
t
t
t
4
1
2
3
BALSW ON  
ACQUISITION  
BALSW OFF  
ACQUISITION  
Figure 41. AUTOBALSWDIS Measurement Settling  
In auto-individual mode, the balancing switches defined  
by BALSWEN[n] are automatically controlled through  
non-overlapping even/odd cycling in accordance with the  
programmable timer duration (CBEXPn) and/or the under-  
voltage threshold (CBUVTHR). The balancing switch duty  
cycle can further be controlled using CBDUTY to pro-  
grammatically set the average balancing current. This is  
indicated below:  
for 1 hour and the CBDUTY=100%, the associated timers  
would be set accordingly and the operation would last  
for ~2 hours (accounting for non-overlap timing). If the  
CBDUTY is now set to 50% with the same timer settings,  
the total operation time would extend to ~4 hours.  
The read-only counter (CBCNTR) increments at a 1Hz  
rate with periodic rollover at 0b11. The host can read this  
counter periodically to confirm the auto-individual mode  
is active.  
Even Cells (2, 4, ... 14):  
BALSWn = BALSWEN[n] & (CBTIMER ≤ CBEXPn)  
& CBEVEN & ( ((CBMEASEN ==0b11) & (CELLn ≥  
CBUVTHR)) | (CBMEASEN != 0b11))  
SHDNL operation can be controlled by HOLDSHDNL,  
preventing device shutdown during auto-individual mode  
in case of an extended lapse in host communication.  
Odd Cells (1, 3, ... 13):  
Once initiated, auto-individual mode normally continues  
to run until CBTIMER reaches max (CBEXPn) or all cells  
reach the voltage CBUVTHR (whichever comes first,  
depending on configuration settings), and at this point,  
balancing-switch operations cease and CBACTIVE is set  
to 0b10, indicating a normal exit condition. Cell balancing  
checks that thermal, calibration, and watchdog faults apply  
if enabled; if any of these conditions occur, switching activ-  
ity is immediately halted and CBACTIVE is set to 0b11,  
notifying the μC of the result. The cell balancing timer  
(CBTIMER) continues to run until expiration (CBEXPn),  
and HOLDSHDNL extensions are supported (if enabled).  
This allows the μC to confirm the exit condition.  
BALSWn = BALSWEN[n] & (CBTIMER ≤ CBEXPn)  
& CBODD & ( ((CBMEASEN ==0b11) & (CELLn ≥  
CBUVTHR)) | (CBMEASEN != 0b11))  
CBUVTHR exit settings apply, and ADC measurement  
and calibration operations can be performed if enabled to  
support host-controller readback.  
CBTIMER is incremented on a duty-cycled basis, indicat-  
ing the time each channel is subject to discharge (i.e.,  
one t  
cycle out of each E/O/M discharge cycle). In  
CBEO  
real time, this means the discharge operation always runs  
at least 2x the maximum value set in CBEXPn. As an  
example, if both an even and odd cell must be balanced  
Maxim Integrated │ 98  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
In Emergency-Discharge mode, all balance switches  
Auto-Group Mode  
(BALSWn) are enabled regardless of the BALSWEN[n]  
settings, with a CBTIMER duration set by CBEXP1, and  
governed by non-overlapping even/odd cycling, as follows:  
The auto-group mode performs cell balancing in a con-  
trolled manner so that the cells can be discharged as a  
group for a duration and/or to a specific voltage level,  
as required in the end application. The host initiates  
auto-group mode by setting CBMODE to 0b110 (dura-  
tion is seconds) or 0b111 (duration in minutes), configur-  
ing CBEXP1 to the desired value (where the LSB = 1  
second or minute, respectively), and setting individual  
BALSWENn bits. A group voltage target can also be set  
using CBUVTHR.  
Even Cells (2, 4, ... 14):  
BALSWn = (CBTIMER ≤ CBEXP1) & CBEVEN  
Odd Cells (1, 3, ... 13):  
BALSWn = (CBTIMER ≤ CBEXP1) & CBODD  
CBUVTHR exit settings do not apply, but ADC measure-  
ment and calibration operations can still be performed if  
enabled to support host-controller readback.  
In auto-group mode, the balancing switches defined by  
BALSWEN[n] are automatically controlled through non-  
overlapping even/odd cycling in accordance with the pro-  
grammable timer duration (CBEXP1) and/or the under-  
voltage threshold (CBUVTHR). The balancing-switch  
duty cycle can further be controlled using CBDUTY to  
programmatically set the average balancing current. This  
is indicated as follows:  
CBTIMER is incremented on a duty-cycled basis indicat-  
ing the time each channel is subject to discharge (i.e.,  
one t  
cycle out of each E/O/M discharge cycle). In  
CBEO  
real time, this means the discharge operation always runs  
at least 2x the maximum value set in CBEXP1. As an  
example, if both an even and odd cells must be balanced  
for 1hour and the CBDUTY=100% the associated timers  
would be set to 0x3C and the operation would last for ~2  
hours (accounting for non-overlap timing). If the CBDUTY  
is now set to 50% with the same timer setting, the total  
operation time would extend to ~4hours.  
Even Cells (2, 4, ... 14):  
BALSWn = BALSWEN[n] & (CBTIMER ≤ CBEXP1)  
& CBEVEN & ( ((CBMEASEN ==0b11) & (CELLn ≥  
CBUVTHR)) | (CBMEASEN != 0b11))  
The read-only counter (CBCNTR) increments at a 1Hz  
rate with periodic rollover at 0b11. The host can read this  
counter periodically to confirm that Emergency-Discharge  
mode is active.  
Odd Cells (1, 3, ... 13):  
BALSWn = BALSWEN[n] & (CBTIMER ≤ CBEXP1)  
& CBODD & ( ((CBMEASEN ==0b11) & (CELLn ≥  
CBUVTHR)) | (CBMEASEN != 0b11))  
SHDNL operation can be controlled by HOLDSHDNL,  
preventing device shutdown during Emergency-Discharge  
mode due to the extended lapse in host communication.  
Auto-group modes are identical to auto-individual modes  
except all timer durations are checked against CBEXP1  
(a single-expiration event).  
Once initiated, Emergency-Discharge mode normally  
continues to run until CBTIMER reaches CBEXP1. At this  
point, balancing-switch operations cease and CBACTIVE is  
setto0b10, indicatinganormalexitcondition. Cell-balancing  
checks if thermal, calibration, and watchdog faults apply, if  
enabled. If any of these conditions occur, switching activity  
is immediately halted and CBACTIVE is set to 0b11,  
notifying the μC of the result. The cell-balancing timer  
(CBTIMER) continues to run until expiration (CBEXPn),  
and HOLDSHDNL extensions are supported (if enabled).  
This allows the μC to confirm the abnormal exit condition.  
Emergency-Discharge Mode  
Emergency-Discharge mode performs cell balancing in a  
controlled manner so that the cells can be discharged in  
the event of an emergency or battery end-of-life.  
The host initiates the Emergency-Discharge mode by setting  
CBMODE to 0b001, configures CBEXP1 to the desired value  
(where the LSB = 1 hour). After Emergency-Discharge mode  
is activated, battery cells are discharged until CBTIMER  
expires or CBMODE is set to 0b000 (disabled).  
Maxim Integrated │ 99  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Note: t  
= 1/2 x timer resolution  
Cell-Balancing Modes Summary  
CBEO  
Table 32 summarizes the Cell-Balancing modes sup-  
ported by the MAX17853.  
The measurement time (t  
) includes the cell-  
MEASUREMENT  
balancing path recovery-delay selection (CELLDLY) and a  
user-programmable delay determined by the external  
application circuit, which is imposed after each pair of even/  
odd discharge cycles. The other component to the mea-  
surement time includes the physical time for ADC acquisi-  
tion, as defined in the SCANCTRL register (OVSAMPL in  
Cell-Balancing mode is non-programmable and fixed at 16  
to ensure the highest accuracy measurements).  
Auto-Even/Odd Cell Balancing  
Auto-even/odd cell balancing controls the enabling of  
adjacent balancing switches automatically with timing  
resolution from 1s to 1hr depending on the CBMODE con-  
figuration. This ensures that even or odd switches are not  
enabled simultaneously, while balancing equally within  
the balancing period. This allows the host to program the  
BALSWEN bit once without having to adjust the balance  
switches or timer period, which can be beneficial during  
system low-power operational modes where the host  
controller is asleep.  
Note: CELLDLY is used in manual Cell-Balancing mode  
whenusing AUTOBALSWDIS=0b1and ALTMUXSEL=0b0.  
Also used in automated cell-balancing and discharge  
modes after each pair of even/odd discharge cycles.  
CBMODE=0x4, CBUVTHR=0x3FF  
To prevent simultaneous channel conduction, a non-over-  
=
lap period (t  
1μs) is inserted between dis-  
CMODE=5h, FLXPACK1/2=1, TOPCELL1/2=ODD  
NONOVERLAP  
abling one switch and enabling the adjacent switch. When  
the UV threshold is disabled, the total cell-balancing period  
Note: Figure 42 and Figure 43 are not drawn to exact  
timescale; some sections have been exaggerated for  
visibility.  
is (t  
+ t ) x 2. When the UV threshold is  
NONOVERLAP  
CBEO  
enabled, the cell-balancing period is increased by the ADC  
measurement time (t ). In this case, the  
See the Cell-Balancing UV Detection section for further  
details and recommendations for embedded measure-  
ments during cell balancing.  
MEASUREMENT  
total cell-balancing period is (t  
+ t ) x 2  
NONOVERLAP  
CBEO  
+ t  
.
MEASUREMENT  
Table 32. Cell-Balancing Mode  
RANGE OF CBEXPN[9:0]  
TIMER  
RESOLUTION  
CBMODE[2:0]  
DESCRIPTION  
CBEXPN[9:0]  
T
CBEO  
MINIMUM  
MAXIMUM  
000b  
001b  
Cell Balancing Disabled  
000h  
Emergency/EOL  
Discharge by Hour  
001h to 3FFh  
1hr  
0.5min  
1hr  
1s  
1022hrs  
1022s  
Manual-Cell Balancing  
by Second  
010b  
011b  
100b  
101b  
110b  
111b  
001h to 3FFh  
001h to 3FFh  
001h to 3FFh  
001h to 3FFh  
001h to 3FFh  
001h to 3FFh  
1s  
1min  
1s  
Manual-Cell Balancing  
by Minute  
1min  
1s  
1022mins  
1022s  
Auto-Individual Cell  
Balancing by Second  
0.5s  
Auto-Individual Cell  
Balancing by Minute  
1min  
1s  
0.5min  
0.5s  
1min  
1s  
1022mins  
1022s  
Auto-Group Cell  
Balancing by Second  
Auto-Group Cell  
Balancing by Minute  
1min  
0.5min  
1min  
1022mins  
Note: t  
CBEO  
is the effective time that the even or odd switches are balanced within the timer resolutions.  
Maxim Integrated │ 100  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
EVEN CELLS ENABLED  
EVEN CELLS ENABLED  
ODD CELLS ENABLED  
0.5s  
0.5s  
t
NONOVERLAP  
t
NONOVERLAP  
1s + (2 x t  
)
NONOVERLAP  
CELL BALANCING TIMER  
INCREMENTED BASED ON  
CBMODE AND CBDUTY  
Figure 42. Auto Even/Odd Cell Balancing without UV Detection  
ODD CELLS ENABLED  
ODD CELLS ENABLED  
EVEN CELLS ENABLED  
30.5µs  
HVCP  
RECOVERY  
30s  
30s  
CELLDLY  
t
MEASUREMENT  
t
NONOVERLAP  
t
NONOVERLAP  
1 min + 2 x t  
+ CELLDLY + t  
MEASUREMENT  
NONOVERLAP  
CELL BALANCING  
TIMER INCREMENTED  
BASED ON CBMODE  
AND CBDUTY  
Figure 43. Auto Even/Odd Cell Balancing with UV Detection, ADC with OVSAMPL  
Maxim Integrated │ 101  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
When any CBEXPn is non-zero, the cell-balancing timer  
Cell-Balancing Timer (CBTIMER)  
runs and any requested measurement and calibra-  
tion operations are performed until expiration, even if  
BALSWEN[14:1]=000h (i.e., no balancing switches are  
actually activated). This ensures that the μC can still  
access the device to confirm balancing-operation prog-  
ress and exit status.  
Manual, Emergency Discharge, and Auto Group Mode  
Timing: In manual, emergency discharge, and auto-group  
modes, the CBEXP1 bitfield within the BALEXP1 register is  
used as the cell-balancing timer duration setting. The dura-  
tion can be configured from 1 to 1023 seconds, 1 to 1023  
minutes, or 1 to 1023 hours depending on the CBMODE  
setting (LSB = hour, minute, or second). A value of 0x3FF  
allows the switches to be enabled indefinitely for CELLn if  
BALSWENn is also enabled (CBTIMER mube active, and  
rollover at 3FFh, but is not checked against CBEXP1). In  
manual, emergency discharge, and auto- group modes,  
the 10-bit timer (CBTIMER) counts up until it reaches the  
duration set by BALEXP1. When the cell-balancing timer  
expires, all cell-balancing switches are disabled.  
If all 14 CBEXPn settings are 000h, no cell balancing  
occurs for the switches.  
General Timing and Safety Features (All Modes): For  
safety concerns, all BALEXPn are defaulted to 0x000,  
which ensures no cell balancing occurs without prior  
configuration.  
The CBTIMER runs to expiration, even if the active cell  
balancing is halted due to UV- or thermal-exit conditions,  
which that the μC can still access the part to confirm bal-  
ancing-operation progress and exit status. If an extend-  
ed SHDNL hold time is requested (HOLDSHDNL=1x),  
CBTIMER reads back the governing CBEXP time for the  
duration of the extended hold interval, allowing the μC to  
confirm that the requested balancing operation has run to  
completion.  
When CBEXP1 is non-zero, the cell-balancing timer  
(CBTIMER) runs and any requested measurement and  
calibration operations are performed until expiration, even  
if BALSWEN[14:1]=000h (i.e., no balancing switches are  
actually activated), this ensures the μC can still access  
the device to confirm balancing-operation progress and  
exit status.  
A value of CBEXP1=000h ensure no cell balancing occur.  
CBRESTART Usage in Manual Mode  
For safety concerns, all BALEXPn are defaulted to 0x000,  
which ensures no cell balancing occurs without prior  
configuration.  
The CBRESTART bit within the BALSWCTRL register  
must periodically be written to a 1 to restart the watchdog  
timer and prevent the cell balancing switches from being  
automatically disabled due to exiting Manual mode when  
CBTIMER reaches CBEXP1. In the event that a host  
fails to write the CBRESTART bit or forgets to disable the  
cell balancing switches, the cell balancing watchdog can  
automatically disable all cell balancing switches regard-  
less of the BALSWEN configuration. The cell balancing  
watchdog does not modify the contents of the BALSWEN  
bits within the BALSWCTRL register.  
Auto-Individual-Mode Timing: In auto-individual mode,  
the CBEXPn bits within the BALEXPn registers are used  
as individual cell-balancing duration times for each cor-  
responding CELLn. Individual durations can be configured  
from 1 to 1023 seconds, or 1 to 1023 minutes depending  
on the CBMODE setting (LSB = minute, or second). A  
value of 0x3FF allows the switches to be enabled indefi-  
nitely for CELLn if BALSWENn is also enabled (CBTIMER  
active and rollover at 3FFh, but is not checked against  
CBEXPn). The 10-bit expiration timer (CBTIMER) counts  
up until it reaches the maximum CBEXPn timeout value  
in the register block (regardless of the BALSWENn set-  
tings), governing the balancing operations of all balancing  
switches. When an individual cell expiration time is reached  
(determined by CBEXPn), the CELLn switch is disabled  
going forward.  
The CBRESTART bit is used in Manual Cell-Balancing  
mode only. It provides a means to select new BALSW  
settings and refresh the Watchdog timer with a single  
command.  
This bit is ignored and has no effect outside of an active  
Manual Cell-Balancing operation. If a Manual operation  
was selected and the timer is allowed to expire, the opera-  
tion must be relaunched with a write to BALCTRL (i.e.,  
CBRESTART will not reinitiate a Manual operation that  
has allowed the CBTIMER to expire).  
Maxim Integrated │ 102  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Emergency-Discharge Mode and CBDUTY Behavior  
Notification Alerts Using CBNTFYCFG  
In Emergency-Discharge mode, he CBTIMER is incre-  
mented on a duty-cycled basis, indicating the effective  
time on each channel is subject to discharge. Since the  
In automatic and discharge modes, the cell-balancing  
notification alert (ALRTCBNTFY) can be issued to con-  
firm normal progression of automated operations. The  
frequency of issuance is 1 hour, 2 hours, or 4 hours, in  
real time (i.e., not CBDUTY adjusted). Notification alerts  
continue to be issued during HOLDSHDNL extension  
periods.  
active duty cycle within each 30s t  
period is speci-  
CBEO  
fied by the CBDUTY register, the CBTIMER is increment-  
ed at specified fractions of 30s (see Table 33).  
For example, when CBDUTY is set to 1hr, CBTIMER is  
incremented in 3.750s steps at the end of the E/O/M cycle.  
Cell-Balancing Expiration Timer Summary  
In summary, the implementation of the CBTIMER is  
shown in Figure 44.  
Table 33. Emergency-Discharge Mode  
FUNCTION  
REGISTER FIELD  
CONFIGURATION  
BEHAVIOR  
Switches on for 6.25% for 30s (1.875s per 30s)  
Switches on for 12.5% for 30s (3.750s per 30s)  
0x0  
0x1  
Emergency-discharge  
duty cycle  
CBDUTY[3:0]  
0xF  
Switches on for 100% for 30s (less t  
)
NONOVERLAP  
Note: It is recommended to design the external balancing current at 100% duty-cycle operation to avoid potential thermal issues.  
+0.5 x CBDUTY  
TIMEOUT  
CBTIMER  
D
Q
1 SECOND  
1 MINUTE  
1 HOUR  
=
CBEXPn  
3FFh  
CELLn TIMER EXPIRED  
CBMODE  
=
INDEFINITELY ENABLED  
(HOLDS OUTPUT LOW, NEVER EXPIRED)  
Figure 44. Cell-Balancing Expiration Timer  
Note: The CELLn time-expired output feeds into the cell-balancing stop control logic.  
Maxim Integrated │ 103  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
to the CBUVTHR in the BALAUTOUVTHR register. This  
Cell-Balancing UV Detection  
register allows for 14-bit values relating to a 305μV LSB.  
Cell balancing to a UV threshold allows for all enabled cells  
configured by BALSWEN to be individually balanced to a  
specified and uniform voltage level, as shown in Figure 45.  
When a cell reaches the UV threshold, the corresponding  
balance switch is disabled and remains in an idle state until  
reinitialized by the host.  
Optionally, the MINCELL value from the prior ADC acqui-  
sition can be used as the the desired threshold value.  
When CBUVMINCELL is disabled, the value written to  
CBUVTHR during a valid write to BALAUTOUVTHR be  
loaded to CBUVTHR. When CBUVMINCELL is enabled  
the current value in the CELL[n] register correspond-  
ing to the MINCELL address be automatically loaded  
to CBUVTHR during a valid write to BALAUTOUVTHR  
(and the content in CBUVTHR during the write be  
ignored). When the BALAUTOUVTHR register is read  
back, the current value of CBUVTHR be provided, with  
CBUVMINCELL indicating the means by which it was  
selected.  
Automated-cell balancing with CBUVTHR checking  
is only supported for unipolar cell measurements in  
locations with BALSWENn=0b1. The user must also  
ensure CELLENn=0b1 and POLARITYn=0b0 to allow the  
required measurement updates; if the measurement is not  
supported, balancing of the cell automatically ends with a  
CBUVSTATn=0b1 exit condition.  
CBUVSTATn in the BALUVSTAT register indicates the  
corresponding CELLn+1 result falls below the threshold  
specified by CBUVTHR and that cell-balancing operations  
on that cell have ended. CBUVSTAT[n] is only cleared  
when CBMODE is written to 0b000 (disabled) or when a  
new CBMODE operation is initiated through BALCTRL.  
The HVMUX and ADC signal chain is used for the bal-  
ancing measurement and threshold comparison. The  
acquisition is determined by the channels enabled in the  
BALSWEN bitfield as well as the parameters set in the  
SCANCTRL register. The achievable accuracy of the UV  
measurement will be determined by ADC accuracy speci-  
fications in the electrical characteristics. For the highest  
accuracy, calibration should be asserted prior to initiating  
balancing.  
Automated-cell balancing to a UV threshold is configured  
by setting the CBMEASEN bits within the BALCTRL  
register to 0b11. The UV threshold can be used indepen-  
dently or along side the cell-balancing timer(s) (CBEXP1  
or CBEXPn). In the case where a timer is programmed,  
it serves as a redundant mechanism to ensure that a cell  
is not over-discharged. When all cells have reached the  
UV threshold, all cel-balancing switches will be disabled  
but the cell-balancing timer runs until completion; this  
ensures that the μC can still access the device to confirm  
balancing-operation progress and exit status. To use a  
defined UV threshold, the threshold level must be written  
Note: CELL , CELL , CELL , and CELL are non-specif-  
A
B
C
D
ic cells. CELL represents the cell with the lowest starting  
A
voltage. CELL represents the cell with the highest starting  
D
voltage. In this example, CBUVTHR is the UV threshold for  
all cells and CBEXP1 is the cell-balancing expiration timer  
for auto-group Cell-Balancing mode (CBMODE=0b11x).  
The CELL UV-threshold crossings are inputs to the cell-  
N
balancing stop control logic.  
CBEXP1  
START CELL  
START CELL  
D
c
START CELL  
START CELL  
B
A
CBUVTHR  
CELL UV  
A
CELL UV  
B
CELL UV  
C
CELL UV  
D
TIME  
Figure 45. Cell-Balancing UV-Threshold Crossing  
Maxim Integrated │ 104  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
the CBIIRINIT bit should be used to initialize the IIR with  
Cell-Balancing Measurement  
the first acquisition's measurements to avoid falsely exit-  
ing the UV threshold due to the long settling response.  
How the filter behaves upon entry into an automatic or  
emergency-discharge Cell-Balancing mode thus depends  
on the CBIIRINIT setting:  
Embedded cell-balancing measurements only occur when  
requested by CBMEASEN, as indicated in Table 34.  
CBMEASEN selections are only functional in discharge  
and automated Cell-Balancing modes; this setting is  
ignored in all other modes.  
In continuation mode (CBIIRINIT=0), the current value in  
the IIR accumulators are kept (presumably from previous  
cell measurements), and cell-balancing measurements  
amended normally.  
Measurements are taken using the ADC with a fixed  
OVSAMPL=16x, SCANMODE='pyramid' to provide the  
highest accuracy measurements. All other scan param-  
eters will be set according the current SCANCTRL,  
ACQCFG, DIAGCFG, and POLARITYCTRL registers. Any  
attempt to overwrite the scan parameters during balancing  
be ignored and an ALRTRJCT condition be issued.  
In initialization mode (CBIIRINIT=1), the IIR accumulators  
are reinitialized to the first measurement taken, and fur-  
ther cell-balancing measurements are amended normally.  
CBUVTHR checking will not be enabled after the 16th  
measurement is taken (checking begins on the 17th mea-  
surement) which gives the IIR time to settle.  
Cell-Balancing IIR Filtering  
In auto-discharge and automated Cell-Balancing modes,  
the automated ADC measurements are processed  
through each of the individual cellss' IIR filter. This filter  
allows for more accurate measurements and provides  
noise immunity to maintain robust balancing performance.  
Cell-Balancing Calibration  
In automated and discharge modes, after each pair of  
even/odd cell-balancing periods, a supervisory ADC mea-  
surement can be taken (and checked against CBUVTHR,  
if enabled/applicable, see CBMEASEN). Due to the  
expected temperature rise during cell balancing, it is rec-  
ommended to allow automated-calibration sequences to  
be interleaved with the measurement acquisitions. This  
is done by programming the CBCALDLY to a non-zero  
value, which signifies how many measurement cycles are  
taken prior to a calibration being taken (see Table 35)  
In these modes, the IIR filter maintains the setting con-  
figured by the user, if enabled (IIRFC!=0b111). In the  
event that the IIR is not used in the normal application  
(IIRFC=0b111 = 8/8), the IIR filter will be enabled with  
an equivalent IIRFC=0b000 = 1/8 for use in debouncing  
measurements.  
Additionally, if the IIR filter is not used in normal applica-  
tions or has not been routinely updated using AMENDFILT,  
Table 34. Cell-Balancing Measurement Enable  
CBMEASEN[1:0]  
DESCRIPTION  
Provides the highest duty cycling by skipping all measurement operations. Only cell-balancing timer(s) are  
used to terminate cell balancing normally.  
0b0x  
0b1x  
0b11  
Enables embedded measurements for manual UV monitoring or supervision by the host processor.  
Enables embedded measurements and internal CBUVTHR checks in automated modes (checking is not  
supported in Emergency-Discharge mode).  
Table 35. Cell-Balancing Calibration Selection  
ADCCALEN  
CBCALDLY  
RESULTING OPERATION  
(APPLY CALIBRATION) (PERFORM CALIBRATION)  
ADC results are post-processed based on calibration coefficients  
obtained periodically during the cell-balancing operation.  
1 (ON)  
1 (ON)  
Non-Zero (ON)  
000 (OFF)  
ADC results are post-processed based on calibration coefficients  
obtained prior to the cell-balancing operation.  
Calibration is performed during the cell-balancing operation, but ADC  
results are based on factory defaults (not recommended).  
0 (OFF)  
0 (OFF)  
Non-Zero (ON)  
000 (OFF)  
ADC results are based on factory defaults.  
Maxim Integrated │ 105  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
The CBCALDLY settings are only functional if  
CBMEASEN=0b1x (cell-balancing measurements are  
requested); otherwise they are ignored.  
If ALRTCAL is set and calibration is enabled  
(ADCCALEN=1), the ALRTCBCAL bit will be set and  
active cell-balancing operations immediately halted to  
prevent balancing errors due to inaccurate measure-  
ments. All subsequent measurements, calibration, and  
switching cycles are skipped until the cell-balancing  
duration expires, or is otherwise aborted/restarted. The  
cell-balancing timer (CBTIMER) continues to run until the  
governing CBEXP time is reached, and HOLDSHDNL  
extensions still apply (if enabled), allowing the μC to con-  
firm exit status. Note that once ALRTCBCAL is issued,  
data in the CBUVSTAT bitfields and data fetched by  
CBSCAN requests should be considered compromised.  
A value of 0x00 (default) in the CBCALDLY bits within the  
BALDLYCTRL register disables CAL operations (only ADC  
measurement operations are performed).  
If a non-zero value is selected, the first ADC measurement  
(ADC) operation is replaced with an on-demand calibra-  
tion (CAL) operation. From that point on, this selection  
determines how often the ADC operation is automatically  
replaced with a CAL operation (to address thermal drift  
due to power dissipation during cell balancing). 0b001  
means ADC and CAL alternate every other cycle. 0b010  
means a CAL occurs once every four cycles. 0b111 (maxi-  
mum setting) means a CAL occurs once every 32 cycles.  
See Table 36 for a list of all possible settings .  
If an ALRTCAL/ALRTCBCAL condition is issued, the  
user can exit the cell-balancing operation, and attempt to  
resolve the condition. If the condition cannot be resolved,  
cell-balancing operations can be requested using factory-  
calibration defaults by setting ADCCALEN=0.  
Calibration Out-of-Range During Cell Balancing  
After a measurement or calibration is completed, the cell  
balancer checks the status of the ALRTCAL register bit to  
see if calibration is enabled (ADCCALEN=1). If ALRTCAL  
is set, it indicates that calibration is out-of-range, and that  
calibrated ADC results could be corrupted as a result.  
Transfer-Measurement Results Using CBSCAN  
The CBSCAN bit in the BALDATA[7:0] register can initi-  
ate a manual transfer of results from the IIR to the CELLn  
data registers (RDFILT is ignored, and IIR data is always  
transferred, since the IIR governs cell-balancing opera-  
tions). CBSCAN supports the readback of measurement  
results taken during automated and emergency-discharge  
Cell-Balancing modes. If CBSCAN is issued during these  
cell-balance measurements, the move will be executed  
once the sequence is completed.  
Table 36. Calibration Frequency  
CBCALDLY  
0b000  
CALIBRATION FREQUENCY  
Periodic Calibration Disabled  
2 cycles  
0b001  
CBSCAN acts as a strobe bit and therefore does not need  
to be cleared (self-clearing). Always reads logic zero.  
0b010  
4 cycles  
0b011  
8 cycles  
CBSCAN is not valid outside an automated cell-balanc-  
ing operation. If automated cell balancing is stopped, or  
when manual balancing is operational, the measurement  
scan bitfields in the SCANCTRL register must be used  
for data control in the CELLn registers.  
0b100  
12 cycles  
0b101  
16 cycles  
0b110  
24 cycles  
0b111  
32 cycles  
CYCLYE 1  
CYCLE 2  
CBCALDLY = 0b000  
Figure 46. Cell Balancing with No Calibration  
Maxim Integrated │ 106  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Cell Balancing with Calibration  
Cycle#1  
Figure 47. Cell Balancing with Calibration  
Cell-Balancing Completion  
Cycle#2  
CBCALDLY = 0b010  
CBACTIVE allows confirmation of cell-balancing opera-  
tion status. A cell-balancing operation is considered com-  
pleted normally if the CBTIMER expires (all CB modes), or  
when all enabled cells reach the programmed CBUVTHR  
limit (automatic modes only, if CBMEASEN=1b1). A cell-  
balancing operation is considered completed abnormally in  
the event of an ALRTCBCAL or ALRTCBTEMP condition.  
In summary, after the host initializes the cell-balancing  
operation, the operation is stopped by any of the following:  
Watchdog-timer expiration (CBTIMER=CBEXPn)  
Reaching the UV threshold (per cell in automatic  
mode only, if CBMEASEN=0b11)  
Thermal-fault condition (automatic and discharge  
Note: The thermal fault limits the temperature rise to a  
safe level below the maximum junction temperature of the  
device, as defined by the ALRTTEMP specification in the  
Electrical Characteristics table. For applications requiring  
maximum cell-balancing current, this can be disabled, but  
the system should take caution to ensure that the device  
is not damaged by exceeding the absolute maximum  
rated junction temperature.  
modes only, if CBTEMPEN=0b1)  
Calibration-fault condition (automatic and discharge  
modes only, if ADCCALEN=0b1)  
Aborting the operation by changing CBMODE to  
0b000 (disabled)  
Re-initiating an operation by changing CBMODE to a  
value other than 0b000  
Automatic SHDNL Control Using HOLDSHDNL  
Manual cell-balancing-mode switch activity can be tempo-  
rarily suspended for calibration or ADC measurements if  
AUTOBALSWDIS=0b1.  
To allow for timed balancing with no host interaction, the  
SHDNL pin can be pulled up to V to keep SHDNL high  
AA  
while the timers or UV detection is running, by appro-  
priately configuring the HOLDSHDNL bitfield within the  
BALCTRL[15:8] register. When enabled and engaged,  
In discharge, manual, and auto-group modes, the  
CBTIMER is stopped when it reaches CBEXP1, regard-  
less of BALSWEN settings.  
this mode activates an internal diode pullup from the V  
AA  
pin to SHDNL. This keeps the device operational, even  
if UART operation is suspended for long periods of time.  
In auto-individual modes, the CBTIMER is stopped when  
it reaches MAX(CBEXPn), regardless of BALSWENn  
settings.  
The HOLDSHDNL options have no effect in disabled or  
manual modes.  
Automatic and discharge modes are halted if temperature  
exit is enabled (CBTEMPEN=0b1) and an overtempera-  
ture fault occurs.  
In mode 0b01, the pullup will be engaged for the selected  
CBEXP1 interval for group operations, or the longest  
CBEXPn time selected for individual operations, even  
if switch activity is halted due to thermal protection  
(ALRTCBTEMP), calibration issues (ALRTCBCAL), or  
reaching the specified voltage target (CBUVTHR).  
Automatic and discharge modes are halted if  
(CBMEASEN=0b1x) and a calibration fault occurs.  
All timed modes run CBTIMER for the full duration speci-  
fied, even if actual cell-balancing operations are stopped  
due to UV or thermal-exit conditions, allowing the μC to  
confirm the exit status. Additional time for the μC to check  
exit status can be afforded using HOLDSHDNL options.  
Maxim Integrated │ 107  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
MANUAL CELL-BALANCING  
MODES  
AUTOBALSWDIS  
MEASUREMENT IN  
PROGRESS  
(TIMER NOT EXPIRED) &&  
(UV THRESHOLD NOT CROSSED) &&  
(THERMAL ALERT NOT TRIPPED) &&  
(ADC NOT MEASURING)  
TIMER ENABLED  
CELLN TIMER EXPIRED  
AUTOMATIC MODE ENABLED  
UV THRESHOLD ENABLED  
CELLn UV THRESHOLD CROSSED  
BALSWN  
BALSWEN[n]  
(CELL-BALANCING THERMAL-EXIT ENABLE)  
CBTEMPEN  
(THERMAL ALERT TRIPPED)  
ALRTTEMP  
ENABLE CELLn BALANCING SWITCH IFF  
ABOVE LOGIC IS TRUE && BALSWENN = 1  
Figure 48. Cell-Balancing Stop Control  
In mode 0b10, the pullup will be engaged for the selected  
CBEXP1 interval for group operations, or the longest  
CBEXPn time selected for individual operations, even  
if switch activity is halted due to thermal protection  
(ALRTCBTEMP), calibration issues (ALRTCBCAL), or  
reaching the specified voltage target (CBUVTHR). After  
CBTIMER expires, HOLDSHDNL continues to be held for  
the larger of 5 minutes or 6.25% of the relevant CBEXPn  
interval. If CBEXPn timing is disabled/infinite (3FFh),  
SHDNL is held until removed by a write to BALCTRL.  
V
AA  
ENABLE SHDNL PULLUP  
SHDNL  
In mode 0b11, the pullup will be engaged until removed  
by a write to BALCTRL.  
1nF  
10MΩ  
(C  
)
SHDNL  
If HOLDSHDNL=0b1x, CBTIMER reads back the gov-  
erning CBEXP time for the duration of the extended  
hold interval, allowing the μC to confirm the requested  
balancing operation has run to completion. In modes  
HOLSDSHDNL=0b1x, the hold behavior can be removed  
after operations are completed and the exit status has  
been confirmed by writing CBMODE to disabled, allowing  
the device to power down.  
Figure 49. SHDNL Pullup Control  
Maxim Integrated │ 108  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Cell-Balancing Switches  
Example: Autonomous-Cell Balancing by Time  
The cell-balancing current is limited by the external bal-  
ancing resistance, R , and the internal balancing-  
Autonomous-cell balancing can be commanded within  
the MAX17853 to enable balancing while the host micro-  
controller enters a sleep state. The following procedure  
illustrates how autonomous-cell balancing is invoked with  
the primary stop mechanism as a timer:  
BALANCE  
switch resistance (R ). See Figure 50. Cell-balancing  
SW  
switches are internally controlled with even/odd switching  
sequences in auto/manual modes, or independently in  
Emergency-Discharge mode. Fault detection is described  
in the Diagnostics section.  
1) Host calculates SOC for each of the individual cells.  
2) Host determines which cells to balance and the  
associated balancing time.  
Cell-Balancing Current  
The cell-balancing current is limited by package power  
dissipation, average die temperature, average duty cycle,  
and the number of switches conducting current at any  
one time. The system designer must carefully control  
the device power dissipation by selecting a balancing  
3) Host programs balancing channels using  
BALSWEN[13:0].  
4) Host programs effective balancing current.  
Effective balancing current = V  
/(2 x  
CELLn  
R
) x CBDUTY[7:4]  
BALANCE  
current resistance (R  
) to ensure the die and  
BALANCE  
package temperature are below the absolute maximum  
package rating and neither the device thermal-shutdown  
threshold or the ADC measurement accuracy is impacted.  
The maximum per-switch balancing current for seven  
switches concurrently enabled are shown in Figure 51 for  
an assumed 10-year device lifetime.  
5) Host programs CBEXP1–CBEXP14 based on the  
effective balancing current and SOC.  
6) Host programs HOLDSHDNL to determine shutdown  
behavior at completion of cell balancing.  
7) Host initiates balancing using CBMODE  
"auto-individual cell balancing by second" or  
"auto-individual cell balancing by minute."  
TO CELL  
N+1  
SENSE  
WIRE  
C(N)  
TO HVMUX  
R
FILTER  
C
FILTER  
R
BALANCE  
TO ALTMUX  
BALSWN  
HV  
SW(N)  
BALANCIN  
G SWITCH  
(N)  
CELL N  
R
BALFILTER  
R
BALANCE  
SW(N-1)  
TO ALTMUX  
TO HVMUX  
SENSE  
WIRE  
C(N-1)  
AGND  
R
FILTER  
C
FILTER  
TO CELL N-1  
Figure 50. Internal Cell-Balancing Switches  
Maxim Integrated │ 109  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Figure 51. Typical Balancing-Current Performance  
5) Host programs CBEXP1–CBEXP14 based on the  
Example: Autonomous-Cell Balancing  
with Programmable UV Threshold  
effective balancing current and balancing time  
calculation.  
Autonomous-cell balancing controlled through program-  
mable UV thresholds can be commanded within the  
MAX17853 to enable balancing while the host micro-  
controller enters a sleep state. The following procedure  
illustrates how balancing is invoked, with the primary stop  
mechanism configured as a voltage measurement and  
a secondary stop mechanism as a programmable timer.  
6) Host programs CBUVTHR or CBUVMINCELL to  
program the UV measurement stop threshold.  
7) Host programs CBMEASEN as "embedded ADC/  
CAL measurements enabled, CBUVTHR checking  
enabled."  
8) Host programs CBCALDLY to force measurement  
calibration to account for temperature rise from  
balancing  
1) Host calculates SOC for each of the individual cells.  
2) Host determines which cells to balance and the  
associated balancing time:  
Calibration choice should be chosen based on the  
thermal time constant of the board.  
Timer is a secondary stop mechanism and should  
have additional margin applied to not interact with  
primary UV measurement stop threshold.  
9) Host programs HOLDSHDNL shutdown behavior at  
completion of cell balancing  
3) Host programs balancing channels using  
BALSWEN[13:0].  
10) Host initiates balancing using CBMODE as  
"auto-individual cell balancing by second" or  
"auto-individual cell balancing by minute."  
4) Host programs effective balancing current:  
Effective balancing current = V  
/(2 x  
CELLn  
R
) x CBDUTY[7:4]  
BALANCE  
Maxim Integrated │ 110  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Interface  
Interface Options  
The MAX17853 supports two different interfaces to con-  
trol the data-acquisition system. The applied interface is  
configured using the UARTSEL pin. Drive this pin exter-  
ALERTIN  
RXU  
TXU  
nally by applying a pullup resistor to V to enable UART,  
AA  
MAX1785x  
or a pulldown resistor to AGND to enable SPI. This inter-  
face flexibility allows one device to serve multiple battery  
applications for high-voltage and low-voltage systems, but  
it cannot dynamically change between them both.  
ALERTOUT  
RXL  
TXL  
UART Interface  
ISOLATION  
ALERTIN  
The Battery-Management UART Protocol allows up to 32  
devices to be independently addressed in a daisy-chain  
fashion, as shown in Figure 52. The host initiates all com-  
munication with the daisy-chained devices through a UART  
interface such as the MAX17841B. The UART can be  
configured to support a variety of flexible implementations  
depending on the application requirement. The configura-  
tions, as defined using UARTCFG, are shown in Table 37:  
RXU  
TXU  
RXL  
MAX1785x  
ALERTOUT  
ISOLATION  
TXL  
Single-UART Interface with External Loopback  
When UARTCFG is configured for single-UART with  
external loopback, the data flow is always unidirectional  
from the host, up the daisy-chain (Up path), and then  
loops back down the daisy-chain (Down path) to the host,  
as shown in Figure 52.  
ISOLATION  
ISOLATION  
In the Up path, each device first receives data at its lower  
Rx port and immediately retransmits data from its upper Tx  
port to the lower Rx port of the next device. The last device  
uses an external loopback-differential cable to transfer  
data from its upper Tx port directly into its upper Rx port,  
then immediately retransmits the data from its lower Tx  
port to the upper Rx port of the next down-stack device.  
The Down path then acts as a pass through, buffering and  
retransmitting the data. It does not act on any commands  
in this configuration.  
MAX17841  
MICROPROCESSOR/MICROCONTROLLER  
The external loopback has two advantages, it is quicker  
to determine device count for applications where the host  
does not assume what the device count is, and it helps  
to match the supply current of the last device to that of  
the other daisy-chained devices (because the hardware  
configuration is identical).  
Figure 52. Single UART with External Loopback  
Table 37. UART Configurations  
UARTCFG  
0b00  
UART CONFIGURATION  
Single-UART Interface with External Loopback  
Single-UART Interface with Internal Loopback  
Single-UART Interface with Differential Alert Interface  
Dual-UART Interface  
UART UP PATH  
Active  
UART DOWN PATH  
Inactive (Buffered/Pass Through)  
Inactive (Buffered/Pass Through)  
Differential Alert  
0b01  
Active  
0b10  
Active  
0b11  
Active  
Active  
Maxim Integrated │ 111  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Single UART with Internal Loopback  
Single UART with internal loopback (UARTCFG=0b01)  
routes the upper-port transmit data internally to the upper-  
port receiver. This can be used to configure the top device  
in the daisy-chain to prevent the need for external com-  
ponents and wire connections. Additionally, this mode is  
useful to diagnose the location of any daisy-chain signal  
breaks. This is done by enabling the internal-loopback  
mode on the first device, checking communication, then  
moving the loopback mode to the next device and con-  
tinuing up the stack until communication is lost.  
ALERTIN  
RXU  
TXU  
MAX1785x  
ALERTOUT  
RXL  
TXL  
Changing the UART configuration to single UART with  
internal loopback immediately changes that device's  
upper-port configuration so the signal is routed internally  
from the upper transmitter to the upper receiver, while  
external signals present on the upper-port receivers' input  
pins are ignored; therefore, when UARTCFG is written  
to 0b01, the WRITE command forwarded in the Up path  
is interrupted in the down-stack direction, interrupting its  
return to the host. To verify if the operation was success-  
ful, issue this command twice. If the MAX17841B inter-  
face is used, its receive buffer should be cleared before  
changing UARTCFG, and cleared again after changing  
the loopback configuration because the communication  
was interrupted.  
ALERTIN  
RXU  
TXU  
RXL  
MAX1785x  
ALERTOUT  
TXL  
ISOLATION  
ISOLATION  
ISOLATION  
Dual-UART Interface  
If the end application requires higher data throughput  
or a redundant communication path for safety, a dual-  
UART-interface configuration can be utilized by writing  
UARTCFG=0b11. When configured, the Down path acts  
as an independent UART path that enables simultaneous  
read processing from both UART paths. This essentially  
doubles the effective interface rate to ~4Mbps. In the event  
of a broken interface wire, the independent UART paths  
allow uninterrupted access to all devices in the daisy-chain  
by dynamically changing the master interface with no loss  
of functionality.  
MAX17841  
MICROPROCESSOR/MICROCONTROLLER  
Note: For this configuration to be utilized, both hardware  
and software configurations should match.  
Figure 53. Single UART with Differential Alert Interface  
Maxim Integrated │ 112  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
By default, the Down-path UART operates as a slave  
device and as such, has no response to a WRITE or  
WRITEALL command. The slave interface only responds  
to the READ, READALL, and READBLOCK commands. If  
a WRITE command is issued on the slave UART, the write  
is ignored and passed through to the next device in the  
daisy-chain, eventually returning to the MAX17841. Each  
device in the daisy-chain asserts its ALRTDUALUART bit in  
the STATUS2 register to indicate that a valid WRITE com-  
mand was received but not acted upon. This bit remains  
set until cleared by the master interface.  
ALERTIN  
RXU  
TXU  
MAX1785x  
ALERTOUT  
RXL  
TXL  
Configuration of the master is performed using  
the UPHOST or DOWNHOST commands; iden-  
tification of the master is performed by reading the  
UARTHOST bit. See the Battery-Management UART  
Protocol Commands section.  
ALERTIN  
RXU  
TXU  
RXL  
MAX1785x  
ALERTOUT  
TXL  
Dual-UART Master Configuration  
ISOLATION  
ISOLATION  
ISOLATION  
ISOLATION  
If the upstream UART path cannot communicate due to  
a failure condition, the downstream UART path can reini-  
tialize itself as the master through a DOWNHOST UART  
command packet issued by the host. This allows the  
downstream path to have full read and write capability. The  
upstream path then hands over master functionality and  
configures itself as a slave. If the upstream path regains  
functionality, it is able to only issue READ commands,  
unless it reinitializes itself as the master using the UPHOST  
command.  
MAX17841  
MAX17841  
MICROPROCESSOR/MICROCONTROLLER  
If an interface is reinitialized, the host should poll the  
UARTHOST bit to ensure that all devices within the daisy-  
chain are configured to the same master interface.  
Note: The UPHOST command is only valid on the  
upstream UART and the DOWNHOST command is only  
valid on the downstream UART. If an UPHOST command  
Figure 54. Dual-UART Interface  
Maxim Integrated │ 113  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
is issued on the downstream UART, no action is taken  
and the ALRTDUALUART bit will be set.  
propagates through the last device in the daisy-chain. See  
Figure 55 and Figure 56 for an example of the timing con-  
siderations. The master UART path will not prevent this  
interaction and should be handled by the host.  
Dual-UART Master/Slave Interaction  
The upstream and downstream UART timing should be  
synchronized by the host controller to avoid potentially  
reading data from the prior acquisition. This may occur  
when the master issues a WRITE command and the slave  
attempts to read the data before the entire data packet  
Similarly, the UPHOST and DOWNHOST commands  
should not be sent simultaneously to avoid an unknown  
state to the host controller. The host controller will not  
be able to diagnose the incorrect state by reading the  
t
ACQUISITION_DEVIC  
E1  
t
ACQUISITION_DEVICE  
N
WRITEALL SCAN = 1  
RECEIVED AT DEVICE 1  
WRITEALL SCAN = 1  
RECEIVED AT DEVICE 2  
WRITEALL SCAN = 1  
RECEIVED AT DEVICE N  
t
PROP  
t
N
PROP x  
t
t
PROP  
PROP  
READALL: CH1  
ISSUED AT UP PATH  
READALL: CH2  
ISSUED AT DOWN PATH  
READALL: CH3  
ISSUED AT UP PATH  
READALL: CH4  
ISSUED AT DOWN PATH  
Figure 55. Dual-UART Master/Slave Interaction (Timing Considerations)  
READALL CH 1  
READALL CH 1  
READALL CH 1  
WRITEALL  
WRITEALL  
WRITEALL  
ST  
ND  
TH  
ST  
(1 DAISY-CHAIN)  
(2 DAISY-CHAIN)  
(N DAISY-CHAIN)  
(1 DAISY-CHAIN)  
ND  
TH  
(2 DAISY-CHAIN)  
(N DAISY-CHAIN)  
MASTER  
UART  
T
1
T
0
t
t
PROP  
PROP  
T
PROP  
T
PROP  
SLAVE  
UART  
T
2
t
HOST_DELAY  
t
t
PROP  
PROP  
READALL CH 3  
READALL CH 2  
READALL CHANNEL 2  
ST  
ND  
(1 DAISY-CHAIN)  
(2 DAISY-CHAIN)  
TH  
(N DEVICE  
Figure 56. Dual-UART Command Timing  
Maxim Integrated │ 114  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
UARTHOST bit, or by invalid commands signified by the  
ALRTDUALUART bit.  
provides a balanced signal (50% duty cycle) that ensures  
charge neutrality on the isolation capacitors.  
UART Ports  
UART Transmitter  
Two UART ports are utilized, a lower port (RXL/TXL) and  
an upper port (RXU/TXU). Each port consists of a differ-  
ential line driver and differential line receiver. DC-blocking  
capacitors or transformers can be used to isolate daisy-  
chained devices operating at different common-mode  
voltages. During communication, the character encoding  
When no data is being transmitted by the UART, the  
differential outputs must be driven to a common level  
to maintain a neutral charge difference between the  
AC-coupling capacitors or to avoid saturation of the  
isolation transformers. In the default idle mode (low-Z),  
the transmitter drives both outputs to a logic-low level  
to balance the charge on the capacitors; this also works  
well with transformer coupling. The high-Z idle mode  
(TXLIDLEHIZ, TXUIDLEHIZ=0b1) places the TXn pins  
in a high-Z state during time periods where the UART  
isinactive, which can be desirable to minimize the effects  
of charging and discharging the isolation capacitors. The  
idle mode for the upper and lower ports can be controlled  
independently through the TXUIDLEHIZ and TXLIDLEHIZ  
configuration bits.  
V
, V  
DDL2 DDL3  
TX[U,L]IDLEHIZ  
(UART STATE = IDLE?)  
DRIVE HIGH  
DRIVE LOW  
UART Receiver  
TX[U,L][P,N]  
The UART receiver has a wide common-mode input  
range to tolerate harsh EMC conditions. It can operate in  
differential mode or single-ended mode (see Table 38). By  
default, the UART receivers are configured for differential  
mode. In single-ended mode, the RXP input is grounded  
and the RXN input receives inverse data, as described in  
the Applications Information section (see Figure 106). In  
single-ended mode, the receiver input threshold is nega-  
ESD CLAMP  
GNDL2, GNDL3  
Figure 57. UART Transmitter  
tive, so a zero differential voltage (V  
, V  
RXP RXN  
= 0V) is  
30kΩ  
4pF  
HIGH COMPARATOR  
V
/60  
DDL  
1.18MΩ  
RXP  
41.6kΩ  
ZERO-CROSSING  
COMPARATOR  
VCM = V /3  
DDL  
GNDL  
DIGITAL CORE  
41.6kΩ  
LOW COMPARATOR  
1.18MΩ  
RXN  
V /60  
DDL  
4pF  
30kΩ  
Figure 58. UART Receiver  
Maxim Integrated │ 115  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
considered to be a logic one and a negative differential  
voltage (V high), a logic zero.  
in Figure 59. V  
SHDNL  
charge pump then self-regulates to the V  
can maintain V  
SHDNL  
durations. In the event coummication is haulted, the SHDNL  
pin voltage falls, with a 10ms time constant (assuming only  
a 1nF capacitor).  
reaches 1.8V in 200μs (typ). The  
and  
even with the UART idle for long  
RXN  
SHDNLIMIT  
SHDNL Charge Pump  
The SHNDL input can be driven externally or can be con-  
trolled using UART communication only. Using a differential  
UART configuration, the signaling on the lower-port receiver  
drives an internal charge pump that charges up the external  
1nF capacitor connected to the SHDNL input, as shown  
DCIN  
C40  
15pF  
C42  
2nF, 600V  
R40  
4.7kΩ  
RXLP/RXUP  
RXLN/RXUN  
FROM  
DEVICE(N-1)  
TRANSMITTER  
CIRCUIT  
TO RECEIVER  
TO RECEIVER  
C43 2nF  
600V  
R41  
4.7kΩ  
C41  
15pF  
R43  
100kΩ  
R42  
100kΩ  
GNDL  
SHDNL  
C44 1nF  
(CSHDNL)  
FORCEPOR  
10MΩ  
Figure 59. SHDNL Charge Pump  
Maxim Integrated │ 116  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Note: Both upper and lower UART Rx ports are enabled  
with charge pumps, allowing for communication on either  
the Up or Down path to initialize the device.  
ALRTCOMMSEL1 (for the lower port) in the FMEA1  
register are set after the STATUS1:ALRTRST has  
been cleared  
ALRTCOMMSEU2 (for the upper port) and  
ALRTCOMMSEL2 (for the lower port) in the FMEA1  
register are set before the STATUS1:ALRTRST has  
been cleared  
UART Rx Modes  
During the first preamble received after a reset, the  
receiver automatically detects if the received signal is  
single-ended; if valid, the receiver is appropriately con-  
figured in single-ended mode. To be detected, the device  
must be reset for any change in the receiver hardware  
configuration. Device reset is signaled to the host through  
the ALRTRST status bit. In normal operation, this bit is  
cleared after the first HELLOALL command.  
See Table 38 for a list of the conditions under which  
ALRTCOMMSEU1 and ALRTCOMMSEL1 are set. If the  
RXP input is open circuit, the Rx-mode detection places  
the UART in single-ended mode so the port can still oper-  
ate despite reduced noise immunity. The host can diag-  
nose this condition by checking the ALRTCOMMSELn  
and ALRTCOMMSEUn bits. Any other faults result in  
communication errors.  
Receiver mode is indicated using the following bits:  
ALRTCOMMSEU1 (for the upper port) and  
Table 38. UART Rx Modes (Post ALRTRST Being Cleared)  
STATUS1:ALRTRST  
RXP  
Connected to data Connected to inverse data  
Grounded Connected to inverse data  
RXN  
ALRTCOMMSEX1  
Rx MODE  
x
0
1
Differential mode (normal)  
Single-ended mode (normal)  
0
Single-ended mode  
(low noise immunity)  
0
Open circuit (fault) Connected to inverse data  
Connected to data Open-circuit (fault)  
1
Differential mode  
(communication errors)  
x
0
0
1
Don't care  
Don't care  
Table 39. UART Rx Modes (Prior to ALRTRST Being Cleared)  
STATUS1:ALRTRST  
RXP  
Connected to data Connected to inverse data  
Grounded Connected to inverse data  
RXN  
ALRTCOMMSEX2  
Rx MODE  
x
0
1
Differential mode (normal)  
Single-ended mode (normal)  
1
Single-ended mode  
(low noise immunity)  
1
Open circuit (fault) Connected to inverse data  
Connected to data Open circuit (fault)  
1
Differential mode  
(communication errors)  
x
0
0
0
Don't care  
Don't care  
Note: ALRTCOMMSEU1 and ALRTCOMMSEL1 both read 0b0 if STATUS1:ALRTRST=0b1.  
ALRTCOMMSEU2 and ALRTCOMMSEL2 both read 0b0 if STATUS1:ALRTRST=0b0.  
Maxim Integrated │ 117  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Table 39 lists conditions under which ALRTCOMMSEU2  
and ALRTCOMMSEL2 are set.  
incoming Up-path signal. With this adaptive transmit tim-  
ing, the interface between a conventional UART node and  
a Maxim proprietary battery-monitoring-system node has a  
tolerance for baud-rate mismatch much higher than that of  
the conventional receiver port alone, providing a high level  
of timing margin for direct-connection applications.  
Baud-Rate Detection  
The UART can operate at a baud rate of 2Mbps, 1Mbps,  
or 0.5Mbps. The baud rate is controlled by the host and  
is automatically detected by the device when the first  
preamble character is received after reset. If the host  
changes the baud rate, it must issue a reset and resend a  
minimum of 2 x n preambles at the new baud rate (where  
n = number of devices). The 2 x n preambles are neces-  
sary because the transmitter for the upper port does not  
transmit data until the lower-port receiver has detected  
the baud rate; likewise, the transmitter on the lower port  
does not transmit data until the upper-port receiver has  
detected the baud rate. A simple way to do this is for the  
host to start transmitting preambles and stop when a pre-  
amble has been received back at the host Rx port.  
Battery-Management UART Protocol  
The Maxim Battery-Management UART Protocol uses the  
following features to maximize the integrity of its commu-  
nications:  
All transmitted Manchester-encoded data bytes, where  
each data bit is transmitted twice with the second bit  
inverted (G.E. Thomas convention)  
Every transmitted character contains 12 bits that  
include a start bit, a parity bit, and two stop bits  
Read/write packets contain a CRC-8 packet-error  
checking (PEC) byte  
Sending 2 x n preambles completes baud detection on all  
n devices in the chain. To receive a preamble back at the  
host Rx port, (2 x n) + 1 preambles must be sent.  
Each packet is framed by a preamble character and a  
stop character  
Read packets contain a data-check byte to verify the  
Note: Baud rate for dual-UART configuration is determined  
during the initialization sequence of either the Up path or  
Down path. Both paths operate at the same communica-  
tion rate.  
integrity of the transmission  
The protocol is also designed to minimize power con-  
sumption by allowing slave devices to shut down if the  
UART is idle for a specified period of time. The host must  
periodically transmit data to prevent shutdown, unless the  
SHDNL input is driven externally.  
Tx Adaptive Mode for Single-Ended Mode  
To overcome the error-tolerance limitation when con-  
necting a MAX17853 to a conventional UART port, an  
adaptive transmit-timing feature has been added. The  
feature works by monitoring the location of the incoming  
Manchester transitions at the RXL port, with respect to the  
local clock, to calculate a correction factor. This correc-  
tion factor is then applied to the TXL port so the outgoing  
Down-path signal has similar timing characteristics to the  
Command Packet  
A command packet is defined as a sequence of UART  
characters originating at the host. Each packet starts with  
a preamble character, followed by data characters, and  
ending with a stop character, as shown in Figure 60. After  
IDLE  
IDLE  
PREAMBLE  
MESSAGE  
STOP  
TXP-TXN  
Figure 60. Command Packet  
Maxim Integrated │ 118  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
sending a packet, the host either goes into idle mode or  
sends another packet.  
Data Characters  
Each data character contains a single-nibble (4-bit) pay-  
load, so two characters must be transmitted for each  
byte of data. All data is transmitted least-significant bit,  
least-significant nibble, and least-significant byte first.  
See Table 40, and Figure 62 for an example. The data  
itself is Manchester encoded, which means that each data  
bit is followed by its complement. If the UART detects a  
Manchester-encoding error in any received data charac-  
ter, it sets the ALRTMANUP or ALRTMANDN bit in the  
STATUS2 register. All single-UART configurations set  
Preamble Character  
The preamble is a framing character that signals the  
beginning of a command packet. It is transmitted as an  
unencoded 15h, with a logic-one parity bit and a balanced  
duty cycle. If any bit(s) other than the stop bits deviate  
from the unique preamble sequence, the character is not  
interpreted as a valid preamble, but rather as a data char-  
acter. See Figure 61 for an example.  
OPTIONAL IDLE  
OPTIONAL IDLE  
S
1
0
1
0
1
0
0
0
E=1  
P
P
IDLE DISABLE  
IDLE ENABLE  
Figure 61. Preamble Character  
DATA NIBBLE = 0H  
0
0
0
0
OPTIONAL IDLE  
OPTIONAL IDLE  
S
0
1
0
1
0
1
0
1
E=0  
P
P
IDLE DISABLE  
IDLE ENABLE  
DATA NIBBLE = AH  
0
1
0
1
OPTIONAL IDLE  
OPTIONAL IDLE  
S
0
1
1
0
0
1
1
0
E=0  
P
P
IDLE DISABLE  
IDLE ENABLE  
Figure 62. Data Characters  
Maxim Integrated │ 119  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
the ALRTMANUP bit. In a dual-UART configuration, a  
Manchester error in the Up path sets the ALRTMANUP,  
and a Manchester error in the Down path sets the  
ALRTMANDN.  
is always transmitted as a logic zero. If the UART detects  
a parity error in any received data character, it sets the  
ALRTPARUP or ALRTPARDN bit in the STATUS2 regis-  
ter. All single-UART configurations set the ALRTPARUP  
bit. In a dual-UART configuration, a parity error in the Up  
path sets ALRTPARUP and a parity error in the Down  
path sets ALRTPARDN.  
The parity is even, meaning the parity bit’s value should  
always result in an even number of logic-one bits in the  
character. Given the data is Manchester encoded and  
there are two stop bits, the parity bit for data characters  
Stop Character  
Table 40. Data Character Description  
BIT  
1
NAME  
Start  
SYMBOL  
DESCRIPTION  
First bit in character, always logic zero  
Least significant bit of data nibble (true)  
Least significant bit of data nibble (inverted)  
Data bit 1 (true)  
S
2
Data0  
Data0/  
Data1  
Data1/  
Data2  
Data2/  
Data3  
Data3/  
Parity  
Stop  
3
4
5
Data bit 1 (inverted)  
6
Data bit 2 (true)  
7
Data bit 2 (inverted)  
8
Most significant bit of data nibble (true)  
Most significant bit of data nibble (inverted)  
Always logic zero (even parity)  
Always logic one  
9
10  
11  
12  
E
P
P
Stop  
Last bit in character, always logic one  
OPTIONAL IDLE  
OPTIONAL IDLE  
S
0
0
1
0
1
0
1
0
E=1  
P
P
IDLE DISABLE  
IDLE ENABLE  
Figure 63. Stop Character  
Maxim Integrated │ 120  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
The stop character is a framing character that signals the  
end of a command packet (see Figure 63). It is transmitted  
as an unencoded 54h, with a logic-one parity bit and a bal-  
anced duty cycle.  
packet and remains in idle mode until either the next  
command packet is sent or it goes into keep-alive mode,  
sending periodic stop characters to prevent the daisy-  
chained device(s) from going into shutdown.  
UART Idle Mode  
UART Communication Mode  
In the low-Z (default) idle mode, the transmitter outputs  
are both driven to 0V, as shown in Figure 64. In the high-  
Z idle mode, the transmitter outputs are not driven by the  
UART. The MAX17841B interface automatically places its  
transmitter in idle mode immediately after each command  
When transitioning from idle mode to communication  
mode, the TXP pin must be pulled high (logic one) prior  
to signaling the start bit (logic zero), as shown in Figure  
64. The duration of the logic one is minimized to maintain  
a balanced duty cycle while still meeting the timing speci-  
fication. When transitioning from the stop bit back to idle  
mode, the delay, if any, is also minimized.  
IDLE  
PREAMBLE  
IDLE  
TXNP  
TXNN  
TSTSU  
TXNP-TXNN  
Figure 64. Communication Mode  
Table 41. Data Types  
DATA TYPE  
DESCRIPTION  
Command byte  
Register address  
Register data  
A byte defining the command packet type, generally either a READ or a WRITE  
A byte defining the register address to be read from or written to  
Register data bytes being read from or written to  
Data-check byte  
An error and alert-status byte sent and returned with all reads  
Packet-error checking byte A packet-rrror checking (PEC) byte sent and returned with every packet except HELLOALL  
Alive-counter  
Fill byte  
A byte functioning as a device counter on all reads and writes, if ALIVECNTEN=1  
Bytes transmitted in READALL and READBLOCK command packets (for clocking purposes only)  
Maxim Integrated │ 121  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
device address is encoded in the command byte. The  
device ignores those commands containing a device  
address other than its own.  
Data Types  
The Battery-Management UART Protocol employs several  
different data types, as described in Table 41.  
Register Addresses  
Command Bytes  
All register addresses are single-byte quantities and are  
defined in the Register Map. In general, if the register  
or device address in a received command is not a valid  
address for the device, the device ignores the read or  
write and simply passes through the packet to the next  
device.  
The Battery-Management UART Protocol supports eight  
command types, summarized in Table 42.  
Command-Byte Encoding  
Command-byte encoding is described in Table 43. For  
READDEVICE and WRITEDEVICE commands, the  
Table 42. Command Packet Types  
DATA-  
CHECK  
ALIVE-  
COUNTER  
PACKET SIZE  
(CHARACTERS)  
COMMAND  
DESCRIPTION  
PEC  
Writes a unique device address to each device in the  
daisy-chain. Required for system initialization.  
HELLOALL  
WRITEALL  
No  
No  
No  
8
Writes a specific register in all devices.  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
14  
14  
WRITEDEVICE Writes a specific register in a single device.  
READALL  
Reads a specific register from all devices.  
Reads a specific register from a single device.  
Reads a set of registers from a single device.  
Yes  
Yes  
Yes  
12 + (4z)  
16  
READDEVICE  
READBLOCK  
14 + (4* BS)  
Makes the Up path the master in a dual-UART  
configuration. Sets bitfield UARTHOST=0b1.  
UPHOST  
No  
No  
Yes  
Yes  
No  
No  
10  
10  
Makes the Down path the master in a dual-UART  
configuration. Sets bitfield UARTHOST=0b0.  
DOWNHOST  
Note: z = Total number of devices, ALIVECNTEN=1, packet size includes framing characters.  
*Block size[4:0] = 132, which is the number of registers read.  
Table 43. Battery-Management Protocol (Command-Byte Encoding)  
COMMAND  
HELLOALL  
BYTE*  
57h  
21h  
04h  
02h  
05h  
03h  
06h  
09h  
08h  
7
0
6
1
5
0
4
1
3
0
2
1
0
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
0
1
1
0
0
1
1
0
1
0
ALERTPACKET  
WRITEDEVICE  
WRITEALL  
0
0
1
0
0
DA4  
0
DA3  
0
DA2  
0
DA1  
0
DA0  
0
READDEVICE  
READALL  
DA4  
0
DAe  
0
DA2  
0
DA1  
0
DA0  
0
READBLOCK  
DOWNHOST  
UPHOST  
BS4  
0
BSe  
0
BS2  
0
BS1  
0
BS0  
1
0
0
0
0
1
*Assumes DA[4:0]=0x00 where DA[4:0] is the device address in the ADDRESS register.  
BS[4:0] = Block size (132).  
Maxim Integrated │ 122  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
indicates a POR condition, and thus cannot be masked.  
Register Data  
STATUS1,5:ALRTPEC is not included intentionally in the  
data-check byte.  
All registers are 16-bit words (2 data bytes) and are  
defined in the Register Map.  
PEC Byte  
Data-Check Byte  
The PEC byte is a CRC-8 packet error check (PEC)  
sent by the host with all READ and WRITE commands.  
If any device receives an invalid PEC byte, it sets the  
ALRTPECUP, or ALRTPECDN bit in the STATUS2 regis-  
ter, and also the ALRTPEC bit in the STATUS1 register.  
All single-UART configurations set the ALRTPECUP bit.  
In a dual-UART configuration, a PEC error in the Up path  
sets ALRTPECUP, and a PEC error in the Down path sets  
the ALRTPECDN. During any write transaction, a device  
does not execute the WRITE command internally unless  
the received PEC matches the expected calculated value.  
For READ commands, the device must return its own cal-  
culated PEC byte based on the returned data. The host  
should verify that the received PEC byte matches the cal-  
culated value and if an error is indicated, the data should  
be discarded. See the Applications Information section for  
details on the PEC calculation.  
The host uses the returned data-check byte to promptly  
determine if any communication errors occurred during  
the packet transmission and to check if alert flags are  
set in any devices, as shown in Table 44. Individual alert  
conditions can be masked out of the data-check byte  
using settings in ALRTIRQEN; however, the underlying  
alert information will not always be available for readback  
in the STATUS1 register. The data-check byte is returned  
by the READALL, READDEVICE, and READBLOCK  
commands. For READDEVICE, the data-check byte is  
updated only by the addressed device.  
The data-check byte that is sent by the host is a seed  
value normally set to 00h although non-zero values and  
can be used as a diagnostic. Each device logically ORs  
the received data-check byte with its own status and trans-  
mits it to the next device. A PEC error detected by any  
device sets the appropriate ALRTPECUP or ALRTPECDN  
in the STATUS2 register, and thus, the ALRTPEC rollup  
bit in the STATUS1 register. Also, the device sets the PEC  
error bit in the data-check byte within the associated path's  
command packet, as described below.  
Alive-Counter Byte  
The alive-counter byte is the last data byte of the  
command packets (except HELLOALL, UPHOST, and  
DOWNHOST) if the ALIVECNTEN bit is set in the  
DEVCFG1 register. The host typically transmits the alive-  
counter seed value as 00h but any value is permitted.  
For WRITEALL or READALL commands, each device  
retransmits the alive-counter incremented by one. For  
WRITEDEVICE or READDEVICE commands, only the  
Note: STATUS1,15:ALRTSCAN is a procedural notifica-  
tion bit and is not included intentionally in the data-check  
byte. It is available for inclusion in theAlert interface to sup-  
port interrupt-driven applications. STATUS1,14:ALRTRST  
Table 44. Data-Check Byte  
BIT  
7
NAME  
DESCRIPTION  
PEC ERROR  
ALRTFMEA  
PEC error detected during the current transaction on the Up/Down path issuing this bit.  
(ALRTFMEA1 & FMEA1ALRTEN) or (ALRTFMEA2 & FMEA2ALRTEN)  
6
ALRTRST or (ALRTMSMTCH & MSMTCHALRTEN) or (ALRTBLKOVST & BLKOVALRTEN)  
or (ALRTBLKUVST & BLKUVALRTEN) or  
(ALRTINTRFC & INTRFCALRTEN) or (ALRTCAL & CALALRTEN) or  
(ALRTCBAL & CBALALRTEN)  
5
ALRTSTATUS  
4
3
2
1
0
AUXOV (UT)  
AUXUV (OT)  
CELLOV  
(ALRTAUXOVST & AUXOVSTALRTEN)  
(ALRTAUXUVST & AUXUVSTALRTEN)  
(ALRTCELLOVST & CELLOVSTALRTEN)  
(ALRTCELLUVST & CELLUVSTALRTEN)  
0
CELLUV  
RESERVED  
Maxim Integrated │ 123  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
addressed device increments it. The alive-counter is not  
used in the HELLOALL, UPHOST, and DOWNHOST  
commands. If the alive-counter reaches FFh, the next  
device increments it to 00h.  
propagate to the next device until it returns to the host, at  
which point the host is able to determine the total number  
of devices in the daisy-chain for subsequent READALL,  
READDEVICE, READBLOCK commands.  
Since the alive-counter comes after the PEC byte, an  
incorrect PEC value will not affect the incrementing of  
the alive-counter byte. Also, the PEC calculation does  
not include the alive-counter byte. The host should verify  
that the alive-counter equals the original seed value + the  
number of devices, considering that if the alive-counter  
reaches FFh, the next device increments it to 00h.  
HELLOALL Operation in Dual-UART Configuration  
By default, dual-UART operation is configured with the  
primary communication path being the Up path (refer to  
the UARTCFG and UARTHOST bits in the DEVCFG1  
register for details about defaults and possible configu-  
rations), where the Up path is defined as transmission  
from the TXU port to the RXL port. The DA[4:0] bits in the  
HELLOALL command packet are incremented as they  
progress up the daisy-chain. Thus, when the HELLOALL  
is received by the host microcontroller, the DA[4:0] value  
returned is one greater than the address assigned to the  
top device.  
Fill Bytes  
In the READALL command, the host sends two fill bytes  
for each device in the daisy-chain. The fill bytes are the  
locations within the packet that are used by the device to  
place the read data. The fill-byte values transmitted by the  
MAX17841B interface alternate between C2h and D3h.  
As the command packet propagates through the device,  
the device overwrites the appropriate fill bytes with the  
register data. The device uses the ADDRESS register to  
determine which specific fill bytes in the packet to over-  
write. For a READBLOCK command, the number of fill  
bytes sent is equal to the read-data block size.  
It is recommended that the host seeds the initial address  
of the Up path at a value of 0x00. This configuration  
applies to the first address of the daisy-chain at the same  
value of the default condition of the bottom address (BA  
bits in the ADDRESS register). Thus, it is not necessary  
to write the bottom address BA[4:0] to all the devices. The  
host microcontroller should never set the bottom address  
at a value that would result in the device address exceed-  
ing 0x1F  
For a READDEVICE command, only two fill bytes are  
required since only one device responds (returning two  
data bytes). Also, fill bytes are not required for WRITE  
commands because the data received is exactly the same  
as the data retransmitted.  
Note: The device address is only stored and incremented  
in the Up path, and then passes through the Down  
path, leaving the device address unaffected. As such,  
if the hardware is configured as a single daisy-chain  
and the UART is looped back using the Down path, the  
UARTHOST configuration prevents the Down path from  
changing the device address already determined.  
Battery-Management UART  
Protocol Commands  
HELLOALL Command  
The HELLOALL command initializes the daisy-chain  
device addresses after a POR. The device addresses are  
stored in the DA[4:0] bits of the ADDRESS register with  
the highest address being 0x1F. Thus, a maximum of 32  
devices can be addressed.  
The HELLOALL command packet can also be applied  
through the Down path, where the Down path is defined  
as transmission from the TXL port to the RXU port. For  
proper operation, the host microcontroller must first send  
the DOWNHOST command through the Down path prior  
to sending the HELLOALL.  
The device address bits (DA[4:0]) in the HELLOALL com-  
mand packet are seeded by the host microcontroller. The  
command proceeds to the first device of the daisy-chain  
and is stored in that device's DA bits of the ADDRESS reg-  
ister. The first device then increments or decrements the  
HELLOALL command-packet bitfield DA[4:0] according to  
the UARTHOST configuration settling (see the HELLOALL  
Operation in Dual-UART Configuration section). Thus,  
the initial seeded value corresponds to the first device's  
address in the daisy-chain. The command continues to  
The device address in the HELLOALL command packet  
is decremented as it progresses down the daisy-chain.  
Thus, the address of the top daisy-chain (first device in  
the Down path) will be the value that is seeded in the  
DA[4:0] bits of the HELLOALL command packet. This top  
daisy-chain device proceeds to decrement the DA[4:0]  
and propagates the value down the daisy-chain. When  
the HELLOALL is received by the host microcontroller,  
the DA[4:0] value returned is one less than the address  
Maxim Integrated │ 124  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
assigned to the bottom device. The host microcontroller  
should never set the top address at a value which would  
result in a DA[4:0] decremented below 0x0.  
Note: The device address is only stored and decremented  
in the Down path and passes through the Up path leaving  
the device address unaffected (I.e., HELLOALL sent in the  
Up path with UARTHOST=1'b0).  
After the HELLOALL is processed, the TA bits (Top  
Address bits) in the ADDRESS register must be set to the  
initial DA[4:0] seeded value.  
HELLOALL Operation In a  
Single-UART Configuraiton  
In a single-UART configuration the HELLOALL is pro-  
cessed the same as in the dual-UART Up path.  
It is recommended that the host seeds the initial address  
of the Down path at a value equal to the number of  
devices in the daisy-chain, such that the bottom address  
is 0x00. This configuration ensures that whether the  
HELLOALL is sent through the Up path or Down path,  
the device address remains the same, which is ideal for  
consistency with the addressing of the READDEVICE,  
and READALL commands.  
Special considerations exist if the host desires to use  
internal loopback instead of external loopback. The first  
HELLOALL command is not returned to the host because  
the internal loopback (UARTCFG) for the top device has  
not yet been written. If the number of devices is known  
to the host, the host can use a WRITEDEVICE to set the  
internal loopback bit on the last device and then verify  
with a READALL. If the number of devices is unknown,  
the internal loopback bit must be set on the first device,  
verified and then cleared. It can then be set on the second  
device and verified, and so on incrementally until there is  
no response (end of stack). With the number of devices  
known, the loopback bit can be reset on the top device  
and all ADDRESS registers verified.  
Table 45. HELLOALL Command Packet  
HELLOALL  
Preamble  
57h  
00h  
HELLOALL Address Lock  
{0b000,DA[4:0]}  
Stop  
When a device receives a valid HELLOALL command, it  
clears the ADDRUNLOCK bit of the ADDRESS register.  
When this bit is 0, HELLOALL commands are ignored to  
Table 46. HELLOALL Up-Path Sequencing  
HELLOALL UP-PATH SEQUENCING (z = TOTAL NUMBER OF DEVICES)  
DEVICE (n) RXL DEVICE (n) TXU  
Preamble Preamble  
HOST TX  
HOST Rx  
Preamble  
57h  
Preamble  
57h  
57h  
57h  
00h  
00h  
00h  
00h  
{0b000,DA[4:0]}  
Stop  
{0b000,DA[4:0]+n-1}  
Stop  
{0b000,DA[4:0]+n}  
Stop  
{0b000,DA[4:0]+z}  
Stop  
Table 47. HELLOALL Down-Path Sequencing  
HELLOALL SEQUENCING (z = TOTAL NUMBER OF DEVICES)  
DEVICE (n) RXU DEVICE (n) TXL  
Preamble Preamble  
HOST Tx  
HOST Rx  
Preamble  
57h  
Preamble  
57h  
57h  
57h  
00h  
00h  
00h  
00h  
{0b000,ADDR[4:0]}  
Stop  
{0b000,ADDR[4:0]-(n-1)}  
Stop  
{0b000,ADDR[4:0]-n}  
Stop  
{0b000,ADDR[4:0]-z}  
Stop  
Maxim Integrated │ 125  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
prevent inadvertently changing any device address. To  
reconfigure the device address, the ADDRUNLOCK bit  
must first be set to 1, or a POR event must occur. After  
configuring the device addresses, they should be verified  
using the READALL command.  
PEC byte, it sets the ALRTPECUP or ALRTPECDN bit in  
the STATUS2 register, and also the ALRTPEC bit in the  
STATUS1 register. All single-UART configurations set the  
ALRTPECUP bit. In a dual-UART configuration, a PEC  
error in the Up path sets ALRTPECUP, and a PEC error  
in the Down path sets the ALRTPECDN.  
WRITEALL Command  
WRITEDEVICE Command  
The WRITEALL command writes a 16-bit value to a  
specified register in all daisy-chain devices. Since most  
configuration information is common to all the devices,  
this command allows faster setup than individually writing  
to each device. If the register address is not valid for the  
device, the command is ignored. The command sequence  
is shown in Table 48.  
The WRITEDEVICE command writes a 16-bit value to  
the specified register in the addressed device only. If the  
register address is not valid for the device, the command  
is ignored. The command sequence is shown in Table 49.  
The register value is written immediately after the valid  
PEC byte is received or, if NOPEC is set, after the last  
byte received. If the received PEC byte does not match  
the internal calculation, the command is not executed, but  
is still forwarded to the next device. The PEC is calculated  
from the first 4 bytes of the command starting after the  
preamble. If the addressed device receives an invalid  
PEC byte, it sets the ALRTPECUP, or ALRTPECDN bit in  
The register value is written immediately after the valid  
PEC byte is received or, if NOPEC is set, after the last  
byte received. If the received PEC byte does not match  
the internal calculation, the command is not executed,  
but is still forwarded to the next device. The PEC is  
calculated from the first 4 bytes of the command start-  
ing after the preamble. If any device receives an invalid  
Table 48. WRITEALL Sequencing (Unchanged by Daisy-Chain)  
DEVICE(n) RXL (UP PATH)  
OR RXU (DOWN PATH)  
DEVICE(n) TXU (UP PATH)  
OR TXL (DOWN PATH)  
HOST Tx  
HOST Rx  
Preamble  
02h  
Preamble  
02h  
Preamble  
02h  
Preamble  
02h  
[REG ADDR]  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[PEC]  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[PEC]  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[PEC]  
[DATA LSB]  
[DATA MSB]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
Stop  
[ALIVE]*  
Stop  
[ALIVE]*  
Stop  
Stop  
*If alive-counter mode is enabled.  
Table 49. WRITEDEVICE Sequencing (Unchanged by Daisy-Chain)  
DEVICE RXL (UP PATH)  
OR RXU (DOWN PATH)  
DEVICE TXU (UP PATH)  
OR TXL (DOWN PATH)  
HOST Tx  
HOST Rx  
Preamble  
Preamble  
Preamble  
Preamble  
{(DA[4:0]),0b100}  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[PEC]  
{(DA[4:0]),0b100}  
[REG ADDR]  
[DATA LSB]  
{(DA[4:0]),0b100}  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[PEC]  
{(DA[4:0]),0b100}  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[PEC]  
[DATA MSB]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
[ALIVE]*  
[ALIVE]*  
Stop  
Stop  
Stop  
Stop  
*If alive-counter mode is enabled.  
Maxim Integrated │ 126  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
the STATUS2 register, and also the ALRTPEC bit in the  
STATUS1 register. All single-UART configurations set the  
ALRTPECUP bit. In a dual-UART configuration, a PEC  
error in the Up path sets ALRTPECUP, and a PEC error  
in the Down path sets the ALRTPECDN. A PEC error can  
only occur in the addressed device.  
bit in the STATUS2 register, and also the ALRTPEC bit in  
the STATUS1 register. All single-UART configurations set  
the ALRTPECUP bit. In a dual-UART configuration, a PEC  
error in the Up path sets ALRTPECUP, and a PEC error  
in the Down path sets ALRTPECDN; however, the com-  
mand proceeds to the next device in the daisy-chain. A  
Manchester error immediately switches the data propaga-  
tion from read mode to write (pass-through) mode, ensur-  
ing that the Manchester error is propagated through the  
daisy-chain and back to the host.  
READALL Command  
The READALL command returns register data from the  
specified register for all daisy-chained devices. The data  
for the first device (connected to the host) is returned last.  
The command sequence is shown in Table 50 and Table  
51. If the received PEC byte does not match the calculated  
value, the UART sets the ALRTPECUP, or ALRTPECDN  
The fill-byte values transmitted by the MAX17841B inter-  
face alternate between C2h and D3h, as shown. As the  
packet propagates through the device, the device retrans-  
Table 50. READALL Command Sequencing In Single-UART or  
Dual-UART Up Path (z = Number of Devices)  
DEVICE(n)  
DEVICE(n)  
HOST Tx  
HOST Rx  
RXL  
TXU  
Preamble  
Preamble  
03h  
Preamble  
03h  
Preamble  
03h  
03h  
[REG ADDR]  
[DC] = 0x00  
[PEC]  
[REG ADDR]  
[DATA ADDR]  
[REG ADDR]  
[DATA LSB(n-1)]  
[DATA LSB(n)]  
[DATA LSB(z)] = [DATA LSB(TA)]  
[DATA MSB(z)] = [DATA MSB(TA)]  
[DATA LSB(z-1)] = [DATA LSB(TA-1)]  
[DATA MSB(z-1)] =[DATA MSB(TA-1)]  
[DATA MSB(n-1)]  
[DATA MSB(n)]  
[ALIVE]*  
[FD(1) C2h]  
[FD(1) D3h]  
[FD(2) C2h]  
[FD(2) D3h]  
...  
...  
...  
...  
...  
[DATA LSB(1)] = [DATA LSB(BA)] [DATA LSB(1)] = [DATA LSB(BA)] ...  
[DATA MSB(1)] = [DATA MSB(BA)] [DATA MSB(1)] = [DATA MSB(BA)] ...  
[DC]  
[DC]  
...  
[PEC]  
[PEC]  
...  
...  
[ALIVE]*  
[FD(1) C2h]  
[FD(1) D3h]  
...  
[ALIVE]*  
...  
...  
[FD(1) C2h]  
[FD(1) D3h]  
...  
...  
...  
[DATA LSB(1)] = [DATA LSB(BA)]  
...  
[DATA MSB(1)] = [DATA MSB(BA)]  
...  
...  
...  
[DC]  
[FD(z) C2h]  
[FD(z) D3h]  
Stop  
[FD(z-n) C2h]  
[FD(z-n) D3h]  
Stop  
[FD(z-n-1) C2h]  
[FD(z-n-1) D3h]  
Stop  
[PEC]  
[ALIVE]*  
Stop  
12+(4 x z) characters 12+(4 x z) characters  
12+(4 x z) characters  
12+(4 x z) characters  
*If alive-counter mode is enabled.  
Maxim Integrated │ 127  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Table 51. READALL Command Sequencing In Dual-UART Down Path  
(z = Number of Devices)  
DEVICE(n)  
DEVICE(n)  
HOST Tx  
HOST Rx  
RXU  
TXL  
Preamble  
03h  
Preamble  
03h  
Preamble  
03h  
Preamble  
03h  
[REG ADDR]  
[REG ADDR]  
[DATA ADDR]  
[REG ADDR]  
[DATA LSB(z)] = [DATA  
LSB(BA)]  
[DC] = 0x00  
[DATA LSB(n-1)]  
[DATA LSB(n)]  
[DATA MSB(z)] = [DATA  
MSB(BA)]  
[PEC]  
[DATA MSB(n-1)]  
[DATA MSB(n)]  
[DATA LSB(z-1)] = [DATA  
LSB(BA +1)]  
[ALIVE]*  
...  
...  
...  
...  
[DATA MSB(z-1)] = [DATA  
MSB(BA +1)]  
[FD(1) C2h]  
[FD(1) D3h]  
[FD(2) C2h]  
[DATA LSB(1)]= [DATA  
LSB(TA)]  
[DATA LSB(1)]= [DATA  
LSB(TA)]  
...  
...  
[DATA MSB(1)] =[DATA  
MSB(TA)]  
[DATA MSB(1)] =[DATA  
MSB(TA)]  
[FD(2) D3h]  
[DC]  
[DC]  
...  
...  
...  
...  
...  
...  
...  
[PEC]  
[PEC]  
[ALIVE]*  
[FD(1) C2h]  
[ALIVE]*  
[FD(1) C2h]  
[DATA LSB(1)] = [DATA  
LSB(TA)]  
...  
...  
[FD(1) D3h]  
...  
[FD(1) D3h]  
...  
[DATA MSB(1)] =[DATA  
MSB(TA)]  
...  
...  
...  
[DC]  
[FD(z) C2h]  
[FD(z-n) C2h]  
[FD(z-n) D3h]  
Stop  
[FD(z-n-1) C2h]  
[FD(z-n-1) D3h]  
Stop  
[PEC]  
[FD(z) D3h]  
[ALIVE]*  
Stop  
Stop  
12+(4 x z) characters  
*If alive-counter mode is enabled.  
12+(4 x z) characters  
12+(4 x z) characters  
12+(4 x z) characters  
Maxim Integrated │ 128  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
mits it in the order shown in the sequencing table (device  
TXU column). The device knows which bytes to overwrite  
since its ADDRESS register contains the top, and bottom  
device addresses, and its own device address; therefore,  
it knows where in the data stream it belongs.  
If the register address is not valid for the device, the com-  
mand is ignored. The command sequence is shown in  
Table 52 and Table 53.  
The command packet is forwarded up the daisy-chain  
until it reaches the addressed device. The addressed  
device overwrites the received fill bytes with the two  
bytes of register data and forwards the packet to the  
next device. The alive-counter byte (if enabled) is only  
READDEVICE Command  
The READDEVICE command returns a 16-bit word read  
from the specified register in the addressed device only.  
Table 52. READDEVICE Sequencing In Single-UART or Dual-UART Up Path  
DEVICE  
RXL  
DEVICE  
TXU  
HOST Tx  
HOST Rx  
Preamble  
Preamble  
Preamble  
Preamble  
{DA[4:0], 0b101}  
[REG ADDR]  
[DC]  
{DA[4:0], 0b101}  
[REG ADDR]  
[DC]  
{DA[4:0], 0b101}  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[DC]  
{DA[4:0], 0b101}  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[DC]  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
Stop  
Stop  
16 characters  
*If alive-counter mode is enabled  
16 characters  
16 characters  
16 characters  
Table 53. READDEVICE Sequencing In Dual-UART Down Path  
DEVICE  
RXU  
DEVICE  
TXL  
HOST Tx  
HOST Rx  
Preamble  
Preamble  
Preamble  
Preamble  
{DA[4:0], 0b101}  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[DC]  
{DA[4:0], 0b101}  
{DA[4:0], 0b101}  
[REG ADDR]  
[DC]  
{DA[4:0], 0b101}  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[DC]  
[REG ADDR]  
[DC]  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
[FD(1) C2h]  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[PEC]  
[PEC]  
[FD(1) D3h]  
[ALIVE]*  
[ALIVE]*  
Stop  
Stop  
Stop  
16 characters  
*If alive-counter mode is enabled.  
16 characters  
16 characters  
16 characters  
Maxim Integrated │ 129  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
incremented by the addressed device. A Manchester error  
immediately switches the data propagation from read  
mode to write (pass-through) mode, ensuring that the  
Manchester error is propagated through the daisy-chain  
and back to the host.  
for the device, it returns 0 for any invalid addresses. If the  
Device Address is not valid, the command be ignored.  
The command sequences for a block size of 1 and for  
a block size of 2 are shown in Table 54 and Table 55 for  
a block size of 1 and Table 56 and Table 57 for a block  
size of 2. The command packet is forwarded up the  
daisy-chain until it reaches the addressed device. The  
addressed device overwrites the received fill bytes with  
the 2 bytes of register data (from a single device) and  
forwards the packet to the next device. The alive-counter  
READBLOCK Command  
The READBLOCK command returns a 18-byte read  
from the specified register for a Block size of 1 in the  
addressed device only. If the register address is not valid  
Table 54. READBLOCK Sequencing In Single-UART or Dual-UART Up Path (Block Size = 1)  
DEVICE  
RXL  
DEVICE  
TXU  
HOST Tx  
HOST Rx  
Preamble  
Preamble  
Preamble  
Preamble  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[DC]  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
Stop  
Stop  
18 characters  
*If alive-counter mode is enabled.  
18 characters  
18 characters  
18 characters  
Table 55. READBLOCK Sequencing In Single-UART or Dual-UART Up Path (Block Size = 1)  
DEVICE  
RXL  
DEVICE  
TXU  
HOST TX  
HOST RX  
Preamble  
Preamble  
Preamble  
Preamble  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DATA0 LSB]  
[DAT0 MSB]  
[DATA1 LSB]  
[DATA1 MSB]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DATA0 LSB]  
[DATA0 MSB]  
[DATA1 LSB]  
[DATA1 MSB]  
[DC]  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
[FD(1) C2h]  
[FD(1) D3h]  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[FD(1) C2h]  
[FD(1) D3h]  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
Stop  
Stop  
22 characters  
*If alive-counter mode is enabled.  
22 characters  
22 characters  
22 characters  
Maxim Integrated │ 130  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Table 56. READBLOCK Sequencing In Dual-UART Down Path (Block Size = 2)  
DEVICE  
RXU  
DEVICE  
TXL  
HOST Tx  
HOST Rx  
Preamble  
Preamble  
Preamble  
Preamble  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[DC]  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
Stop  
Stop  
18 characters  
*If alive-counter mode is enabled.  
18 characters  
18 characters  
18 characters  
Table 57. READBLOCK Sequencing In Single-UART or Dual-UART Down Path (Block  
Size = 2)  
DEVICE  
RXU  
DEVICE  
TXL  
HOST Tx  
HOST Rx  
Preamble  
Preamble  
Preamble  
Preamble  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DATA0 LSB]  
[DAT0 MSB]  
[DATA1 LSB]  
[DATA1 MSB]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DATA0 LSB]  
[DATA0 MSB]  
[DATA1 LSB]  
[DATA1 MSB]  
[DC]  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
[FD(1) C2h]  
[FD(1) D3h]  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[FD(1) C2h]  
[FD(1) D3h]  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
Stop  
Stop  
22 characters  
*If alive-counter mode is enabled.  
22 characters  
22 characters  
22 characters  
Maxim Integrated │ 131  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
byte (if enabled) is only incremented by the addressed  
device. A Manchester error immediately switches the  
data propagation from read mode to write (pass through)  
mode, ensuring that the Manchester error is propagated  
through the daisy-chain and back to the host.  
Note: The DOWNHOST command is relevant only when  
the device is configured in dual-UART mode. Sending the  
DOWNHOST command outside of a dual-UART configu-  
ration will not have any effect on the device; the command  
is passed through, unchanging the DEVCOUNT.  
DOWNHOST Command  
UPHOST Command  
Only one of the DUALUART paths (Up path or Down  
Path) can be granted WRITE access through using the  
UPHOST or DOWNHOST commands, however, both  
paths have read access. The path that holds the WRITE  
access is specified using the UARTHOST register bit.  
By default only the Up path has the WRITE access  
(UARTHOST=1b1). See Table 58.  
Only one of the dual-UART paths (Up path or Down  
path) can be granted WRITE access through using  
the UPHOST or DOWNHOST commands; however,  
both paths have read access. The path that holds the  
write access is specified using the UARTHOST regis-  
ter bit. By default, only the Up path has write access  
(UARTHOST=1b1). See Table 59.  
The DOWNHOST command is used when WRITE access  
is required to be passed from the Up path (UARTHOST =  
1b1) to the Down path (UARTHOST=1b1). Alternatively,  
the UPHOST command is used when WRITE access is  
required to be passed from the Down path to the Up path.  
The UPHOST command is detailed in a different section.  
The UPHOST command is used when write access needs  
to be passed from the Down path (UARTHOST=1b1)  
to the Up path (UARTHOST=1b1). Alternatively, the  
DOWNHOST command is used when write access needs  
to be passed from the Up path to the Down path. See the  
DOWNHOST Command section for further detail.  
When the DOWNHOST command is sent, each device  
modifies the UARTHOST bit in the DEVCFG1 register  
to change master control, as well as increments the  
DEVCOUNT variable as it sends the command to the  
next device downstream in the chain. The final value of  
DEVCOUNT received by the host should be equal to the  
initial DEVCOUNT + total number of devices in the chain.  
If the DOWNHOST command is sent on the Up path, the  
command passes through the device unmodified, leaving  
the UARTHOST unchanged; the ALRTDUALUART bit is  
also set in the STATUS2 register, signifying that an invalid  
command was received. Additionally, If the DOWNHOST  
command is sent on the Down path while the Down  
path is designated as the master, the command passes  
through the device unmodified, leaving the UARTHOST  
unchanged with the Down path indication.  
When the UPHOST command is sent, each device  
modifies the UARTHOST bit in the DEVCFG1 register  
to change master control, as well as increments the  
DEVCOUNT variable as it sends the command to the  
next device upstream in the chain. The final value of  
DEVCOUNT received by the host should be equal to the  
initial DEVCOUNT + total number of devices in the chain.  
If the UPHOST command is sent on the Down path, the  
command passes through the device unmodified, leaving  
the UARTHOST unchanged; the ALRTDUALUART bit  
will also be set in the STATUS2 register, signifying that  
an invalid command was received. Additionally, If the  
UPHOST command is sent on the Up path while the Up  
path is designated as the master, the command passes  
through the device unmodified, leaving the UARTHOST  
unchanged with the Up path indication.  
Table 58. DOWNHOST Sequencing (z = Total Number of Devices)  
HOST Tx  
DEVICE (n) RXU  
Preamble  
DEVICE (n) TXL  
Preamble  
HOST Rx  
Preamble  
09h  
Preamble  
09h  
09h  
09h  
00h  
00h  
00h  
00h  
{0b000,DEVCOUNT[4:0]}  
Stop  
{0b000,DEVCOUNT[4:0]+n-1}  
Stop  
{0b000,DEVCOUNT[4:0]+n}  
Stop  
{0b000,DEVCOUNT[4:0]+z}  
Stop  
Maxim Integrated │ 132  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Table 59. UPHOST Sequencing (z = total number of devices)  
HOST Tx  
DEVICE (n) RXL  
DEVICE (n) TXU  
HOST Rx  
Preamble  
08h  
Preamble  
Preamble  
Preamble  
08h  
08h  
08h  
00h  
00h  
00h  
00h  
{0b000,DEVCOUNT[4:0]}  
Stop  
{0b000,DEVCOUNT[4:0]+n-1}  
Stop  
{0b000,DEVCOUNT[4:0]+n}  
Stop  
{0b000,DEVCOUNT[4:0]+z}  
Stop  
Note: The DOWNHOST command is relevant only when  
the device is configured in dual-UART mode. Sending the  
DOWNHOST command outside of a dual-UART configu-  
ration will not have any effect on the device; the command  
is passed through unchanging the DEVCOUNT.  
Table 60. ALERTPACKET Sequencing  
ALERT PACKET  
Preamble  
Command Byte (0x21)  
Module Alert Location 1 {(DA[4:7]), (DA[0:3])}  
Module Alert Location 2 {(DA[12:15]),(DA[8:11])}  
Module Alert Location 3 {(DA[20:23]),(DA[16:19])}  
Module Alert Location 4 {(DA[28:31]),(DA[24:27])}  
[STATUS LSB]  
ALERTPACKET Command  
The MAX17853 supports the transmission of an ALERT  
packet from either the host microcontroller or SPI to  
UART bridge. This packet contains the alert command  
byte, daisy-chain module alert data-address location  
(DA[4:0]), and alert status byte, as well as the PEC byte  
of the protected data (see Table 60).  
[STATUS MSB]  
[PEC]  
The module alert location is a 32-bit value split into four  
transmission data packets, where each bit represents the  
device address (DA[4:0]), defined by the HELLOALL com-  
mand. The alert status is the 16-bit output of the STATUS1  
register, subject to masking through ALRTIRQEN, as  
Stop  
Maxim Integrated │ 133  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
described in the following sections. As the data passes  
through the daisy-chain, the module alert location con-  
tains a unique identifier; the STATUS output will be logi-  
cally OR'ed to communicate the alert type. This creates  
a method to quickly assess the module status and health  
with little host interaction.  
CSB line held low will accept SCLK SPI transactions to  
the slave devices are defined by SCLK rising edges. The  
start of the transaction is defined by the SCLK rising edge,  
following the CSB falling edge (subject to t  
and  
CSH0  
t
timing criteria). Transactions including a number of  
CSS0  
SCLK rising edges not equal to 32 will not be qualified for  
execution (also based on t , t , and t timing  
CSA CSH1  
CSQ  
SPI Interface  
criteria). Qualified transactions will be executed on the  
rising edge of CSB. To abort a transaction sequence, the  
rise of CSB must precede a qualified (32nd) rising edge  
When a single device is used in a single battery-pack  
application with no daisy-chain, the host can use the  
SPI interface to communicate with the device. The host  
should set UARTSEL low. When UARTSEL is set high,  
the device uses the UART interface to communicate with  
the microprocessor.  
of SCLK (meeting the t  
timing requirement). Note:  
CSA  
An aborted command will result in the issuance of an SPI  
CLK Error.  
The SDI line should be hooked up to a master-out/slave-  
in (MOSI) port and distributed to all slave devices. SDI  
data is latched into the selected slave device on SCLK  
Overview  
The MAX17853 SPI interface is SPI/QSPI™/Microwire/  
DSP compatible, ensuring compatible operation with  
standard microcontrollers (µCs) from a variety of manu-  
facturers.  
rising edges, subject to setup and hold criteria (t , t ).  
DS DH  
The SDI content of the SPI transaction consists of 4 bytes  
for qualified transactions.  
The SDO line should be hooked up to a master-in/slave-  
out (MISO) port and distributed to all slave devices. SDO  
is actively driven by the selected slave device when CSB  
The µC always operates as the master and is able to initi-  
ate read and write transactions to individual slave devices  
selected by a specific CSB connection. The operation  
and timing criteria of the SPI interface is shown in Figure  
65. The MAX17853 will be programmed by a qualified  
32-cycle SPI instruction framed by a CSB low interval.  
falls (t  
timing applies), initially presenting the MSB  
DOE  
of the output data (the SPI_CRC_ERR bit for all trans-  
actions). Following the initial SCLK rising edge, SDO is  
updated in response to SCLK falling edges, conforming  
The SCLK line should be driven by the master and dis-  
tributed to all slave devices. Only the slave device with its  
to hold and transition time criteria (t  
t
), allowing  
DOH, DOT  
DI31  
DI30  
DI29  
DI28  
DI27  
DI26  
DI25  
DI24  
DI23  
DI22  
DI1  
DI0  
DI31*  
1*  
SDI  
SCLK  
CSB  
t
t
t
t
DS  
DH  
CP  
1
2
3
4
5
6
7
8
9
10  
31  
32  
t
t
t
t
t
CSQ  
CSH0  
CSS0  
CH  
CL  
CSH1  
t
CSA  
t
t
t
t
t
DOZ  
CSPW  
DOE  
DOT  
DOH  
HIGH-Z  
HIGH-Z  
DO31  
DO30  
DO29  
DO28  
DO27  
DO26  
DO25  
DO24  
DO23  
DO22  
DO1  
DO0  
DO31*  
SDO  
t
TO  
Figure 65. SPI Timing Diagram  
QSPI is a trademark of Motorola, Inc.  
Maxim Integrated │ 134  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
the µC to latch the data on SCLK rising edges. When CSB  
is high, the SDO line is high-impedance, allowing other  
slave devices to access the SDO bus.  
ing its unique CSB port low. Note that each slave device  
on the interface requires a dedicated CSB line from the  
master. The SCLK, SDI, and SDO lines are common to  
all devices. A total of (3+N) lines is required for an inter-  
face supporting N slave devices. Transaction qualification  
criteria remain in effect; in write mode, the device will  
only execute instructions exactly 32 bits in length. In read  
mode, return the requested data through SDO during the  
read-mode transaction. A standard connection example is  
shown in Figure 66.  
Transactions lasting longer than the timeout interval (t ),  
TO  
measured from CSB falling edge to CSB rising edge qre  
not qualified or executed.  
System-Level Connection  
Following the previous guidelines, the SPI interface  
allows multiple devices to share the SPI interface with the  
active device for the transaction being selected, by pull-  
MAXxxxx DevN  
µC SPI MASTER  
CSBN  
CSB  
SCLK  
SDI  
CSB2  
CSB1  
SCLK  
MOSI  
MISO  
SDO  
MAXxxxx Dev2  
CSB  
SCLK  
SDI  
SDO  
MAXxxxx Dev1  
CSB  
SCLK  
SDI  
SDO  
Figure 66. SPI Device Connection  
CSB  
1
8
9
16  
17  
24  
DI8  
25  
DI7  
32  
SCLK  
SDI  
X
DI31 DI30 DI29 DI28 DI27 DI26 DI25 DI24 DI23 DI22 DI21 DI20 DI19 DIN18 DI17 DI16 DI15 DI14 DI13 DI12 DI11 DI10 DI9  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
X
DO23  
DO15  
DO7  
DO31 DO30 DO29 DO28 DO27 DO26 DO25 DO24  
DO22 DO21 DO20 DO19 DO18 DO17 DO16  
DO14 DO13 DO12 DO11 DO10 DO9 DO8  
DO6 DO5 DO4 DO3 DO2 DO1 DO0  
SDO  
CPOL = 0 CPHA = 0 TRANSACTION ALIGNMENT  
CSB  
SCLK  
SDI  
1
8
9
16  
17  
24  
DI8  
25  
32  
X
DI31 DI30 DI29 DI28 DI27 DI26 DI25 DI24 DI23 DI22 DI21 DI20 DI19 DIN18 DI17 DI16 DI15 DI14 DI13 DI12 DI11 DI10 DI9  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
DO0  
X
DO23  
DO15  
DO7  
DO31  
DO30 DO29 DO28 DO27 DO26 DO25 DO24  
DO22 DO21 DO20 DO19 DO18 DO17 DO16  
DO14 DO13 DO12 DO11 DO10 DO9 DO8  
DO6 DO5 DO4 DO3 DO2 DO1  
SDO  
CPOL = 1 CPHA = 1 TRANSACTION ALIGNMENT  
Figure 67. SPI Supported Transaction Alignments  
Maxim Integrated │ 135  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
exactly what data was sent to the device during the trans-  
Supported Transaction Alignments  
action.  
The MAX17853 is capable of supporting SPI transactions  
with masters using either (CPOL=0 and CPHA=0) or  
(CPOL=1 and CPHA=1). Examples of these transactions  
are shown in Figure 67.  
The MAX17853 will only accept and execute qualified SPI  
transactions based on the 32 bits of SDI data received  
and several interface integrity checks. Details of write-  
mode transactions are explained below and summarized  
in Figure 68.  
Safety Pulup/Pulldown Resistors  
To guard against broken SPI interface connections, the  
MAX17853 includes internal safety terminations on all  
SPI interface input ports. SCLK and SDI have internal  
SPI Write-Mode Input Data Format  
During write-mode transactions, the MAX17853 accepts  
qualified instructions through the SDI input, described  
as follows. If more than 32 SCLK cycles are provided in  
the transaction, the device ignores the excess data pro-  
vided during the remaining clock cycles, the transaction is  
ignored, and an SPI clock error issued.  
pulldowns to GND. CSB has an internal pulup to V  
.
DDL3  
All safety resistors are 100kΩ (nom).  
The internal safety resistors can be individually enabled  
or disabled using DEVCFG1 register bits (SFTYSCLK,  
SFTYSDI, SFTYCSB) with a high state (default) to indi-  
cate the safety termination is enabled/engaged and a low  
state to indicate it is disengaged. This allows the user to  
eliminate loading currents when the safety resistors are  
not needed. Note pulup resistors still have a resistor and  
An SPI error due to frame length sets the ALRTINTRFC  
and ALRTSPI bits in the STATUS1 and STATUS2 regis-  
ters, respectively, as well as the CLK_ERR diagnostic bit  
(DO[28]) present in every SPI frame.  
diode connection to V  
even if disengaged (limiting  
+ 0.3V to avoid conduction).  
DDL3  
Write Bit — R/WB = 0 (DI[31])  
CSB voltage to V  
DDL3  
Write-mode transactions are identified by R/WB = 0 in  
MSB position of the 32-bit data frame  
SPI Transactions  
SPI Write-Mode Transcations  
Address — A[7:0] (DI[30:23])  
A properly constructed write-mode transaction is made up  
of a 32-bit data frame. Each SDI data frame from the mas-  
ter contains a R/WB=0 bit, an 8-bit command/address, a  
3-bit CRC covering the command/address, 2 bytes of input  
data, a confirmation of the R/WB=0 bit, and a 3-bit CRC  
covering the input data.  
Write-mode transactions allow new information to be writ-  
ten to internal configuration/command registers within the  
device. The register address to be written is indicated by  
A[7:0] within the data frame.  
Address Cyclic-Redundancy Check — CRCA[2:0]  
(DI[22:20])  
During a write-mode transaction, the MAX17853 outputs  
data on the SDO line confirming device status, as well  
as the command/address and input data received. Each  
SDO data frame from the slave contains 5 bits of status  
information protected by a 3-bit CRC followed by a 24-bit  
direct readback of the command/address and input data  
received during the transaction. Note that while the 24-bit  
readback is not CRC protected, the transaction can be  
verified with 100% confidence since the master knows  
Write-mode command/address data transactions are  
protected by a 3-bit CRC with polynomial 0x5 (x +x+1). A  
3
total of 9 bits are protected, yielding a Hamming distance  
of 2 (HD = 2). The CRCA check is calculated over the fol-  
lowing bits: R/WB + A[7:0] (i.e., positions DI[31:23]), con-  
firming the integrity of the incoming command. The mas-  
ter must embed the correct CRCA value within each data  
frame in positions DI[22:20] for the transaction to qualify  
for execution. The receiving slave will only accept/execute  
CSB  
1
8
9
16  
17  
24  
25  
32  
SCLK  
SDI  
X
WB  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 CRCA2 CRCA1 CRCA0 DIN15 DIN14 DIN13 DIN12 DIN11 DIN10 DIN  
9
DIN  
8
DIN  
7
DIN  
6
DIN  
5
DIN  
4
DIN  
3
DIN  
2
DIN  
1
DIN  
0
WB’ CRCD2 CRCD1 CRCD0  
X
CRC_ RW_ TO_ CLK_  
ERR ERR ERR ERR  
ALERT CRCS2 CRCS1 CRCS0 A7'  
A6'  
A5'  
A4'  
A3'  
A2'  
A1'  
A0' DIN15' DIN14' DIN13' DIN12' DIN11' DIN10' DIN9' DIN8' DIN7' DIN6' DIN5' DIN4' DIN3' DIN2' DIN1' DIN0'  
SDO  
Figure 68. SPI Write-Mode Transaction Format  
Maxim Integrated │ 136  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
the transaction if the CRCA check is passed; otherwise,  
the transaction is ignored and an SPI CRC error issued.  
Status Cyclic-Redundancy Check — CRCS[2:0]  
(DO[26:24])  
During write-mode transactions, the MAX17853 outputs  
status CRC data protecting the status information pro-  
vided through SDO. Since the CRCS[2:0] information is  
identical for both read- and write-mode transactions, the  
definition of these bits is described in a common section  
that follows.  
SPI errors caused by CRCA failures set the ALRTPEC bit  
in the STATUS1 register, as well as the CRC_ERR diag-  
nostic bit (DO[31]) present in every SPI frame.  
Input Data — DIN[15:0] (DI[19:4])  
These 2 bytes of input data in the 32-bit data frame repre-  
sent data that will be written to the requested register, or  
describes internal operations to be executed.  
Address Confirmation — A‘[7:0] (DO[23:16])  
During write-mode transactions, the MAX17853 relays the  
incoming address (A[7:0]) data received through SDI in  
positions DO[23:16] through SDO. This behavior allows  
the master complete confirmation that what was sent  
through the SPI interface was accurately received by the  
device; as such, the write-mode confirmation data is not  
covered by a CRC. If any error is detected, the master  
should react accordingly, knowing that the flawed trans-  
action may have been rejected if an SPI error condition  
was detected and/or the CRCA check on the incoming  
transaction did not pass.  
Repeated-Write Bit — R/WB‘ = 0 (DI3)  
Write-mode transactions are confirmed by a repeated R/  
WB = 0 in position DI[3] of the bit data frame. If the data  
in positions DI[31] and DI[3] do not match, the transaction  
is ignored and an SPI RW error issued.  
SPI errors caused by R/WB and R/WB' mismatches set  
the ALERTINTRFC and ALRTSPI bits in the STATUS1  
and STATUS2 registers, respectively, as well as the RW_  
ERR diagnostic bit (DO[30]) present in every SPI frame.  
Input Data Cyclic-Redundancy  
Check — CRCD[2:0] (DI[2:0])  
Input Data Confirmation — DIN‘[7:0] (DO[15:0])  
During write-mode transactions, the MAX17853 relays the  
incoming input data (DIN[7:0]) received through the SDI in  
positions DO[15:0] through SDO. This behavior allows the  
master complete confirmation that what was sent through  
the SPI interface was accurately received by the device;  
as such, the write-mode confirmation data is not covered  
by a CRC. If any error is detected, the master should react  
accordingly, knowing that the flawed transaction may  
have been rejected if an SPI error condition was detected  
and/or the CRCD check on the incoming transaction did  
not pass.  
Write-mode input data transactions are protected by a  
3-bit CRC with polynomial 0x5 (x +x+1). A total of 16  
bits are protected, yielding a Hamming distance of 2 (HD  
= 2). The CRCD check is calculated over the following  
3
bits: D [15:0] (i.e., positions DI[19:4]). The master must  
IN  
embed the correct CRCD value within each data frame in  
positions DI[2:0] for the transaction to qualify for execu-  
tion. The slave only accepts/executes the transaction if  
the CRCD is passed; otherwise, the transaction is ignored  
and an SPI CRC error issued.  
SPI errors caused by CRCD failures set the ALRTPEC bit  
in the STATUS1 register, as well as the CRC_ERR diag-  
nostic bit (DO[31]) present in every SPI frame.  
SPI Write-Mode Qualification Checks  
To qualify for write-mode execution, the following condi-  
tions must be met:  
SPI transaction must be exactly 32 bits in length  
(with no CLK_ERR recorded)  
CRCA address CRC check must pass (with no CRC_  
ERR recorded)  
CRCD input data CRC check must pass (with no  
CRC_ERR recorded)  
SPI Write-Mode Output Data Format  
During write-mode transactions, the MAX17853 outputs  
data through the SDO line confirming both device status  
and the received instructions, as described below. If more  
than 32 SCLK cycles are provided in the transaction,  
the device will output zeros for the remaining cycles, the  
transaction will be ignored and an SPI clock error issued.  
R/WB must match R/WB’ (i.e., DI[31] = DI[3] (with no  
RW_ERR recorded)  
Status Information — STAT[4:0] (DO[31:27])  
SPI transaction must be completed within the timeout  
During write-mode transactions, the MAX17853 outputs  
status data through the SDO line confirming current device  
status. Since the STAT[4:0] information is identical for both  
read- and write-mode transactions, the definition of these  
bits is described in a common section that follows.  
interval (t , with no TO_ERR recorded)  
TO  
If the SPI transaction is qualified, the instruction will be  
executed, and the requested internal register contents  
updated, or the requested action performed.  
Maxim Integrated │ 137  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
If the SPI write transaction is not qualified, the instruction  
is not executed, and the appropriate SPI error diagnostic  
bits will be set. The SPI error diagnostic bits are returned in  
response to later read- and write-mode transactions, notify-  
ing the µC that the SPI interface may be compromised.  
ters, respectively, as well as the CLK_ERR diagnostic bit  
(DO28) present in every SPI frame.  
Read Bit — R/WB = 1 (DI[31]):  
Read-mode transactions are identified by R/WB =1 in the  
MSB position of the 32-bit data frame.  
SPI Read-Mode Transactions  
Address — A[7:0] (DI[30:23])  
A properly constructed read-mode transaction is made up  
of a 32-bit data frame. Each SDI data frame from the mas-  
ter contains a R/WB=1 bit, an 8-bit requested address, a  
3-bit CRC covering the address, two bytes of input data =  
0000\h, a confirmation of the R/WB=1 bit, and a 3-bit CRC  
covering the input data.  
Read-mode transactions fetch the information from the  
register requested by the address byte (A[7:0]). If the  
CRCA check fails, indicating a problem with the transac-  
tion or interface, the MAX17853 still reads back the data  
requested by A[7:0]. This may not be what the master  
intended, and the master will be notified of this through the  
read-mode confirmation bit (ROK, see following sections).  
Note that reading from a reserved address results in a  
During a read-mode transaction, the MAX17853 outputs  
data on the SDO line confirming device status, and pro-  
viding the data requested with full CRC protection. Each  
SDO data frame from the slave device contains 5 bits of  
status information protected by a 3-bit CRC, four ones  
(indicating a read operation is pending), followed by 16  
bits of output data, and finally, a read-mode confirmation  
bit and a 3-bit CRC protecting the output data.  
read-back value of D [15:0] = 0000\h.  
OUT  
Address Cyclic Redundancy Check — CRCA[2:0]  
(DI[22:20])  
Read-mode command/address data transactions are  
3
protected by a 3-bit CRC with polynomial 0x5 (x +x+1). A  
total of 9 bits are protected, yielding a Hamming distance  
of 2 (HD=2). The CRCA check is calculated over the fol-  
lowing bits: R/WB + A[7:0] (i.e., positions DI[31:23]), con-  
firming the integrity of the incoming command. The mas-  
ter must embed the correct CRCA value within each data  
frame in positions DI[22:20] for the transaction to qualify  
for execution. The receiving slave device will only accept/  
execute the transaction if the CRCA is passed; otherwis,  
the transaction is ignored and an SPI CRC error issued.  
The MAX17853 will only accept and execute qualified SPI  
transactions, based on the 32 bits of SDI data received,  
and several interface integrity checks. Details of read-  
mode transactions are explained in following sections and  
summarized in Figure 69.  
SPI Read-Mode Input-Data Format  
During read-mode transactions, the MAX17853 accepts  
qualified instructions through the SDI inputs, as described  
below. If more than 32 SCLK cycles are provided in the  
transaction, the device ignores the excess data provided  
during the remaining clock cycles, the transaction will be  
ignored, and an SPI Clock error issued.  
SPI errors caused by CRCA failures set the ALRTPEC bit  
in the STATUS1 register, as well as the CRC_ERR diag-  
nostic bit (DO[31]) present in every SPI frame.  
An SPI error due to frame length sets the ALRTINTRFC  
and ALRTSPI bits in the STATUS1 and STATUS2 regis-  
CSB  
1
8
9
16  
17  
24  
25  
32  
R’ CRCD2 CRCD1 CRCD0  
ROK CRCO2CRCO1CRCO0  
SCLK  
SDI  
X
R
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 CRCA2 CRCA1 CRCA0 DIN15 DIN14 DIN13 DIN12 DIN11 DIN10 DIN  
9
DIN  
8
DIN  
7
DIN  
6
DIN  
5
DIN  
4
DIN  
3
DIN  
2
DIN  
1
DIN  
0
X
CRC_ RW_ TO_ CLK_  
ERR ERR ERR ERR  
ALERT CRCS2 CRCS1 CRCS0 (R)  
(R)  
(R)  
(R) DOUT15 DOUT14 DOUT13 DOUT12 DOUT11 DOUT10 DOUT  
9
DOUT  
8
DOUT  
7
DOUT  
6
DOUT  
5
DOUT  
4
DOUT3 DOUT2 DOUT1 DOUT0  
SDO  
Figure 69. SPI Read-Mode Transaction Format  
Maxim Integrated │ 138  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Input Data — DIN[15:0] (DI[19:4])  
Status Cyclic-Redundancy Check — CRCS[2:0]  
(DO[26:24])  
These 2 bytes of input data in the 32-bit data frame must  
be set to zero (0000h); otherwise, the transaction is  
ignored and an SPI error issued.  
During read-mode transactions, the MAX17853 outputs  
status CRC data, protecting the status information pro-  
vided through SDO. Since the CRCS[2:0] information is  
identical for both read- and write-mode transactions, the  
definition of these bits is described in a common section  
that follows.  
SPI errors generated by read transactions with non-zero  
input data set the ALERTINTRFC and ALRTSPI bits in  
the STATUS1 and STATUS2 registers, respectively, as  
well as the RW_ERR diagnostic bit (DO[30]) present in  
every SPI frame.  
Read Confirmation Bits — F\h (DO[23:20])  
During read-mode transactions, the MAX17853 relays  
four ones in the DO[23:20] position, indicating the R/  
WB bit received was a one and a read-mode transaction  
has been requested. Since all addresses above 0x98  
are reserved, seeing all ones in this position during a  
WRITEMODE command indicates an interface or pro-  
tocol fault. Likewise, seeing anything but all ones in this  
position during a read-mode command indicates the R/  
WB was not received or the interface is compromised. If  
either error is detected, the master should react accord-  
ingly, knowing that the flawed transaction may have been  
rejected if an SPI error and/or CRC checks on the incom-  
ing transaction did not pass.  
Repeated-Read Bit — R/WB‘ = 1 (DI[3])  
Read-mode transactions are confirmed by a repeated  
R/WB=1 in position DI[3] of the bit data frame. If the data  
in positions DI[31] and DI[3] do not match, the transaction  
is ignored and an SPI RW error issued.  
SPI errors caused by R/WB and R/WB' mismatches set  
the ALERTINTRFC and ALRTSPI bits in the STATUS1  
and STATUS2 registers, respectively, as well as the RW_  
ERR diagnostic bit (DO[30]) present in every SPI frame.  
Input-Data Cyclic-Redundancy Check – CRCD[2:0]  
(DI[2:0])  
Read-mode input-data transactions are protected by a  
3
3-bit CRC with polynomial 0x5 (x +x+1). A total of 16  
Output Data — DOUT[15:0] (DO[19:4])  
bits are protected, yielding a Hamming distance of 2 (HD  
= 2). The CRCD check is calculated over the following  
During read-mode transactions, the MAX17853 relays the  
requested output data (D  
through SDO.  
[15:0]) in positions DO[19:4]  
OUT  
bits: D [15:0] (i.e., positions DI[19:4]). The master must  
IN  
embed the correct CRCD value within each data frame in  
positions DI[2:0] for the transaction to qualify for execu-  
tion. The slave will only accept/execute the transaction if  
the CRCD is passed; otherwise, the transaction is ignored  
and an SPI CRC error issued.  
Read OK Bit — ROK (DO[3])  
During read-mode transactions, the MAX17853 relays a  
1 in the DO3 position, indicating a read-mode transaction  
is in progress and the CRCA check has passed. This,  
combined with the read-confirmation bits in positions  
DO[23:20] allows the master to confirm the data received  
matches the address requested.  
SPI errors caused by CRCD failures set the ALRTPEC bit  
in the STATUS1 register, as well as the CRC_ERR diag-  
nostic bit (DO[31]) present in every SPI frame.  
Output-Data Cyclic-Redundancy Check —  
CRCO[2:0] (DO[2:0])  
SPI Read-Mode Output-Data Format  
During read-mode transactions, the MAX17853 outputs  
data through the SDO line, confirming device status and  
the requested output data, described as follows. If more  
than 32 SCLK cycles are provided in the transaction, the  
device outputs zeros for the remaining cycles, the trans-  
action is ignored, and an SPI clock error issued.  
Read-mode output data transmissions are protected by a  
3
3-bit CRC with polynomial 0x5 (x + x + 1). A total of 16  
bits are protected, yielding a Hamming distance of 2 (HD  
= 2). The CRC check is calculated over the following bits:  
D
[15:0] (i.e., positions DO[19:4]). The MAX17853 will  
OUT  
embed the correct CRC value within each data frame in  
positions DO[2:0] for the transaction to be qualified by the  
master. The master should only accept the output data  
as valid if the CRCO check passed; otherwise, the data  
should be considered compromised.  
Status Information – STAT[4:0] (DO[31:27])  
During read-mode transactions, the MAX17853 output  
status data through the SDO line confirming current  
device status. Since the STAT[4:0] information is identical  
for both read and write-mode transactions, the definition  
of these bits is described in a common section below.  
Maxim Integrated │ 139  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
transaction was rejected due to one or more of the  
SPI Read-Mode Qualification Checks  
following errors:  
Repeated R/WB mismatch, R/WB ≠ R/WB’  
(i.e., DI[31]≠DI[3], protocol error)  
To qualify for read-mode execution, the following condi-  
tions must be met:  
SPI transaction must be exactly 32 bits in length  
(with no CLK_ERR recorded)  
CRCA address CRC check must pass (with no  
CRC_ERR recorded)  
CRCD input data CRC check must pass (with no  
CRC_ERR recorded)  
• D [15:0]≠0000\h for any read-mode transaction  
IN  
(protocol error)  
SPI TO_ERR (STAT2) Indicates a previous  
transaction was rejected due to a timeout violation  
SPI CLK_ERR (STAT1) Indicates a previous  
transaction was rejected due to one or more of the  
following conditions:  
R/WB must match R/WB’ (i.e., DI[31] = DI[3] (with no  
RW_ERR recorded)  
D [15:0] must match the required value of 0000\h  
IN  
• Number of SCLK cycles was not exactly 32  
(ALRTSCLKERR)  
• 16MHz HF OSC is halted or drifting severely  
(ALRTOSC3)  
(with no RW_ERR recorded)  
SPI transaction must be completed within the timeout  
interval, t  
(with no TO_ERR recorded)  
TO  
Since the full SPI transaction cannot be fully qualified until  
it is completed, the MAX17853 responds to all read-mode  
transactions as received, providing the requested output  
data within the frame, based on the received value of  
A[7:0]; however, if the command in its entirety is found to  
fail any qualification check, the command will be rejected,  
which means any clear-on-read behaviors expected will  
not be executed internally.  
• Expected transfer to the internal memory bus has  
failed (ALRTINTBUS)  
ALERT (STAT0) Indicates one or more alert  
conditions exist in the STATUS or FMEA registers  
If multiple SPI Protocol errors occur during a single trans-  
action, only the first error will be reported in the follow-  
ing order of precedence: CLK_ERR (ALRTSCLKERR),  
CRC_ERR, RW_ERR. SPI Timeout Errors, TO_ERR,  
and Internal Clock Errors, CLK_ERR (ALRTOSC3 and  
ALRTINTBUS) Can be reported with other errors occurring  
in the same transaction. This is done to aid identification  
of root cause. For example, a malformed transaction 33  
SCLK cycles in length would fail the clock check, but may  
also fail CRC and address checks since the data is also  
likely misaligned as a result. In such a case, only the CLK_  
ERR SPI diagnostic bit would be set, due to precedence.  
In addition, if the SPI write transaction is not qualified, the  
appropriate SPI error diagnostic bits will be set. The SPI  
error diagnostic bits will be returned in response to later  
read- and write-mode transactions, notifying the µC that  
the SPI interface may have been compromised.  
General-Transaction Information (SPI)  
The following sections describe behaviors common to  
both read- and write-mode transactions.  
All SPI diagnostic bits are "Write 0 to Clear," meaning  
once asserted, they continue to read back as high until  
the content is cleared by writing 1'b0 to the particular  
status register bit: ALRTSPI ( clear CRC_ERR, RW_ERR,  
and TO_ERR), component bits in STATUS2 clear indi-  
vidual components of CLK_ERR. The MAX17853 keeps  
a cumulative list of all SPI failure types observed dur-  
ing failed transactions until the readback is performed.  
Note: The SPI CRC_ERR condition is reported using  
the dedicated STATUS1:ALRTPEC bit (read only), but is  
cleared using the STATUS2:ALRTSPI (i.e., the CRC_ERR  
condition is not reported in ALRTSPI). To clear ALRTPEC,  
it may be necessary to write ALRTSPI to zero even if it is  
already zero (if no other SPI errors are reported).  
Status and Status CRC Output Data  
The MAX17853 provides status (STAT[4:0]) and status  
CRC (CRCS[2:0]) data through SDO during the MSByte  
of each SPI transaction. The content is identical for both  
read- and write-mode transactions (defined as follows):  
Status Information — STAT[4:0] (DO[31:27])  
The MAX17853 provide the following SPI error diag-  
nostic bits and alerts during both read- and write-mode  
transactions.  
SPI CRC_ERR (STAT4) Indicates a previous  
transaction was rejected due to a CRC failure for  
checks CRCA or CRCD.  
SPI RW_ERR (STAT3) Indicates a previous  
Maxim Integrated │ 140  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
All device STATUS alert bits remain asserted (and thus  
the ALERT interface remains asserted), until the content  
is cleared by the proper operations. See STATUS register  
definitions for specific details.  
in the SPI ALERT bit; it is available for inclusion in the  
ALERT Interface, to support interrupt-driven applications.  
Status Cyclic Redundancy Check — CRCS[2:0]  
(DO[26:24])  
Note that transactions processed after any SPI diag-  
nostic or device alert bit are set and remain high will be  
qualified and executed/accepted as defined under normal  
operationa previous/uncleared error condition does not  
prevent further transactions from being executed.  
Status output-data content is protected by a 3-bit CRC  
with polynomial 0x5 (x +x+1). A total of 5 bits are pro-  
3
tected, yielding a Hamming distance of 2 (HD=2, meaning  
the CRC will reliably catch transactions with 2-bit errors  
or less). The CRCS check is calculated over the following  
bits: STAT[4:0] (i.e., positions DO[31:27]). The MAX17853  
embeds the correct CRCS value within each data frame  
in positions DO[26:24] for the transaction to be qualified  
by the master. The master should only accept the status  
data as valid if the CRCS check is passed; otherwise, the  
data should be considered compromised.  
SPI ALERT Bit-Masking Operations  
Assertion of the SPI ALERT Status bit (STAT0, DO27) is  
based on the contents of the STATUS1 register. Individual  
alert conditions can be masked out of the SPI Alert bit  
using settings in ALRTIRQEN; however, the underlying  
alert information will always be available for readback in  
the STATUS1 register.  
SPI CRC Calculations  
All SPI CRC calculations use the same polynomial and  
CRC calculation method. CRC operations on incoming  
SDI data streams (CRCA and CRCD) are performed  
by the MAX17853 and require the host to compute the  
required CRC Remainders for inclusion in the SDI input  
data stream. CRC operations on outgoing SDO data  
streams (CRCS and CRCO) are performed by the host,  
based on CRC Remainders supplied by the MAX17853.  
To support SPI CRC computations and checking, the host  
must implement a CRC-3 encoding and decoding algo-  
rithm based on the following polynomial (0x5):  
SPI ALERT =  
ALRTRST or (ALRTMSMTCH & MSMTCHALRTEN) or  
(ALRTCELLOVST & CELLOVSTALRTEN) or  
(ALRTCELLUVST & CELLUVSTALRTEN) or  
(ALRTBLKOVST & BLKOVALRTEN) or (ALRTBLKUVST  
& BLKUVALRTEN) or  
(ALRTAUXOVST & AUXOVSTALRTEN) or  
(ALRTAUXUVST & AUXUVSTALRTEN) or  
(ALERTPEC & PECALRTEN) or (ALRTINTRFC &  
INTRFCALRTEN) or  
3
1
P x = x + x +1  
( )  
(ALRTCAL & CALALRTEN) or (ALRTCBAL &  
CBALALRTEN) or  
This polynomial is capable of protecting the covered SPI  
content with a Hamming distance of two, meaning any  
combination of 2 bits of error or less is guaranteed to be  
identified. If more than 2 bits of error are encountered,  
(ALRTFMEA1 & FMEA1ALRTEN) or (ALRTFMEA2 &  
FMEA2ALRTEN)  
Note: STATUS1:ALRTRST indicates a POR condition,  
and thus cannot be masked. STATUS1:ALRTSCAN is a  
procedural notification bit and is intentionally not included  
Table 61. SPI CRC Operation Summary  
CRCN  
OPERATION  
R/W  
TRANSACTION  
COVERED  
DATA  
DATA  
POSITION  
TRANSACTION  
BIT MASK  
CRCN  
REMAINDER  
CRCN  
POSITION  
Address (CRCA)  
Input Data (CRCD)  
Status (CRCS)  
Read and Write  
Read and Write  
Read and Write  
Read only  
R/WB + A[7:0]  
DI[31:23]  
DI[19:4]  
0xFF80_0000  
0x000F_FFF0  
0xF800_0000  
0x000F_FFF0  
CRCA[2:0]  
CRCD[2:0]  
CRCS[2:0]  
CRCO[2:0]  
DI[22:20]  
DI[2:0]  
D
[15:0]  
IN  
STAT[5:0]  
D [15:0]  
OUT  
DO[31:27]  
DO[19:4]  
DO[26:24]  
DO[2:0]  
Output Data (CRCO)  
Maxim Integrated │ 141  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BIT 0  
BIT 1  
BIT 2  
INPUT DATA BITSTREAM (MSB FIRST)  
Figure 70. SPI CRC Calculation  
the SPI CRC operation very likely identify the problem,  
though this cannot be mathematically guaranteed.  
is successful, and the transaction accepted and executed  
by the MAX17853. If there is a mismatch, the MAX17853  
will reject the transaction and issue the SPI CRC_ERR  
status bit and STATUS1:ALRTPEC flag, notifying the host  
of the issue, so the transaction can be resent.  
The list of CRCn operations and the effective bit-transac-  
tion masking operations are shown in Table 61. A hardware  
implementation of the CRC calculation is shown in Figure  
70. The CRC Engine shown would be implemented within  
both MAX17853 and the host. Be sure to note the ordering  
of the bits within the Remainder, as shown in the figure (i.e.  
BIT[2:0] = CRCn[2:0]). All SPI CRC calculations are per-  
formed by supplying the MSB first, in the order presented  
in the SPI transaction.  
For outgoing SDO data streams, the MAX17853 first  
clears the CRC Engine and then provides the covered bits  
within the outgoing data stream into the the CRC Engine,  
MSB first. The host should perform the same operation  
in parallel. After the final bit of data is processed (in this  
case, the LSB of the outgoing data stream is applied  
to the Engine), the Engine is stopped and the CRCn  
Remainder is known. The CRCn Remainder, as calcu-  
lated by the MAX17853 using its copy of the CRC Engine,  
then follows within the SPI transaction (also MSB first), for  
comparison against the CRC Remainder as calculated by  
the host. At this point, there are two equivalent ways the  
host can complete the CRCn operation to establish the  
validity of the received data:  
For incoming SDI data streams, the MAX17853 will first  
clear the CRC Engine and then provide the covered bits  
within the incoming data stream into the the CRC Engine,  
MSB first. The host should perform the same operation  
in parallel. After the final bit of data is processed (in this  
case, the LSB of the incoming data stream is applied to the  
Engine), the Engine is stopped and the CRCn Remainder  
is known. The CRCn Remainder, as calculated by the  
host using its copy of the CRC Engine then follows within  
the SPI transaction (also MSB first), and is internally  
compared against the CRC Remainder as calculated by  
the MAX17853. If the CRCn Remainder received from  
the host matches the CRC Remainder calculated by the  
device for the incoming data stream, the CRC operation  
Direct Comparison Method: The host stops the CRC  
Engine once the data LSB is applied and compares  
the resulting CRCn Remainder to the Remainder sup-  
plied by the MAX17853 (again, MSB first). If the two  
Remainders match, the data is accepted as valid, other-  
wise it should be rejected. This is the method employed  
by the MAX17853 internally, as described above.  
Maxim Integrated │ 142  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Zero Remainder Method: The host continues CRC Engine computations after the data LSB is applied by appending  
the received Remainder to the end of the data stream, MSB first (i.e., in the order received during the SPI transac-  
tion). Once the LSB of the Remainder arrives at the input of the CRC Engine, if the resulting CRC Remainder=0h,  
the data is accepted as valid; otherwise, it should be rejected.  
SPI CRC Pseudocode Example  
Function SPI_CRC_Calculation(Data, CRC)  
{
//Data - the incoming data [MSB:LSB] for which CRC needs to be calculated  
//CRC - the calculated CRC that be returned by the function  
//Calculate length of incoming data  
//Data length is 5 for Status (CRCS), 9 for Address (CRCA), and 16 for  
Data (CRCD and CRCO)  
DataLength = Length(Data)  
//CRC polynomial = x^3 + x + 1  
POLY = 4'hB //Polynomial = 4'b1011  
//Append Data with 3 zeros for 3 bit CRC  
DataCalc = {Data, 3'b000}  
//Append zeros to POLY such that it is of the same length as DataCalc  
PolyZeros = {{(DataLength + 3 - 4) 1'b0}} //Data Calc length = DataLength  
+ 3  
//Since POLY = 4bits, subtract 4  
PolyCalc = {POLY, PolyZeros}  
//Append Zeros to POLY  
For Counter = (DataLength+3) to 4  
MSB to LSB of Data  
//Counter decremented from  
(
//Check MSB of DataCalc  
//If DataCalc[Counter] = 1'b1, bitwise XOR PolyCalc with DataCalc, and  
store result in DataCalc  
//If DataCalc[Counter] = 1'b0, skip the XOR operation  
//Circular Shift PolyCalc right by 1 bit every iteration.  
if(DataCalc[Counter] == 1'b1) Then  
DataCalc = DataCalc XOR PolyCalc  
End If  
Maxim Integrated │ 143  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
PolyCalc  
=
{PolyCalc[0],  
ally met, the transaction not be qualified or executed, and  
the TO_ERR diagnostic bit be set.  
PolyCalc[Length[PolyCalc-1  
: 1]} //Circular Shift Right  
PolyCalc by 1 bit  
In order to resolve a timed-out transaction and move for-  
ward with subsequent transactions, the timed-out trans-  
action needs to be terminated by bringing CSB high. It is  
not necessary to complete the transaction by supplying  
32 clocks; though if this is not done, the SPI CLK_ERR  
condition will be reported in addition to the TO_ERR  
condition. New transactions can then begin, initiated by  
pulling CSB low.  
)
Return  
DataCalc[3:1]  
//3  
LSBs of DataCalc give the 3  
bit CRC}  
SPI Timeout Behavior  
All SPI transactions are timed by an internal 16MHz  
oscillator and are measured from the falling edge of CSB  
initiating a transaction to the rising edge of CSB terminat-  
Alert Interface  
The alert interface communicates the presence of a fault  
condition generated from the logical OR of the STATUS1  
register, which flags any error within safety-critical func-  
tionality: voltage measurements, temperature measure-  
ments, interface-communication robustness, calibration,  
as well as other internal hardware diagnostics. Because  
the safety consideration per platform may differ, each of  
the associated alerts can be masked to provide individu-  
alized control. Additionally, the interface may be actively  
driven without the need of an actual alert condition to  
validate the functionality when commanded. This is done  
using the ALRTUSER bit in the FMEA2 register  
ing a transaction. If the time out interval (t ) is exceeded  
TO  
by a transaction, the transaction be timed-out and not be  
qualified or executed.  
If a transaction is paused/interrupted for any reason  
(defined by a cessation of SCLK activity), and later  
resumed under the same CSB low interval, the SPI  
interface continue to accept input data through SDI and  
relay the expected output data through SDO, as would  
normally be expected for the remainder of the transaction.  
However, even if all other qualification criteria are eventu-  
Table 62. Alert-Interface Configuration in UART Mode  
UARTCFG  
UART CONFIGURATION  
UART UP PATH  
UART DOWN PATH  
SINGLE ENDED ALERT  
Single-UART interface with  
External Loopback  
Inactive (Buffered/Pass  
Through)  
0b00  
Active  
ALERTEN configured  
Single-UART interface with  
Internal Loopback  
Inactive (Buffered/Pass  
Through)  
0b01  
Active  
ALERTEN configured  
Disabled  
(except in ALRTDCTSTEN  
mode)  
Single-UART interface with  
Differential Alert Interface  
0b10  
0b11  
Active  
Active  
Differential Alert  
Dual-UART interface  
Active  
ALERTEN configured  
Maxim Integrated │ 144  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
By default, the alert interface is a single-ended, unidirec-  
tional interface using the ALERTIN and ALERTOUT pins.  
The ALERTIN pin is configured as a single-ended UART  
receiver with RXP grounded (see the UART Receiver sec-  
tion for details). The ALERTOUT pin uses a single-UART  
transmitter as its output driver. If UARTSEL=0 (SPI inter-  
face), ALERTOUT becomes a DC active-low output that  
can be configured for open-drain (wired-OR) or CMOS  
operation. For UARTSEL=1 (UART interface), ALERTOUT  
is an AC CMOS output (see full details that follow).  
of a fault, where the single-ended configuration allows for  
full UART flexibility and the need for a different isolation  
component (opto-isolators).  
If the Hardware Alert interface is disabled, no alerts  
can be communicated through the hardware-interface  
options. The ALERTIN pin remain a high-impedance input  
and will not respond to any input. Table 63 describes the  
configuration of the alert output drivers for both single-  
ended or differential alerts.  
Note: Although the Hardware Alert interface can be dis-  
abled, the user still has the option to validate alerts by  
reading the STATUS registers, as well as the communica-  
tion of the UART data-check byte or SPI Alert status bit.  
Alternatively, a differential alert interface can be config-  
ured using the UARTCFG bits, as discussed in the UART  
Interface section and shown in Figure 53. The Differential  
Alert interface allows for robust low-cost configurations  
using capacitive isolation to communicate the presence  
Table 63. Alert Output Driver Configuration  
ALERTOUT  
ACTIVE/ASSERTED  
ALERTOUT INACTIVE/  
DEASSERTED OR ALERTEN=0  
UARTSEL  
UARTCFG  
SPIDRVINT  
SPI (Pulldown)  
SPI (Pulldown)  
Don't Care  
Don't Care  
0 (Open Drain)  
1 (CMOS)  
0
0
Hi-Z  
1
GND (TXLIDLEHIZ=0)  
Hi-Z (TXLIDLEHIZ=1)  
UART (Pullup)  
UART (Pullup)  
0b00, 0b01, 0b11  
Don't Care  
Don't Care  
Don't Care  
AC Active  
0b10  
(Differential)  
GND (TXLIDLEHIZ=0)  
Hi-Z (TXLIDLEHIZ=1)  
GND (TXLIDLEHIZ=0)  
Hi-Z (TXLIDLEHIZ=1)  
UART (Pullup)  
ALERTDCTSTEN=1  
Don't Care  
0
1
FAULT (OV/UV/OT/UT, etc.)  
ALRTOUT  
1µs  
V
DDL  
t
t
PDF  
PDR  
ALRTIN 0V  
FAULT (OV/UV/OT/UT, etc.)  
ALRTOUT  
V
DDL  
V
DDL  
ALRTIN  
1µs  
t
PDR  
t
t
DELAY  
DELAY  
Figure 71. UART-Mode Alert-Detection Timing Diagram  
Maxim Integrated │ 145  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(ALRTAUXOVST & AUXOVSTALRTEN) or  
(ALRTAUXUVST & AUXUVSTALRTEN) or  
UART-Mode Alert Detection (UARTSEL=1'b1)  
This alert interface outputs a 2MHz continuous square  
wave with 50% duty cycle in the presence of a fault  
condition. The fault output persists for the duration of the  
fault and is updated at the rate determined by the scan  
mode. For a valid alert command to be recognized by the  
ALERTIN pin, the signal must be valid for 25μs and at  
the desired frequency. If the duration is shorter than the  
allocated time, or at a different frequency, this will not be  
recognized as a fault and the signal will not be propagated  
to the host. See Figure 71 for a timing diagram.  
(ALERTPEC & PECALRTEN) or (ALRTINTRFC &  
INTRFCALRTEN) or  
(ALRTCAL & CALALRTEN) or (ALRTCBAL &  
CBALALRTEN) or  
(ALRTFMEA1 & FMEA1ALRTEN) or (ALRTFMEA2 &  
FMEA2ALRTEN)  
Note: ALRTRST indicates a POR condition, and thus can-  
not be masked.  
In the absence of an alert, the output status depends on  
TXLIDLEHIZ-TXLIDLEHIZ=1'b1, with ALERTOUT driven  
Hi-Z, and TXLIDLEHIZ=1'b0, with ALERTOUT driven low.  
Alert Packet Status Masking  
The UART Alert packet content is based on the con-  
tents of the STATUS1 register. Individual alert conditions  
can be masked out of the Alert packet using settings in  
ALRTIRQEN register; however, the underlying alert infor-  
mation always be available for read back in the STATUS1  
register. The masking operations for each STATUS1 bits  
is detailed below:  
SPI Mode Alert Operation (UARTSEL=1'b0)  
When configured to communicate through the SPI inter-  
face (UARTSE=0), the ALERTOUT driver is reconfigured  
as an open-drain output or a CMOS output, depending  
on the SPIDRVINT selection. If an alert is present, the  
ALERTOUT output is driven active low. This is done to  
minimize power consumption of the application when  
configured as an open-drain output. If no ALERT condi-  
tion is present, ALERTOUT is driven high (CMOS mode)  
or pulled high through an external connection to a pulup  
resistor for the open-drain configuration.  
ALRT_PKT_STAT[15] = 0  
ALRT_PKT_STAT[14] = ALRTRST  
ALRT_PKT_STAT[13] = (ALRTMSMTCH &  
MSMTCHALRTEN)  
ALRT_PKT_STAT[12] = (ALRTCELLOVST &  
CELLOVSTALRTEN)  
The open-drain configuration allows for the ALERTOUT  
signal to be logically OR'ed with any other signals at the  
application level to drive a host-controller interrupt.  
ALRT_PKT_STAT[11] = (ALRTCELLUVST &  
CELLUVSTALRTEN)  
ALRT_PKT_STAT[10] = (ALRTBLKOVST &  
BLKOVALRTEN)  
Note: If an open-drain configuration, the voltage should  
not exceed V  
.
DDL2  
ALRT_PKT_STAT[9] = (ALRTBLKUVST &  
BLKUVALRTEN)  
In SPI mode, there are no daisy-chain devices, so any  
signal on the ALERTIN input is ignored.  
ALRT_PKT_STAT[8] = (ALRTAUXOVST &  
AUXOVSTALRTEN)  
Alert Interface Masking Operations  
The Alert interface activity is based on the contents of  
the STATUS1 register. Individual alert conditions can  
be masked out of the Alert Interface using settings in  
ALRTIRQEN; however, the underlying alert information  
will always be available for readback in the STATUS1  
register.  
ALRT_PKT_STAT[7] = (ALRTAUXUVST &  
AUXUVSTALRTEN)  
ALRT_PKT_STAT[6] = 0  
ALRT_PKT_STAT[5] = (ALRTPEC & PECALRTEN)  
ALRT_PKT_STAT[4] = (ALRTINTRFC &  
INTRFCALRTEN)  
Active =  
(ALRTSCAN & SCANALRTEN) or ALRTRST or  
(ALRTMSMTCH & MSMTCHALRTEN) or  
(ALRTCELLOVST & CELLOVSTALRTEN) or  
(ALRTCELLUVST & CELLUVSTALRTEN) or  
(ALRTBLKOVST & BLKOVALRTEN) or (ALRTBLKUVST  
& BLKUVALRTEN) or  
Maxim Integrated │ 146  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ALRT_PKT_STAT[3] = (ALRTCAL & CALALRTEN)  
ALRT_PKT_STAT[2] = (ALRTCBAL & CBALALRTEN)  
ALRT_PKT_STAT[1] = (ALRTFMEA1 & FMEA1ALRTEN)  
ALRT_PKT_STAT[0] = (ALRTFMEA2 & FMEA2ALRTEN)  
Alert-Masking TOPCELL1/2  
If the battery stack contains less than 14 cells and the  
Flexible Pack configuration is not enabled, the lowest  
order inputs (e.g., C1 and C0) should be utilized first  
and connected to the lowest common-mode signals. Any  
unused cell inputs should be shorted together and unused  
switch inputs should be shorted together. The TOPCELL1  
and TOPCELL2 registers mask all ALRTBALSW diagnos-  
tics from being reported.  
Note: STATUS1[15]:ALRTSCAN is a procedural notifi-  
cation bit and is intentionally not included in the UART  
Alert packet; it is available for inclusion in the Alert  
interface, to support interrupt-driven applications.  
STATUS1[14]:ALRTRST indicates a POR condition, and  
thus cannot be masked.  
All selections are supported for this function; if TOPCELL2  
is not equal to TOPCELL1, no alerts are masked.  
Table 64. Low-Voltage Regulator Operating Characteristics  
INPUT: DCIN  
Input Voltage: 9V to 65V  
Output:  
Output Voltage: 3.3V  
Disable:  
V
AA  
V
< 0.6V or T  
> 145°C  
SHNDL  
DIE  
Table 65. Low-Voltage Regulator Diagnostic  
FAULT  
CONDITION  
ALERT  
LOCATION  
V
undervoltage  
V
< 2.95V  
ALRTRST  
STATUS1  
AA  
AA  
RDCIN  
DCIN  
LINEAR  
REGULATOR  
REGULATOR  
ENABLE  
VAA  
THERMAL  
SHUTDOWN  
TO SHDNL  
CHARGE  
PUMP  
SHDNL/  
+
+
-
INTERNAL  
POR\  
CSHDNL  
CVAA  
CDIN  
3.0V  
AGND  
Figure 72. Low-Voltage Regulator and Thermal-Shutdown Circuit  
Maxim Integrated │ 147  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
replenished prior to the next measurement cycle. See  
Figure 73 for an example of an HV charge pump.  
Low-Voltage Regulator  
An internal linear regulator supplies low-voltage power  
(V ) for the ADC and digital logic. The regulator is  
Note: The charge pump is operational during AUXTIME,  
CELLDLY, and SWDLY settling periods greater than 30μs,  
which is considered a worst-settling delay for the SWn  
input.  
AA  
disabled when SHDNL is active-low or when the die tem-  
perature (T ) exceeds 145°C. Once V decays below  
DIE  
AA  
2.95V (typ), an internal power-on reset (POR) will be gen-  
erated, as summarized in Table 64 and shown in Figure  
72. This POR event can be detected with the ALRTRST  
bit, as shown in Table 65. After a thermal shutdown, the  
Outside of an acquisition, the charge pump is clocked at  
32kHz.  
An undervoltage comparator detects if V  
drops  
HV-DCIN  
regulator will not be enabled until T  
hysteresis.  
< 130°C due to  
DIE  
below V  
. If an undervoltage is detected, the  
HVUV  
ALRTHVUV bitfield is set. Assertion of the ALRTHVUV bit  
is gated untilALRTRST is cleared for the first time following  
power-up.  
HV Charge Pump  
The high-voltage multiplexers must be powered by a  
supply higher than any monitored voltage. As such, an  
internal charge pump draws power from the DCIN pin  
An overvoltage comparator disables the charge pump  
when V - V  
exceeds V . This condition is indi-  
HVOV  
HV  
DCIN  
to provide a high-voltage supply (V ) that is regulated  
HV  
cated by the ALRTHVOV bit in the FMEA1 register; the  
ALRTHVOV alert does not necessarily indicate a condi-  
tion that affects measurement accuracy. HV charge-pump  
diagnostics are summarized in Table 66.  
to V  
regulation (V  
+ V  
. When the charge pump achieves  
), charge pumping stops until the  
DCIN  
HV-DCIN  
HV-DCIN  
voltage drops by 20mV. The charge pump is automatically  
disabled during shutdown.  
If V  
drops too low relative to the top-cell inputs, there  
HV  
During the measurement cycle for ADC, comparator,  
ADC+COMP, and calibration, the charge pumping is  
paused to eliminate any potential impact of the charge-  
pump noise within the measurements. The charge pump  
then become active, operating on an 83kHz clock, during  
an inter-charge time (defined as the time between con-  
secutive scan sequences), which lasts for 57μs on the  
ADC, comparator, and ADC+COMP. During calibration,  
the inter-charge time is reduced to 21μs. The inter-charge  
is insufficient headroom to guarantee that the HVMUX  
switch resistance is sufficiently low, or enough head-  
room exists for the LSAMP1 and LSAMP2 inputs for an  
accurate acquisition of the channel. Headroom alerts are  
indicated with the ALRTHVDRM bit in the FMEA1 register.  
The HV undervoltage and HV headroom-alert functions can  
be verified by disabling the HV charge pump (HVCPDIS=1)  
and allowing V  
to decay while in acquisition mode.  
HV  
time ensures that the charge on the C  
capacitor is  
HV  
Table 66. HV Charge-Pump Diagnostics  
FAULT  
CONDITION  
ALERT BIT  
ALRTHVUV  
LOCATION  
FMEA1:ALRTHVUV  
FMEA1:ALRTHVOV  
FMEA1:ALRTHVHDRM  
V
V
V
undervoltage  
overvoltage  
low headroom  
V
V
V
- V  
- V  
- V  
< V  
HV  
HV  
HV  
HV  
HV  
HV  
DCIN  
HVUV  
> V  
ALRTHVOV  
DCIN  
HVOV  
< V  
(min)  
ALRTHVHDRM  
TOPCELL1/2  
HVHDRM  
Table 67ꢀ Oscillator Diagnostics  
FAULT  
CONDITION  
ALERT BIT  
LOCATION  
31.129kHz > f  
34.406kHz  
>
osc_32k  
32.768kHz oscillator  
ALRTOSC1  
FMEA1[15]  
31.129kHz > f  
34.406kHz  
>
osc_32k  
32.768kHz oscillator  
16MHz oscillator  
ALRTOSC2  
ALRTOSC3  
FMEA1[14]  
STATUS2[5]  
15MHz > f  
> 17MHz  
osc_16M  
Maxim Integrated │ 148  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
+
-
HVOV  
To ALRTHVOV  
To ALRTHVUV  
-
+
V
V
HVUV  
HVOV  
+
-
+
-
20mV  
Hyst.  
HV  
R
HV  
C
HV  
CPP  
INTERNAL POR/  
CP_CLK  
V
HV-DCIN  
SWITCH  
LOGIC  
+
-
R
DCIN  
DISABLE  
DCIN  
CPN  
HVOV  
C
CP  
DEVCFG2:HVCPDIS  
+
C
DCIN  
I
SINK  
AGND  
Figure 73. HV Charge Pump  
Maxim Integrated │ 149  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
response such as a communication error, or are detect-  
able through a built-in diagnostic. Analyzing the effect of  
pin faults is referred to as a pin FMEA. Contact Maxim  
Applications to obtain pin FMEA results.  
Oscillators  
Two factory-trimmed oscillators provide all timing require-  
ments: a 16MHz oscillator for the UART and control logic, a  
32.768kHz oscillator for the HV charge pump and timers. A  
special diagnostic counter, clocked by the 16MHz signal, is  
employed to check the 32kHz oscillator. Every two periods  
of the 32kHz clock, the counter is sampled. If the count  
varies more than 5% from the expected value, the  
ALRTOSC1 bit is set (see Table 67). A redundant alert bit,  
ALRTOSC2 bit, increases the integrity level. If the 16MHz  
oscillator varies by more than 5%, for UART part, commu-  
nication errors may be indicated. For SPI configuration, the  
ALRTOSC3 bit is set as shown in Table 67.  
ALERTOUT Pin-to-Pin Short Diagnostic  
The UART Alert DC Diagnostic test is used to test the  
ALERTOUT pin for shorts to AUXIN0/GPIO0 pins. When  
UARTSEL=0b1 (UART mode), this test is enabled by set-  
ting the ALERTDCTSTEN bit to 0b1.  
When the DC Diagnostic test is enabled, the ALERTOUT  
pin is driven low if an Alert condition is present, and driven  
high otherwise. The ALRTUSER bitfield can be written to  
exercise ALRTOUT in either direction. Neighboring pins  
such as AUXIN0/GPIO0 can be monitored directly or in  
diagnostic modes to detect a fault.  
Diagnostics  
Built-in diagnostics support ISO 26262 (ASIL) require-  
ments by detecting specific fault conditions (see Table 68).  
The device automatically performs some of the diagnostics  
while the host performs others during initialization (e.g., at  
key-on) or periodically during operation, as required by the  
application. Diagnostics performed automatically by the  
device are previously described in the relevant functional  
sections. A description of the diagnostics requiring specific  
configurations is provided in this section.  
This function works in all UARTCFG modes, including  
the differential alert, which does not normally use the  
ALERTOUT pin. This setting has no impact in SPI mode  
(UARTSEL=0), the same functionality can be realized  
using SPIDRVINIT and ALRTUSER.  
CELL Pin Open Diagnositics  
If an input of the MAX17853 is disconnected from the cell  
input through any combination of mechanical failures, the  
position of the failure can be detected by performing cell  
open diagnostics. It is recommended that comparator  
Note: Pin faults such as an open pin or adjacent pins  
shorted to each other must be detectable. Pin faults do  
not result in device damage but have a specific device  
Table 68. Summary of Built-In Diagnostics  
DIAGNOSTICS PERFORMED AUTOMATICALLY BY DEVICE WITH NO HOST INTERVENTION  
Fault  
undervoltage  
Diagnostic Procedure  
Output  
V
Continuous voltage comparison  
Continuous voltage comparison  
Continuous voltage comparison  
Voltage comparison (updated during measurement)  
Continuous frequency comparison  
Communication error checking  
Communication error checking  
Verify RX mode after POR  
ALRTRST  
AA  
VHV undervoltage  
VHV overvoltage  
ALRTHVUV  
ALRTHVOV  
VHV low headroom  
32kHz oscillator fault  
16MHz oscillator fault  
Communication fault  
RX pin open/short  
ALRTHVHDRM  
ALRTOSC1, ALRTOSC2  
ALRTMAN, ALRTPAR, ALRTOSC3  
ALRTPEC, ALRTMAN, ALRTPAR  
ALRTCOMMSEUn/ALRTCOMMSELn  
ALRTVDDLx  
VDDLx pin open/short  
GNDLx pin open/short  
Die overtemperature  
Continuous voltage comparison  
Continuous voltage comparison  
Temperature comparison  
ALRTGNDLx  
ALRTTEMP  
Accuracy comparison -updated after oversampled  
acquisition  
Measurement accuracy  
Flex Pack fault  
ALRTCOMPACCOV/ALRTCOMPACCUV  
ALRTDCINMUX  
Continuous fault checking of Flexible Pack operation  
Maxim Integrated │ 150  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Table 68. Summary of Built-In Diagnostics (continued)  
DIAGNOSTICS PERFORMED DURING ACQUISITION MODE AS SELECTED BY DIAGSEL OR  
SCACFG (BALSW DIAGNOSTICS)  
DIAGSEL[3:0] or  
FAULT  
DIAGNOSTIC PROCEDURE  
OUTPUT  
SCANCFG  
Die Temperature (PTAT)  
Diagnostic  
Die Temp (PTAT) fault  
DIAGSEL1/2 = 1h  
DIAGSEL1/2[15:0] = PTAT voltage  
V
Voltage fault  
V
Verification  
DIAGSEL1/2 = 2h  
DIAGSEL1/2 = 3h  
DIAGSEL1/2 = 4h  
DIAGSEL1/2[15:0] = V voltage  
AA  
AA  
AA  
Reference Voltage fault  
ALTREF Verification  
DIAGSEL1/2[15:0] = ALTREF voltage  
Comp Cell Signal Path fault Comp Signal Path Verification  
DIAGSEL1/2[15:0] = COMP error voltage  
DIAGSEL1/2[15:0] = Calibration voltage  
(6/13)  
Cell Gain Calibration fault  
Cell Gain Calibration Verification  
Offset Calibration Verification  
DIAGSEL1/2 = 5h  
DIAGSEL1/2 = 6h  
DIAGSEL1/2[15:0] = Calibration Offset  
Voltage (0V)  
Offset Calibration fault  
DAC bit stuck high  
DAC bit stuck low  
DAC 3/4 Scale  
DAC 1/4 Scale  
DIAGSEL1/2 = 7h  
DIAGSEL1/2 = 8h  
DIAGSEL1/2[15:0] = DAC Code 1772d  
DIAGSEL1/2[15:0] = DAC Code 591d  
NTC(THRM) Offset  
Calibration Fault  
NTC(THRM) Offset Calibration  
Verification  
DIAGSEL1/2[15:0] = Calibration offset  
error with THRM  
DIAGSEL1/2 = 9h  
DIAGSEL1/2= Ah  
ADC bit stuck high  
Zero-Scale ADC diagnostic  
Full-Scale ADC diagnostic  
LSAMP offset diagnostic  
BALSW diagnostic mode  
BALSW diagnostic mode  
BALSW diagnostic mode  
BALSW diagnostic mode  
DIAGSEL1/2[15:0] = ADC zero scale  
ADC bit stuck low  
DIAGSEL1/2 = Bh DIAGSEL1/2[15:0] = ADC full scale  
LSAMP Offset too high  
Balancing switch short  
Balancing switch open  
Odd Cell sense-wire open  
Even Cell sense-wire open  
DIAGSEL1/2 = Ch DIAGSEL1/2[15:0] (LSAMP offset voltage)  
SCANCFG = 4h  
SCANCFG = 5h  
SCANCFG = 6h  
SCANCFG = 7h  
ALRTBALSW, FMEA1:ALRTBALSWSUM  
ALRTBALSW, FMEA1:ALRTBALSWSUM  
ALRTBALSW, FMEA1:ALRTBALSWSUM  
ALRTBALSW, FMEA1:ALRTBALSWSUM  
Procedural Diagnostics: Contact Maxim Applications for the complete listing of procedural diagnostics found in the safety manual.  
measurements be used for quick identification against the  
default threshold setting, COMPOPNTH. If measurement  
is below the set threshold, the corresponding CELL alerts  
are flagged in ALRTCOMPOV.  
The die-temperature measurement allows the host to  
compute the device temperature (T ) as it relates to  
DIE  
the acquisition accuracy, and allows the device to auto-  
matically shut itself down when T  
> 145°C. The mea-  
DIE  
surement employs a source where voltage (V  
), is  
PTAT  
Enable this diagnostic by setting CELLOPNDIAGSEL=1  
and performing a comparator scan (SCANCFG=0b010).  
Only unipolar measurements are allowed for this diagnos-  
tic; if a cell position is set as bipolar, the corresponding  
cell is skipped and an alert flag is not set for that bipolar  
cell. Normally in open-diagnostic modes, pulldown cur-  
rent sources are enabled on all measured channels using  
CTSTEN for required cells. Various current configuration  
settings are available for the user and can be configured  
using the DIAGCFG:CTSTDAC bit field.  
proportional to absolute temperature (PTAT), as shown in  
Figure 74. The V measurement is enabled by setting  
PTAT  
DIAGSEL1[3:0] or DIAGSEL2[3:0] to 0b0001, with the  
14-bit measurement stored in DIAG1=DIAG1REG[15:2]  
or DIAG2=DIAG2REG[15:2], respectively. The die-tem-  
perature measurement requires a settling time of 39μs  
from the start of the measurement cycle until the diagnos-  
tic conversion. As long as two or more cell measurements  
are enabled, there will be sufficient settling time for this  
Die-Temperature Measurement  
Maxim Integrated │ 151  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
measurement. See the various acquisition timing sections  
for more details.  
V
= (DIAG2/16384d) x V  
PTAT REF  
Where V  
= 2.3077V. The measured voltage can be  
REF  
The PTAT voltage is computed as follows:  
converted into °C as follows:  
Equations 2:  
Equation 3:  
V
PTAT  
= (DIAG1/16384d) x V  
or  
T
(in °C) = (V  
/A  
) + T  
- 273°C  
OS_PTAT  
REF  
DIE  
PTAT V_PTAT  
ALRTTEMP  
REF  
1.230V  
+
-
ADC IN +  
ADC IN -  
LV  
MUX  
ADC  
V
PTAT  
AGND  
Figure 74. Die-Temperature Measurement  
Maxim Integrated │ 152  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
See the Electrical Characteristics table for A  
and  
V
Diagnostic Measurement  
V_PTAT  
AA  
The V  
T
values.  
OS_PTAT  
diagnostic measurement (DIAGSEL1 or  
AA  
DIAGSEL2=0b0010) verifies that V  
is within specifica-  
AA  
Die-Temperature Alert  
The die temperature is continuously monitored in 1ms  
intervals to detect if T > T . When die temper-  
ature is greater, the ALRTTEMP bit in the FMEA2 register  
is asserted. The only exception is ALRTTEMP monitoring  
is temporarily disabled when the die-temperature mea-  
surement is requested by configuring DIAGSEL1[3:0] or  
DIAGSEL2[3:0]=1h. The signal path for die-temperature  
alert and measurement is shown in Figure 74.  
tion. This diagnostic measures V  
while using V  
as  
REF  
AA  
the ADC reference. Signal path for the V diagnostics is  
shown in Figure 75  
AA  
DIE  
ALRTTEMP  
The voltage into the ADC is computed from the result in  
the DIAG1REG (or DIAG2REG) register, as follows.  
Equation 4:  
(6/13) x V  
= (DIAG1REG[15:2]/16384) x V  
AA  
REF  
V
can be calculated as follows.  
AA  
If ALRTTEMP is set, the host should consider the possibil-  
ity that the acquisition does not meet the expected accu-  
racy specification, or the die-temperature measurement  
itself may be inaccurate due to insufficient settling time  
(< two cell measurements enabled).  
Equation 5:  
V
= (6/13) x V  
x 16384/DIAG[15:2]  
AA  
REF  
V
AA  
THRM  
G = 6/13  
+
LSAMP  
-
ADC IN +  
ADC IN -  
LVMUX  
ADC  
DIGITAL  
CONTROL  
V
DIAGNOSTIC  
REF  
AA  
AGND  
Figure 75. V  
Diagnostic  
AA  
Maxim Integrated │ 153  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
where V  
= 2.3077V  
ALTREF Diagnostic Measurement  
REF  
The ALTREF diagnostic measurement (DIAGSEL1 or  
DIAGSEL2=0b0011) checks the primary voltage reference  
of the ADC by measuring the alternate reference voltage  
The result for V should fall within the range provided in  
AA  
the Electrical Characteristics table for V  
.
AA  
For ADCCALEN=1, the 14-bit ADC measurement that  
passes the diagnostic ranges from 0x1576 to 0x13E4,  
based on the Electrical Characteristics specs.  
(V  
ALTREF  
) while using V  
as the ADC reference. The  
REF  
result is available in the DIAG1REG (or DIAG2REG) reg-  
ister. The ALTREF voltage is computed from the result in  
the DIAG register as follows.  
For ADCCALEN=0, the 14-bit ADC measurement that  
passes the diagnostic ranges from 0x1592 to 0x13CA  
based on the Electrical Characteristics specs.  
Equation 6:  
V
x (6/13) = (DIAG[15:2]/16384) x V  
REF  
ALTREF  
Note: With any sampled measurement, the signal-chain  
noise performance must be considered within the mea-  
surement result. For consistent measurement perfor-  
Because V  
/(6/13) should nominally equal 5V,  
REF  
V
can be determined as follows.  
ALTREF  
mance, is recommended to average V within multiple  
system-measurement cycles to mitigate the variation  
seen by noise.  
AA  
Equation 7:  
V
= (DIAG[15:2]/16384) x 5V  
ALTREF  
REF  
THRM  
G=6/13  
+
LSAMP  
ADC IN +  
-
LV  
MUX  
ADC  
ADC IN -  
REFDIAG  
ALTREF  
UNIPOLAR MODE SET FOR  
REFDIAG MEASUREMENT  
AGND  
Figure 76. ALTREF Diagnostic  
Maxim Integrated │ 154  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
During ALTREF diagnostic measurements, the ADC is  
automatically set to unipolar mode. The signal path for  
ALTREF diagnostic is shown in Figure 76.  
Comparator-thresholds calibration  
Increased comparator performance for improved  
specification beyond that described in the Electrical  
Characteristics specs  
Since 1.23V < V  
< 1.254V and V  
= 1.242V  
ALTREF  
ALTREF  
(nom), the expected range for DIAG[15:2] is shown below.  
The functionality of the comparator signal-conditioning  
path (shown in Figure 77) can be measured using  
DIAGSEL1=0b0100 or DIAGSEL2=0b0100 in the  
DIAGCFG register. This configuration applies an input  
For ADCCALEN=1, the 14-bit ADC measurement that  
passes the diagnostic ranges from 0x0FFA to 0xFD5.  
For ADCCALEN=0, the 14-bit ADC measurement that  
passes the diagnostic ranges from 0x1024 to 0xFAE.  
of V  
= 2.3077V to LSAMP2, while the DAC is pro-  
REF  
grammed to 0x1D8 (DAC reference of 2.3077V). The  
LSAMP2 path is gained up by 6 and compared against  
the DAC output gained by a factor of 13. The output of the  
comparator preamp is routed to the ADC input where it is  
effectively measured. The result of the ADC measurement  
will be presented in corresponding DIAG1REG[15:2] or  
DIAG2REG[15:2] registers.  
Note: With any sampled measurement, the signal-chain  
noise performance must be considered within the mea-  
surement result. For consistent measurement perfor-  
mance, it is recommended to average V  
within  
ALTREF  
multiple system-measurement cycles to mitigate the  
variation seen by noise.  
Comparator Signal-Path Diagnostic Measurement  
Note: It is recommended to run the comparator signal-  
path diagnostic with an OVSAMPL=16.  
The comparator signal conditioning path can be measured  
by the ADC, which allows for the following capabilities:  
Comparator-functionality verification against specification  
REFBUF  
2.3077  
REFBUF  
2.3077V  
ADC  
COMPARATOR SIGNAL  
PATH DIAGNOSTIC  
DIGITAL  
CONTROL  
+
LSAMP2  
-
PREAMP  
A=6  
+
-
COMP  
A=13  
10-BIT DAC  
0x1D8  
Figure 77. Comparator Signal Path to ADC  
Maxim Integrated │ 155  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Comparator functionality is verified by comparing the  
DIAG register outputs against the ranges shown in table  
shown below:  
Equation 10:  
2
2
V
= ε  
+ 0.004  
COMP_CELLPATH  
OS_COMP_EFFECTIVE  
In addition to verifying functionality against the specifica-  
tion, the DIAGn register output can be used to calculate  
the error of the comparator-cell signal path, as shown in  
the following equation.  
For example, if the DIAG1 register output reads 0x1FEC  
(0d7996) then the following adjustments can be applied.  
Equations 11:  
Equation 8:  
1
0d7996 0d8224  
ε
=
×
COMP_CELLPATH  
13  
0d16384  
DIAG1REG15 : 2 0d8224  
1
[
]
ε
=
×
× 5V  
COMP_CELLPATH  
×5V = −5.35mV  
13  
0d16384  
The error can then be used by the user to man-  
ually adjust the comparator OV and UV thresholds  
(COMPOVTH, COMPUVTH, COMPACCOVTHREG,  
COMPACCUVTHREG) to ensure that the thresholds are  
applied to the true comparator performance.  
COMPOVTH  
= COMPOVTH  
+
Adjusted  
Desired  
Round( 5.35mV ×1023 / 5)  
COMPOVTH  
= COMPOVTH  
1  
Adjusted  
Desired  
Equations 9:  
COMPOVTH  
= COMPOVTH  
+
Adjusted  
Desired  
COMPOVTH  
= COMPOVTH  
+
+
Adjusted  
Desired  
Round( 5.35mV ×1023/5)  
Round (ε  
×1023/5)  
COMP_CELLPATH  
COMPOVTH = COMPOVTH  
1  
COMPUVTH  
= COMPUVTH  
Desired  
Adjusted  
Desired  
Adjusted  
Comparator-Accuracy Diagnostic  
Round(ε  
×1023/5)  
COMP_CELLPATH  
The COMPACCEN bit in the ACQCFG register is used  
to test the accuracy of the comparator and is evalu-  
ated at the end of a measurement sequence for con-  
figurations that use the comparator (SCANCFG=001b  
or 010b in the SCANCTRL register) during scans. When  
Note: the above threshold corrections cannot be applied  
to the AUX measurements since the correction includes  
LSAMP2 errors.  
The computed error value also allows the user to specify  
improvement in the comparator accuracy beyond what  
that described in the Electrical Characteristics specs.  
COMPACCEN=1, V  
= 2.3077V is configured as the  
REF  
Table 69. Comparator Signal-Path Diagnostic Verification Ranges  
UPPER DIAGNOSTIC RANGE  
LOWER DIAGNOSTIC RANGE  
ADCALEN=1  
ADCALEN=0  
0x2480  
0x24A0  
0x1BC0  
0x1BA0  
Maxim Integrated │ 156  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
REFBUF  
2.3077V  
REFBUF  
2.3077V  
ADC  
DIGITAL  
CONTROL  
+
LSAMP2  
-
PREAMP  
A=6  
+
-
COMP  
A=13  
COMPACCOVTH  
COMPACCUVTH  
10-BIT DAC  
COMPARATOR ACCURACY  
PATH  
Figure 78. Comparator Accuracy Diagnostic Path  
Maxim Integrated │ 157  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
input to the LSAMP2; the 10-bit DAC uses values from the  
COMPACCOVTH and COMPACCUVTH registers.  
If COMPACCUVTH=D8h, the comparator may not set the  
ALRTCOMPACCUV bit (not expected to be set for the  
ideal case).  
An overvoltage alert is issued by setting the  
ALRTCOMPACCOV bit in the FMEA2 register if the  
threshold value in COMPACCOVTH is violated.  
Comparator Accuracy diagnostic-signal path is shown in  
Figure 78.  
If COMPACCOVTH=1D8h, the comparator may set the  
ALRTCOMPACCOV bit (expected to be set for the ideal  
case).  
To eliminate a false alert, the user should adjust  
COMPACCOVTH and COMPACCUVTH by ±5 DAC  
codes.  
An undervoltage alert is issued by setting the  
ALRTCOMPACCUV bit in the FMEA2 register if the  
threshold value in COMPACCUVTH is violated.  
See the Comparator Signal Path Diagnostic Measurement  
section for details on setting these thresholds.  
Comparator Accuracy diagnostics procedure, requested  
by setting COMPACCEN=1, is run only once at the end of  
INPUT  
CHANNEL  
CELL OV QUALIFICATION  
CELL UV QUALIFICATION  
AUX OV/UV QUAL  
TIME  
T0  
Figure 79. Comparator Accuracy End of Scan Measurement  
Maxim Integrated │ 158  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
the last oversample of the SCAN measurement request,  
as shown in Figure 79.  
each of the SCANMODE configurations utilized by the  
application to validate calibration.  
The diagnostic is performed by multiplexing V  
into the  
REF  
Cell Gain-Calibration-Diagnostic Measurement  
LSAMP1 inputs, as shown in Figure 80. The OVSAMPL  
bitfield used during this diagnostic acquisition must be  
minimally configured to an oversample of 16, which  
ensures proper accuracy performance.  
The cell gain-calibration diagnostic verifies that on-  
demand calibration is functioning correctly and the ADC  
and LSAMP1 are operating within the specification  
described by the Electrical Characteristics table. This  
diagnostic is run by setting the DIAGSEL1=0b0101 or  
DIAGSEL2=0b0101 in the DIAGCFG register in accor-  
dance with the SCANMODE setting. Thus, if SCANMODE  
is configured for Pyramid mode operation when this  
diagnostic is run, the sampling will occur as two conver-  
sion phases and effectively chop the offset. Similarly,  
if SCANMODE is configured for Ramp mode operation  
when this diagnostic is run, only a single conversion  
phase is implemented. This diagnostic must be run for  
The expected result is 6/13 of full-scale (0x1D8A) volt-  
age and can be read from the DIAG1REG[15:2] or  
DIAG2REG[15:2] registers. To allow 14-bit ADC measure-  
ments should extend from 0x1D7D to 0x1D97.  
Note: This diagnostic should not be run without enabling  
calibration.  
Offset-Calibration Diagnostic  
The offset-calibration diagnostic is run by setting  
DIAGSEL1=0b0110 or DIAGSEL2=0b0110 in the  
REF  
HVMUX BUS  
THRM  
G = 6/13  
+
LSAMP  
-
ADC IN +  
LVMUX  
ADC  
DIGITAL  
CONTROL  
ADC IN -  
CELL CAL DIAGNOSTIC  
REF  
UNIPOLAR MODE SELECTED  
AGND  
Figure 80. Cell Gain Calibration-Diagnostic Measurement  
Maxim Integrated │ 159  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
DIAGCFG register. This diagnostic verifies that on-  
demand calibration is functioning correctly and operating  
within the Electrical Characteristics table specs.  
during this diagnostic acquisition must be minimally con-  
figured to an oversample of 16 to ensure proper accuracy  
performance.The expected result is 0V (0x2000) and can  
be read from the DIAG1REG[15:2] or DIAG2REG[15:2]  
registers.  
This diagnostic is configured differently depending on the  
SCANMODE setting in the SCANCTRL register. When con-  
figured in Pyramid mode (SCANMODE=0), the diagnostic  
is performed by shorting the ADC inputs and performing  
an acquisition with the ADC polarity overridden in bipolar  
mode. When configured in Ramp mode (SCANMODE=1),  
the diagnostic is performed by shorting the LSAMP1 inputs  
to ground and performing an unchopped acquisition with  
the ADC polarity overridden in bipolar mode. For both  
SCANMODE configurations, the OVSAMPL bitfield used  
For Pyramid mode, the 14-bit ADC measurement bound  
that passes this diagnostic ranges from 1FF3h to 200dh.  
For Ramp mode, the 14-bit ADC measurement bound that  
passes this diagnostic ranges from 1FEAh to 2011h.  
The signal path is shown in Figure 81.  
Note: This diagnostic should not be run without enabling  
calibration.  
REF  
REF  
THRM  
THRM  
ADC IN +  
ADC IN +  
ADC  
ADC  
DIGITAL  
DIGITAL  
CONTROL  
CONTROL  
ADC IN -  
ADC IN -  
BIPOLAR MODE SELECTED  
BIPOLAR MODE SELECTED  
OFFSET CAL DIAGNOSTIC  
OFFSET CAL DIAGNOSTIC  
AGND  
AGND  
Figure 81. Offset-Calibration Diagnostic  
Figure 82. THRM Offset-Calibration Diagnostic  
Maxim Integrated │ 160  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
measurement exceeds the valid range for V , as  
OS_LSAMP  
THRM Offset-Calibration Diagnostic  
specified in the Electrical Characteristics table, the chop-  
ping function may not be able to cancel out all the offset  
error, and acquisition accuracy could be degraded accord-  
ingly. Signal path for this diagnostic is shown in Figure 83.  
The THRM offset-calibration diagnostic is run by set-  
ting the DIAGSEL1=0b1001 or DIAGSEL2=0b1001 in  
the DIAGCFG register. The diagnostic verifies that on-  
demand calibration for the THRM case is functioning  
correctly and the ADC is operating within the specifica-  
tion described in the Electrical Characteristics table.  
This is performed by shorting the ADC inputs to ground  
with ADC reference connected to THRM, and perform-  
ing an acquisition with a recommendation of minimum  
16x oversample (OVSAMPL=0b011) in bipolar mode. If  
ADCCALEN=1, appropriate calibration coefficients are  
applied to the diagnostic result. The signal path can be  
seen in Figure 82.  
The LSAMPoffset is computed from the result in the DIAG1  
or DIAG2 as follows: LSAMP Offset = (|DIAGn[15:2] -  
2000h|/16384d) x 5V.  
For ADCCALEN=0, the 14-bit ADC measurement bound  
that passes this diagnostic ranges from 1D59 to 22A9h.  
For ADCCALEN=1, the 14-bit ADC measurement bound  
that passes this diagnostic ranges from 1D70h to 228Fh.  
The validity of measurements through LSAMP is further  
confirmed by the ALTREF and V diagnostics, and com-  
AA  
The expected result is 0V or DIAG1/2[15:2]=2000h (nom).  
For ADCCALEN=1, the 14-bit ADC measurement bound  
that passes this diagnostic ranges from 1FF8h to 2003h.  
parison of the VBLK measurement to the sum of the cell  
measurements.  
Zero-Scale ADC Diagnostic Measurement  
For ADCCALEN=0, the 14-bit ADC measurement bound  
that passes this diagnostic ranges from 1FB0h to 204Fh.  
Stuck ADC output bits can be verified with a combina-  
tion of the zero-scale and full-scale diagnostics. The  
zero-scale ADC diagnostic measurement (DIAGSEL1 or  
DIAGSEL2=0b1010) verifies that the ADC conversion  
LSAMP Offset-Diagnostic Measurement  
The LSAMP diagnostic measurement (DIAGSEL1 or  
DIAGSEL2=0b1100) measures the level-shift amplifier  
offset by shorting the LSAMP inputs during the diagnostic  
portion of the acquisition. The result is available in the  
DIAG1REG or DIAG2REG registers after an acquisition.  
For this measurement, the ADC polarity is automatically  
set to bipolar mode to allow accurate measurement of volt-  
ages near zero. This measurement eliminates the chop-  
ping phase to preserve the offset error. If the diagnostic  
results in 000h (12-bit) when its input is at -V in bipolar  
AA  
mode (for an input ≤ -2.5V, DIAG1/2[13:0]=0000h). For  
this measurement, the ADC is automatically set to bipolar  
mode. Signal path for this diagnostic is shown in Figure 84  
If the user is looking for a quick combination of ADC zero  
scale and full scale to detect if the ADC is stuck at some  
value, this can be performed as part of end of scan by  
G = 6/13  
+
ADC IN +  
LVMUX  
FROM HVMux  
LSAMP  
ADC  
ADC IN -  
-
BIPOLAR ADC MODE  
SET FOR AMPDIAG MEASUREMENT  
Figure 83. LSAMP Offset Diagnostic  
Maxim Integrated │ 161  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
REF  
THRM  
V
AA  
ADC IN +  
LV  
MUX  
ADC  
ADC IN -  
AGND  
ADC AUTOMATICALLY  
IN BIPOLAR MODE  
AGND  
Figure 84. ADC Zero-Scale Diagnostic  
REF  
THRM  
V
AA  
ADC IN +  
LV  
MUX  
ADC  
ADC IN -  
AGND  
ADC AUTOMATICALLY IN  
BIPOLAR MODE  
AGND  
Figure 85. Full-Scale ADC Diagnostic Measurement  
Maxim Integrated │ 162  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
configuring ADCZSFZEN=1 and then requesting a SCAN.  
See the the various acquisition timing sections for details  
on insertion into the scan and timing.  
DAC 1/4 Scale Diagnostic  
The DAC 1/4 scale diagnostic can be requested by setting  
DIAGSEL1 or DIAGSEL2=0x1000. This configures the  
internal DAC used to set the comparator thresholds to 1/4  
Full-Scale ADC Diagnostic Measurement  
of full scale (V ) or 0x100. The DAC voltage is muxlti-  
REF  
Stuck ADC output bits can be verified with a combina-  
tion of the zero-scale and full-scale diagnostics. The  
full- scale ADC diagnostic measurement (DIAGSEL1 or  
DIAGSEL2=0b1011) verifies that the ADC conversion  
plexed to the ADC and then compared against the bounds  
shown in Figure 86.  
The nominal DAC and ADC voltages are:  
results in FFFh (12-bit) when its input is at V in bipolar  
V
V
= 256/1023 x 2.3077 = 0.5775V  
AA  
DAC  
ADC  
mode (since for an input ≥ 2.5V, DIAG1/2[13:0]=3FFCh).  
For this measurement, the ADC is automatically set to  
bipolar mode. Signal path for this diagnostic is shown in  
Figure 85.  
= 0.5775/2.3077 x 16384 = 4100 = 0x1004  
For ADCCALEN=1, the 14-bit ADC measurement bounds  
for passing this diagnostic range from 0x0FD0 to 0x1040.  
For ADCCALEN=0, the 14-bit ADC measurement bounds  
for passing this diagnostic range from 0x0FA0 to 0x1060.  
If the user is looking for a quick combination of ADC zero  
scale and full scale to detect if the ADC is stuck at some  
value, this can be performed as part of end of scan by  
configuring ADCZSFZEN=1 and requesting a SCAN. See  
the the various acquisition timing sections for details on  
insertion into the scan and timing.  
This can be used in conjunction with the DAC 3/4 scale  
diagnostic to ensure there are no stuck bits that may  
cause errors with the comparator threshold settings.  
REFBUF  
2.3077V  
REFBUF  
2.3077V  
DIGITAL  
0x100  
CONTROL  
ADC  
10-BIT DAC  
0x2FF  
Figure 86. DAC 1/4 and 3/4 Diagnostic  
Maxim Integrated │ 163  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Even sense wire open (SCANCFG[2:0]=0b111)  
DAC 3/4 Scale Diagnostic  
The DAC 3/4 scale diagnostic can be requested by set-  
ting DIAGSEL1 or DIAGSEL2=0x0111. This configures  
the internal DAC used to set the comparator thresholds to  
Enabling any of these modes automatically configures  
several acquisition settings (e.g., enables the ALTMUX  
measurement path). The host must initiate the acquisi-  
tion but the diagnostic mode automatically compares the  
measurements to the specific thresholds, as configured  
through BALSHRTTHR, BALLOWTHR, or BALHIGHTHR  
threshold registers and sets any corresponding alerts  
in the ALRTBALSW register field. The host presets the  
thresholds, as determined by the minimum and maximum  
3/4 of full scale (V ) or 2FFh. The DAC voltage is multi-  
REF  
plexed to the ADC and then compared against the bounds  
shown below.  
The nominal DAC and ADC voltages are:  
V
V
= 767/1023*2.3077 = 1.73V  
DAC  
= 1.73/2.3077 x 16384 = = 2FFAh  
resistance of the switch (R ) specified in the Electrical  
ADC  
SW  
Characteristics table and the intended cell-balancing  
current.  
For ADCCALEN=1, the 14-bit ADC measurement bounds  
for passing this diagnostic range from 2F80h to 3070h.  
At the start of a new scan request, the Balance-Switch  
Fault-Alert Register (ALRTBALSW[13:0]) is cleared  
if balancing-switch diagnostic mode is requested  
(SCANCFG=0b100, 0b101, 0b110, or 0b111). The result  
from the current balancing-switch diagnostic is written to  
ALRTBALSW[13:0] at the end of scan (SCANDONE=1).  
The previous result persists in ALRTBALSW until a new  
scan is requested, with balancing-switch diagnostic mode  
enabled.  
For ADCCALEN=0, the 14-bit ADC measurement bounds  
for passing this diagnostic range from 2F70h to 3080h.  
This be used in conjunction with the DAC 1/4 scale diag-  
nostic to ensure there are no stuck bits that may cause  
errors with the comparator-threshold settings.  
BALSW Diagnostics  
Four balancing switch diagnostic modes are available to  
facilitate the following diagnostics:  
Table 70 describes which Balance Switch Diagnostic Alert  
Thresholds contribute to ALRTBALSW in each of the four  
modes.  
Balancing switch shorted (SCANCFG[2:0]=0b100)  
Balancing switch open (SCANCFG[2:0]=0b101)  
Odd sense wire open (SCANCFG[2:0]=0b110)  
Table 70. BALSW Diagnostic  
MODE  
SCANCFG[2:0]  
THRESHOLD  
BALSHRTTHR  
FAULT CONDITION  
Data < BALSHRTTHR  
Balancing Switch Short  
0b100  
Data < BALLOWTHR, or  
Data > BALHIGHTHR  
Balancing Switch Open  
Cell Sense Open Odds  
Cell Sense Open Evens  
0b101  
0b110  
0b111  
BALLOWTHR, BALHIGHTHR  
BALLOWTHR, BALHIGHTHR  
BALLOWTHR, BALHIGHTHR  
Data < BALLOWTHR, or  
Data > BALHIGHTHR  
Data < BALLOWTHR, or  
Data > BALHIGHTHR  
Maxim Integrated │ 164  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
The summary status bitfield ALRTBALSWSUM is updated  
at the end of scan when a balancing switch diagnostic  
mode is enabled. ALRTBALSWSUM is a bit-wise logical  
OR of ALRTBALSW[13:0].  
ALRTBALSW[13:0] alerts are resolved (by subsequent  
scan) or by writing to logic zero.  
Note: In balancing switch diagnostic mode, the ALRTOV,  
ALRTUV, and ALRTMSMTCH alerts are not updated  
because these are only applicable during normal cell  
measurements.  
ALRTBALSW is a bitwise alert status for all the 14  
channels/switches, the alert masking depend on the  
TOPCELL1 and TOPCELL2 settings. The user should  
pay attention that if TOPCELL1 != TOPCELL2 then none  
of the alerts are masked. If TOPCELL1 = TOPCELL2  
all the alerts above TOPCELL1/2 positions are masked.  
These conditions apply for all the four BALSW diagnostic  
SCAN requests.  
BALSW Short Diagnostic  
A short-circuit fault in the balancing path could be a short  
between SWn and SWn-1 as shown in Figure 87 or that  
a balancing FET is stuck in the conducting state. In the  
short circuit state, the voltage between SWn and SWn-1  
(switch voltage) is less than the voltage between Cn and  
Cn-1 (cell voltage).  
The balancing switch diagnostic summary sta-  
tus ALRTBALSWSUM can be cleared if all enabled  
Table 71. BALSW-Short Diagnostics Operation  
BALSW  
V
FAULT INDICATED?  
POSSIBLE FAULT CONDITION  
SWn  
> V  
< V  
No  
None  
BALSHRTTHR  
BALSHRTTHR  
Off  
Yes  
Short circuit or leakage current  
C(n)  
To HVMux  
To ALTMux  
BALSWn  
HV  
SW(n)  
BALANCIN  
G SWITCH  
(n)  
SHORT  
CIRCUIT  
SW(n-1)  
To ALTMux  
To HVMux  
C(n-1)  
AGND  
Figure 87. Balancing Switch Short  
Maxim Integrated │ 165  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
When enabled, the balancing switch short diagnostic mode (SCANCFG[2:0] = 0b100) functions as follows:  
MAX1785X FULLY  
FUNCTIONAL AND  
INITIALIZED  
ENSURE BALSHRTTHR  
SET TO DESIRED  
VALUE  
SET SCANCFG TO  
0B100  
WAIT 100μs  
START ADC  
MEASUREMENT  
ALRTFMEA1  
YES  
SCANDONE = 1  
DATACHECK BIT  
SHOWS RESULT  
NO  
CLEAR SACNCFG AND  
SCANDONE  
BALSW SHORT-CIRCUIT  
CHECK INVALID  
CHECK ALRTBALSW OR  
CELLN REGISTERS FOR  
DETAILED RESULT  
BALSW SHORT-CIRCUIT  
CHECK DONE  
Figure 88. BALSW Short-Diagnostic Chart  
Maxim Integrated │ 166  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Disables the balancing switches automatically  
See Figure 87 for an example of a BALSW short.  
Configures the acquisition using ALTMUX path auto-  
The BALSW Short diagnostic procedural flow chart is  
shown in Figure 88.  
matically  
Host initiates the acquisition on selected Unipolar  
The BALSW Short diagnostic automatically overrides the  
configuration settings during the measurements scan  
(see Table 72).  
Cells only (~POLARITYn & CELLENn)  
Compares the measurement to the threshold value  
BALSHRTTHR automatically (for Unipolar Cells only,  
i.e. POLARITYn=0, see Table 71)  
BALSW Open Diagnostic  
The BALSW open diagnostic (SCANCFG[2:0]=0b101)  
verifies that each enabled balancing switch is conducting  
(not open) as follows:  
If outside the threshold, sets the corresponding flag  
in ALRTBALSW automatically  
For the best sensitivity to leakage current, set the thresh-  
old value based on the minimum cell voltage minus a  
small noise margin (100mV) then update the threshold  
value periodically or every time a measurement is taken  
depending on how fast the cell voltages are expected to  
change.  
Configures acquisition for bipolar mode (for measuring  
voltages near zero) automatically  
Configures acquisition for ALTMUX path automatically  
Configures acquisition to measure switch voltages  
for any switches enabled by BALSWENn automati-  
cally on all unipolar cell positions (~POLARITYn &  
BALSW Short decision is as shown in Table 71.  
Table 72. BALSW Short Diagnostic Auto-Configuration  
CONFIGURATION BITS  
MEASUREEN1[15:14]  
MEASUREEN1[13:0]  
MEASUREEN2[5:0]  
BALSWEN[13:0]  
AUTOMATIC SETTING  
0b00  
PURPOSE  
Disable VBLK measurements  
(~POLARITYn & CELLENn)  
Enable only selected Unipolar Cell measurements  
Disable AUXn measurements  
0b000000  
0x0000  
0x0  
Disable all balancing switches  
DIAGSEL1/2  
Disable all diagnositics  
SCANCTRL:ALTMUXSEL  
SCANCTRL:OVSAMPL  
1
Enable ALTMUX measurement path  
Oversample rates configured to 1  
0x0  
Table 73. BALSW Open-Diagnostic Operation  
BALSW  
V
FAULT INDICATED?  
POSSIBLE FAULT CONDITION  
SWn  
> V  
> V  
Yes  
Switch open circuit, or overcurrent  
BALHIGHTHR  
BALLOWTHR  
BALHIGHTHR  
On  
No  
None  
< V  
< V  
Yes  
Path open circuit, or short circuit  
BALLOWTHR  
Table 74. BALSW Open-Diagnostic Auto-Configuration  
CONFIGURATION BITS  
MEASUREEN1[15:14]  
MEASUREEN1[13:0]  
MEASUREEN2[5:0]  
AUTOMATIC SETTING  
PURPOSE  
0b00  
Disable VBLK measurements  
BALSWENn & ~POLARITYn  
Measure only active unipolar switch positions  
Disable AUXn measurements  
0b000000  
DIAGSEL1/2  
0x0  
1
Disable all diagnostics  
SCANCTRL:ALTMUXSEL  
SCANCTRL:OVSAMPL  
Enable ALTMUX measurement path  
Configure oversample rate to 1  
0x0  
Maxim Integrated │ 167  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BALSWENn). Note: it is not necessary for the device  
to be in an active manual cell-balancing operation,  
only that BALSWEN will be configured as desired.  
Set the thresholds by taking into account the minimum  
and maximum R of the switch itself, as specified in the  
Electrical Characteristics table and the balancing current  
SW  
for the application.  
Host initiates acquisition  
BALSW Open Diagnostics operation decision is as shown  
in Table 73.  
Compares each measurement to the threshold value  
BALLOWTHR and BALHIGHTHR automatically (see  
Table 73)  
The BALSW Open Diagnostic procedural flow chart is  
shown in Figure 89.  
If outside the threshold, sets the corresponding flag  
in ALRTBALSW automatically  
MAX1785X FULLY  
FUNCTIONAL AND  
INITIALIZED  
MAX1785X FULLY  
FUNCTIONAL AND  
INITIALIZED  
ENSURE BALLOWTHR  
AND BALHIGHTHR SET  
TO DESIRED VALUE  
ENSURE BALLOWTHR  
AND BALHIGHTHR SET  
TO DESIRED VALUE  
0B110 FOR ODD SWITCHES  
SET SCANCFG  
0B111 FOR EVEN SWITCHES  
SET SCANCFG TO  
0B101  
WAIT 100μs  
START ADC  
MEASUREMENT  
START ADC  
MEASUREMENT  
ALRTFMEA1  
DATACHECK BIT  
SHOWS RESULT  
YES  
SCANDONE  
= 1?  
ALRTFMEA1  
DATACHECK BIT  
SHOWS RESULT  
YES  
SCANDONE  
= 1?  
NO  
NO  
CLEAR SCANCFG AND  
SCANDONE  
BALSW OPEN CHECK  
INVALID  
CLEAR SCANCFG AND  
SCANDONE  
BALSW CONDUCTING  
CHECK INVALID  
CHECK ALRTBALSW OR  
CELLN REGISTERS FOR  
DETAILED RESULT  
CHECK ALRTBALSW OR  
CELLN REGISTERS FOR  
DETAILED RESULT  
BALSW CELL SENSE  
CHECK DONE  
BALSW CONDUCTING  
CHECK DONE  
Figure 89. BALSW Open Diagnostic  
Figure 90. Sense-Wire Open-Diagnostic Flow  
Maxim Integrated │ 168  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
The BALSW Short Diagnostic automatically overrides  
the configuration settings during the measurements scan  
(see Table 74).  
If enabled, the sense-wire open diagnostic modes detect  
if a cell sense wire is disconnected as follows:  
Configures acquisition for bipolar mode  
Even/Odd Sense-Wire Open Diagnostics  
Table 75. Sense-Wire Open-Diagnostic Automatic Configuration Overrides  
CONFIGURATION  
BIT(S)  
CONFIGURATION  
TASK  
STATE  
Enable odd switches  
Enable even switches  
Switch positions with POLARITYn=1 (bipolar/bus bar)  
and those above TOPCELL1/2 are masked/disabled.  
1555h (SCANCFG[2:0]=0b110) or  
2AAAh (SCANCFG[2:0]=0b111)  
BALSWEN[13:0]  
MEASUREEN1[15:14]  
MEASUREEN1[13:0]  
0b00  
Disable VBLK measurements  
BALSWEN[13:0] is set as per automatic overrides shown above.  
Measure only active switch positions per automatic BALSWEN  
overrides and unipolar positions.  
(BALSWENn & ~POLARITYn)  
MEASUREEN2[5:0]  
DIAGSEL1/2  
0b000000  
Disable AUXn measurements  
Disable all diagnostics  
0x0  
1
SCANCTRL:ALTMUXSEL  
SCANCTRL:OVSAMPL  
Enable ALTMUX measurement path  
Oversample configured to 1  
0x0  
To Cell 5  
TO CELL 5  
R
FILTER  
R
FILTER  
SENSE  
WIRE  
SENSE  
WIRE  
4.0*V(CELL)  
4.0*V(CELL)  
C(4)  
C(4)  
To HVMux  
To HVMux  
~2X  
LOWER  
V4 APPEARS AS  
~ V(CELL5)/2 + V(CELL4) + V(CELL3)/2  
TO ALTMUX  
C
R
C
FILTER  
~3.5*V(CELL)  
R
FILTER  
~4.5*V(CELL)  
BALANCE  
BALANCE  
SW(4)  
SW(4)  
V4 APPEARS REDUCED:  
BALLOWTHR < V4 < BALHIGHTHR  
To ALTMux  
BALSW4  
HV  
To ALTMux  
BALSW4  
HV  
(BUT IS NOT MEASURED)  
CELL 4  
CELL 3  
CELL 2  
C
CELL 4  
C
BALFILTER  
BALFILTER  
ON  
OFF  
BALANCIN  
G SWITCH  
4
BALANCIN  
G SWITCH  
4
SW4 & SW3  
Pulled closer  
R
R
FILTER  
FILTER  
SENSE  
WIRE  
SENSE  
WIRE  
3.0*V(CELL)  
3.0*V(CELL)  
C(3)  
C(3)  
To HVMux  
To ALTMux  
~2X  
To HVMux  
To ALTMux  
LOWER  
V3 APPEARS AS  
~ V(CELL4)/2 + V(CELL3) + V(CELL2)/2  
TO ALTMUX  
R
BALANCE  
R
C
FILTER  
~3.5*V(CELL)  
BALANCE  
~2.5*V(CELL)  
C
FILTER  
SW(3)  
V3 APPEARS REDUCED:  
BALLOWTHR < V3 < BALHIGHTHR  
SW(3)  
(BUT IS NOT MEASURED)  
BALSW3  
HV  
BALSW3  
HV  
C
CELL 3  
C
BALFILTER  
BALFILTER  
OFF  
ON  
Detect breaks  
in dashed-line paths.  
BALANCIN  
G SWITCH  
3
BALANCIN  
G SWITCH  
3
SW3 & SW2  
PULLED CLOSER  
R
FILTER  
SENSE  
WIRE  
SENSE  
WIRE  
2.0*V(CELL)  
R
2.0*V(CELL)  
FILTER  
C(2)  
C(2)  
To HVMux  
~2X  
To HVMux  
LOWER  
V2 APPEARS AS  
~ V(CELL3)/2 + V(CELL2) + V(CELL1)/2  
TO ALTMUX  
R
BALANCE  
R
C
C
FILTER  
~1.5*V(CELL)  
BALANCE  
FILTER  
~2.5*V(CELL)  
SW(2)  
SW(2)  
V2 APPEARS REDUCED:  
BALLOWTHR < V2 < BALHIGHTHR  
To ALTMux  
BALSW2  
To ALTMux  
BALSW2  
HV  
(BUT IS NOT MEASURED)  
CELL 2  
C
HV  
BALFILTER  
ON  
C
OFF  
BALFILTER  
BALANCIN  
G SWITCH  
2
BALANCIN  
G SWITCH  
2
SW2 & SW1  
Pulled closer  
R
R
FILTER  
SENSE  
WIRE  
SENSE  
WIRE  
R
FILTER  
1.0*V(CELL)  
1.0*V(CELL)  
C(1)  
C(1)  
To HVMux  
To ALTMux  
To HVMux  
To ALTMux  
~1.5X (END CASE)  
LOWER  
V1 APPEARS AS  
~ V(CELL2)/2 + V(CELL1)  
TO ALTMUX  
BALANCE  
~1.5*V(CELL)  
R
C
FILTER  
BALANCE  
~0.5*V(CELL)  
C
FILTER  
SW(1)  
SW(1)  
V1 APPEARS REDUCED:  
BALLOWTHR < V1 < BALHIGHTHR  
To Cell 1  
TO CELL 1  
(BUT IS NOT MEASURED)  
AGND  
AGND  
EVEN SENSE-WIRE OPEN DIAGNOSTIC:  
ODD SENSE-WIRE OPEN DIAGNOSTIC:  
EXAMPLE WITH NO BROKEN SENSE WIRES  
EXAMPLE WITH NO BROKEN SENSE WIRES  
Figure 91. Cell Sense-Wire Open-Diagnostic Operations (Normal Operation)  
Maxim Integrated │ 169  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
(for measuring voltages near zero) automatically  
Closes nonadjacent switches (even or odd)  
automatically  
Configures acquisition to use ALTMUX path  
automatically  
● Host waits 100μs for settling and then initiates the  
acquisition  
Compares the result to the BALHIGHTHR and  
BALLOWTHR registers automatically  
If outside thresholds, sets flags in ALRTBALSW  
automatically  
Examples of normal and faulty operations are shown  
in Figure 92, Figure 93, Figure 94, and Figure 95  
for examples with and without bus bars (identified by  
POLARITYn=1). By examining the combined reported  
results from even and odd runs, the location and type of  
fault can be determined. Figure 90 shows the procedure  
performed by the MAX17853 during an open sense-wire  
diagnostic.  
TO CELL 5  
TO CELL 5  
SENSE  
WIRE  
SENSE  
WIRE  
3.0*V(CELL)  
3.0*V(CELL)  
C(4)  
C(4)  
~1.5X  
To HVMux  
To HVMux  
LOWER  
R
R
R
R
R
R
R
R
FILTER  
FILTER  
FILTER  
FILTER  
FILTER  
FILTER  
FILTER  
FILTER  
C
C
FILTER  
FILTER  
V4 APPEARS AS  
~ V(CELL5)/2 + V(CELL4) + 0  
TO ALTMUX  
R
R
R
R
~2.5*V(CELL)  
R
R
R
R
BALANCE  
BALANCE  
BALANCE  
BALANCE  
BALANCE  
BALANCE  
BALANCE  
BALANCE  
~3.5*V(CELL)  
SW(4)  
SW(4)  
V4 APPEARS REDUCED:  
BALLOWTHR < V4 < BALHIGHTHR  
To ALTMux  
BALSW4  
To ALTMux  
BALSW4  
HV  
(BUT IS NOT MEASURED)  
HV  
CELL 4  
ON  
CELL 4  
OFF  
R
BALFILTER  
R
BALFILTER  
BALANCING  
SWITCH 4  
BALANCING  
SWITCH 4  
SW4 & SW3  
PULLED CLOSER  
SENSE  
WIRE  
SENSE  
WIRE  
2.0*V(CELL)  
2.0*V(CELL)  
C(3)  
C(3)  
~1X  
To HVMux  
To HVMux  
0V  
C
C
FILTER  
FILTER  
V3 APPEARS AS  
~ V(CELL4)/2 + 0 + V(CELL2)/2  
TO ALTMUX  
V3 IS NEAR-ZERO  
V3 < BALLOWTHR  
(BUT IS NOT MEASURED)  
~2.5*V(CELL)  
2.0*V(CELL)  
SW(3)  
SW(3)  
To ALTMux  
BALSW3  
To ALTMux  
BALSW3  
HV  
(BUT IS NOT MEASURED)  
BUSBAR  
3
BUSBAR  
3
HV  
OFF  
Rbalfilter  
R
BALFILTER  
OFF  
(POLARITY[3] = 1)  
BALANCING  
SWITCH 3  
BALANCING  
SWITCH 3  
C3, SW3  
≈ C2, SW2  
C3, SW3  
≈ C2, SW2  
SENSE  
WIRE  
SENSE  
WIRE  
2.0*V(CELL)  
2.0*V(CELL)  
C(2)  
C(2)  
~1.5X  
To HVMux  
To HVMux  
LOWER  
V2 APPEARS AS  
~ 0 + V(CELL2) + V(CELL1)/2  
TO ALTMUX  
C
C
FILTER  
FILTER  
~1.5*V(CELL)  
2.0*V(CELL)  
SW(2)  
SW(2)  
V2 APPEARS REDUCED:  
BALLOWTHR < V2 < BALHIGHTHR  
To ALTMux  
BALSW2  
HV ON  
To ALTMux  
BALSW2  
(BUT IS NOT MEASURED)  
CELL 2  
CELL 2  
HV  
OFF  
R
BALFILTER  
R
BALFILTER  
BALANCIN  
G SWITCH 2  
BALANCING  
SWITCH 2  
SW2 & SW1  
PULLED CLOSER  
SENSE  
WIRE  
SENSE  
WIRE  
1.0*V(CELL)  
1.0*V(CELL)  
C(1)  
C(1)  
To HVMux  
To ALTMux  
To HVMux  
To ALTMux  
~1.5X (END CASE)  
LOWER  
C
C
FILTER  
FILTER  
V1 APPEARS AS  
~ V(CELL2)/2 + V(CELL1)  
TO ALTMUX  
~1.5*V(CELL)  
~0.5*V(CELL)  
SW(1)  
SW(1)  
V1 APPEARS REDUCED:  
BALLOWTHR < V1 < BALHIGHTHR  
TO CELL 1  
TO CELL 1  
(BUT IS NOT MEASURED)  
AGND  
AGND  
EVEN SENSE WIRE OPEN DIAGNOSTIC:  
EXAMPLE WITH BUS BAR  
ODD SENSE WIRE OPEN DIAGNOSTIC:  
EXAMPLE WITH BUS BAR  
Figure 92. Cell Sense-Wire Open-Diagnostic Operations (Normal Operation, Including Bus Bars)  
Maxim Integrated │ 170  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
TO CELL 5  
TO CELL 5  
SENSE  
WIRE  
SENSE  
WIRE  
4.0*V(Cell)  
4.0*V(Cell)  
C(4)  
C(4)  
~2.5X  
ZERO  
To HVMux  
To HVMux  
R
FILTER  
R
FILTER  
C
C
FILTER  
FILTER  
V4 APPEARS AS  
~ V(CELL5)/2 + V(CELL4) + V(CELL3)  
TO ALTMUX  
V4 APPEARS  
NEAR-ZERO TO ALTMUX:  
V4 < BALLOWTHR,  
4.0*V(Cell)  
R
BALANCE  
R
BALANCE  
~4.5*V(Cell)  
SW(4)  
SW(4)  
To ALTMux  
BALSW4  
To ALTMux  
BALSW4  
(BUT IS NOT MEASURED)  
SO ALRTBALSW[4] IS ISSUED  
HV  
HV  
CELL 4  
OFF  
CELL 4  
CELL 3  
CELL 2  
ON  
R
BALFILTER  
R
BALFILTER  
BALANCING  
SWITCH 4  
BALANCING  
SWITCH 4  
C3/SW3  
PULLED TO  
C4/SW4  
3.0*V(CELL) OR  
3.0*V(CELL) OR  
4.0*V(CELL)  
DEPENDING ON  
BREAK LOCATION  
SENSE  
WIRE  
BREAK  
SENSE  
WIRE  
BREAK  
2.0*V(CELL)  
DEPENDING ON  
BREAK LOCATION  
C(3)  
C(3)  
ZERO  
~2.5X  
To HVMux  
To HVMux  
R
R
FILTER  
FILTER  
C
C
FILTER  
FILTER  
V3 APPEARS  
NEAR-ZERO TO ALTMUX:  
V3 < BALLOWTHR  
V3 APPEARS AS  
~ V(CELL4) + V(CELL3) + V(CELL2)/2  
TO ALTMUX  
~4.0*V(Cell)  
R
BALANCE  
R
BALANCE  
2.0*V(Cell)  
SW(3)  
SW(3)  
To ALTMux  
BALSW3  
To ALTMux  
BALSW3  
SO ALRTBALSW[3] IS ISSUED  
(BUT IS NOT MEASURED)  
BREAKS IN  
THESE  
LOCATIONS  
YIELD SIMILAR  
RESULTS VIA  
ALTMUX,  
BUT WILL NOT  
IMPACT HVMUX.  
BREAKS IN  
THESE  
LOCATIONS  
YIELD SIMILAR  
RESULTS VIA  
ALTMUX,  
BUT WILL NOT  
IMPACT HVMUX.  
CELL 3  
HV  
ON  
HV  
OFF  
R
BALFILTER  
R
BALFILTER  
BALANCING  
SWITCH 3  
BALANCING  
SWITCH 3  
C3/SW3  
PULLED TO  
C2/SW2  
SENSE  
WIRE  
SENSE  
WIRE  
2.0*V(Cell)  
2.0*V(Cell)  
C(2)  
C(2)  
~1.5X  
To HVMux  
To HVMux  
LOWER  
R
R
FILTER  
FILTER  
C
C
FILTER  
FILTER  
V2 APPEARS AS  
~ 0 + V(CELL2) + V(CELL1)/2  
TO ALTMUX  
~1.5*V(Cell)  
R
BALANCE  
2.0*V(Cell)  
R
BALANCE  
SW(2)  
SW(2)  
V2 APPEARS REDUCED,  
BALLOWTHR < V2 < BALHIGHTHR  
To ALTMux  
BALSW2  
To ALTMux  
BALSW2  
HV ON  
2X  
(BUT IS NOT MEASURED)  
CELL 2  
HV  
OFF  
R
R
BALFILTER  
BALFILTER  
BALANCING  
SWITCH 2  
BALANCING  
SWITCH 2  
SW2 & SW1  
PULLED CLOSER  
SENSE  
WIRE  
SENSE  
WIRE  
1.0*V(Cell)  
1.0*V(Cell)  
C(1)  
C(1)  
To HVMux  
To ALTMux  
To HVMux  
To ALTMux  
~1.5X (END CASE)  
LOWER  
R
R
FILTER  
FILTER  
C
C
FILTER  
FILTER  
V1 APPEARS AS  
~ V(CELL2)/2 + V(CELL1)  
TO ALTMUX  
~1.5*V(Cell)  
R
BALANCE  
~0.5*V(Cell)  
R
BALANCE  
SW(1)  
SW(1)  
V1 APPEARS REDUCED:  
BALLOWTHR < V1 < BALHIGHTHR  
TO CELL 1  
TO CELL 1  
(BUT IS NOT MEASURED)  
AGND  
AGND  
ODD SENSE WIRE OPEN DIAGNOSTIC:  
EXAMPLE WITH BROKEN SENSE WIRE 3  
EVEN SENSE WIRE OPEN DIAGNOSTIC:  
EXAMPLE WITH BROKEN SENSE WIRE 3  
ALRTBALSW[3] ISSUED DUE TO BALLOWTHR VIOLATION.  
ALRTBALSW[4] ISSUED DUE TO BALLOWTHR VIOLATION.  
Figure 93. Cell Sense-Wire Open-Diagnostic Operations (Example with Odd Sense-Wire Fault)  
TO CELL 5  
SENSE  
TO CELL 5  
SENSE  
4.0*V(Cell)  
WIRE  
4.0*V(Cell)  
WIRE  
C(4)  
C(4)  
~1.5X  
To HVMux  
To HVMux  
LOWER  
R
R
R
R
R
R
FILTER  
FILTER  
FILTER  
FILTER  
FILTER  
FILTER  
C
C
FILTER  
FILTER  
V4 APPEARS AS  
~ V(CELL5)/2 + V(CELL4) + 0  
TO ALTMUX  
~3.5*V(Cell)  
R
R
R
R
R
R
BALANCE  
BALANCE  
BALANCE  
~4.5*V(Cell)  
BALANCE  
BALANCE  
BALANCE  
SW(4)  
SW(4)  
V4 APPEARS REDUCED:  
BALLOWTHR < V4 < BALHIGHTHR  
To ALTMux  
BALSW4  
To ALTMux  
BALSW4  
(BUT IS NOT MEASURED)  
CELL 4  
CELL 3  
CELL 2  
HV  
HV  
CELL 4  
CELL 3  
CELL 2  
OFF  
ON  
R
R
BALFILTER  
BALFILTER  
BALANCIN  
G SWITCH  
4
BALANCING  
SWITCH 4  
SW4 & SW3  
PULLED CLOSER  
SENSE  
WIRE  
SENSE  
WIRE  
3.0*V(Cell)  
3.0*V(Cell)  
3.0*V(Cell)  
C(3)  
C(3)  
~2.5X  
ZERO  
To HVMux  
To HVMux  
C
C
FILTER  
FILTER  
V3 APPEARS  
NEAR-ZERO TO ALTMUX:  
V3 < BALLOWTHR  
V3 APPEARS AS  
~ V(CELL4)/2 + V(CELL3) + V(CELL2)  
TO ALTMUX  
~3.5*V(Cell)  
SW(3)  
SW(3)  
To ALTMux  
BALSW3  
To ALTMux  
BALSW3  
SO ALRTBALSW[3] IS ISSUED  
(BUT IS NOT MEASURED)  
HV  
ON  
HV  
OFF  
R
R
BALFILTER  
BALFILTER  
BALANCIN  
G SWITCH  
3
BALANCING  
SWITCH 3  
C2/SW2  
PULLED TO  
C3/SW3  
2.0*V(CELL) OR  
3.0*V(CELL)  
DEPENDING ON  
BREAK LOCATION  
2.0*V(CELL) OR  
SENSE  
WIRE  
BREAK  
SENSE  
WIRE  
BREAK  
1.0*V(CELL)  
DEPENDING ON  
BREAK LOCATION  
C(2)  
C(2)  
~2.5X  
ZERO  
To HVMux  
To HVMux  
V2 APPEARS AS  
~ V(CELL3) + V(CELL2) + V(CELL1)/2  
TO ALTMUX  
C
C
FILTER  
FILTER  
V2 APPEARS  
NEAR-ZERO TO ALTMUX:  
V2 < BALLOWTHR  
1.0*V(Cell)  
3.0*V(Cell)  
SW(2)  
SW(2)  
To ALTMux  
BALSW2  
To ALTMux  
BALSW2  
HV ON  
(BUT IS NOT MEASURED)  
SO ALRTBALSW[2] IS ISSUED  
BREAKS IN  
THESE  
LOCATIONS  
BREAKS IN  
THESE  
LOCATIONS  
HV  
OFF  
R
R
BALFILTER  
BALFILTER  
YIELD SIMILAR  
RESULTS VIA  
ALTMUX,  
BUT WILL NOT  
IMPACT HVMUX.  
YIELD SIMILAR  
RESULTS VIA  
ALTMUX,  
BUT WILL NOT  
IMPACT HVMUX.  
BALANCIN  
G SWITCH  
2
BALANCING  
SWITCH 2  
C2/SW2  
PULLED TO  
C1/SW1  
SENSE  
WIRE  
SENSE  
WIRE  
1.0*V(Cell)  
1.0*V(Cell)  
C(1)  
C(1)  
To HVMux  
To ALTMux  
To HVMux  
To ALTMux  
~1X (End Case)  
LOWER  
R
R
FILTER  
FILTER  
C
C
FILTER  
FILTER  
V1 APPEARS AS  
~ 0 + V(CELL1)  
TO ALTMUX  
1.0*V(Cell)  
R
~0.5*V(Cell)  
R
BALANCE  
BALANCE  
SW(1)  
SW(1)  
V1 APPEARS REDUCED:  
BALLOWTHR < V1 < BALHIGHTHR  
TO CELL 1  
TO CELL 1  
(BUT IS NOT MEASURED)  
AGND  
AGND  
ODD SENSE WIRE OPEN DIAGNOSTIC:  
EXAMPLE WITH BROKEN SENSE WIRE 2  
EVEN SENSE WIRE OPEN DIAGNOSTIC:  
EXAMPLE WITH BROKEN SENSE WIRE 2  
ALRTBALSW[3] ISSUED DUE TO BALLOWTHR VIOLATION.  
ALRTBALSW[2] ISSUED DUE TO BALLOWTHR VIOLATION.  
Figure 94. Cell Sense-Wire Open-Diagnostic Operations (Example with Even Sense-Wire Fault)  
Maxim Integrated │ 171  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Table 75 lists the configuration-setting overrides the  
MAX17853 temporarily enforces during an open sense-  
wire diagnostic-measurement scan.  
Examples of Normal Sense-Wire Operation  
Figure 91 shows the electrical behavior during both odd  
and even sense-wire open diagnostics when no sense  
wires are open or compromised.  
These overrides are only active during the scan; normal  
configured operation is restored at the end of the scan.  
Table 76. Odd Sense-Wire Open-Measurement Results for Broken Sense Wires  
SENSE-WIRE OPEN-FAULT LOCATION  
SW0 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12 SW13 SW14  
Cell1 LO  
Cell2 NM  
Cell3 OK  
Cell4 NM  
Cell5 OK  
Cell6 NM  
Cell7 OK  
Cell8 NM  
Cell9 OK  
Cell10 NM  
Cell11 OK  
Cell12 NM  
Cell13 OK  
Cell14 NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
Cell  
Measurement  
Note: OK = No error detected; LO = BALLOWTHR violation; NM = Not Measured; Maximum result is 2.5V.  
Table 77. Even Sense-Wire Open-Measurement Results for Broken Sense Wires  
SENSE-WIRE OPEN-FAULT LOCATION  
SW0 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12 SW13 SW14  
Cell1 NM  
Cell2 OK  
Cell3 NM  
Cell4 OK  
Cell5 NM  
Cell6 OK  
Cell7 NM  
Cell8 OK  
Cell9 NM  
Cell10 OK  
Cell11 NM  
Cell12 OK  
Cell13 NM  
Cell14 OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
OK  
NM  
LO  
Cell  
Measurement  
Note: OK = No error detected; LO = BALLOWTHR violation; NM = Not measured; Maximum result is 2.5V.  
Maxim Integrated │ 172  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Figure 92 shows the electrical behavior during both odd  
and even sense-wire open diagnostics when no sense  
wires are open or compromised, with bus bars included.  
Figure 94 and Figure 95 show examples of how broken  
sense wires are detected and diagnosed using combina-  
tions of odd and even sense-wire open diagnostics.  
Figure 94 shows the electrical behavior during both odd  
and even sense-wire open diagnostic sequences when a  
sense-wire in an even position is broken. The alerts that  
are issued as a result of the fault are also shown.  
Examples of Broken Sense-Wire Fault Detection  
Figure 93 shows the electrical behavior during both odd  
and even sense-wire open diagnostic sequences when a  
sense-wire in an odd position is broken. The alerts that  
are issued as a result of the fault are also shown.  
Sense-Wire Open-Fault-Detection Results  
Table 78. Odd and Even Sense-Wire Open-Measurement Results Overlay for Broken  
Sense Wires  
SENSE-WIRE OPEN-FAULT LOCATION  
SW0 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12 SW13 SW14  
Cell1 LO  
Cell2 OK  
Cell3 OK  
Cell4 OK  
Cell5 OK  
Cell6 OK  
Cell7 OK  
Cell8 OK  
Cell9 OK  
Cell10 OK  
Cell11 OK  
Cell12 OK  
Cell13 OK  
Cell14 OK  
LO  
LO  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
LO  
LO  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
LO  
LO  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
LO  
LO  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
LO  
LO  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
LO  
LO  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
LO  
LO  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
LO  
LO  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
LO  
LO  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
LO  
LO  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
LO  
LO  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
LO  
LO  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
LO  
LO  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
LO  
Cell  
Measurement  
Note: OK = No Error Detected; LO = BALLOWTHR Violation; Maximum result is 2.5V  
Maxim Integrated │ 173  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
TO CELL 5  
TO CELL 5  
SENSE  
WIRE  
SENSE  
WIRE  
4.0*V(Cell)  
4.0*V(Cell)  
C(4)  
C(4)  
<2X  
To HVMux  
To HVMux  
LOWER  
R
R
R
R
R
R
R
R
FILTER  
FILTER  
FILTER  
FILTER  
FILTER  
FILTER  
FILTER  
FILTER  
C
C
FILTER  
FILTER  
V4 APPEARS AS  
~ V(CELL5)/2 + V(CELL4) + V(CELL3)/2  
TO ALTMUX  
~3.5*V(Cell)  
R
R
R
R
R
R
R
R
BALANCE  
BALANCE  
BALANCE  
BALANCE  
~4.5*V(Cell)  
BALANCE  
BALANCE  
BALANCE  
BALANCE  
SW(4)  
SW(4)  
V4 APPEARS REDUCED:  
BALLOWTHR < V4 < BALHIGHTHR  
To ALTMux  
BALSW4  
To ALTMux  
BALSW4  
(BUT IS NOT MEASURED)  
HV  
HV  
CELL 4  
CELL 3  
CELL 2  
OFF  
CELL 4  
ON  
R
R
BALFILTER  
BALFILTER  
BALANCING  
SWITCH 4  
BALANCING  
SWITCH 4  
SW4 & SW3  
PULLED CLOSER  
SENSE  
WIRE  
SENSE  
WIRE  
3.0*V(Cell)  
3.0*V(Cell)  
C(3)  
C(3)  
<2X  
To HVMux  
To HVMux  
LOWER  
C
C
FILTER  
FILTER  
V3 APPEARS AS  
~ V(CELL4)/2 + V(CELL3) + V(CELL2)/2  
TO ALTMUX  
V3 APPEARS ONLY PARTIALLY REDUCED:  
V3 > BALHIGHTHR  
SO ALRTBALSW[3] IS ISSUED  
~3.5*V(Cell)  
<3.0*V(Cell)  
SW(3)  
SW(3)  
To ALTMux  
BALSW3  
To ALTMux  
BALSW3  
(BUT IS NOT MEASURED)  
R
R
BALFILTE  
HV  
ON  
CELL 3  
HV  
OFF  
R
BALFILER  
BALANCING  
SWITCH 3  
BALANCING  
SWITCH 3  
TOO MUCH IR DROP  
ACROSS BALSW3  
SENSE  
WIRE  
SENSE  
WIRE  
2.0*V(Cell)  
2.0*V(Cell)  
C(2)  
C(2)  
<2X  
To HVMux  
To HVMux  
LOWER  
V2 APPEARS AS  
~ V(CELL3)/2 + V(CELL2) + V(CELL1)/2  
TO ALTMUX  
C
C
FILTER  
FILTER  
<2.0*V(Cell)  
V2 APPEARS ONLY PARTIALLY REDUCED:  
V2 > BALHIGHTHR  
SO ALRTBALSW[2] IS ISSUED  
>2.0*V(Cell)  
SW(2)  
SW(2)  
To ALTMux  
BALSW2  
To ALTMux  
BALSW2  
HV ON  
(BUT IS NOT MEASURED)  
Rbalfilter  
HV  
OFF  
CELL 2  
R
BALFILTER  
BALANCING  
SWITCH 2  
BALANCING  
SWITCH 2  
TOO MUCH IR DROP  
ACROSS BALSW2  
SENSE  
WIRE  
SENSE  
WIRE  
1.0*V(Cell)  
1.0*V(Cell)  
C(1)  
C(1)  
To HVMux  
To ALTMux  
To HVMux  
To ALTMux  
<1.5X (End Case)  
LOWER  
C
C
FILTER  
FILTER  
V1 APPEARS AS  
~ V(CELL2)/2 + V(CELL1)  
TO ALTMUX  
>1.0*V(Cell)  
~0.5*V(Cell)  
SW(1)  
SW(1)  
V1 APPEARS REDUCED:  
BALLOWTHR < V1 < BALHIGHTHR  
TO CELL 1  
TO CELL 1  
(BUT IS NOT MEASURED)  
AGND  
AGND  
ODD SENSE WIRE OPEN DIAGNOSTIC:  
EVEN SENSE WIRE OPEN DIAGNOSTIC:  
EXAMPLE WITH HIGH IMPEDANCE SWITCH OR INTERNAL LINE BREAK 3  
ALRTBALSW[3] ISSUED DUE TO BALHIGHTHR VIOLATION.  
EXAMPLE WITH HIGH IMPEDANCE SWITCH OR INTERNAL LINE BREAK 2  
ALRTBALSW[2] ISSUED DUE TO BALHIGHTHR VIOLATION.  
Figure 95. Cell Sense-Wire Open-Diagnostic Operations (Example with Broken BALSW or Internal Trace)  
Table 79. Odd and Even Sense-Wire Open-Measurement Results Overlay for Broken  
Sense Wires  
SWITCH OR TRACE FAULT LOCATION (BALSW)  
1
2
3
4
5
6
7
8
9
10  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
HI  
11  
12  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
HI  
13  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
HI  
14  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
HI  
Cell1  
Cell2  
Cell3  
Cell4  
Cell5  
Cell6  
Cell7  
Cell8  
Cell9  
HI  
OK  
HI  
OK  
OK  
HI  
OK  
OK  
OK  
HI  
OK  
OK  
OK  
OK  
HI  
OK  
OK  
OK  
OK  
OK  
HI  
OK  
OK  
OK  
OK  
OK  
OK  
HI  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
HI  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
HI  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
HI  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
Cell  
Measurement  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
Cell10 OK  
Cell11 OK  
Cell12 OK  
Cell13 OK  
Cell14 OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
Note: OK = No error detected, LO = BALLOWTHR violation, Maximum result is 2.5V  
Maxim Integrated │ 174  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Table 76 shows the measurement alerts that correspond  
to a break in each sense-wire position during an odd  
sense-wire open diagnostic. When combined with the  
results from an even sense-wire open diagnostic, the  
exact location of the sense-wire fault can be determined.  
Register Map  
MAX17853 User Register Map  
Register Map Usage Guidelines  
The register map (RMap) for the MAX17853 is detailed  
in the following sections. General-usage guidelines per-  
taining to the entire RMap are outlined here, detailing  
the expected usage of the RMap, including how various  
protocol and access issues are handled.  
Table 77 shows the measurement alerts that correspond  
to a break in each sense-wire position during an oven  
sense-wire open diagnostic. When combined with the  
results from an odd sense-wire open diagnostic, the exact  
location of the sense-wire fault can be determined.  
Interface Protocol Errors  
When combined together, the two diagnostics can identify  
the exact location of a broken sense wire. The combined  
diagnostic results are shown in Table 78.  
For read and write transactions to be accepted, all inter-  
face-protocol expectations must be met. If protocol errors  
occur, they are reported through alerts in the STATUS1  
and STATUS2 registers, notifying the user of the issue  
observed. If a protocol error occurs, none of the behaviors  
listed below apply, because the transaction will be reject-  
ed, even if the transaction addresses a Reserved register  
address. See the UART and SPI Interface descriptions for  
complete details on expected interface protocols.  
Examples of Broken Internal Switch and  
Trace-Fault Detection  
Figure 95 shows the electrical behavior during both odd  
and even sense-wire open-diagnostic sequences when  
there is a fault in an internal switch or connection. The  
alerts that are issued as a result of the fault are also  
shown.  
Reserved Registers  
Figure 96 shows examples of how broken-sense wires  
are detected and diagnosed using combinations of odd  
and even sense-wire open diagnostics.  
All user-accessible registers are contained in the address  
space between 0x00 and 0x98. Any address/register in  
this space not specifically listed in the RMap should be  
treated as Reserved; for the MAX17853, the following  
addresses within the user address space are reserved:  
0x2C, 0x2D, 0x2E, 0x2F, 0x46, and 0x84 through 0x8B.  
The address space 0x99 to 0xFF is also reserved for  
Maxim Use Only.  
Broken-Switch Fault-Detection Results  
When combined together, the two diagnostics can cover  
and identify the exact location of a faulty switch or inter-  
nal trace. The combined diagnostic results are shown in  
Table 79. Notice that unlike a broken sense wire, only a  
single ALRTBALSW alert is issued for faults of this type.  
If an otherwise valid attempt to read or write to a reserved  
register address occurs (with no protocol or CRC/PEC  
errors), no errors are issued for the SPI/UART transaction.  
No data written to a reserved register address are internally  
stored, and reserved registers always read back all zeros.  
If a UART block readback request includes any reserved  
register addresses, the addresses will be included in the  
readback data, with all zeros returned; no addresses are  
skipped during UART block readback transactions. Users  
should normally avoid writing to reserved registers, as the  
MAX17853 will not respond to such transactions.  
ADC End-of-Scan Diagnostics  
This diagnostic is performed at the end of a measurement-  
sequence that is configured to use the ADC (SCANCFG  
= 0b000 or 0b001) when ADCZSFSEN=1. The ADC mea-  
surements are taken in bipolar mode.  
For full-scale diagnostic: ADC  
= V  
and ADC  
=
IN  
REF  
REF  
V
AA  
.
If the result from the ADC is less than FFFh (12-bit result),  
an alert is issued by setting the ALRTADCFS bit in the  
FMEA2 register.  
Unused Bitfields  
Within the user-accessible registers, there are many  
unused bitfields, denoted by a dash (-) in the RMap.  
During read and write transactions, PEC and CRC checks  
apply to all 16 bits of data, including any unused bitfields.  
No data written to an unused bitfield is internally stored,  
and unused bitfields always read back all zeros.  
Maxim Integrated │ 175  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
that follow. These behaviors ensure that register content  
Reserved Bitfields  
currently in use by any requested internal process is not  
subject to alteration while in use. In general, the register  
blocks are organized and defined to provide maximum  
transaction efficiency, while also ensuring the ultimate  
level of safety.  
Within the RMap, there are two reserved bitfields,  
DEVCFG1RSRV (1 bit) and DEVCFG2RSRV (4 bits);  
these are reserved for future use. During read and write  
transactions, PEC and CRC checks apply to all 16 bits  
of data, including any reserved bitfields. Data written to  
a reserved bitfield will be internally stored (though the  
settings of these bitfields have no effect on internal opera-  
tions), and the reserved bitfields always read back their  
current settings.  
If a valid write transaction to a blocked (busy) register  
occurs, the transaction is rejected and the ALRTRJCT bit  
set, indicating the write was ignored since that register  
was currently being used by an ongoing internal opera-  
tion. In general, user software should be written to avoid  
modifying register content that is currently in use, instead  
confirming that the internal process has completed before  
any modifications are written to the MAX17853.  
Register Blocks and Transaction-Reject Behavior  
The RMap is organized into several register blocks. Each  
register block is subject to specific transaction-rejection  
behaviors, as detailed in the register block descriptions  
ADDRESS  
NAME  
MSB  
LSB  
STATUS Registers  
VERSION[15:8]  
MOD[11:4]  
VER[3:0]  
0x00  
VERSION[7:0]  
ADDRESS[15:8]  
ADDRESS[7:0]  
STATUS1[15:8]  
MOD[3:0]  
ADDRUN-  
LOCK  
BA[4:0]  
TA[4:3]  
0x01  
TA[2:0]  
DA[4:0]  
ALRT- ALRTCEL- ALRTCEL- ALRT-  
ALRT-  
ALR-  
ALRTSCAN ALRTRST  
MSMTCH LOVST  
LUVST BLKOVST BLKUVST TAUXOVST  
0x02  
ALRTAUX-  
UVST  
ALRTIN-  
ALRTPEC  
ALRT-  
CBAL  
ALRT-  
FMEA2  
ALRT-  
FMEA1  
STATUS1[7:0]  
STATUS2[15:8]  
STATUS2[7:0]  
ALRTCAL  
TRFC  
ALRTPE- ALRTP-  
ALRT-  
ALRT-  
MANDN  
ALRTPA-  
RUP  
ALRT-  
PARDN ALUART  
ALRTDU-  
CUP  
ECDN  
MANUP  
0x03  
0x04  
ALRTSCLK-  
ERR  
ALR-  
TOSC3  
ALRTINT-  
BUS  
ALRTSPI  
ALRTRJCT  
ALRTCB- ALRTCB- ALRTCB-  
ALRT-  
CBNTFY  
ALRTCB-  
DONE  
STATUS3[15:8]  
STATUS3[7:0]  
TIMEOUT TEMP  
CAL  
ALRT-  
COM-  
MSEU1  
ALRT-  
COM-  
MSEL1  
ALRT-  
COM-  
MSEL2  
ALR-  
TOSC1  
ALR-  
TOSC2  
ALRCOM-  
MSEU2  
ALRT-  
VDDL3  
ALRT-  
VDDL2  
FMEA1[15:8]  
FMEA1[7:0]  
FMEA2[15:8]  
FMEA2[7:0]  
0x05  
0x06  
ALRT-  
BALS-  
WSUM  
ALRT-  
VDDL1  
ALRT-  
GNDL3  
ALRT-  
GNDL2  
ALRT-  
GNDL1  
ALRTH- ALRTHVH- ALRTH-  
VUV  
DRM  
VOV  
ALRTAUX-  
PRTCT-  
SUM  
ALRTUS- ALRTD-  
ALRT- ALRTSCAN-  
TEMP  
ER  
CINMUX  
TIMEOUT  
ALRT-  
COMPAC- COMPAC-  
COV CUV  
ALRT-  
ALRTAD- ALRTAD-  
CZS  
CFS  
Maxim Integrated │ 176  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ADDRESS  
NAME  
MSB  
LSB  
ALRT-  
ALRT-  
COM-  
POVST  
ALRT-  
COMPU-  
VST  
ALRTAD-  
CAUXU-  
VST  
ALRTAD-  
COVST  
ALRTAD-  
CUVST  
ALRTAD- ALRTCOM-  
CAUXOVST PAUXOVST  
COM-  
PAUXU-  
VST  
ALRTSUM[15:8]  
0x07  
ALRT-  
CALO-  
SADC  
ALRT-  
ALRT-  
CALOSR  
STHRM  
ALRTCAL- ALRTCAL-  
GAINP GAINR  
ALRTSUM[7:0]  
CALO-  
ALRTOVCELL[15:8]  
ALRTOVCELL[7:0]  
ALRTUVCELL[15:8]  
ALRTUVCELL[7:0]  
MINMAXCELL[15:8]  
MINMAXCELL[7:0]  
ALRTOV[14:9]  
0x08  
0x09  
0x0A  
ALRTOV[8:1]  
ALRTUV[14:9]  
ALRTUV[8:1]  
MAXCELL[3:0]  
MINCELL[3:0]  
ALRTAUXPRTC-  
TREG[15:8]  
0x0B  
ALRTAUXPRTCTREG[7:0]  
ALRTAUXOVREG[15:8]  
ALRTAUXOVREG[7:0]  
ALRTAUXUVREG[15:8]  
ALRTAUXUVREG[7:0]  
ALRTCOMPOVREG[15:8]  
ALRTCOMPOVREG[7:0]  
ALRTCOMPUVREG[15:8]  
ALRTCOMPUVREG[7:0]  
ALRTAUXPRTCT[5:4]  
ALRTAUXPRTCT[3:0]  
0x0C  
0x0D  
0x0E  
0x0F  
ALRTAUXOV[5:4]  
ALRTAUXOV[3:0]  
ALRTAUXUV[5:4]  
ALRTAUXUV[3:0]  
ALRTCOMPOV[14:9]  
ALRTCOMPOV[8:1]  
ALRTCOMPUV[14:9]  
ALRTCOMPUV[8:1]  
ALRTCOM-  
PAUXOVREG[15:8]  
0x10  
0x11  
ALRTCOM-  
PAUXOVREG[7:0]  
ALRTCOM-  
PAUXOV[5:4]  
ALRTCOMPAUXOV[3:0]  
ALRTCOMPAUXUVREG[15:8]  
ALRTCOMPAUX-  
UV[5:4]  
ALRTCOMPAUXUVREG[7:0]  
ALRTCOMPAUXUV[3:0]  
ALRTBALSWREG[15:8]  
ALRTBALSWREG[7:0]  
SWACTION[15:8]  
ALRTBALSW[13:8]  
ALRTBALSW[7:0]  
0x12  
0x13  
SWACTION[7:0]  
SWPOR  
GENERAL CONFIGURATION Registers  
TXUIDLE- TXLIDLE-  
ALIVECNT-  
EN  
UAR-  
THOST  
DEVCFG1[15:8]  
UARTCFG[1:0]  
ADAPTTXEN[1:0]  
DEVCF-  
HIZ  
HIZ  
0x14  
0x15  
SPI-  
DEVCFG1[7:0]  
DEVCFG2[15:8]  
DEVCFG2[7:0]  
SFTYCSB SFTYSCLK SFTYSDI  
IIRFC[2:0]  
NOPEC ALERTEN DBLBUFEN  
DRVINT G1RSRV  
DEVCFG2RSRV[3:0]  
SCANTO-  
FORCE- ALERT-  
POR DCTSTEN  
HVCPDIS  
SPITODIS  
CBTODIS  
DIS  
Maxim Integrated │ 177  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ADDRESS  
NAME  
MSB  
LSB  
AUXGPIOCFG[15:8]  
AUXGPIOCFG[7:0]  
GPIOCFG[15:8]  
GPIOEN[5:4]  
GPIODIR[5:4]  
GPIODRV[5:4]  
GPIORD[5:4]  
GPIOEN[3:0]  
GPIODIR[3:0]  
GPIODRV[3:0]  
GPIORD[3:0]  
0x16  
0x17  
GPIOCFG[7:0]  
FLXPCK- FLXPCK- FLXPCK-  
EN2 EN1 SCAN  
TOPCELL2[3:0]  
PACKCFG[15:8]  
PACKCFG[7:0]  
TOPBLOCK[3:0]  
TOPCELL1[3:0]  
0x18  
ALERT CONFIGURATION Registers  
CEL-  
LOVST-  
ALRTEN ALRTEN  
CEL-  
LUVST-  
SCAN-  
ALRTEN  
MSMTCH-  
ALRTEN  
BLKOVST- BLKUVST- AUXOVST-  
ALRTEN ALRTEN ALRTEN  
ALRTIRQEN[15:8]  
ALRTIRQEN[7:0]  
0x19  
AUXUVST-  
ALRTEN  
PEC-  
INTRFC- CAL-  
ALRTEN ALRTEN ALRTEN ALRTEN 2ALRTEN 1ALRTEN  
CBAL-  
FMEA-  
FMEA-  
BLKOV-  
ALRTEN  
ALRTOVEN[15:8]  
ALRTOVEN[7:0]  
ALRTUVEN[15:8]  
OVALRTEN[14:9]  
OVALRTEN[8:1]  
0x1A  
0x1B  
BLKUV-  
ALRTEN  
UVALRTEN[14:9]  
ALRTUVEN[7:0]  
UVALRTEN[8:1]  
ALRTAUXOVEN[15:8]  
ALRTAUXOVEN[7:0]  
ALRTAUXUVEN[15:8]  
ALRTAUXUVEN[7:0]  
ALRTCALTST[15:8]  
0x1C  
0x1D  
AUXOVALRTEN[5:4]  
AUXOVALRTEN[3:0]  
AUXUVALRTEN[5:4]  
AUXUVALRTEN[3:0]  
CALO-  
SADC-  
ALRTFRC  
CALO- CALGAIN- CALGAIN-  
0x1E  
CALOSR-  
ALRTFRC  
ALRTCALTST[7:0]  
STHRM- PALRT-  
RALRT-  
FRC  
ALRTFRC  
FRC  
THRESHOLD Registers  
OVTHCLRREG[15:8]  
0x1F  
OVTHCLR[13:6]  
OVTHCLR[5:0]  
OVTHSET[13:6]  
OVTHSET[5:0]  
UVTHCLR[13:6]  
UVTHCLR[5:0]  
UVTHSET[13:6]  
UVTHSET[5:0]  
MSMTCH[13:6]  
MSMTCH[5:0]  
BIPOVTHCLR[13:6]  
BIPOVTHCLR[5:0]  
BIPOVTHSET[13:6]  
BIPOVTHSET[5:0]  
OVTHCLRREG[7:0]  
OVTHSETREG[15:8]  
0x20  
OVTHSETREG[7:0]  
UVTHCLRREG[15:8]  
0x21  
UVTHCLRREG[7:0]  
UVTHSETREG[15:8]  
0x22  
UVTHSETREG[7:0]  
MSMTCHREG[15:8]  
(0x23)  
MSMTCHREG[7:0]  
BIPOVTHCLRREG[15:8]  
0x24  
BIPOVTHCLRREG[7:0]  
BIPOVTHSETREG[15:8]  
0x25  
BIPOVTHSETREG[7:0]  
Maxim Integrated │ 178  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ADDRESS  
NAME  
MSB  
LSB  
BIPUVTHCLRREG[15:8]  
BIPUVTHCLRREG[7:0]  
BIPUVTHSETREG[15:8]  
BIPUVTHSETREG[7:0]  
BLKOVTHCLRREG[15:8]  
BLKOVTHCLRREG[7:0]  
BLKOVTHSETREG[15:8]  
BLKOVTHSETREG[7:0]  
BLKUVTHCLRREG[15:8]  
BLKUVTHCLRREG[7:0]  
BLKUVTHSETREG[15:8]  
BLKUVTHSETREG[7:0]  
AUXROVTHCLRREG[15:8]  
AUXROVTHCLRREG[7:0]  
AUXROVTHSETREG[15:8]  
AUXROVTHSETREG[7:0]  
AUXRUVTHCLRREG[15:8]  
AUXRUVTHCLRREG[7:0]  
AUXRUVTHSETREG[15:8]  
AUXRUVTHSETREG[7:0]  
AUXAOVTHCLRREG[15:8]  
AUXAOVTHCLRREG[7:0]  
AUXAOVTHSETREG[15:8]  
AUXAOVTHSETREG[7:0]  
AUXAUVTHCLRREG[15:8]  
AUXAUVTHCLRREG[7:0]  
AUXAUVTHSETREG[15:8]  
AUXAUVTHSETREG[7:0]  
COMPOVTHREG[15:8]  
COMPOVTHREG[7:0]  
BIPUVTHCLR[13:6]  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x30  
0x31  
0x32  
0x33  
0x34  
(0x35)  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
BIPUVTHCLR[5:0]  
BIPUVTHSET[13:6]  
BIPUVTHSET[5:0]  
BLKOVTHCLR[13:6]  
BLKOVTHCLR[5:0]  
BLKOVTHSET[13:6]  
BLKOVTHSET[5:0]  
BLKUVTHCLR[13:6]  
BLKUVTHCLR[5:0]  
BLKUVTHSET[13:6]  
BLKUVTHSET[5:0]  
AUXROVTHCLR[13:6]  
AUXROVTHCLR[5:0]  
AUXROVTHSET[13:6]  
AUXROVTHSET[5:0]  
AUXRUVTHCLR[13:6]  
AUXRUVTHCLR[5:0]  
AUXRUVTHSET[13:6]  
AUXRUVTHSET[5:0]  
AUXAOVTHCLR[13:6]  
AUXAOVTHCLR[5:0]  
AUXAOVTHSET[13:6]  
AUXAOVTHSET[5:0]  
AUXAUVTHCLR[13:6]  
AUXAUVTHCLR[5:0]  
AUXAUVTHSET[13:6]  
AUXAUVTHSET[5:0]  
COMPOVTH[9:2]  
COMPOVTH[1:0]  
COMPUVTH[1:0]  
COMPUVTHREG[15:8]  
COMPUVTHREG[7:0]  
COMPUVTH[9:2]  
COMPAUXROVTHREG[15:8]  
COMPAUXROVTH[9:2]  
COMPAUXROVTHREG[7:0] COMPAUXROVTH[1:0]  
COMPAUXRUVTHREG[15:8]  
COMPAUXRUVTH[9:2]  
COMPAUXRUVTHREG[7:0] COMPAUXRUVTH[1:0]  
COMPAUXAOVTHREG[15:8]  
COMPAUXAOVTH[9:2]  
COMPAUXAOVTHREG[7:0] COMPAUXAOVTH[1:0]  
COMPAUXAUVTHREG[15:8]  
COMPAUXAUVTH[9:2]  
COMPAUXAUVTHREG[7:0] COMPAUXAUVTH[1:0]  
Maxim Integrated │ 179  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ADDRESS  
NAME  
MSB  
LSB  
DIAGNOSTIC THRESHOLD Registers  
COMPOPNTHREG[15:8]  
COMPOPNTH[9:2]  
0x3E  
COMPOPNTHREG[7:0]  
COMPOPNTH[1:0]  
COMPAUXROPNTHREG[15:8]  
COMPAUXROPNTH[9:2]  
0x3F  
0x40  
0x41  
0x42  
0x43  
(0x44)  
0x45  
COMPAUXROPNTHREG[7:0] COMPAUXROPNTH[1:0]  
COMPAUXAOPNTHREG[15:8]  
COMPAUXAOPNTH[9:2]  
COMPAUXAOPNTHREG[7:0] COMPAUXAOPNTH[1:0]  
COMPACCOVTHREG[15:8]  
COMPACCOVTH[9:2]  
COMPACCOVTHREG[7:0]  
COMPACCUVTHREG[15:8]  
COMPACCUVTHREG[7:0]  
BALSHRTTHRREG[15:8]  
BALSHRTTHRREG[7:0]  
BALLOWTHRREG[15:8]  
BALLOWTHRREG[7:0]  
BALHIGHTHRREG[15:8]  
BALHIGHTHRREG[7:0]  
COMPACCOVTH[1:0]  
COMPACCUVTH[9:2]  
COMPACCUVTH[1:0]  
BALSHRTTHR[13:6]  
BALSHRTTHR[5:0]  
BALLOWTHR[13:6]  
BALLOWTHR[5:0]  
BALHIGHTHR[13:6]  
BALHIGHTHR[5:0]  
CELL DATA Registers  
CELL1REG[15:8]  
0x47  
CELL1[13:6]  
CELL1REG[7:0]  
CELL1[5:0]  
CELL2[5:0]  
CELL3[5:0]  
CELL4[5:0]  
CELL5[5:0]  
CELL6[5:0]  
CELL7[5:0]  
CELL8[5:0]  
CELL9[5:0]  
CELL2REG[15:8]  
0x48  
CELL2[13:6]  
CELL3[13:6]  
CELL4[13:6]  
CELL5[13:6]  
CELL6[13:6]  
CELL7[13:6]  
CELL8[13:6]  
CELL9[13:6]  
CELL2REG[7:0]  
CELL3REG[15:8]  
0x49  
CELL3REG[7:0]  
CELL4REG[15:8]  
0x4A  
CELL4REG[7:0]  
CELL5REG[15:8]  
0x4B  
CELL5REG[7:0]  
CELL6REG[15:8]  
0x4C  
CELL6REG[7:0]  
CELL7REG[15:8]  
(0x4D)  
CELL7REG[7:0]  
CELL8REG[15:8]  
0x4E  
CELL8REG[7:0]  
CELL9REG[15:8]  
0x4F  
CELL9REG[7:0]  
CELL10REG[15:8]  
0x50  
CELL10[13:6]  
CELL10[5:0]  
CELL11[13:6]  
CELL11[5:0]  
CELL10REG[7:0]  
CELL11REG[15:8]  
0x51  
CELL11REG[7:0]  
Maxim Integrated │ 180  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ADDRESS  
NAME  
MSB  
LSB  
CELL12REG[15:8]  
CELL12REG[7:0]  
CELL13REG[15:8]  
CELL13REG[7:0]  
CELL14REG[15:8]  
CELL14REG[7:0]  
BLOCKREG[15:8]  
BLOCKREG[7:0]  
CELL12[13:6]  
0x52  
0x53  
0x54  
0x55  
CELL12[5:0]  
CELL13[13:6]  
CELL13[5:0]  
CELL14[13:6]  
CELL14[5:0]  
VBLOCK[13:6]  
VBLOCK[5:0]  
TOTAL DIAG AUX DATA Registers  
TOTALREG[15:8]  
0x56  
TOTAL[15:8]  
TOTALREG[7:0]  
TOTAL[7:0]  
DIAG1[13:6]  
DIAG1REG[15:8]  
0x57  
DIAG1REG[7:0]  
DIAG1[5:0]  
DIAG2[5:0]  
AUX0[5:0]  
AUX1[5:0]  
AUX2[5:0]  
AUX3[5:0]  
AUX4[5:0]  
AUX5[5:0]  
DIAG2REG[15:8]  
0x58  
DIAG2[13:6]  
AUX0[13:6]  
AUX1[13:6]  
AUX2[13:6]  
AUX3[13:6]  
AUX4[13:6]  
AUX5[13:6]  
DIAG2REG[7:0]  
AUX0REG[15:8]  
0x59  
AUX0REG[7:0]  
AUX1REG[15:8]  
0x5A  
AUX1REG[7:0]  
AUX2REG[15:8]  
0x5B  
AUX2REG[7:0]  
AUX3REG[15:8]  
0x5C  
AUX3REG[7:0]  
AUX4REG[15:8]  
0x5D  
AUX4REG[7:0]  
AUX5REG[15:8]  
0x5E  
AUX5REG[7:0]  
SCAN SETTINGS Registers  
MINMAX-  
POL  
POLARITYCTRL[15:8]  
POLARITY[14:9]  
POLARITY[8:1]  
0x5F  
POLARITYCTRL[7:0]  
AUXREFCTRL[15:8]  
AUXREFCTRL[7:0]  
AUXTIMEREG[15:8]  
AUXTIMEREG[7:0]  
0x60  
0x61  
AUXREFSEL[5:4]  
AUXREFSEL[3:0]  
AUXTIME[9:8]  
AUXTIME[7:0]  
ADCZSF-  
SEN  
ADC-  
CALEN  
COMPAC-  
CEN  
ACQCFG[15:8]  
FOSR[1:0]  
THRMMODE[1:0]  
0x62  
0x63  
ACQCFG[7:0]  
BALSWDLY[15:8]  
BALSWDLY[7:0]  
CELLDLY[7:0]  
SWDLY[7:0]  
Maxim Integrated │ 181  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ADDRESS  
NAME  
MSB  
LSB  
SCAN CONTROL Registers  
MEASUREEN1[15:8]  
0x64  
BLOCKEN  
CELLEN[14:9]  
CELLEN[8:1]  
MEASUREEN1[7:0]  
SCANI-  
IRINIT  
MEASUREEN2[15:8]  
0x65  
MEASUREEN2[7:0]  
AUXEN[5:4]  
AUTO-  
DATARDY BALSW-  
DIS  
AUXEN[3:0]  
SCAN- SCANTIME-  
DONE  
ALRTFILT- AMEND-  
SCAN-  
CFG[2]  
SCANCTRL[15:8]  
RDFILT  
OUT  
SEL  
FILT  
0x66  
ALTMUX- SCAN-  
SEL MODE  
SCANCTRL[7:0]  
SCANCFG[1:0]  
OVSAMPL[2:0]  
SCAN  
DIAGNOSTIC SETTINGS Registers  
ADCT-  
STEN  
ADCTEST1AREG[15:8]  
ADCTEST1A[11:8]  
0x67  
ADCTEST1AREG[7:0]  
ADCTEST1BREG[15:8]  
ADCTEST1BREG[7:0]  
ADCTEST2AREG[15:8]  
ADCTEST2AREG[7:0]  
ADCTEST2BREG[15:8]  
ADCTEST2BREG[7:0]  
ADCTEST1A[7:0]  
ADCTEST1B[11:8]  
ADCTEST2A[11:8]  
ADCTEST2B[11:8]  
0x68  
0x69  
0x6A  
ADCTEST1B[7:0]  
ADCTEST2A[7:0]  
ADCTEST2B[7:0]  
DIAGNOSTIC CONTROL Registers  
MUXDIAG-MUXDIAG- MUXDIA-  
DIAGCFG[15:8]  
CTSTDAC[3:0]  
DIAGSEL2[3:0]  
CTSTSRC  
BUS  
PAIR  
GEN  
0x6B  
DIAGCFG[7:0]  
DIAGSEL1[3:0]  
CEL-  
CTSTCFG[15:8]  
LOPNDI-  
AGSEL  
CTSTEN[14:8]  
CTSTEN[7:0]  
0x6C  
CTSTCFG[7:0]  
AUXTSTCFG[15:8]  
AUXTSTCFG[7:0]  
DIAGGENCFG[15:8]  
DIAGGENCFG[7:0]  
0x6D  
0x6E  
AUXTSTEN[5:4]  
AUXTSTEN[3:0]  
AUXDIAGSEL[2:0]  
CELL-BALANCING Registers  
CBRE-  
START  
BALSWCTRL[15:8]  
BALSWEN[14:9]  
BALSWEN[8:1]  
0x6F  
BALSWCTRL[7:0]  
BALEXP1[15:8]  
0x70  
CBEXP1[9:8]  
CBEXP2[9:8]  
BALEXP1[7:0]  
CBEXP1[7:0]  
BALEXP2[15:8]  
0x71  
BALEXP2[7:0]  
CBEXP2[7:0]  
Maxim Integrated │ 182  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ADDRESS  
NAME  
MSB  
LSB  
BALEXP3[15:8]  
BALEXP3[7:0]  
CBEXP3[9:8]  
CBEXP4[9:8]  
CBEXP5[9:8]  
CBEXP6[9:8]  
CBEXP7[9:8]  
CBEXP8[9:8]  
CBEXP9[9:8]  
CBEXP10[9:8]  
CBEXP11[9:8]  
CBEXP12[9:8]  
CBEXP13[9:8]  
CBEXP14[9:8]  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
CBEXP3[7:0]  
BALEXP4[15:8]  
BALEXP4[7:0]  
CBEXP4[7:0]  
BALEXP5[15:8]  
BALEXP5[7:0]  
CBEXP5[7:0]  
BALEXP6[15:8]  
BALEXP6[7:0]  
CBEXP6[7:0]  
BALEXP7[15:8]  
BALEXP7[7:0]  
CBEXP7[7:0]  
BALEXP8[15:8]  
BALEXP8[7:0]  
CBEXP8[7:0]  
BALEXP9[15:8]  
BALEXP9[7:0]  
CBEXP9[7:0]  
BALEXP10[15:8]  
BALEXP10[7:0]  
BALEXP11[15:8]  
BALEXP11[7:0]  
BALEXP12[15:8]  
BALEXP12[7:0]  
BALEXP13[15:8]  
BALEXP13[7:0]  
BALEXP14[15:8]  
BALEXP14[7:0]  
BALAUTOUVTHR[15:8]  
CBEXP10[7:0]  
CBEXP11[7:0]  
CBEXP12[7:0]  
CBEXP13[7:0]  
CBEXP14[7:0]  
CBUVTHR[13:6]  
0x7E  
0x7F  
0x80  
CBUVMIN-  
CELL  
CBNTFYCFG[1:0]  
CBCALDLY[2:0]  
CBIIRINIT HOLDSHDNL[1:0]  
BALAUTOUVTHR[7:0]  
CBUVTHR[5:0]  
BALDLYCTRL[15:8]  
BALDLYCTRL[7:0]  
BALCTRL[15:8]  
CBACTIVE[1:0]  
CBDUTY[3:0]  
CBACTIVE_M1[1:0] CBUNIT[1:0]  
CBMODE[2:0]  
CBDONE- CBTEM-  
ALRTEN PEN  
CBCNTR[1:0]  
CBTIMER[7:0]  
CBUVSTAT[14:9]  
CBUVSTAT[8:1]  
BALCTRL[7:0]  
CBMEASEN[1:0]  
CBTIMER[9:8]  
BALSTAT[15:8]  
BALSTAT[7:0]  
0x81  
0x82  
BALUVSTAT[15:8]  
BALUVSTAT[7:0]  
CBACTIVE_M2[1:0]  
Maxim Integrated │ 183  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ADDRESS  
NAME  
MSB  
CBACTIVE_M3[1:0]  
LSB  
DATAR-  
DY_M  
BALDATA[15:8]  
0x83  
BALDATA[7:0]  
CBSCAN  
ROM SUPPORT Registers  
ID1[15:8]  
0x8C  
DEVID[15:8]  
DEVID[7:0]  
DEVID[31:24]  
DEVID[23:16]  
OTP2[15:8]  
OTP2[7:0]  
ID1[7:0]  
ID2[15:8]  
0x8D  
ID2[7:0]  
OTP2[15:8]  
0x8E  
OTP2[7:0]  
OTP3[15:8]  
0x8F  
OTP3[15:8]  
OTP3[7:0]  
OTP3[7:0]  
OTP4[15:8]  
0x90  
OTP4[15:8]  
OTP4[7:0]  
OTP4[7:0]  
OTP5[15:8]  
0x91  
OTP5[15:8]  
OTP5[7:0]  
OTP5[7:0]  
OTP6[15:8]  
0x92  
OTP6[15:8]  
OTP6[7:0]  
OTP6[7:0]  
OTP7[15:8]  
0x93  
OTP7[15:8]  
OTP7[7:0]  
OTP7[7:0]  
OTP8[15:8]  
0x94  
OTP8[15:8]  
OTP8[7:0]  
OTP8[7:0]  
OTP9[15:8]  
0x95  
OTP9[15:8]  
OTP9[7:0]  
OTP9[7:0]  
OTP10[15:8]  
0x96  
OTP10[15:8]  
OTP10[7:0]  
OTP11[15:8]  
OTP11[7:0]  
ROMCRC[7:0]  
OTP12[7:0]  
OTP10[7:0]  
OTP11[15:8]  
0x97  
OTP11[7:0]  
OTP12[15:8]  
0x98  
OTP12[7:0]  
Maxim Integrated │ 184  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Register Details  
VERSION (0ꢀ00)  
VERSION is a read-only-accessible register that returns information on the device.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
1
8
0
MOD[11:4]  
Read Only  
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
MOD[3:0]  
VER[3:0]  
0x05  
Reset  
Access Type  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Device Model Number:  
0x853 = MAX17853  
Read only.  
MOD  
VER  
15:4  
Si Version:  
0x05  
3:0  
Read only.  
ADDRESS (0ꢀ01)  
ADDRESS is a read-/write-accessible register that sets the first, last, and device address used by a device in a UART  
chain (UARTSEL = 1).  
This register has no effect on a device operating in SPI mode (UARTSEL = 0).  
BIT  
15  
14  
13  
12  
11  
10  
9
8
ADDRUN-  
LOCK  
Field  
BA[4:0]  
TA[4:3]  
Reset  
0b1  
0b0_0000  
Write, Read, Ext  
0b0_0000  
Write, Read,  
Ext  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
TA[2:0]  
DA[4:0]  
Reset  
0b0_0000  
Write, Read, Ext  
0b0_0000  
Write, Read, Ext  
Access Type  
Maxim Integrated │ 185  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
UART Device Address Unlock:  
0 = Normal operation (following HELLOALL)  
1 = Disable write-protection of device address DA[4:0], allowing resends of  
HELLOALL to reassign device addresses without POR (also POR default).  
Cleared only by HELLOALL command (writes to zero are ignored).  
This bitfield is unaffected in the event of a software POR (SWPOR) request by  
the host.  
ADDRUNLOCK  
15  
Note: This bit should normally be written to zero when populating BA and  
TA content, it should only be necessary to set this bit if the user believes the  
original DA content populated by the HELLOALL command is corrupted.  
Bottom-Device Address in a UART Chain:  
Address of the device at the bottom of the daisy-chain.  
If the host sends an initial address other than 0x00 in the HELLOALL  
command through the UART Up path (assign/increment), the host must write  
that bottom address (as well as the expected top address) to all devices in the  
daisy-chain with a WRITEALL command to this bitfield.  
READALL commands and Alert Packets require that BA[4:0], TA[4:0], and  
DA[4:0] must be correct for the data-check and PEC features to function as  
intended.  
BA  
14:10  
This bitfield is unaffected in the event of a software POR (SWPOR) request by  
the host.  
Top-Device Address in a UART Chain:  
Address of the device connected to the top of the daisy-chain.  
If the host sends an initial address in the HELLOALL command through the  
UART DOWN path (assign/decrement), then the host must write that top  
address (as well as the expected bottom address) to all devices in the daisy-  
chain with a WRITEALL command to this bitfield.  
TA  
9:5  
READALL commands and Alert Packets require that BA[4:0], TA[4:0], and  
DA[4:0] must be correct for the data-check and PEC features to function as  
intended.  
This bitfield is unaffected in the event of a software POR (SWPOR) request by  
the host.  
Device Address:  
Device address written only by the HELLOALL command as it propagates  
through the daisy-chain. If HELLOALL is issued through the UART Up path,  
this bitfield is accepted and automatically incremented by each device. If  
HELLOALL is issued through the UART DOWN path, this bitfield is accepted  
and automatically decremented by each device.  
The host must choose an initial (bottom) address 0x00 or greater and ensure  
the resulting top address not exceed the maximum address of 0x1F during the  
propagation of the HELLOALL command through the Up path. Likewise, the  
host must choose an initial (top) address (0x1F or lower) and ensure that the  
resulting bottom address is 0x00 or greater after propagation of the  
HELLOALL command through the DOWN path.  
DA  
4:0  
Writing has no effect, only a HELLOALL command executed while  
ADDRUNLOCK = 1 updates this content.  
This bitfield is unaffected in the event of a software POR (SWPOR) request by  
the host.  
Maxim Integrated │ 186  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
STATUS1 (0ꢀ02)  
STATUS1 is a read-/write-accessible register that relates the current status of the device. STATUS1 also contains  
summary information on STATUS2, STATUS3, and FMEA registers, and other selected registers, indicating if additional  
readback checks are required.  
BIT  
15  
14  
ALRTRST  
0b1  
13  
12  
11  
10  
9
8
ALRT-  
MSMTCH  
ALRTCEL-  
LOVST  
ALRTCEL-  
LUVST  
ALRT-  
BLKOVST  
ALRTBLKU-  
VST  
ALR-  
TAUXOVST  
Field  
ALRTSCAN  
0b0  
Reset  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
Write 0 to  
Clear, Read  
Access Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BIT  
7
6
5
4
3
2
1
0
ALRTAUXU-  
VST  
ALRTIN-  
TRFC  
ALRT-  
FMEA2  
ALRT-  
FMEA1  
Field  
ALRTPEC  
ALRTCAL  
ALRTCBAL  
Reset  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
Access Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Scan-Done Alert:  
0 = No measurement requested or measurement in progress (default)  
1 = Measurement complete  
Cleared if SCANCRTL:SCANDONE is removed.  
Read only.  
ALRTSCAN  
ALRTRST  
15  
Reset Alert:  
Indicates if a power-on-reset (POR) event occurred.  
UART users should clear this alert after power on and after a successful  
HELLOALL transaction to detect future resets.  
SPI users should clear this alert immediately after power on to detect future  
resets.  
14  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
Cell-Voltage-Mismatch Alert:  
Indicates V  
- V  
> V  
threshold.  
MAX  
MIN  
MSMTCH  
To aid diagnosis, read MINMAXCELL for detailed information on which chan-  
nels are involved.  
Cleared at next acquisition if the condition is false.  
Read only.  
ALRTMSMTCH  
13  
12  
Cell-Overvoltage Status-Summary Alert:  
Bit-wise logical OR of ALRTOV[14:1] and ALRTCOMPOV[14:1].  
To aid diagnosis, read ALRTSUM for information on whether the ADC,  
comparator, or both circuits detected the fault.  
ALRTCELLOVST  
Cleared on next acquisition, if all enabled overvoltage conditions are resolved.  
Read only.  
Maxim Integrated │ 187  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Undervoltage Status-Summary Alert:  
Bit-wise logical OR of ALRTUV[14:1] and ALRTCOMPUV[14:1].  
To aid diagnosis, read ALRTSUM for information on whether the ADC,  
comparator, or both circuits detected the fault.  
ALRTCELLUVST  
11  
Cleared on next acquisition, if all enabled undervoltage conditions are resolved.  
Read only.  
Block-Overvoltage Status Alert:  
Indicates if the latest block-voltage measurement exceeded the threshold set  
by BLKOVTHSET.  
Cleared on next Block-voltage acquisition, if condition is resolved.  
Read only.  
ALRTBLKOVST  
ALRTBLKUVST  
10  
9
Block-Undervoltage Status Alert:  
Indicates if the latest block-voltage measurement was below the threshold set  
by BLKUVTHSET.  
Cleared on next block-voltage acquisition, if condition is resolved.  
Read only.  
Auxiliary-Overvoltage (Cold) Status-Summary Alert:  
Logical OR of ALRTAUXOV[5:0] and ALRTCOMPAUXOV[5:0] auxiliary alerts.  
To aid diagnosis, read ALRTSUM for information on whether the ADC,  
comparator, or both circuits detected the fault.  
Cleared on next acquisition, if all enabled overvoltage conditions are resolved.  
Read only.  
ALRTAUXOVST  
ALRTAUXUVST  
8
7
Auxiliary-Undervoltage (Hot) Status-Summary Alert:  
Logical OR of ALRTAUXUV[5:0] and ALRTCOMPAUXUV[5:0] auxiliary alerts.  
To aid diagnosis, read ALRTSUM for information on whether the ADC,  
comparator, or both circuits detected the fault.  
Cleared on next acquisition, if all enabled undervoltage conditions are resolved.  
Read only.  
Packet-Error Check (PEC) Alert:  
Indicates a received UART/SPI character/transaction contained a PEC/CRC  
error and was ignored as a result. Logical OR of (ALRTPECUP, ALRTPECDN,  
SPICRCERR).  
Cleared if component alerts are resolved in STATUS2:ALRTPECUP/DN  
(UART), or STATUS2:ALRTSPI (SPI). See component bitfield descriptions for  
details.  
ALRTPEC  
5
Note: In UARTSEL = 0 (SPI mode), the SPICRCERR bit only appears in the  
SPI transaction as STAT4 (DO[31]), it does not activate STATUS2:ALRTSPI,  
though it is cleared by writing STATUS2:ALRTSPI to zero.  
Read only.  
Maxim Integrated │ 188  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Interface-Specific Error Alert:  
Indicates that an error specific to the selected interface (UART or SPI user  
interface) has occurred.  
For UART operation, this is the bitwise OR of ALRTMANUP/DN,  
ALRTPARUP/DN, ALRTDUALART, and ALRTRJCT.  
For SPI operation, this is the bitwise OR of ALRTSPI, ALRTSCLKERR,  
ALRTOSC3, ALRTINTBUS, and ALRTRJCT.  
ALRTINTRFC  
4
ALRTPEC is common to both UART and SPI interfaces and holds a dedi-  
cated position in the status registers (assertion of ALRTPEC not does assert  
ALRTINTRFC).  
If this alert bit is set, the specific error(s) can be read and cleared using the  
STATUS2 register.  
Calibration-Fault Alert:  
Logical OR of all calibration alerts (ALRTCALOSADC, ALRTCALOSR,  
ALERTCALOSTHRM, ALRTCALGAINP, and ALRTCALGAINR).  
Cleared if component alerts are resolved in ALRTSUM. See ALRTSUM and  
ALRTIRQEN for details.  
ALRTCAL  
3
Read only.  
Note: If a calibration error occurs during an automated cell balancing or  
discharge operation, the operation ends and issues CBACTIVE = 11 and  
ALRTCBCAL, notifying the user of the termination.  
Cell-Balancing Status Alert:  
0 = Cell balancing inactive/normal  
1 = Cell balancing complete/fault  
Logical OR of all enabled/unmasked cell-balancing alerts (ALRTCBTIMEOUT,  
ALRTCBTEMP, ALRTCBCAL, ALRTCBNTFY, and ALRTCBDONE).  
Cleared if component alerts are resolved in STATUS3. See STATUS3 and  
ALRTIRQEN for details.  
ALRTCBAL  
2
Read only.  
FMEA2 Condition Summary Alert:  
Bit-wise logical OR of FMEA2[15:0].  
Read only.  
ALRTFMEA2  
ALRTFMEA1  
1
0
FMEA1 Condition Summary Alert:  
Bit-wise logical OR of FMEA1[15:0].  
Read only.  
Maxim Integrated │ 189  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
STATUS2 (0ꢀ03)  
STATUS2 is a read-/write-accessible register that contains summary information on alerts related to interface and  
communication faults.  
BIT  
15  
14  
13  
12  
11  
10  
9
8
ALRTPE-  
CUP  
ALRTP-  
ECDN  
ALRTMAN-  
UP  
ALRT-  
MANDN  
ALRTPA-  
RUP  
ALRT-  
PARDN  
ALRTDU-  
ALUART  
Field  
Reset  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Access Type  
Clear, Read Clear, Read Clear, Read Clear, Read Clear, Read Clear, Read Clear, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
ALRTSCLK-  
ERR  
ALRTINT-  
BUS  
ALRTSPI  
0b0  
ALRTOSC3  
0b0  
ALRTRJCT  
0b0  
Reset  
0b0  
0b0  
Write, Read, Write, Read, Write, Read, Write, Read,  
Ext Ext Ext Ext  
Write 0 to  
Clear, Read  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
UART Up-Interface PEC Alert:  
Indicates that a character/transaction recieved by the UART Up interface  
contained a PEC error and was ignored as a result.  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
ALRTPECUP  
15  
Applies only to parts operating using the UART interface (UARTSEL = 1).  
PEC is not used in SPI mode (SPI CRC checking is reported and managed  
directly through ALRTPEC and ALRTSPI, respectively).  
UART Down-Interface PEC Alert:  
Indicates that a character/transaction recieved by the UART Down interface  
contained a PEC error and was ignored as a result.  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
Applies only to parts operating using the dual-UART interface (UARTSEL = 1,  
UARTCFG = 11); not used in SPI mode.  
ALRTPECDN  
ALRTMANUP  
ALRTMANDN  
14  
13  
12  
UART Up-Interface Manchester-Encoding Error:  
Indicates that a character received by the UART Up interface (through RXL)  
contained a Manchester error.  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
Applies only to parts operating using the UART interface (UARTSEL = 1).  
Manchester encoding is not used in SPI mode.  
UART Down-Interface Manchester-Encoding Error:  
Indicates that a character received by the UART down interface (through  
RXU) contained a Manchester error.  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
Applies only to parts operating using the dual-UART interface (UARTSEL = 1,  
UARTCFG = 11). Manchester encoding is not used in SPI mode.  
Maxim Integrated │ 190  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
UART Up-Interface Parity Error:  
Indicates that a character received by the UART Up interface (through RXL)  
contained a parity error.  
ALRTPARUP  
11  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
Applies only to parts operating using the UART interface (UARTSEL = 1). Par-  
ity checking is not used in SPI mode.  
UART Down-Interface Parity Error:  
Indicates that a character received by the UART Down interface (through  
RXU) contained a parity error.  
ALRTPARDN  
10  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
Applies only to parts operating using the dual-UART interface (UARTSEL = 1,  
UARTCFG = 11). Parity checking is not used in SPI mode.  
Dual-UART Fault Alert:  
0 = No dual-UART fault detected  
1 = Invalid dual-UART command received  
ALRTDUALUART indicates that one or more of the following conditions  
occurred:  
A WRITEDEVICE or WRITEALL command sent through a path not configured  
as host was ignored (only the host path accepts writes).  
An UPHOST command was issued and ignored on the downstream UART  
path.  
ALRTDUALUART  
9
A DOWNHOST command was issued and ignored on the upstream UART  
path.  
These conditions are checked only when UARTCFG = DUAL (11).  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
SPI Error Summary Alert:  
Indicates that one or more of the following SPI transaction errors have  
occured: R/WB ! = R/WB’ (i.e., DI[31] ! = DI[3], RW_ERR)D [15:0] ! =  
IN  
0x0000 in read mode (RW_ERR) transaction timeout (TO_ERR). Specific  
error-condition breakouts are reported as STAT[4:0] (DO[31:27]) as part of all  
SPI transactions.  
All existing SPI CRC_ERR, RW_ERR, and TO_ERR, alerts be cleared by  
writing this bit to logic zero. Writing to a logic one has no effect.  
Applies only to parts operating using the SPI interface (UARTSEL = 0).  
Note: The SPI CRC_ERR condition is reported using the dedicated  
STATUS1:ALRTPEC bit (read only), but is cleared using this bitfield (i.e., the  
CRC_ERR condition is not reported in ALRTSPI). To clear ALRTPEC, it is  
necessary to write ALRTSPI to zero even if it is already zero (if no other SPI  
errors are reported). SPI clock issues covered by SPI CLK_ERR are broken  
out, reported, and cleared individually (see ALRTSCLKERR, ALRTOSC3, and  
ALRTINTBUS for details).  
ALRTSPI  
7
Maxim Integrated │ 191  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
SPI SCLK-Error Alert:  
Indicates that an SPI transaction was received that was not exactly 32 SCLK  
cycles in length.  
This error condition is one of three reported as STAT1 (DO28) as part of all  
SPI transactions.  
ALRTSCLKERR  
6
Cleared by writing this bit to logic zero.  
Writing to a logic one has no effect.  
Applies only to parts operating using the SPI interface (UARTSEL = 0).  
16MHz Oscilator-Fault Alert:  
Indicates that the 16MHz oscillator frequency is not within ±5% of its expected  
value when measured against the 32kHz oscillator. The status is updated every  
two cycles (32kHz). Required/supported only in SPI mode (UARTSEL = 0).  
While it is possible for the SPI interface to continue to function under drift-alert  
conditions, it does not function if the 16MHz oscillator is dead or extremely fast/  
slow.  
ALRTOSC3  
5
This error condition is one of three reported as STAT1 (DO28) as part of all  
SPI transactions.  
Cleared only by writing to logic zero if the condition has been resolved.  
Writing to a logic one has no effect.  
SPI Internal Bus-Transaction Failure:  
Indicates that an SPI read or write transaction was not correctly passed  
across the internal memory bus. This can happen if the 16MHz oscillator  
(or branch) clocking the internal bus is dead, intermittent, or severely out of  
its specified frequency range. May be accompanied by ALRTOSC1, 2, or 3  
alerts.  
ALRTINTBUS  
4
This error condition is one of three reported as STAT1 (DO28) as part of all  
SPI transactions.  
Cleared by writing this bit to logic zero.  
Writing to a logic one has no effect.  
Applies only to parts operating using the SPI interface (UARTSEL = 0).  
Maxim Integrated │ 192  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Protected Command-Rejection Alert:  
0 = Normal operation  
1 = Invalid command rejected during an active scan or cell-balancing operation.  
ALRTRJCT is issued when an invalid write to a protected register is received  
during an active/gating scan or cell-balancing operation. The invalid command  
should be ignored.  
ALRTRJCT  
0
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
STATUS3 (0ꢀ04)  
STATUS3 is a read-/write-accessible register that contains summary information on alerts related to automated cell-  
balancing operations.  
BIT  
15  
14  
13  
12  
11  
10  
9
8
ALRTCB-  
TIMEOUT  
ALRTCB-  
TEMP  
ALRTCB-  
CAL  
ALRT-  
CBNTFY  
ALRTCB-  
DONE  
Field  
Reset  
0b0  
0b0  
0b0  
0b0  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Access Type  
Clear, Read Clear, Read Clear, Read Clear, Read Clear, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
Reset  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Timeout Alert:  
0 = Cell balancing disabled or in progress  
1 = Cell-balancing operation halted due to a timeout fault  
ALRTCBTIMEOUT is issued when a discharge, or automated cell-balancing  
operation is halted due to an internal logic fault condition triggering the watch-  
dog timer.  
ALRTCBTIMEOUT  
15  
This alert is automatically enabled if CBTODIS = 0.  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
Cell-Balancing Thermal Alert:  
0 = Cell balancing disabled or in progress  
1 = Cell-balancing operation halted due to a thermal fault  
ALRTCBTEMP is issued when a manual, discharge, or automated cell-  
balancing operation is halted due to a thermal-fault condition.  
This alert is automatically enabled if CBTEMPEN = 1.  
Cleared only by writing to logic zero after the automated cell-balancing  
operation that generated the alert has been completed or otherwise ended.  
Writing to a logic one has no effect.  
ALRTCBTEMP  
14  
Maxim Integrated │ 193  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Calibration Alert:  
0 = Cell balancing disabled or in progress  
1 = Cell-balancing operation halted due to a calibration fault  
ALRTCBCAL is issued when a discharge, or automated cell-balancing  
operation is halted due to an embedded calibration fault condition.  
Cleared only by writing to logic zero after the automated cell-balancing  
operation that generated the alert has been completed or otherwise ended.  
Writing to a logic one has no effect.  
ALRTCBCAL  
13  
Cell-Balancing Notification Alert:  
0 = No cell-balancing progression notification present  
1 = Cell-balancing progression notification  
ALRTCBNTFY is periodically issued during discharge and automated cell-  
balancing operations to confirm normal progression of the operation.  
This alert is enabled and configured by CBNTFYCFG.  
Cleared only by writing to logic zero.  
ALRTCBNTFY  
12  
Writing to a logic one has no effect.  
Cell-Balancing-Complete Alert:  
0 = Cell balancing disabled or in progress  
1 = Cell-balancing operation complete  
ALRTCBDONE is issued when a manual, discharge, or automated cell-  
balancing operation completes due to a normal timed or undervoltage exit  
condition.  
ALRTCBDONE  
11  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
FMEA1 (0ꢀ05)  
FMEA1 is a read-/write-accessible register that relates current information on possible fault conditions.  
BIT  
15  
14  
13  
12  
11  
10  
9
8
ALRTCOM- ALRTCOM- ALRTCOM- ALRTCOM-  
ALRTVD-  
DL3  
ALRTVD-  
DL2  
Field  
ALRTOSC1 ALRTOSC2  
MSEU1  
0b0  
MSEL1  
0b0  
MSEU2  
0b0  
MSEL2  
0b0  
Reset  
0b0  
0b0  
0b0  
0b0  
Write 0 to  
Clear, Read Clear, Read  
Write 0 to  
Write 0 to  
Clear, Read Clear, Read  
Write 0 to  
Access Type  
Read Only  
Read Only  
Read Only  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
ALRTVD-  
DL1  
ALRT-  
GNDL3  
ALRT-  
GNDL2  
ALRT-  
GNDL1  
ALRTHVH-  
DRM  
ALRTBALS-  
WSUM  
ALRTHVUV  
ALRTHVOV  
Reset  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Write, Read,  
Ext  
Access Type  
Clear, Read Clear, Read Clear, Read Clear, Read Clear, Read Clear, Read Clear, Read  
Maxim Integrated │ 194  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
32kHz Oscilator-Fault Alert:  
Indicates that the 32kHz frequency is not within ±5% of its expected value  
when measured against the 16MHz oscillator. The status is updated every two  
cycles (32kHz).  
ALRTOSC1  
15  
Cleared only by writing to logic zero if the condition has been resolved.  
Writing to a logic one has no effect.  
32kHz Oscilator-Fault Alert (Redundant):  
Identical to ALRTOSC1 (redundant alert with independent latch).  
Cleared only by writing to logic zero if the condition has been resolved.  
Writing to a logic one has no effect.  
ALRTOSC2  
14  
13  
UART Upper-Port Single-Ended Alert:  
Indicates that the UART has placed the upper-port receiver in single-ended  
mode based on the first preamble received after POR.  
This bit is not set until the ALRTRST bit is cleared.  
Read only.  
ALRTCOMMSEU1  
UART Lower-Port Single-Ended Alert:  
Indicates that the UART has placed the lower-port receiver in single-ended  
mode based on the first preamble received after POR.  
This bit is not set until the ALRTRST bit is cleared.  
Read only.  
ALRTCOMMSEL1  
12  
UART Upper-Port Single-Ended Redundant Alert:  
Same as ALRTCOMMSEU1 (redundant alert) except that it sets before  
ALRTRST is cleared.  
ALRTCOMMSEU2  
ALRTCOMMSEL2  
11  
10  
Read only.  
UART Lower-Port Single-Ended Redundant Alert:  
Same as ALRTCOMMSEL1 (redundant alert) except that it sets before  
ALRTRST is cleared.  
Read only.  
V
Fault Alert:  
DDL3  
Indicates V  
< V  
. This bit is not set until the ALRTRST bit is  
DDL3  
VDDL_OC  
ALRTVDDL3  
ALRTVDDL2  
ALRTVDDL1  
ALRTGNDL3  
9
8
7
6
cleared.  
Cleared only by writing to logic zero if condition is resolved.  
Writing to a logic one has no effect.  
V
Fault Alert:  
DDL2  
Indicates V  
cleared.  
< V  
. This bit is not set until the ALRTRST bit is  
DDL2  
VDDL_OC  
Cleared only by writing to logic zero if condition is resolved.  
Writing to a logic one has no effect.  
V
Fault Alert:  
DDL1  
Indicates V  
cleared.  
< V  
. This bit is not set until the ALRTRST bit is  
DDL1  
VDDL_OC  
Cleared only by writing to logic zero if condition is resolved.  
Writing to a logic one has no effect.  
GNDL3 Fault Alert:  
Indicates an open-circuit on the GNDL3 pin. This bit is not set until the  
ALRTRST bit is cleared.  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
Maxim Integrated │ 195  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
GNDL2 Fault Alert:  
Indicates an open-circuit on the GNDL2 pin. This bit is not set until the  
ALRTRST bit is cleared.  
ALRTGNDL2  
5
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
GNDL1 Fault Alert:  
Indicates an open-circuit on the GNDL1 pin. This bit is not set until the  
ALRTRST bit is cleared.  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
ALRTGNDL1  
ALRTHVUV  
4
3
2
HV-Undervoltage Fault Alert:  
Indicates V  
< V  
. This bit is not set until the ALRTRST bit is cleared.  
HV  
HVUV  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
HV-Headroom Fault Alert:  
Indicates that V  
- V  
was too low during the acquisition for an  
HV  
TOPCELL1/2  
ALRTHVHDRM  
accurate measurement. Checked only during measurement activity.  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
HV-Overvoltage Fault Alert:  
Indicates that V  
is cleared.  
Cleared only by writing to logic zero.  
- V  
> V  
. This bit is not set until the ALRTRST bit  
HV  
DCIN  
HVOV  
ALRTHVOV  
1
0
Writing to a logic one has no effect.  
Balance-Switch Fault-Alert Summary:  
Bit-wise logical OR of ALRTBALSW[13:0].  
Updated at the end of a BALSWDIAG scan.  
Cleared if all enabled ALRTBALSW alerts are resolved or by writing to logic  
zero.  
ALRTBALSWSUM  
Writing to a logic one has no effect.  
FMEA2 (0ꢀ06)  
FMEA1 is a read-/write-accessible register that relates current information on possible fault conditions.  
BIT  
Field  
Reset  
15  
ALRTUSER  
0b0  
14  
13  
12  
ALRTTEMP  
0b0  
11  
10  
9
8
ALRTDCIN- ALRTAUX-  
ALRTSCAN-  
TIMEOUT  
MUX  
0b0  
PRTCTSUM  
0b0  
0b0  
Write 0 to  
Clear, Read  
Write 0 to  
Clear, Read  
Access Type Write, Read  
Read Only  
Read Only  
BIT  
Field  
Reset  
7
6
5
4
3
2
1
0
ALRTAD-  
CZS  
ALRTAD-  
CFS  
ALRTCOM- ALRTCOM-  
PACCOV  
PACCUV  
0b0  
0b0  
0b0  
0b0  
Maxim Integrated │ 196  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Access Type  
BITFIELD  
Clear, Read Clear, Read Clear, Read Clear, Read  
BITS  
DESCRIPTION  
User-Defined Alert (Diagnostic):  
Used to test the alert interface. Asserted by writing to logic one. The resulting  
alert is relayed through the alert interface/UART DCByte/SPI ALERT bit and  
can be read back using the FMEA2 command.  
ALRTUSER  
15  
Cleared by writing to logic zero (default).  
DCIN MUX-Fault Alert:  
0 = No DCINMUX fault detected (default)  
1 = DCINMUX fault detected  
A high condition indicates the enabled DCINMUX is not functioning properly  
in a Flex Pack application. Connections will be made by diodes; performance  
may be impacted and/or other related faults issued.  
This alert is enabled if the DCINMUX is enabled (FLXPACKEN = 1), after  
STATUS1:ALRTRST has been cleared. The PACKCFG register makes  
selections on which SW[n] input is used for the DCIN supply and which C[n] is  
used for the VBLK measurements in Flex Pack applications.  
Cleared only by writing to logic zero if condition has been resolved.  
Writing to a logic one has no effect.  
ALRTDCINMUX  
14  
Auxiliary-Protection Fault-Alert Summary:  
Logical OR of all enabled ALRTAUXPRTCT bits, indicating one or more  
AUXINn inputs is in a fault mode with input protection engaged. These alerts  
are enabled for all AUXn/GPIOn pins currently configured as AUXINn inputs.  
This bit is only cleared when the ALRTAUXPRTCT register is cleared (see the  
ALRTAUXPRTCT register for specific details).  
ALRTAUXPRTCTSUM  
13  
12  
11  
Read only.  
Die Overtemperature-Fault Alert:  
Indicates that T  
> 115°C (120°C typical).  
DIE  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
If a thermal alert occurs during an automated cell-balancing or discharge  
operation, the operation ends and issues CBACTIVE = 11 and ALRTCBTEMP,  
notifying the user of the termination.  
ALRTTEMP  
Scan-Timeout Alert:  
0 = Scan not requested or progressing normally (default)  
1 = Scan operation halted due to timeout fault  
ALRTSCANTIMEOUT is a copy of SCANTIMEOUT.  
This alert is automatically enabled if SCANTODIS = 0.  
Cleared only by writing SCANCTRL:SCANTIMEOUT to zero.  
Read only.  
ALRTSCANTIMEOUT  
Maxim Integrated │ 197  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
ADC Zero-Scale BIST Alert:  
0 = ADC zero-scale BIST passed  
1 = ADC zero-scale BIST failed  
Reports the result of the ADC zero-scale BIST measurement performed  
during the last acquisition. Tests the SAR ADC DAC, comparator, and logic  
components. Enabled using ADCZSFSEN.  
Cleared only by writing to logic zero.  
ALRTADCZS  
3
Writing to a logic one has no effect.  
Note: If detailed results are desired, use the zero-scale ADC detailed  
diagnostic.  
ADC Full-Scale BIST Alert:  
0 = ADC full-scale BIST passed  
1 = ADC full-scale BIST failed  
Reports the result of the ADC full-scale BIST measurement performed during  
the last acquisition. Tests the SAR ADC DAC, comparator, and logic  
components. Enabled using ADCZSFSEN.  
Cleared only by writing to logic zero.  
ALRTADCFS  
2
Writing to a logic one has no effect.  
Note: If detailed results are desired, use the full-scale ADC diagnostic.  
End-of-Sequence Comparator-Accuracy Diagnostic Overvoltage Alert:  
0 = Comparator accuracy OV test passed  
1 = Comparator accuracy OV test failed  
ALRTCOMPACCOV  
1
0
Result of the end-of-sequence comparator-accuracy overvoltage diagnostic if  
enabled (SCANCFG = 001 or 010, and COMPACCEN = 1).  
Cleared only by writing to logic zero.  
Writing to a logic one has no effect.  
End-of-Sequence Comparator-Accuracy Diagnostic Undervoltage Alert:  
0 = Comparator accuracy UV test passed  
1 = Comparator accuracy UV test failed  
Result of the end-of-sequence comparator-accuracy undervoltage diagnostic  
if enabled (SCANCFG = 001 or 010, and COMPACCEN = 1).  
Cleared only by writing to logic zero.  
ALRTCOMPACCUV  
Writing to a logic one has no effect.  
ALRTSUM (0ꢀ07)  
ALRTSUM is a read-accessible register that relates added detailed information on the current status of the device,  
breaking out several summary bits in STATUS1.  
BIT  
15  
14  
13  
12  
11  
10  
9
8
ALRTAD-  
COVST  
ALRTCOM-  
POVST  
ALRTAD-  
CUVST  
ALRTCOM-  
PUVST  
ALRTAD-  
ALRTCOM-  
ALRTAD-  
ALRTCOM-  
Field  
CAUXOVST PAUXOVST CAUXUVST PAUXUVST  
Reset  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
Access Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BIT  
7
6
5
4
3
2
1
0
ALRTCALO-  
SADC  
ALRT-  
CALOSR  
ALRTCALO- ALRTCAL-  
STHRM GAINP  
ALRTCAL-  
GAINR  
Field  
Maxim Integrated │ 198  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Reset  
0b0  
0b0  
0b0  
0b0  
0b0  
Access Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Cell ADC-Overvoltage-Alert Status Summary:  
Bit-wise logical OR of ALRTOV[14:1], based on ADC measurements.  
ALRTADCOVST  
15  
Cleared on next acquisition; if all enabled, overvoltage conditions are  
resolved.  
Read only.  
Comparator Cell-Overvoltage-Alert Status Summary:  
Bit-wise logical OR of ALRTCOMPOV[14:1], based on redundant comparator  
monitoring.  
Cleared on next acquisition, if all enabled overvoltage conditions are resolved.  
Read only.  
ALRTCOMPOVST  
ALRTADCUVST  
14  
13  
12  
11  
10  
9
Cell ADC-Undervoltage-Alert Status Summary:  
Bit-wise logical OR of ALRTUV[14:1], based on ADC measurements.  
Cleared on next acquisition, if all enabled undervoltage conditions are resolved.  
Read only.  
Comparator Cell-Undervoltage-Alert Status Summary:  
Bit-wise logical OR of ALRTCOMPUV[14:1], based on redundant comparator  
monitoring.  
Cleared on next acquisition, if all enabled undervoltage conditions are resolved.  
Read only.  
ALRTCOMPUVST  
ALRTADCAUXOVST  
Auxiliary ADC-Overvoltage (Cold)-Alert Status Summary:  
Logical OR of ALRTAUXOV[5:0], based on ADC measurements.  
Cleared on next acquisition, if all enabled overvoltage conditions are resolved.  
Read only.  
Comparator Auxiliary-Overvoltage (Cold)-Alert Status Summary:  
Logical OR of ALRTCOMPAUXOV[5:0], based on redundant comparator  
monitoring.  
Cleared on next acquisition, if all enabled overvoltage conditions are resolved.  
Read only.  
ALRTCOMPAUXOVST  
ALRTADCAUXUVST  
ALRTCOMPAUXUVST  
Auxiliary ADC-Undervoltage (Hot) Alert:  
Logical OR of ALRTAUXUV[5:0], based on ADC measurements.  
Cleared on next acquisition, if all enabled undervoltage conditions are resolved.  
Read only.  
Comparator Auxiliary-Undervoltage (Hot)-Alert Status Summary:  
Logical OR of ALRTCOMPAUXUV[5:0], based on redundant comparator  
monitoring.  
8
Cleared on next acquisition, if all enabled undervoltage conditions are resolved.  
Read only.  
ADC Offset-Calibration Alert:  
0 = ADC offset calibration valid  
1 = ADC offset calibration fault  
ALRTCALOSADC indicates the ADC offset-calibration operation returned a  
result outside expected boundaries.  
Cleared when a later calibration operation or write to CALOSADC returns an  
expected result.  
ALRTCALOSADC  
4
Read only.  
Maxim Integrated │ 199  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Ramp LSA + ADC Offset-Calibration Alert:  
0 = LSA + ADC offset calibration valid  
1 = LSA + ADC offset calibration fault  
ALRTCALOSR indicates the LSA + ADC offset-calibration operation returned  
a result outside expected boundaries.  
ALRTCALOSR  
3
Cleared when a later calibration operation or write to CALOSR returns an  
expected result.  
Read only.  
ADC Ratiometric Offset-Calibration Alert:  
0 = Ratiometric ADC offset calibration valid  
1 = Ratiometric ADC offset calibration fault  
ALRTCALOSTHRM indicates the ratiometric ADC offset-calibration operation  
returned a result outside expected boundaries.  
Cleared when a later calibration operation or write to CALOSTHRM returns an  
expected result.  
ALRTCALOSTHRM  
2
1
0
Read only.  
Pyramid Gain-Calibration Alert:  
0 = Pyramid gain calibration valid  
1 = Pyramid calibration fault  
ALRTCALGAINP indicates the gain-calibration operation returned a result  
outside expected boundaries.  
Cleared when a later calibration operation or write to CALGAINP returns an  
expected result.  
Read only.  
ALRTCALGAINP  
Ramp Gain-Calibration Alert:  
0 = Ramp gain-calibration valid  
1 = Ramp-calibration fault  
ALRTCALGAINR indicates the gain-calibration operation returned a result  
outside expected boundaries.  
ALRTCALGAINR  
Cleared when a later calibration operation or write to CALGAINR returns an  
expected result.  
Read only.  
ALRTOVCELL (0ꢀ08)  
ALRTOVCELL is a read-accessible register that relates current information on cell overvoltage-fault alerts based on  
ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
ALRTOV[14:9]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
ALRTOV[8:1]  
Reset  
0x0000  
Access Type  
Read Only  
Maxim Integrated │ 200  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Cell Overvoltage-Fault Alert:  
ALRTOV[n] indicates V  
> V  
(OVTHSET threshold for POLARITY = 0,  
CELLN  
OV  
ALRTOV  
13:0  
BIPOVTHSET for POLARITY = 1); evaluated/enabled if OVALRTEN[n] = 1.  
Cleared on next acquisition, if the overvoltage condition is resolved.  
Read only.  
ALRTUVCELL (0ꢀ09)  
ALRTOVCELL is a read-accessible register that relates current information on cell undervoltage-fault alerts based on  
ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
ALRTUV[14:9]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
ALRTUV[8:1]  
Reset  
0x0000  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Cell Undervoltage-Fault Alert:  
ALRTOV[n] indicates V < V  
(UVTHSET threshold for POLARITY = 0,  
UV  
CELLN  
ALRTUV  
13:0  
BIPUVTHSET for POLARITY = 1); evaluated/enabled if UVALRTEN[n] = 1.  
Cleared on next acquisition if the undervoltage condition is resolved.  
Read only.  
MINMAXCELL (0ꢀ0A)  
MINMAX is a read-accessible register that relates the cell locations with the highest and lowest values measured.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
0
MAXCELL[3:0]  
Reset  
0x0  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
MINCELL[3:0]  
0x0  
Reset  
Access Type  
Read Only  
Maxim Integrated │ 201  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Maximum-Voltage Cell:  
Cell number [14:1] of the maximum voltage enabled/observed (for all  
CELLENn = 1) in the last scan (SCAN = 1) based on ALU/IIR data as selected  
by RDFILT. This bitfield is not updated for data requests made with SCAN = 0.  
If multiple cells have the same maximum value, this field contains the lowest  
cell number reporting that result.  
MAXCELL  
11:8  
Note: This operation works on unipolar or bipolar measurement sets, as  
selected by MINMAXPOL. If MINMAXPOL is set so no measurements in the  
scan meet the criteria (e.g., MINMAXPOL = 1 (bipolar), but POLARITY[14:1] =  
0000h), a result of Fh be returned (indicating no valid result was found).  
Read only.  
Minimum-Voltage Cell:  
Cell number [14:1] of the minimum-cell voltage enabled/observed (for all  
CELLENn = 1) in the last scan (SCAN = 1) based on ALU/IIR data as selected  
by RDFILT. This bitfield is not updated for data requests made with SCAN = 0.  
If multiple cells have the same minimum value, this field contains the lowest  
cell number reporting that result.  
MINCELL  
3:0  
Note: This operation works on unipolar or bipolar measurement sets, as  
selected by MINMAXPOL. If MINMAXPOL is set so no measurements in the  
scan meet the criteria (e.g., MINMAXPOL = 1 (bipolar), but POLARITY[14:1] =  
0000h), a result of Fh is returned (indicating no valid result was found).  
Read only.  
ALRTAUXPRTCTREG (0ꢀ0B)  
ALRTAUXPRTCT is a read-accessible register that relates current information on auxiliary input-protection fault alerts.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
1
0
ALRTAUXPRTCT[5:4]  
0x00  
ALRTAUXPRTCT[3:0]  
0x00  
Reset  
Access Type  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Maxim Integrated │ 202  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Auxiliary-Protection Fault Alert:  
ALRTAUXPRTCT[n] indicates V  
> V ; the alert is evaluated/enabled on  
AA  
AUXINn  
each AUXn/GPIOn pin configured as an auxiliary input (see AUXGPIOCFG).  
Once the fault condition is detected on a pin, the AUXINn input switch is disabled to  
protect internal circuitry. AUXINn measurements and alerts for that pin will be invalid  
until proper operating conditions are restored.  
ALRTAUXPRTCT  
5:4  
Cleared only if the condition is resolved upon a retry, or if the affected pin is no longer  
configured as an auxiliary input (disabling the protection circuit). To retry auxiliary  
operation and clear the fault condition, rewrite the desired configuration to the  
AUXGPIOCFG register (it is not necessary to toggle the configuration).  
Read only.  
Auxiliary-Protection Fault Alert:  
ALRTAUXPRTCT[n] indicates V  
> V ; the alert is evaluated/enabled on  
AA  
AUX[n]  
each AUXn/GPIOn pin configured as an auxiliary input (see AUXGPIOCFG).  
Once the fault condition is detected on a pin, the AUX[n] input switch is disabled to  
protect internal circuitry. AUX[n] measurements and alerts for that pin will be invalid  
until proper operating conditions are restored.  
ALRTAUXPRTCT  
3:0  
Cleared only if the condition is resolved upon a retry, or if the affected pin is no longer  
configured as an auxiliary input (disabling the protection circuit). To retry auxiliary  
operation and clear the fault condition, rewrite the desired configuration to the  
AUXGPIOCFG register (it is not necessary to toggle the configuration).  
Read only.  
ALRTAUXOVREG (0ꢀ0C)  
ALRTAUXOV is a read-accessible register that relates current information on auxiliary-overvoltage (cold)-fault alerts.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
1
0
ALRTAUXOV[5:4]  
0x0  
ALRTAUXOV[3:0]  
0x0  
Reset  
Access Type  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Maxim Integrated │ 203  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Auxiliary-Overvoltage (Cold)-Fault Alert:  
ALRTAUXOV[n] indicates V  
AUXOVALRTEN[n] = 1.  
Cleared on next acquisition, if the overvoltage condition is resolved.  
Read only.  
> V  
; evaluated/enabled if  
AUXINn  
AUXOVTHSET  
ALRTAUXOV  
ALRTAUXOV  
5:4  
3:0  
AuxiliaryOvervoltage (Cold)-Fault Alert:  
ALRTAUXOV[n] indicates V  
AUXOVALRTEN[n] = 1.  
> V  
; evaluated/enabled if  
AUXINn  
AUXOVTHSET  
Cleared on next acquisition, if the overvoltage condition is resolved.  
Read only.  
ALRTAUXUVREG (0ꢀ0D)  
ALRTAUXUV is a read-accessible register that relates current information on auxiliary undervoltage fault (hot) alerts.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
1
0
ALRTAUXUV[5:4]  
0x0  
ALRTAUXUV[3:0]  
0x0  
Reset  
Access Type  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary-Undervoltage (Hot)-Fault Alert:  
ALRTAUXUV[n] indicates V  
AUXUVALRTEN[n] = 1.  
Cleared on next acquisition, if the undervoltage condition is resolved.  
Read only.  
< V  
; evaluated/enabled if  
AUXINn  
AUXUVTHSET  
ALRTAUXUV  
ALRTAUXUV  
5:4  
Auxiliary-Undervoltage (Hot)-Fault Alert:  
ALRTAUXUV[n] indicates V  
AUXUVALRTEN[n] = 1.  
< V  
; evaluated/enabled if  
AUXINn  
AUXUVTHSET  
3:0  
Cleared on next acquisition, if the undervoltage condition is resolved.  
Read only..  
Maxim Integrated │ 204  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ALRTCOMPOVREG (0ꢀ0E)  
ALRTCOMPOV is a read-accessible register that relates current information on cell overvoltage-fault alerts based on  
the redundant comparator.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
ALRTCOMPOV[14:9]  
0x0000  
Reset  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
ALRTCOMPOV[8:1]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Cell Overvoltage-Fault Comparator Alert:  
ALRTCOMPOV[n] indicates V > V  
(comparator overvoltage  
COMPOVTH  
CELL[n]  
ALRTCOMPOV  
13:0  
threshold); evaluated/enabled if OVALRTEN[n] = 1.  
Cleared on next comparator acquisition, if the overvoltage condition is resolved.  
Read only.  
ALRTCOMPUVREG (0ꢀ0F)  
ALRTCOMPUV is a read-accessible register that relates current information on cell undervoltage-fault alerts based on  
the redundant comparator.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
ALRTCOMPUV[14:9]  
0x0000  
Reset  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
ALRTCOMPUV[8:1]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Cell Undervoltage-Fault Comparator Alert:  
ALRTCOMPUV[n] indicates V < V  
(comparator undervoltage  
COMPUVTH  
CELL[n]  
ALRTCOMPUV  
13:0  
threshold); evaluated/enabled if UVALRTEN[n] = 1.  
Cleared on next comparator acquisition, if the undervoltage condition is resolved.  
Read only.  
ALRTCOMPAUXOVREG (0ꢀ10)  
ALRTCOMPAUXOV is a read-accessible register that relates current information on auxiliary overvoltage-fault (cold)  
alerts based on the redundant comparator.  
Maxim Integrated │ 205  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
1
0
ALRTCOMPAUXOV[5:4]  
ALRTCOMPAUXOV[3:0]  
Reset  
0x0  
0x0  
Access Type  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary Overvoltage (Cold) Fault Comparator Alert:  
ALRTCOMPAUXOV[n] indicates V > V  
(comparator over-  
COMPOVTH  
AUXINn  
ALRTCOMPAUXOV  
5:4  
voltage threshold, cold); evaluated/enabled if AUXOVALRTEN[n] = 1.  
Cleared on next comparator acquisition, if the overvoltage condition is resolved.  
Read only.  
Auxiliary Overvoltage (Cold) Fault Comparator Alert:  
ALRTCOMPAUXOV[n] indicates V  
> V  
(comparator over-  
AUXINn  
COMPOVTH  
ALRTCOMPAUXOV  
3:0  
voltage threshold, cold); evaluated/enabled if AUXOVALRTEN[n] = 1.  
Cleared on next comparator acquisition, if the overvoltage condition is resolved.  
Read only.  
ALRTCOMPAUXUVREG (0ꢀ11)  
ALRTCOMPAUXUV is a read-accessible register that relates current information on auxiliary undervoltage-fault (hot)  
alerts based on the redundant comparator.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
1
0
ALRTCOMPAUXUV[5:4]  
ALRTCOMPAUXUV[3:0]  
Reset  
0x0  
0x0  
Access Type  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary Undervoltage (Hot)-Fault Comparator Alert:  
ALRTCOMPAUXUV[n] indicates V < V  
(comparator under-  
COMPUVTH  
AUXINn  
ALRTCOMPAUXUV  
ALRTCOMPAUXUV  
5:4  
voltage threshold, hot); evaluated/enabled if AUXUVALRTEN[n] = 1.  
Cleared on next acquisition, if the undervoltage condition is resolved.  
Read only.  
Auxiliary Undervoltage (Hot)-Fault Comparator Alert:  
ALRTCOMPAUXUV[n] indicates V  
< V  
(comparator under-  
AUXINn  
COMPUVTH  
3:0  
voltage threshold, hot); evaluated/enabled if AUXUVALRTEN[n] = 1.  
Cleared on next acquisition, if the undervoltage condition is resolved.  
Read only.  
Maxim Integrated │ 206  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ALRTBALSWREG (0ꢀ12)  
ALRTBALSW is a read-accessible register that relates current summary information on balance-switch fault alerts.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
ALRTBALSW[13:8]  
0x0000  
Reset  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
ALRTBALSW[7:0]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Balance-Switch Fault Alert:  
ALRTBALSW[n] indicates the corresponding measurement result fails the  
threshold specified by the balance-switch diagnostic modes (SCANCFG = 100  
through 111).  
Testing and faults above the TOPCELL1/2 position are automatically masked  
out of this register (see PACKCFG:TOPCELL1&2 for complete details).  
Cleared on next acquisition if the condition is resolved.  
Read only.  
ALRTBALSW  
13:0  
SWACTION (0ꢀ13)  
SWACTION is a read-/write-accessible register that contains bits allowing software exit and reset requests. These  
requests are not recommended for general use, but may be of use in case of error.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
1
0
SWPOR  
0b0  
Reset  
Write, Read,  
Pulse  
Access Type  
Maxim Integrated │ 207  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Software POR Request:  
0 = Normal operation (default, no effect)  
1 = Initiates software POR event  
Always reads logic zero.  
SWPOR  
0
DEVCFG1 (0ꢀ14)  
DEVCNFG1 is a read-/write-accessible register that governs the configuration of the device-interface operation.  
BIT  
15  
14  
13  
12  
11  
10  
9
8
TXUIDLE-  
HIZ  
TXLIDLE-  
HIZ  
ALIVECNT-  
EN  
Field  
UARTCFG[1:0]  
ADAPTTXEN[1:0]  
0b00  
UARTHOST  
0b1  
Reset  
0b11  
0b0  
0b0  
0b0  
Write, Read, Write, Read,  
Write, Read,  
Ext  
Access Type  
Write, Read, Ext  
Write, Read, Ext  
Read Only  
Ext  
Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
DEVCF-  
G1RSRV  
SFTYCSB  
SFTYSCLK  
SFTYSDI  
SPIDRVINT  
NOPEC  
ALERTEN  
DBLBUFEN  
0b0  
Reset  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
Write, Read, Write, Read, Write, Read, Write, Read,  
Ext Ext Ext Ext  
Write, Read, Write, Read,  
Ext Ext  
Access Type  
Write, Read  
Write, Read  
Maxim Integrated │ 208  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
UART Interface Configuration:  
00 = Single-UART interface with external loopback  
01 = Single-UART interface with internal loopback  
10 = Single-UART interface with differential-alert interface  
11 = Dual-UART Interface (default)  
Single-UART options with Loopback (modes 0x): The UART Up path is  
used for read and write commands and the down path is used as a return  
(pass-through) path. If an internal loopback path is desired, the internal shunt  
should only be engaged on the last device in the chain using mode 01. Alert  
interface is single-ended (using the ALERTIN and ALERTOUT pins) since the  
down path is engaged for UART communications.  
Single-UART with Differential Alert Interface (mode 10): The UART Up  
path is used for read and write commands with a direct wire return path from  
the last device in the chain to the μC. The down path is used as a differential-  
alert path. The single-ended alert-interface path is disabled (the ALERTOUT  
port idle HIZ, and the ALERTIN port are disabled).  
UARTCFG  
15:14  
Dual-UART interface: Both the up and down interfaces are used for UART  
communication. Only the host path (selected using UPHOST or DOWNHOST  
commands, and indicated by HOSTUART) accepts write commands, while  
both paths can accept read commands. Alert interface is single-ended (using  
the ALERTIN and ALERTOUT pins) since the down path is engaged for UART  
communications.  
For all the above options, the UART Up path uses the RXL→TXU ports, and  
the UART down path uses the TXL→RXU ports.  
These bits have no effect if UARTSEL is set low (SPI interface enabled).  
This bitfield is unaffected in the event of a software POR (SWPOR) request by  
the host.  
Note: The device hardware must be preconfigured to support the correct  
operational mode. The device powers up in the dual-UART mode to ensure  
any hardware configuration can configure the device. If the incorrect operating  
mode is configured, the UART master should cease communications (and  
possibly issue a FORCEPOR) to reset the device to default status through  
SHDNL assertion.  
UART Upper-TX-Idle Mode Selection:  
0 = TXU drivers idle in logic zero (default)  
1 = TXU drivers idle in High-Z  
TXUIDLEHIZ  
TXLIDLEHIZ  
13  
12  
Leave in default state for normal operation.  
This bit has no effect if UARTSEL is set low.  
This bitfield is unaffected in the event of a software POR (SWPOR) request by  
the host.  
UART Lower-TX-Idle Mode Selection:  
0 = TXL drivers idle in logic zero (default)  
1 = TXL drivers idle in High-Z  
Leave in default state for normal operation.  
This bit has no effect if UARTSEL is set low.  
This bitfield is unaffected in the event of a software POR (SWPOR) request by  
the host.  
Maxim Integrated │ 209  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
UART Adaptive-Transmission Enable:  
00 = Adaptive transmission off (default)  
01 = Enable Up path adaptive transmission on TXU  
10 = Enable Down path adaptive transmission on TXL  
11 = Unsupported (adaptive transmission off)  
Selections should only be made on device(s) at the end of up/down path(s)  
that transmit directly to the μC/μP.  
This bit has no effect if UARTSEL is set low.  
This bitfield is unaffected in the event of a software POR (SWPOR) request by  
the host.  
ADAPTTXEN  
ALIVECNTEN  
UARTHOST  
11:10  
Enable UART-Interface Alive-Counter:  
0 = Do not send alive-counter byte (default)  
1 = Enables inclusion of alive-counter byte at end of all write and read pack-  
ets.  
9
8
UART Host-Mode Indicator Bit:  
0 = UART down path is host  
1 = UART Up path is host (default)  
Indicates which UART path is currently configured as the host. Down-host  
mode is only accessible if UARTCFG = DUAL (11). The host mode is selected  
using UPHOST and DOWNHOST commands.  
This bit has no meaning if UARTSEL is set low, and always reads back one.  
Read only.  
This bitfield is unaffected in the event of a software POR (SWPOR) request by  
the host.  
SPI CSB Safety-Pullup Enable:  
0 = CSB pulup disabled (default)  
1 = CSB pulup enabled  
SFTYCSB  
SFTYSCLK  
SFTYSDI  
7
6
5
Determines if 100kΩ safety pulup to V  
is enabled on the CSB interface  
DDL2  
input pin. This bit has no effect if UARTSEL is set high.  
This bitfield is unaffected in the event of a software POR (SWPOR) request by  
the host.  
SPI SCLK Safety-Pulldown Enable:  
0 = SCLK pulldown disabled (default)  
1 = SCLK pulldown enabled  
Determines if 100kΩ safety pulldown to GND is enabled on the SCLK  
interface input pin.  
This bit has no effect if UARTSEL is set high.  
This bitfield is unaffected in the event of a software POR (SWPOR) request by  
the host.  
SPI SDI Safety-Pulldown Enable:  
0 = SDI pulldown disabled (default)  
1 = SDI pulldown enabled  
Determines if 100kΩ safety pulldown to GND2/3 is enabled on the SDI interface  
input pin. This bit has no effect if UARTSEL is set high.  
This bitfield is unaffected in the event of a software POR (SWPOR) request by  
the host.  
Maxim Integrated │ 210  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
SPI IRQB Output Drive Mode:  
0 = Open-drain nMOS (default)  
1 = CMOS drive  
SPIDRVINT  
4
Determines drive mode for SPI IRQB function on ALERTOUT pin. This bit has  
no effect if UARTSEL is set high.  
This bitfield is unaffected in the event of a software POR (SWPOR) request by  
the host.  
Reserved:  
Reads back the value written.  
DEVCFG1RSRV  
NOPEC  
3
2
UART/SPI PEC/CRC Disable:  
0 = PEC/CRC enabled (default)  
1 = PEC/CRC disabled  
Determines if packet-error checking is enforced using the UART interface and  
if cyclic-redundancy checking is enforced using the SPI interface.  
If this bit is set, the PEC characters should be omitted from the UART packet/  
command (UARTSEL = 1), and the incoming CRC bits ignored during SPI  
transactions (UARTSEL = 0).  
Alert-Interface Enable:  
0 = Alert interface is disabled (default)  
1 = Alert interface enabled  
If disabled, the following conventions apply:  
If UARTSEL = 1 and UARTCFG = 0x or 11 (single-ended alert), the ALER-  
TOUT port idles Hi-Z and the ALERTIN port is disabled/ignored.  
If UARTSEL = 1 and UARTCFG = 10 (differential alert), the UART Down path  
idle as set by TXLIDLEHIZ.  
If UARTSEL = 0 (SPI), the ALRTOUT pin idles high with drive determined by  
SPIDRVINT. The ALERTIN pin will be disabled/ignored in SPI mode (no shoot  
through current result if the pin is not connected).  
ALERTEN  
1
This bit is unaffected in the event of SWPOR(Soft POR) request by host.  
If enabled, the following conventions apply:  
If UARTSEL = 1, the device initiates alerts based on STATUS1 content, as  
well as passes through any alerts received from/to the daisy-chain.  
If UARTSEL = 0 (SPI), the device generates active-low alerts based on  
STATUS1 content with drive determined by SPIDRVINT. The ALERTIN pin will  
be disabled and ignored in SPI mode (no shoot-through current results if the  
pin is not connected).  
Double-Buffer Mode Enable:  
0 = Normal operation (default)  
1 = Double-buffered operation  
Enables the double-buffer mode.  
This mode automatically transfers data from the ALU/IIR to the data registers  
at the start of the next acquisition, instead of at the end of an acquisition.  
Note: This mode may be used so the host can start a second acquisition and  
then begin reading the data from the first acquisition (during the second ac-  
quisition). This works even if the first data-read transactions take longer than  
the second acquisition to complete; simply hold off on a third acquisition until  
the first acquisition's data is retrieved. Launching a third acquisition moves the  
data from the second acquisition to the data registers for readback during the  
third acquisition, and so forth.  
DBLBUFEN  
0
Maxim Integrated │ 211  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
DEVCFG2 (0ꢀ15)  
DEVCNFG2 is a read-/write-accessible register that governs the configuration of the device filtering, several top-level  
diagnostic modes, and timeout monitors.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
IIRFC[2:0]  
0b010  
DEVCFG2RSRV[3:0]  
0b0000  
Reset  
Access Type  
Write, Read  
Write, Read  
BIT  
7
6
5
4
3
2
1
0
FORCE-  
POR  
ALERTDCT-  
STEN  
SCANTO-  
DIS  
Field  
HVCPDIS  
0b0  
SPITODIS  
0b0  
CBTODIS  
0b0  
Reset  
0b0  
0b0  
0b0  
Access Type  
Write, Read Write, Read Write, Read  
Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
IIR Filter Coefficient Selection:  
000 = 0.125  
001 = 0.250  
010 = 0.375 (default)  
011 = 0.500  
100 = 0.625  
101 = 0.750  
IIRFC  
15:13  
110 = 0.875  
111 = 1.000 (filter off)  
This setting determines the weight of the current measurement result vs.  
the previously accumulated results in the IIR filter. A setting of 1.0 effectively  
disables the filter.  
Reserved:  
Reads back the value written.  
DEVCFG2RSRV  
HVCPDIS  
11:8  
6
HV Charge Pump Disable:  
0 = Normal Operation (default)  
1 = Disable HV Charge Pump  
Used for ALRTHVUV diagnostic. If the HV charge pump is disabled in normal  
operation, measurement errors result due to V  
undervoltage condition.  
HV  
Force POR Event:  
0 = Normal Operation (default)  
1 = Enables hard POR by pulling down SHDNL internally. If cleared before the  
POR occurs, the active pulldown on SHDNL be removed.  
Note: This bit is used to accelerate a complete POR event issued by SHDNL  
falling. In UART applications, it is possible continued UART activity fight or  
overcome the SHDNL pulldown. For best results, cease UART communica-  
tions when using this mode.  
FORCEPOR  
5
Maxim Integrated │ 212  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
UART Alert DC Diagnostic Test Enable:  
0 = UART Alert DC Testing Disabled (Default)  
1 = UART Alert DC Testing Enabled  
Used to place the ALRTOUT pin in a DC diagnostic mode for use in testing for  
shorts to GPIO/AUX0.  
If Enabled while UARTSEL = 1, the ALRTOUT pin be driven low if an Alert  
condition is present, and driven high otherwise. ALRTUSER can be written to  
exercise ALRTOUT in either direction. Neighboring pins such as AUX/GPIO[0]  
can be monitored directly or in diagnostic modes to detect a fault.  
This function works in all UARTCFG modes, including 10 (Differential Alert),  
that do not normally use the ALRTOUT pin.  
ALERTDCTSTEN  
4
This setting has no impact in SPI mode (UARTSEL = 0), the same functional-  
ity can be realized using SPIDRVINIT and ALRTUSER.  
SPI Time Out Disable:  
0 = SPI Time Out Enabled (default)  
1 = SPI Time Out Disabled  
SPITODIS  
2
Determines if SPI time out monitor function is enabled. This bit has no effect if  
UARTSEL is set high.  
Scan Time Out Disable:  
0 = Normal Operation (default)  
1 = Disables the acquisition watchdog but does not clear the SCANTIMEOUT  
flag in the SCANCTRL register if it is set.  
SCANTODIS  
CBTODIS  
1
0
Cell-Balancing Timeout Disable:  
0 = Normal Operation (default)  
1 = Disables the cell balancing watchdog but does not clear the ALRTCB-  
TIMEOUT flag in the STATUS3 register if it was previously set.  
AUXGPIOCFG (0ꢀ16)  
AUXGPIOCFG is a read-/write-accessible register that governs the configuration of the AUX/GPIO multifunction pins.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
GPIOEN[3:0]  
0xF  
Write, Read, Ext  
9
8
0
GPIOEN[5:4]  
Reset  
0x3  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
GPIODIR[5:4]  
GPIODIR[3:0]  
Reset  
0x0  
0x0  
Access Type  
Write, Read, Ext  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Digital GPIO Mode Enable:  
0 = Analog Input (AUX) Mode (High-Z)  
1 = Digital GPIO Mode (default)  
GPIOEN  
13:12  
GPIOEN[n] configures the corresponding AUX/GPIO[n] pin for operation in the  
selected mode.  
Maxim Integrated │ 213  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Digital GPIO Mode Enable  
0 = Analog Input (AUX) Mode (High-Z)  
1 = Digital GPIO Mode (default)  
GPIOEN  
11:8  
GPIOEN[n] configures the corresponding AUX/GPIO[n] pin for operation in the  
selected mode.  
Digital GPIO Direction Selection  
0 = Digital Input Mode (High-Z, default)  
1 = Digital Output Mode  
GPIODIR[n] configures the direction of the corresponding AUX/GPIO[n] pin.  
This setting is only applicable if GPIOEN[n] = 1 (Digital GPIO Mode enabled).  
In digital input mode (GPIOEN = 1 and GPIODIR = 0), a 2MΩ pulldown  
GPIODIR  
5:4  
(R  
) be enabled to prevent the GPIO input from floating.  
GPIO  
In digital output mode (GPIOEN = 1 and GPIODIR = 1, the GPIO input cir-  
cuitry continue to operate, allowing direct observation of the port status.  
Digital GPIO Direction Selection  
0 = Digital Input Mode (High-Z, default)  
1 = Digital Output Mode  
GPIODIR[n] configures the direction of the corresponding AUX/GPIO[n] pin.  
This setting is only applicable if GPIOEN[n] = 1 (Digital GPIO Mode enabled).  
In digital input mode (GPIOEN = 1 and GPIODIR = 0), a 2MΩ pulldown  
GPIODIR  
3:0  
(R  
) be enabled to prevent the GPIO input from floating.  
GPIO  
In digital output mode (GPIOEN = 1 and GPIODIR = 1), the GPIO input  
circuitry continue to operate, allowing direct observation of the port status.  
GPIOCFG (0ꢀ17)  
GPIO is a read-/write-accessible register that governs the output state of GPIO outputs and reads back the input state  
of GPIO inputs.  
Maxim Integrated │ 214  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
0
GPIODRV[5:4]  
GPIODRV[3:0]  
Reset  
0x0  
0b0  
Access Type  
Write, Read, Ext  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
GPIORD[5:4]  
0x0  
GPIORD[3:0]  
0x0  
Reset  
Access Type  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Digital GPIO Output State  
0 = Output Logic Zero (default)  
1 = Output Logic One  
GPIODRV  
13:12  
GPIODRV[n] sets the output logic state direction of the corresponding AUX/  
GPIO[n] pin.  
This setting is only applicable if GPIOEN[n] = 1 and GPIODIR[n] = 1 (Digital  
GPIO Output Mode enabled).  
Digital GPIO Output State  
0 = Output Logic Zero (default)  
1 = Output Logic One  
GPIODRV  
11:8  
GPIODRV[n] sets the output logic state direction of the corresponding AUX/  
GPIO[n] pin.  
This setting is only applicable if GPIOEN[n] = 1 and GPIODIR[n] = 1 (Digital  
GPIO Output Mode enabled).  
Digital GPIO Input State Indicator  
0 = Logic Zero (default)  
1 = Logic One  
GPIORD[n] indicates the current logic state of each active GPIO[n] input buf-  
fer.  
GPIORD  
5:4  
Data is only relevant if GPIOEN[n] = 1 (all Digital GPIO pins are monitored in  
Input or Output mode), otherwise zero be read back.  
For UART, the logic state is sampled at the end of the parity bit of the register  
address byte during a read transaction. For SPI, the logic state is sampled in  
response to the 9th SCLK rising edge during a read transaction.  
Read only.  
Digital GPIO Input State Indicator  
0 = Logic Zero (default)  
1 = Logic One  
GPIORD[n] indicates the current logic state of each active GPIO[n] input buf-  
fer.  
GPIORD  
3:0  
Data is only relevant if GPIOEN[n] = 1 (all Digital GPIO pins are monitored in  
Input or Output mode), otherwise zero be read back.  
For UART, the logic state is sampled at the end of the parity bit of the register  
address byte during a read transaction. For SPI, the logic state is sampled in  
response to the 9th SCLK rising edge during a read transaction.  
Read only.  
Maxim Integrated │ 215  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
PACKCFG (0ꢀ18)  
PCKCFG is a read-/write-accessible register that configures the part such that the top most cell and block used in the  
application is known. Details of Flex Pack applications are also configured within this register.  
BIT  
Field  
Reset  
15  
14  
13  
12  
11  
10  
9
8
FLXPCK-  
EN2  
FLXPCK-  
EN1  
FLXPCK-  
SCAN  
TOPBLOCK[3:0]  
0b1  
0b1  
0b1  
0xF  
Access Type Write, Read Write, Read Write, Read  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
TOPCELL2[3:0]  
0xF  
TOPCELL1[3:0]  
0xF  
Reset  
Access Type  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Flex Pack Enable 2  
0 = Flex Pack functions disabled  
1 = Flex Pack selection of top cell and top block enabled (default)  
Indicates the flexible-pack support is engaged (DCINMUX and VBLKMUX),  
selecting the internal power and block-routing path when the DCIN pin is not  
supplied externally.  
This selection is protected by a redundant bitfield. FLXPCKEN1 &  
FLXPCKEN2 must agree, resulting in a valid internal FLXPCKEN1/2 selec-  
tion. If the two bitfields do not agree, the internal FLXPCKEN1/2 selection be  
mapped to 1 (enabled, default) and DCINMUX selection be mapped to the  
OFF position.  
FLXPCKEN2  
15  
SWn selection is determined by TOPCELL1/2 (based on TOPCELL1&2). Valid  
selections range from Cell 8 (0x8) to Cell 14 (0xE).  
If an unsupported selection (0x0 to 0x7, 0xF) is made in TOPCELL1/2, the  
DCINMUX selection switches are disabled, but the DCINMUX common switch  
is enabled (this is the default condition). In this condition, DCIN is initially  
pulled to a diode below the highest SWn input and there is no interference if  
DCIN is externally supplied.  
Block selection is determined by TOPBLOCK. Valid cell selections range from  
Cell 8 (0x8) to Cell 14 (0xE).  
If an unsupported selection (0x0~0x7, 0xF) is made in TOPBLOCK, the VBLK  
port is selected.  
Flex Pack Enable 1 (Redundant Bitfield)  
0 = Flex Pack functions disabled  
FLXPCKEN1  
14  
1 = Flex Pack selection of top cell and top block enabled (default)  
See FLXPCKEN2 for complete details on operation and redundant bitfield  
checking.  
Maxim Integrated │ 216  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Flex Pack Scan Configuration  
0 = Flex Pack ALTMUX scan unmodified  
1 = Flex Pack ALTMUX scan modified with additional 30μs delay before acqui-  
sition of TOPCELL1/2 (default)  
FLEXPCKSCAN configure the measurement sequence such that for any scan  
with ALTMUXSEL = 1, there be 30μs delay prior to sampling the TOPCELL1/2  
voltage regardless of SCANMODE. This delay affords the SW[TOPCELL1/2]  
input time to settle for an accurate diagnostic measurement when DCIN load-  
ing is temporarily suspended in Flex Pack configurations.  
Impacts scan sequences where FLXPCKEN = 1 and TOPCELL1/2 are set  
to a supported value (0x8 to 0xE), and ALTMUXSEL = 1 (effective value).  
Ignored otherwise.  
FLXPCKSCAN  
13  
Top-Block Selection:  
Configures the top block position if a selection other than the VBLK pin is  
chosen. Used to properly determine the connection point for the VBLOCK  
resistive divider.  
TOPBLOCK  
11:8  
TOPBLOCK[3:0] selects the Cn pin to be connected to the VBLOCK resistive  
divider. 0xF (default) selects the VBLK pin. Selections 0x0–0x7 are not sup-  
ported and be mapped to 0xF (VBLK, default).  
TOPBLOCK may differ from TOPCELL1/2 if there are Bus Bars installed in  
channels above the top cell. TOPBLOCK is ignored if FLXPCKEN = 0.  
Top-Cell Selection 2:  
Configures the top cell position if less than 14 channels are used. Used to  
properly mask the ALRTBALSW diagnostic alerts (always) and to make DCIN-  
MUX selections when FLXPCKEN = 1.  
This selection is protected by a redundant bitfield. TOPCELL1 and TOPCELL2  
must agree, resulting in a valid internal TOPCELL1/2 selection. If the two  
bitfields do not agree, no ALRTBALSW alerts are masked, and the internal  
DCINMUX selection be mapped to the OFF position.  
0xF (default) removes all ALRTBALSW masking, and places DCINMUX in the  
OFF position.  
TOPCELL2  
7:4  
Flex-Pack Behavior:  
TOPCELL1/2 selects the SW pin to be connected to the DCIN pin. Selections  
0x8 to 0xE map to SW[8] to SW[14]. Selections 0x0 to 0x7 and 0xF are not  
supported and be mapped to an OFF position. In the OFF position, DCIN is  
initially pulled to a diode below the highest SWn input.  
Masking Behavior  
TOPCELL1/2 also sets masking behavior in ALRTBALSW diagnostics. All  
selections are supported for this function.  
Top-Cell Selection 1 (Redundant Bitfield):  
Configures the top-cell position if less than 14 channels are used. Used to  
properly mask the ALRTBALSW diagnostic alerts (always) and to make DCIN-  
MUX selections when FLXPCKEN=1.  
TOPCELL1  
3:0  
See TOPCELL2 for complete details on operation and redundant bitfield  
checking.  
ALRTIRQEN (0ꢀ19)  
ALRTIRQEN is a read-/write-accessible register that selects which STATUS1 alerts trigger interrupts through the  
ALERT interface port(s), and are included in the DCByte and Alert Packet (UART) or ALERT bit (SPI) notifications.  
Maxim Integrated │ 217  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Note: The information in the STATUS1 register itself (or any component terms rolled up into STATUS1) is not masked/  
disabled by these settings, allowing the underlying data to always be available through STATUS1 readback.  
BIT  
Field  
Reset  
15  
14  
13  
12  
11  
10  
9
8
SCAN-  
ALRTEN  
MSMTCH- CELLOVST- CELLUVST- BLKOVST-  
ALRTEN  
0b1  
BLKUVST-  
ALRTEN  
AUXOVST-  
ALRTEN  
ALRTEN  
0b1  
ALRTEN  
0b1  
ALRTEN  
0b1  
0b0  
0b1  
0b1  
Access Type Write, Read  
Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
BIT  
Field  
Reset  
7
6
5
4
3
2
1
0
AUXUVST-  
ALRTEN  
PEC-  
ALRTEN  
INTRFC-  
ALRTEN  
CAL-  
ALRTEN  
CBAL-  
ALRTEN  
FMEA-  
2ALRTEN  
FMEA-  
1ALRTEN  
0b1  
0b1  
0b1  
0b1  
0b1  
0b1  
0b1  
Access Type Write, Read  
Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Scan-Complete Alert Enable  
0 = ALRTSCAN masked (default)  
1 = ALRTSCAN enabled  
SCANALRTEN  
15  
Disabled by default since this is not a safety feature, but a notification option.  
Applies to the Alert Interface only in order to support interrupt-driven applica-  
tions; ALRTSCAN is never included in the UART DCByte & Alert Packet, or  
the SPI ALERT bit.  
Cell-Voltage-Mismatch Alert Enable  
0 = ALRTMSMTCH masked  
MSMTCHALRTEN  
CELLOVSTALRTEN  
CELLUVSTALRTEN  
BLKOVSTALRTEN  
13  
12  
11  
10  
1 = ALRTMSMTCH enabled (default)  
Applies to the Alert Interface, UART DCByte & Alert Packet, and SPI ALERT  
bit.  
Cell-Overvoltage-Status Summary-Alert Enable  
0 = ALRTCELLOVST masked  
1 = ALRTCELLOVST enabled (default)  
Applies to the Alert Interface, UART DCByte & Alert Packet, and SPI ALERT  
bit.  
Cell-Undervoltage-Status Summary-Alert Enable  
0 = ALRTCELLUVST masked  
1 = ALRTCELLUVST enabled (default)  
Applies to the Alert Interface, UART DCByte & Alert Packet, and SPI ALERT  
bit.  
Block-Overvoltage Status-Alert Enable  
0 = ALRTBLKOVST masked  
1 = ALRTBLKOVST enabled (default)  
Applies to the Alert Interface, UART DCByte & Alert Packet, and SPI ALERT  
bit.  
Maxim Integrated │ 218  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Block Undervoltage Status Alert Enable  
0 = ALRTBLKUVST masked  
BLKUVSTALRTEN  
9
1 = ALRTBLKUVST enabled (default)  
Applies to the Alert Interface, UART DCByte & Alert Packet, and SPI ALERT  
bit.  
Auxiliary Overvoltage Status Summary Alert Enable  
0 = ALRTAUXOVST masked  
AUXOVSTALRTEN  
AUXUVSTALRTEN  
PECALRTEN  
8
7
5
4
3
2
1
0
1 = ALRTAUXOVST enabled (default)  
Applies to the Alert Interface, UART DCByte & Alert Packet, and SPI ALERT  
bit.  
Auxiliary Undervoltage Status Summary Alert Enable  
0 = ALRTAUXUVST masked  
1 = ALRTAUXUVST enabled (default)  
Applies to the Alert Interface, UART DCByte & Alert Packet, and SPI ALERT  
bit.  
Packet Error Check (CRC) Alert Enable  
0 = ALRTPEC masked  
1 = ALRTPEC enabled (default)  
Applies to the Alert Interface, UART Alert Packet, and SPI ALERT bit; ALRT-  
PEC is not included in the UART DCByte.  
Interface Specific Error Alert Enable  
0 = ALRTINTRFC masked  
1 = ALRTINTRFC enabled (default)  
Applies to the Alert Interface, UART DCByte & Alert Packet, and SPI ALERT  
bit.  
INTRFCALRTEN  
CALALRTEN  
Calibration Fault Alert Enable  
0 = ALRTCAL masked  
1 = ALRTCAL enabled (default)  
Applies to the Alert Interface, UART DCByte & Alert Packet, and SPI ALERT  
bit.  
Cell Balancing Status Alert Enable  
0 = ALRTCBAL masked  
1 = ALRTCBAL enabled (default)  
Applies to the Alert Interface, UART DCByte & Alert Packet, and SPI ALERT  
bit.  
CBALALRTEN  
FMEA2 Condition Summary Alert Enable  
0 = ALRTFMEA2 masked  
1 = ALRTFMEA2 enabled (default)  
Applies to the Alert Interface, UART DCByte & Alert Packet, and SPI ALERT  
bit.  
FMEA2ALRTEN  
FMEA1ALRTEN  
FMEA1 Condition Summary Alert Enable  
0 = ALRTFMEA1 masked  
1 = ALRTFMEA1 enabled (default)  
Applies to the Alert Interface, UART DCByte & Alert Packet, and SPI ALERT  
bit.  
Maxim Integrated │ 219  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ALRTOVEN (0ꢀ1A)  
ALRTOVEN is a read-/write-accessible register that enables overvoltage fault checks on selected input channels dur-  
ing scans using either the ADC or Comparator.  
BIT  
15  
14  
13  
12  
11  
10  
9
8
BLKOV-  
ALRTEN  
Field  
OVALRTEN[14:9]  
Reset  
0b0  
0x0000  
Access Type  
Write, Read  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
OVALRTEN[8:1]  
0x0000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Block Overvoltage Fault Check Enable  
BLKOVALRTEN enables overvoltage fault checking on ADC Block measure-  
ments against threshold BLKOVTHSET.  
BLKOVALRTEN  
14  
Clearing also clears the associated Block alert.  
Overvoltage Fault Check Enable  
OVALRTEN[n] enables overvoltage fault checking on CELL[n] against thresh-  
old OVTHSET (ADC) and COMPOVTH (Comparator).  
Clearing also clears the associated cell alert in ALRTOVCELL and ALRTCOM-  
POVREG.  
OVALRTEN  
13:0  
ALRTUVEN (0ꢀ1B)  
ALRTUVEN is a read-/write-accessible register that enables undervoltage fault checks on selected input channels dur-  
ing scans using either the ADC or Comparator.  
BIT  
15  
14  
13  
12  
11  
10  
9
1
8
0
BLKUV-  
ALRTEN  
Field  
UVALRTEN[14:9]  
Reset  
0b0  
0x0000  
Access Type  
Write, Read  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
UVALRTEN[8:1]  
0x0000  
Reset  
Access Type  
Write, Read  
Maxim Integrated │ 220  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Block Undervoltage Fault Check Enable  
BLKUVALRTEN enables undervoltage fault checking on ADC Block measure-  
ments against threshold BLKUVTHSET.  
BLKUVALRTEN  
14  
Clearing also clears the associated Block alert.  
Undervoltage Fault Check Enable  
UVALRTEN[n] enables undervoltage fault checking on CELL[n] against  
threshold UVTHSET (ADC) and COMPUVTH (Comparator).  
Clearing also clears the associated cell alert in ALRTOVCELL and ALRTCOM-  
POVREG.  
UVALRTEN  
13:0  
ALRTAUXOVEN (0ꢀ1C)  
ALRTAUXOVEN is a read-/write-accessible register that enables auxiliary overvoltage (cold) fault checks on selected  
Auxiliary channels during scans using either the ADC or Comparator.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXOVALRTEN[5:4]  
0x0  
AUXOVALRTEN[3:0]  
0x00  
Reset  
Access Type  
Write, Read, Ext  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary Overvoltage (Cold) Fault Check Enable  
AUXOVALRTEN[n] enables overvoltage (cold) fault checking on AUX[n]  
against the ratiometric/absolute threshold AUXROVTHSET/AUXAOVTHSET  
(ADC) and COMPAUXROVTH/COMPAUXAOVTH (Comparator), as selected  
by AUXREFSEL[n].  
AUXOVALRTEN  
5:4  
Clearing also clears the associated alert.  
Note: If the respective GPIOEN bit is set (GPIO mode), this bit is ignored, but  
still readback the user setting.  
Auxiliary Overvoltage (Cold) Fault Check Enable  
AUXOVALRTEN[n] enables overvoltage (cold) fault checking on AUX[n]  
against the ratiometric/absolute threshold AUXROVTHSET/AUXAOVTHSET  
(ADC) and COMPAUXROVTH/COMPAUXAOVTH (Comparator), as selected  
by AUXREFSEL[n].  
AUXOVALRTEN  
3:0  
Clearing also clears the associated alert.  
Note: If the respective GPIOEN bit is set (GPIO mode), this bit is ignored, but  
still read back the user setting.  
Maxim Integrated │ 221  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ALRTAUXUVEN (0ꢀ1D)  
ALRTAUXUVEN is a read-/write-accessible register that enables auxiliary undervoltage (hot) fault checks on selected  
Auxiliary channels using either the ADC or Comparator.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXUVALRTEN[5:4]  
0x0  
AUXUVALRTEN[3:0]  
0x0  
Reset  
Access Type  
Write, Read, Ext  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary Undervoltage (Hot) Fault Check Enable  
AUXUVALRTEN[n] enables undervoltage (hot) fault checking on AUX[n]  
against the ratiometric/absolute threshold AUXRUVTHSET/AUXAUVTHSET  
(ADC) and COMPAUXRUVTH/COMPAUXAUVTH (Comparator), as selected  
by AUXREFSEL[n].  
AUXUVALRTEN  
5:4  
Clearing also clears the associated alert.  
Note: If the respective GPIOEN bit is set (GPIO mode), this bit is ignored, but  
still readback the user setting.  
Auxiliary Undervoltage (Hot) Fault Check Enable  
AUXUVALRTEN[n] enables undervoltage (hot) fault checking on AUX[n]  
against the ratiometric/absolute threshold AUXRUVTHSET/AUXAUVTHSET  
(ADC) and COMPAUXRUVTH/COMPAUXAUVTH (Comparator), as selected  
by AUXREFSEL[n].  
AUXUVALRTEN  
3:0  
Clearing also clears the associated alert.  
Note: If the respective GPIOEN bit is set (GPIO mode), this bit is ignored, but  
still read back the user setting.  
ALRTCALTST (0ꢀ1E)  
ALRTCALTST is a read-/write-accessible register that allows the user to force Calibration alerts to test readback and  
interrupt logic. The forced alert(s) remain forced until this register is written back to zeros (assuming the existing  
calibration data is with range).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access Type  
BIT  
7
6
5
4
3
2
1
0
CALO-  
STHRM-  
ALRTFRC  
CALOSAD-  
CALRTFRC  
CALOSR-  
ALRTFRC  
CALGAIN-  
PALRTFRC RALRTFRC  
CALGAIN-  
Field  
Reset  
0b0  
0b0  
0b0  
0b0 0b0  
Access Type  
Write, Read Write, Read Write, Read Write, Read Write, Read  
Maxim Integrated │ 222  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
ADC Offset Calibration Alert Force  
0 = ALRTCALOSADC normal operation (default)  
1 = ALRTCALOSADC forced if unmasked  
Used to test alert functionality.  
CALOSADCALRTFRC  
4
Ramp LSA + ADC Offset Calibration Alert Force  
0 = ALRTCALOSR normal operation (default)  
1 = ALRTCALOSR forced if unmasked  
Used to test alert functionality.  
CALOSRALRTFRC  
3
2
1
0
Ratiometric ADC Offset Calibration Alert Force  
0 = ALRTCALOSTHRM normal operation (default)  
1 = ALRTCALOSTHRM forced if unmasked  
Used to test alert functionality.  
CALOSTHRMALRTFRC  
CALGAINPALRTFRC  
CALGAINRALRTFRC  
Pyramid Gain Calibration Alert Force  
0 = ALRTCALGAINP normal operation (default)  
1 = ALRTCALGAINP forced if unmasked  
Used to test alert functionality.  
Ramp Gain Calibration Alert Force  
0 = ALRTCALGAINR normal operation (default)  
1 = ALRTCALGAINR forced if unmasked  
Used to test alert functionality.  
OVTHCLRREG (0ꢀ1F)  
OVTHCLR is a read-/write-accessible register that selects the cell overvoltage alert clear threshold used with unipolar  
ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
OVTHCLR[13:6]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
OVTHCLR[5:0]  
Reset  
0x3FFF  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Unipolar Cell Overvoltage Alert Clear Threshold  
14-bit threshold value at/below which ALRTOV alerts be cleared/deasserted  
for unipolar cell measurements.  
OVTHCLR  
15:2  
Note: For proper operation, this value should always be less than or equal to  
OVTHSET.  
Maxim Integrated │ 223  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
OVTHSETREG (0ꢀ20)  
OVTHSET is a read-/write-accessible register that selects the cell overvoltage alert set threshold used with unipolar ADC  
measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
OVTHSET[13:6]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
OVTHSET[5:0]  
Reset  
0x3FFF  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Unipolar Cell Overvoltage Alert Set Threshold  
14-bit threshold value above which ALRTOV alerts be set/asserted for unipo-  
lar cell measurements.  
OVTHSET  
15:2  
A value of 0x3FFF effectively disables overvoltage checking.  
UVTHCLRREG (0ꢀ21)  
UVTHCLR is a read-/write-accessible register that selects the cell undervoltage alert clear threshold used with unipolar  
ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
UVTHCLR[13:6]  
0x0000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
UVTHCLR[5:0]  
Reset  
0x0000  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Unipolar Cell Undervoltage Alert Clear Threshold  
14-bit threshold value at/above which ALRTUV alerts be cleared/deasserted  
for unipolar cell measurements.  
UVTHCLR  
15:2  
Note: For proper operation, this value should always be greater than or equal  
to UVTHSET.  
Maxim Integrated │ 224  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
UVTHSETREG (0ꢀ22)  
UVTHSET is a read-/write-accessible register that selects the cell undervoltage alert set threshold used with unipolar ADC  
measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
UVTHSET[13:6]  
0x0000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
UVTHSET[5:0]  
Reset  
0x0000  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Unipolar Cell Undervoltage Alert Set Threshold  
14-bit threshold value below which ALRTUV alerts be set/asserted for unipolar  
cell measurements.  
UVTHSET  
15:2  
A value of 0x0000 effectively disables undervoltage checking.  
MSMTCHREG ((0ꢀ23))  
MSMTCH is a read-/write-accessible register that selects the cell-voltage-mismatch alert threshold used with ADC cell  
scan measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
MSMTCH[13:6]  
Reset  
0x3FFF  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
MSMTCH[5:0]  
Reset  
0x3FFF  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Misimatch Alert Threshold  
14-bit threshold value; if the difference between maximum and minimum cell  
voltages exceeds this value, ALRTMSMTCH be set/asserted.  
Whether only unipolar ADC measurements (POLARITYn = 0) are included  
in mismatch calculations or all measurements are included is determined by  
POLARITYCTRL:MINMAXPOL.  
MSMTCH  
15:2  
Maxim Integrated │ 225  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BIPOVTHCLRREG (0ꢀ24)  
BIPOVTHCLR is a read-/write-accessible register that selects the cell overvoltage alert clear threshold used with bipo-  
lar ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
BIPOVTHCLR[13:6]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
BIPOVTHCLR[5:0]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Bipolar Cell Overvoltage Alert Clear Threshold  
14-bit threshold value at/below which ALRTOV alerts be cleared/deasserted  
for bipolar cell measurements. Bipolar format.  
BIPOVTHCLR  
15:2  
Note: For proper operation, this value should always be less than or equal to  
BIPOVTHSET.  
BIPOVTHSETREG (0ꢀ25)  
BIPOVTHSET is a read-/write-accessible register that selects the cell overvoltage alert set threshold used with bipolar  
ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
BIPOVTHSET[13:6]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
BIPOVTHSET[5:0]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Bipolar Cell Overvoltage Alert Set Threshold  
14-bit threshold value above which ALRTOV alerts be set/asserted for bipolar  
cell measurements. Bipolar format.  
BIPOVTHSET  
15:2  
A value of 0x3FFF effectively disables overvoltage checking.  
Maxim Integrated │ 226  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BIPUVTHCLRREG (0ꢀ26)  
BIPUVTHCLR is a read-/write-accessible register that selects the cell undervoltage alert clear threshold used with  
bipolar ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
BIPUVTHCLR[13:6]  
0x0000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
BIPUVTHCLR[5:0]  
0x0000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Bipolar Cell Undervoltage Alert Clear Threshold  
14-bit threshold value at/above which ALRTUV alerts be cleared/deasserted  
for bipolar cell measurements. Bipolar format.  
BIPUVTHCLR  
15:2  
Note: For proper operation, this value should always be greater than or equal  
to BIPUVTHSET.  
BIPUVTHSETREG (0ꢀ27)  
BIPUVTHSET is a read-/write-accessible register that selects the cell undervoltage alert set threshold used with bipolar  
ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
BIPUVTHSET[13:6]  
0x0000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
BIPUVTHSET[5:0]  
0x0000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Bipolar Cell Undervoltage Alert Set Threshold  
14-bit threshold value below which ALRTUV alerts be set/asserted for bipolar  
cell measurements. Bipolar format.  
BIPUVTHSET  
15:2  
A value of 0x0000 effectively disables undervoltage checking.  
Maxim Integrated │ 227  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BLKOVTHCLRREG (0ꢀ28)  
BLKOVTHCLR is a read-/write-accessible register that selects the block overvoltage alert clear threshold used with  
ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
BLKOVTHCLR[13:6]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
BLKOVTHCLR[5:0]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Block Overvoltage Alert Clear Threshold  
14-bit threshold value at/below which the ALRTBLKOV alert be cleared/deas-  
BLKOVTHCLR  
15:2  
serted.  
Note: For proper operation, this value should always be less than or equal to  
BLKOVTHSET.  
BLKOVTHSETREG (0ꢀ29)  
BLKOVTHSET is a read-/write-accessible register that selects the block overvoltage alert set threshold used with ADC  
measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
BLKOVTHSET[13:6]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
BLKOVTHSET[5:0]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BITFIELD  
BLKOVTHSET  
BITS  
DESCRIPTION  
Block Overvoltage Alert Set Threshold  
14-bit threshold value above which the ALRTBLKOV alert be set/asserted.  
15:2  
A value of 0x3FFF effectively disables overvoltage checking.  
Maxim Integrated │ 228  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BLKUVTHCLRREG (0ꢀ2A)  
BLKUVTHCLR is a read-/write-accessible register that selects the block undervoltage alert clear threshold used with  
ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
BLKUVTHCLR[13:6]  
0x0000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
BLKUVTHCLR[5:0]  
0x0000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Block Undervoltage Alert Clear Threshold  
14-bit threshold value at/above which the ALRTBLKUV alert be cleared/deas-  
BLKUVTHCLR  
15:2  
serted.  
Note: For proper operation, this value should always be greater than or equal  
to BLKUVTHSET.  
BLKUVTHSETREG (0ꢀ2B)  
BLKUVTHSET is a read-/write-accessible register that selects the block undervoltage alert set threshold used with  
ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
BLKUVTHSET[13:6]  
0x0000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
BLKUVTHSET[5:0]  
0x0000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BLKUVTHSET  
BITS  
DESCRIPTION  
Block Undervoltage Alert Set Threshold  
14-bit threshold value below which the ALRTBLKUV alert be set/asserted.  
15:2  
A value of 0x0000 effectively disables undervoltage checking.  
Maxim Integrated │ 229  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
AUXROVTHCLRREG (0ꢀ30)  
AUXROVTHCLR is a read-/write-accessible register that selects the overvoltage (cold) alert clear threshold used with  
ratiometric auxiliary ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUXROVTHCLR[13:6]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXROVTHCLR[5:0]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Ratiometric Auxiliary Overvoltage (Cold) Alert Clear Threshold  
14-bit overvoltage (cold) clear threshold value, at/below which ALRTAUXOV  
alerts be cleared/deasserted.  
AUXROVTHCLR  
15:2  
This threshold is applied for Auxiliary measurements where AUXREFSELn = 0  
(ratio metric).  
Note: For proper operation, this value should always be less than or equal to  
AUXROVTHSET.  
AUXROVTHSETREG (0ꢀ31)  
AUXROVTHSET is a read-/write-accessible register that selects the overvoltage (cold) alert set threshold used with  
Ratiometric Auxiliary ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUXROVTHSET[13:6]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXROVTHSET[5:0]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Ratiometric Auxiliary Overvoltage (Cold) Alert Set Threshold  
14-bit overvoltage (cold) set threshold value, above which ALRTAUXOV alerts  
be asserted.  
This threshold is applied for Auxiliary measurements where AUXREFSELn = 0  
(Ratio metric).  
AUXROVTHSET  
15:2  
A value of 0x3FFF effectively disables overvoltage checking.  
Maxim Integrated │ 230  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
AUXRUVTHCLRREG (0ꢀ32)  
AUXRUVTHCLR is a read-/write-accessible register that selects the undervoltage (hot) alert clear threshold used with  
ratiometric auxiliary ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUXRUVTHCLR[13:6]  
0x0000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXRUVTHCLR[5:0]  
0x0000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Ratiometric Auxiliary Undervoltage (Hot) Alert Clear Threshold  
14-bit undervoltage (hot) clear threshold value, at/above which ALRTAUXUV  
alerts be cleared/deasserted.  
AUXRUVTHCLR  
15:2  
This threshold is applied for Auxiliary measurements where AUXREFSELn = 0  
(ratio metric).  
Note: For proper operation, this value should always be greater than or equal  
to AUXRUVTHSET.  
AUXRUVTHSETREG (0ꢀ33)  
AUXRUVTHSET is a read-/write-accessible register that selects the undervoltage (hot) alert set threshold used with  
ratiometric auxiliary ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUXRUVTHSET[13:6]  
0x0000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXRUVTHSET[5:0]  
0x0000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Ratiometric Auxiliary Undervoltage (Hot) Alert Set Threshold  
14-bit undervoltage (hot) set threshold value, below which ALRTAUXUV alerts  
be asserted.  
This threshold is applied for Auxiliary measurements where AUXREFSELn = 0  
(ratio metric).  
AUXRUVTHSET  
15:2  
A value of 0x0000 effectively disables undervoltage checking.  
Maxim Integrated │ 231  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
AUXAOVTHCLRREG (0ꢀ34)  
AUXOVTHCLR is a read-/write-accessible register that selects the overvoltage alert clear threshold used with Absolute  
Auxiliary ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUXAOVTHCLR[13:6]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXAOVTHCLR[5:0]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Absolute Auxiliary Overvoltage Alert Clear Threshold  
14-bit overvoltage clear threshold value, at/below which ALRTAUXOV alerts  
be cleared/deasserted.  
AUXAOVTHCLR  
15:2  
This threshold is applied for Auxiliary measurements where AUXREFSELn =  
1 (Absolute).  
Note: For proper operation, this value should always be less than or equal to  
AUXAOVTHSET.  
AUXAOVTHSETREG ((0ꢀ35))  
AUXAOVTHSET is a read-/write-accessible register that selects the overvoltage alert set threshold used with Absolute  
Auxiliary ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUXAOVTHSET[13:6]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXAOVTHSET[5:0]  
0x3FFF  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary Overvoltage Alert Set Threshold  
14-bit overvoltage set threshold value, above which ALRTAUXOV alerts be  
asserted.  
This threshold is applied for Auxiliary measurements where AUXREFSELn =  
1 (Absolute).  
AUXAOVTHSET  
15:2  
A value of 0x3FFF effectively disables overvoltage checking.  
Maxim Integrated │ 232  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
AUXAUVTHCLRREG (0ꢀ36)  
AUXAUVTHCLR is a read-/write-accessible register that selects the undervoltage alert clear threshold used with  
Absolute Auxiliary ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUXAUVTHCLR[13:6]  
0x0000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXAUVTHCLR[5:0]  
0x0000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Absolute Auxiliary Undervoltage Alert Clear Threshold  
14-bit undervoltage clear threshold value, at/above which ALRTAUXUV alerts  
be cleared/deasserted.  
AUXAUVTHCLR  
15:2  
This threshold is applied for Auxiliary measurements where AUXREFSELn =  
1 (Absolute).  
Note: For proper operation, this value should always be greater than or equal  
to AUXAUVTHSET.  
AUXAUVTHSETREG (0ꢀ37)  
AUXAUVTHSET is a read-/write-accessible register that selects the undervoltage alert set threshold used with  
Absolute Auxiliary ADC measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUXAUVTHSET[13:6]  
0x0000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXAUVTHSET[5:0]  
0x0000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Absolute Auxiliary Undervoltage Alert Set Threshold  
14-bit undervoltage set threshold value, below which ALRTAUXUV alerts be  
asserted.  
This threshold is applied for Auxiliary measurements where AUXREFSELn =  
1 (Absolute).  
AUXAUVTHSET  
15:2  
A value of 0x0000 effectively disables undervoltage checking.  
Maxim Integrated │ 233  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
COMPOVTHREG (0ꢀ38)  
COMPOVTH is a read-/write-accessible register that selects the cell overvoltage alert threshold for the redundant com-  
parator.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
COMPOVTH[9:2]  
0x3FF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
COMPOVTH[1:0]  
0x3FF  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Comparator Cell Overvoltage Alert Threshold  
10-bit threshold value, of a 5V input range, above which ALRTCOMPOV  
alerts be set/asserted by comparator scans.  
A value of 0x3FF effectively disables overvoltage checking.  
Note: For proper operation, this value should always be greater than or  
equal to COMPUVTH.  
COMPOVTH  
15:6  
COMPUVTHREG (0ꢀ39)  
COMPUVTH is a read-/write-accessible register that selects the cell undervoltage alert threshold for the redundant  
comparator.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
COMPUVTH[9:2]  
0x000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
COMPUVTH[1:0]  
0x000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Comparator Cell Undervoltage Alert Threshold  
10-bit threshold value, of a 5V input range, below which ALRTCOMPUV alerts  
be set/asserted by comparator scans.  
A value of 0x000 effectively disables undervoltage checking.  
Note: For proper operation, his value should always be less than or equal to  
COMPOVTH.  
COMPUVTH  
15:6  
Maxim Integrated │ 234  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
COMPAUXROVTHREG (0ꢀ3A)  
COMPAUXROVTH is a read-/write-accessible register that selects the overvoltage (cold) alert threshold applied during  
ratiometric auxiliary comparator measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
COMPAUXROVTH[9:2]  
0x3FF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
COMPAUXROVTH[1:0]  
0x3FF  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Comparator Ratiometric Auxiliary Overvoltage (Cold) Alert Threshold  
10-bit overvoltage (cold) threshold value of a input range of V , above which  
AA  
ALRTCOMPAUXOV alerts be set/asserted by comparator scans.  
This threshold is applied for Auxiliary measurements where AUXREFSELn = 0  
(ratio metric).  
COMPAUXROVTH  
15:6  
A value of 0x3FF effectively disables overvoltage checking.  
Note: For proper operation, this value should always be greater than or equal  
to COMPAUXRUVTH.  
COMPAUXRUVTHREG (0ꢀ3B)  
COMPAUXRUVTH is a read-/write-accessible register that selects the undervoltage (hot) alert threshold applied during  
ratiometric auxiliary comparator measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
COMPAUXRUVTH[9:2]  
0x000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
COMPAUXRUVTH[1:0]  
0x000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Comparator Ratiometric Auxiliary Undervoltage (Hot) Alert Threshold  
10-bit undervoltage (hot) threshold value of a input range of V , below which  
AA  
ALRTCOMPAUXUV alerts be set/asserted by comparator scans.  
This threshold is applied for Auxiliary measurements where AUXREFSELn=0  
(ratio metric).  
COMPAUXRUVTH  
15:6  
A value of 0x000 effectively disables undervoltage checking.  
Note: For proper operation, this value should always be less than or equal to  
COMPAUXROVTH.  
Maxim Integrated │ 235  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
COMPAUXAOVTHREG (0ꢀ3C)  
COMPAUXAOVTH is a read-/write-accessible register that selects the overvoltage alert threshold applied during  
Absolute Auxiliary comparator measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
COMPAUXAOVTH[9:2]  
0x3FF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
COMPAUXAOVTH[1:0]  
0x3FF  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Comparator Absolute Auxiliary Overvoltage Alert Threshold  
10-bit overvoltage threshold value, of an input range of V  
above which  
REF,  
ALRTCOMPAUXOV alerts be set/asserted by comparator scans.  
This threshold is applied for Auxiliary measurements where AUXREFSELn =  
1 (Absolute).  
COMPAUXAOVTH  
15:6  
A value of 0x3FF effectively disables overvoltage checking.  
Note: For normal operation, this value should always be greater than or equal  
to COMPAUXAUVTH.  
COMPAUXAUVTHREG (0ꢀ3D)  
COMPAUXAUVTH is a read-/write-accessible register that selects the undervoltage alert threshold applied during  
Absolute Auxiliary comparator measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
COMPAUXAUVTH[9:2]  
0x000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
COMPAUXAUVTH[1:0]  
0x000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Comparator Absolute Auxiliary Undervoltage Alert Threshold  
10-bit undervoltage threshold value, of an input range of V  
below which  
REF,  
ALRTCOMPAUXUV alerts be set/asserted by comparator scans.  
This threshold is applied for Auxiliary measurements where AUXREFSELn =  
1 (Absolute).  
COMPAUXAUVTH  
15:6  
A value of 0x000 effectively disables undervoltage checking.  
Note: For proper operation, this value should always be less than or equal to  
COMPAUXAOVTH.  
Maxim Integrated │ 236  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
COMPOPNTHREG (0ꢀ3E)  
COMPOPNTH is a read-/write-accessible register that selects the undervoltage alert threshold applied to Unipolar Cell  
inputs in Open Diagnostic Mode.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
COMPOPNTH[9:2]  
0x000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
COMPOPNTH[1:0]  
0x000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Comparator Cell Open Undervoltage Alert Threshold  
10-bit threshold of a 5V input range, below which ALRTCOMPUV alerts be  
set/asserted by comparator scans performed on Unipolar Cell inputs in Open  
Diagnostic Mode (see CTSTCFG:CELLOPNDIAGSEL).  
COMPOPNTH  
15:6  
A value of 0x000 effectively disables open undervoltage checking.  
COMPAUXROPNTHREG (0ꢀ3F)  
COMPAUXROPNTH is a read-/write-accessible register that selects the undervoltage alert threshold applied to ratio-  
metric auxiliary inputs in open-diagnostic mode.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
COMPAUXROPNTH[9:2]  
0x000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
COMPAUXROPNTH[1:0]  
0x000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Comparator Ratiometric Auxiliary Open Undervoltage Alert Threshold:  
10-bit undervoltage threshold value, of an input range of V below  
AA,  
which ALRTCOMPAUXUV alerts be set/asserted by comparator scans  
performed on ratiometric auxiliary inputs in open-diagnostic mode (see  
DIAGGENCFG:AUXDIAGSEL).  
COMPAUXROPNTH  
15:6  
This threshold is applied for auxiliary measurements where AUXREFSELn = 0  
(ratio metric).  
A value of 0x000 effectively disables undervoltage checking.  
Maxim Integrated │ 237  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
COMPAUXAOPNTHREG (0ꢀ40)  
COMPAUXAOPNTH is a read-/write-accessible register that selects the undervoltage alert threshold applied to  
Absolute Auxiliary inputs in Open Diagnostic Mode.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
COMPAUXAOPNTH[9:2]  
0x000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
COMPAUXAOPNTH[1:0]  
0x000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Comparator Absolute Auxiliary Open Undervoltage Alert Threshold  
10-bit undervoltage threshold value, of an input range of V below  
REF,  
which ALRTCOMPAUXUV alerts be set/asserted by comparator scans  
performed on Absolute Auxiliary inputs in Open Diagnostic Mode (see  
DIAGGENCFG:AUXDIAGSEL).  
COMPAUXAOPNTH  
15:6  
This threshold is applied forAuxiliary measurements whereAUXREFSELn = 1 (Absolute).  
A value of 0x000 effectively disables undervoltage checking.  
COMPACCOVTHREG (0ꢀ41)  
COMPACCOVTH is a read-/write-accessible register that selects the overvoltage alert threshold applied during com-  
parator accuracy diagnostics.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
COMPACCOVTH[9:2]  
0x3FF  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
COMPACCOVTH[1:0]  
0x3FF  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
End-of-Sequence Comparator Accuracy Diagnostic Overvoltage Alert Threshold  
10-bit overvoltage threshold value of a 5V input range, used to validate the ac-  
curacy of the comparator at the end of any measurement sequence using the  
comparator if enabled (SCANCFG = 001 or 010 and COMPACCEN = 1).  
Tested for the Cell Signal Path with COMP = V  
through LSA2 (gain =  
IN  
REF  
COMPACCOVTH  
15:6  
6/13) and DAC  
= V  
. A value above COMPACCOVTH result in the  
REF  
REF  
ALRTCOMPACCOV bit being set/asserted.  
0x1D8 is the ideal value. A precise value can be selected based on information  
from the Comparator Cell Signal Path Fault diagnostic. A value of 0x3FF  
effectively disables overvoltage checking (default).  
Maxim Integrated │ 238  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
COMPACCUVTHREG (0ꢀ42)  
COMPACCUVTH is a read-/write-accessible register that selects the undervoltage alert threshold applied during com-  
parator accuracy diagnostics.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
COMPACCUVTH[9:2]  
0x000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
COMPACCUVTH[1:0]  
0x000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
End-of-Sequence Comparator Accuracy Diagnostic Undervoltage Alert Threshold  
10-bit undervoltage threshold value of a 5V input range, used to validate the  
accuracy of the comparator at the end of any measurement sequence using the  
comparator if enabled (SCANCFG = 001 or 010 and COMPACCEN = 1).  
Tested for the Cell Signal Path with COMP = V  
through LSA2 (gain =  
IN  
REF  
COMPACCUVTH  
15:6  
6/13) and DAC  
= V  
. A value below COMPACCUVTH result in the ALRT-  
REF  
REF  
COMPACCUV bit being set/asserted.  
0x1D8 is the ideal value. A precise value can be selected based on information  
from the Comparator Cell Signal Path Fault diagnostic. A value of 0x000 effec-  
tively disables undervoltage checking (default).  
BALSHRTTHRREG (0ꢀ43)  
BALSHRTTHR is a read-/write-accessible register that selects alert threshold used during the Balance Switch Short  
Diagnostic mode.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
BALSHRTTHR[13:6]  
0x0000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
BALSHRTTHR[5:0]  
0x0000  
Reset  
Access Type  
Write, Read  
Maxim Integrated │ 239  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Balance Switch Short Diagnostic Alert Threshold  
14-bit undervoltage threshold used for the balancing switch short circuit diag-  
nostic test (SCANCFG = 100).  
Unipolar format. For BALSW Short Diagnostics, only cells with (POLARITYn =  
0 and CELLENn = 1) are measured and checked.  
BALSHRTTHR  
15:2  
The unipolar ADC cell-voltage results taken in this mode are compared  
against the threshold; if any result is below the threshold, it is flagged as a  
balancing switch alert (ALRTBALSW). Results above the threshold are con-  
sidered normal. The threshold should be set by the system controller prior to  
making a diagnostic measurement.  
BALLOWTHRREG ((0ꢀ44))  
BALLOWTHR is a read-/write-accessible register that selects alert low threshold used during the Balance Switch Open  
Diagnostic mode.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
BALLOWTHR[13:6]  
0x0000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
BALLOWTHR[5:0]  
0x0000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Balance Switch Open Diagnostic Alert Low Threshold  
14-bit undervoltage threshold used for the balancing switch conducting and  
cell sense wire diagnostic tests (SCANCFG=101, 110, and 111).  
Bipolar format, typically a small positive value is selected. For BALSW Open  
Diagnostics, only cells with (POLARITYn = 0 and BALSWENn = 1) are mea-  
sured and checked. For Cell Sense Open Odd/Even Diagnostics, only odd/  
even cells at/below TOPCELL1/2 with POLARITYn = 0 and are measured and  
checked.  
BALLOWTHR  
15:2  
The bipolar ADC cell results in this mode are compared against the threshold;  
if any result is below the threshold, it is flagged as a balancing switch alert  
(ALRTBALSW). Results above the threshold are considered normal. The  
threshold should be set by the system controller prior to making a diagnostic  
measurement.  
Maxim Integrated │ 240  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BALHIGHTHRREG (0ꢀ45)  
BALHIGHTHR is a read-/write-accessible register that selects alert High threshold used during the Balance Switch  
Open Diagnostic mode.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
BALHIGHTHR[13:6]  
0x0000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
BALHIGHTHR[5:0]  
0x0000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Balance Switch Open Diagnostic Alert High Threshold  
14-bit overvoltage threshold used for the balancing switch conducting and cell  
sense wire diagnostic tests (SCANCFG = 101, 110, 111).  
Bipolar format, typically a moderate positive value is selected, based on  
external resistor characteristics. For BALSW Open Diagnostics, only cells  
with (POLARITYn = 0 and BALSWENn = 1) are measured and checked. For  
Cell Sense Open Odd/Even Diagnostics, only odd/even cells at/below TOP-  
CELL1/2 with POLARITYn = 0 and are measured and checked.  
The bipolar ADC cell results in this mode are compared against the threshold;  
if any result is above the threshold, it is flagged as a balancing switch alert  
(ALRTBALSW). Results below the threshold are considered normal. The  
threshold should be set by the system controller prior to making a diagnostic  
measurement.  
BALHIGHTHR  
15:2  
CELL1REG (0ꢀ47)  
CELLn is a read-accessible register that holds the current value for each individual cell measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL1[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL1[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
Maxim Integrated │ 241  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V  
CELL1  
15:2  
If CELLEN = 0, and the measurement was skipped during the latest ADC  
Scan, no internal data is updated, and ALU/IIR readback be determined by  
RDFILT.  
Read only.  
CELL2REG (0ꢀ48)  
CELLn is a read-accessible register that holds the current value for each individual cell measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL2[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL2[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V  
CELL2  
15:2  
If CELLEN = 0, and the measurement was skipped during the latest ADC  
Scan, no internal data is updated, and ALU/IIR readback be determined by  
RDFILT.  
Read only.  
CELL3REG (0ꢀ49)  
CELLn is a read-accessible register that holds the current value for each individual cell measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL3[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL3[5:0]  
0x0000  
Reset  
Maxim Integrated │ 242  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Access Type  
BITFIELD  
Read Only  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V  
CELL3  
15:2  
If CELLEN = 0, and the measurement was skipped during the latest ADC  
Scan, no internal data is updated, and ALU/IIR readback be determined by  
RDFILT.  
Read only.  
CELL4REG (0ꢀ4A)  
CELLn is a read-accessible register that holds the current value for each individual cell measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL4[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL4[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V  
CELL4  
15:2  
If CELLEN = 0, and the measurement was skipped during the latest ADC  
Scan, no internal data is updated, and ALU/IIR readback be determined by  
RDFILT.  
Read only.  
CELL5REG (0ꢀ4B)  
CELLn is a read-accessible register that holds the current value for each individual cell measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL5[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL5[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
Maxim Integrated │ 243  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V  
CELL5  
15:2  
If CELLEN = 0, and the measurement was skipped during the latest ADC  
Scan, no internal data is updated, and ALU/IIR readback be determined by  
RDFILT.  
Read only.  
CELL6REG (0ꢀ4C)  
CELLn is a read-accessible register that holds the current value for each individual cell-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL6[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL6[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V.  
CELL6  
15:2  
If CELLEN = 0, and the measurement was skipped during the latest ADC  
scan, no internal data is updated, and ALU/IIR readback be determined by  
RDFILT.  
Read only.  
CELL7REG ((0ꢀ4D))  
CELLn is a read-accessible register that holds the current value for each individual cell-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL7[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL7[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
Maxim Integrated │ 244  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V.  
CELL7  
15:2  
If CELLEN = 0, and the measurement was skipped during the latest ADC  
scan, no internal data is updated, and ALU/IIR readback be determined by  
RDFILT.  
Read only.  
CELL8REG (0ꢀ4E)  
CELLn is a read-accessible register that holds the current value for each individual cell-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL8[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL8[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V.  
If CELLEN=0, and the measurement was skipped during the latest ADC scan,  
no internal data is updated, and ALU/IIR readback be determined by RDFILT.  
Read only.  
CELL8  
15:2  
CELL9REG (0ꢀ4F)  
CELLn is a read-accessible register that holds the current value for each individual cell-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL9[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL9[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
Maxim Integrated │ 245  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V.  
If CELLEN = 0, and the measurement was skipped during the latest ADC scan,  
no internal data is updated, and ALU/IIR readback be determined by RDFILT.  
Read only.  
CELL9  
15:2  
CELL10REG (0ꢀ50)  
CELLn is a read-accessible register that holds the current value for each individual cell-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL10[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL10[5:0]  
Reset  
0x0000  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V  
CELL10  
15:2  
If CELLEN = 0, and the measurement was skipped during the latest ADC  
Scan, no internal data is updated, and ALU/IIR readback be determined by  
RDFILT.  
Read only.  
CELL11REG (0ꢀ51)  
CELLn is a read-accessible register that holds the current value for each individual cell-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL11[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL11[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
Maxim Integrated │ 246  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V  
If CELLEN = 0, and the measurement was skipped during the latest ADC scan,  
no internal data is updated, and ALU/IIR readback be determined by RDFILT.  
Read only.  
CELL11  
15:2  
CELL12REG (0ꢀ52)  
CELLn is a read-accessible register that holds the current value for each individual cell-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL12[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL12[5:0]  
Reset  
0x0000  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V  
CELL12  
15:2  
If CELLEN = 0, and the measurement was skipped during the latest ADC  
scan, no internal data is updated, and ALU/IIR readback be determined by  
RDFILT.  
Read only.  
CELL13REG (0ꢀ53)  
CELLn is a read-accessible register that holds the current value for each individual cell-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL13[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL13[5:0]  
Reset  
0x0000  
Access Type  
Read Only  
Maxim Integrated │ 247  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V.  
CELL13  
15:2  
If CELLEN = 0, and the measurement was skipped during the latest ADC  
scan, no internal data is updated, and ALU/IIR readback be determined by  
RDFILT.  
Read only.  
CELL14REG (0ꢀ54)  
CELLn is a read-accessible register that holds the current value for each individual cell measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELL14[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CELL14[5:0]  
Reset  
0x0000  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Voltage-Measurement Result:  
CELLn[13:0] contains the 14-bit measurement result for CELLn.  
Full-scale input range of 5V.  
CELL14  
15:2  
If CELLEN = 0, and the measurement was skipped during the latest ADC  
scan, no internal data is updated, and ALU/IIR readback be determined by  
RDFILT.  
Read only.  
BLOCKREG (0ꢀ55)  
BLOCK is a read-accessible register that holds the current value for the total block-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
VBLOCK[13:6]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
VBLOCK[5:0]  
0x0000  
4
3
2
1
0
Reset  
Maxim Integrated │ 248  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Access Type  
BITFIELD  
Read Only  
BITS  
DESCRIPTION  
Block-Voltage-Measurement Result:  
VBLOCK[13:0] contains the 14-bit measurement result for VBLK.  
Full-scale input range of 65V.  
VBLOCK  
15:2  
If BLOCKEN = 0, and the measurement was skipped during the latest ADC  
scan, no internal data is updated, and ALU/IIR readback be determined by  
RDFILT.  
Read only.  
TOTALREG (0ꢀ56)  
TOTAL is a read-accessible register that holds the current value for the sum of all enabled-measurement results within  
the stack.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
TOTAL[15:8]  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
TOTAL[7:0]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Total Cell-Voltage-Measurement Result:  
TOTAL[15:0] contains the 16-bit sum of all cell-measurement results enabled  
during the last scan by MEASUREEN1.  
Full-scale range is 0.0 to 80.0V with a 1.22mV LSB (unipolar).  
Read only.  
Note: Make note of the following behavior:  
TOTAL  
15:0  
Since disabled measurements retain their last results, it is possible there be  
data in the result registers that were not included in the TOTAL result calcu-  
lated for the last scan.  
If cell and bus bar (unipolar and bipolar) measurements are mixed within a  
scan, the summation be handled accordingly.  
Totals below 0V cannot be supported, and be clipped at 0x0000 (can  
apply to scans using only bipolar measurements).  
DIAG1REG (0ꢀ57)  
DIAG1 is a read-only register that contains the diagnostic result requested by the DIAGCFG:DIAGSEL1 selection  
taken during the last ADC acquisition.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
DIAG1[13:6]  
Maxim Integrated │ 249  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Reset  
0x0000  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
DIAG1[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DIAG1 contains the 14-bit measurement result for the diagnostic selected by  
DIAGCFG:DIAGSEL1.  
DIAG1  
15:2  
DIAG2REG (0ꢀ58)  
DIAG2 is a read-only register that contains the diagnostic result requested by the DIAGCFG:DIAGSEL2 selection  
taken during the last ADC acquisition.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
DIAG2[13:6]  
0x0000  
Reset  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
DIAG2[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DIAG2 contains the 14-bit measurement result for the diagnostic selected by  
DIAGCFG:DIAGSEL2.  
DIAG2  
15:2  
AUX0REG (0ꢀ59)  
AUXn is a read-accessible register that holds the current value for each enabled individual auxiliary-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUX0[13:6]  
0x0000  
Reset  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
AUX0[5:0]  
0x0000  
Reset  
Maxim Integrated │ 250  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Access Type  
BITFIELD  
Read Only  
BITS  
DESCRIPTION  
Auxiliary-Voltage-Measurement Result:  
AUXn[13:0] contains the 14-bit measurement result for AUXn.  
Full-scale input range of V for ratiometric operation, V  
for absolute  
AA  
REF  
operation.  
AUX0  
15:2  
If the port is not configured as an AUXINn input (see AUXGPIOCFG), the  
result readback 0x0000 for the unused channel; otherwise, if AUXEN = 0 and  
the measurement was skipped during the latest ADC Scan, the previously  
determined result remain.  
Read only.  
AUX1REG (0ꢀ5A)  
AUXn is a read-accessible register that holds the current value for each enabled individual auxiliary-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUX1[13:6]  
0x0000  
Reset  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
AUX1[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary-Voltage-Measurement Result:  
AUXn[13:0] contains the 14-bit measurement result for AUXn.  
Full-scale input range of V for ratiometric operation, V  
for absolute  
AA  
REF  
operation.  
AUX1  
15:2  
If the port is not configured as an AUXINn input (see AUXGPIOCFG), the  
result readback 0x0000 for the unused channel; otherwise, if AUXEN = 0 and  
the measurement was skipped during the latest ADC scan, the previously  
determined result remain.  
Read only.  
AUX2REG (0ꢀ5B)  
AUXn is a read-accessible register that holds the current value for each enabled individual auxiliary-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUX2[13:6]  
0x0000  
Reset  
Access Type  
Read Only  
BIT  
7
6
5
4
3
2
1
0
Maxim Integrated │ 251  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Field  
AUX2[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary-Voltage-Measurement Result:  
AUXn[13:0] contains the 14-bit measurement result for AUXn.  
Full-scale input range of V for ratiometric operation, V  
for absolute  
AA  
REF  
operation.  
AUX2  
15:2  
If the port is not configured as an AUXINn input (see AUXGPIOCFG), the  
result readback 0x0000 for the unused channel; otherwise, if AUXEN = 0 and  
the measurement was skipped during the latest ADC scan, the previously  
determined result remain.  
Read only.  
AUX3REG (0ꢀ5C)  
AUXn is a read-accessible register that holds the current value for each enabled individual auxiliary-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUX3[13:6]  
0x0000  
Reset  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
AUX3[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary--Voltage-Measurement Result:  
AUXn[13:0] contains the 14-bit measurement result for AUXn.  
Full-scale input range of V for ratiometric operation, V  
for absolute  
AA  
REF  
operation.  
AUX3  
15:2  
If the port is not configured as an AUXINn input (see AUXGPIOCFG), the  
result readback 0x0000 for the unused channel.; otherwise, if AUXEN = 0 and  
the measurement was skipped during the latest ADC scan, the previously  
determined result remain.  
Read only.  
AUX4REG (0ꢀ5D)  
AUXn is a read-accessible register that holds the current value for each enabled individual auxiliary-measurement result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUX4[13:6]  
0x0000  
Reset  
Access Type  
Read Only  
Maxim Integrated │ 252  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BIT  
Field  
7
6
5
4
3
2
1
0
AUX4[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary-Voltage-Measurement Result:  
AUXn[13:0] contains the 14-bit measurement result for AUXn.  
Full-scale input range of V for ratiometric operation, V  
for absolute  
AA  
REF  
operation  
AUX4  
15:2  
If the port is not configured as an AUXINn input (see AUXGPIOCFG), the  
result readback 0x0000 for the unused channel; otherwise, if AUXEN = 0 and  
the measurement was skipped during the latest ADC scan, the previously  
determined result remain.  
Read only.  
AUX5REG (0ꢀ5E)  
AUXn is a read-accessible register that holds the current value for each enabled individual auxiliary-measurement  
result.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUX5[13:6]  
0x0000  
Reset  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
AUX5[5:0]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary-Voltage-Measurement Result:  
AUXn[13:0] contains the 14-bit measurement result for AUXn.  
Full-scale input range of V for ratiometric operation, V  
for absolute  
AA  
REF  
operation.  
AUX5  
15:2  
If the port is not configured as an AUXINn input (see AUXGPIOCFG), the  
result readback 0x0000 for the unused channel; otherwise, if AUXEN = 0 and  
the measurement was skipped during the latest ADC scan, the previously  
determined result remain.  
Read only.  
POLARITYCTRL (0ꢀ5F)  
POLARITYCTRL is a read-/write-accessible register that governs the measurement type used during scans. In general,  
unipolar mode indicates a cell and bipolar mode indicates a bus bar.  
Maxim Integrated │ 253  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
MINMAX-  
POL  
POLARITY[14:9]  
Reset  
0b0  
0x0000  
Access Type Write, Read  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
POLARITY[8:1]  
0x0000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
MIN/MAX Operating Mode:  
0 = Only unipolar cell measurements are included in MINCELL, MAXCELL,  
and ALRTMSMTCH calculations (default).  
MINMAXPOL  
15  
1 = Only bipolar cell measurements are included in MINCELL, MAXCELL, and  
ALRTMSMTCH calculations (useful in fuel cell applications).  
Cell-Measurement Polarity Selection:  
0 = Unipolar 0 to 5V input range (default)  
1 = Bipolar -2.5V to +2.5V input  
Bipolar cells are fault masked during BALSWDIAG ADC measurement scans.  
MINMAXPOL determines whether bipolar cells are included in MIN/MAXCELL  
and ALRTMSMTCH calculations.  
POLARITY  
13:0  
Bipolar cell measurements are checked against BIPOVTH and BIPUVTH  
thresholds, rather than OVTH and UVTH thresholds.  
Bipolar cells are not included in comparator-measurement scans:  
ALRTCOMPOV, ALRTCOMPUV alerts are not triggered.  
AUXREFCTRL (0ꢀ60)  
AUXREFCTRL is a read-/write-accessible register that governs the reference range used for enabled auxiliary chan-  
nels during ADC and COMP acquisition sequences.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXREFSEL[5:4]  
0x0  
AUXREFSEL[3:0]  
0x0  
Reset  
Access Type  
Write, Read, Ext  
Write, Read, Ext  
Maxim Integrated │ 254  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary-Input-Reference Selection:  
0 = Ratiometric, REF = V  
(default)  
THRM  
1 = Absolute, REF = V  
= 2.307V  
REF  
AUXREFSEL  
5:4  
This bit selects the reference used and which set of AUX OV, UV, and OPN  
thresholds are used during ADC and comparator-acquisition sequences.  
Note: If the respective GPIOEN bit is set (GPIO mode), this bit is ignored, but  
still reads back the user setting.  
Auxiliary-Input-Reference Selection:  
0 = Ratiometric, REF = V  
(default)  
THRM  
1 = Absolute, REF = V  
= 2.307V  
REF  
AUXREFSEL  
3:0  
This bit selects the reference used and which set of AUX OV, UV, and OPN  
thresholds are used during ADC and comparator-acquisition sequences.  
Note: If the respective GPIOEN bit is set (GPIO mode), this bit is ignored, but  
still reads back the user setting.  
AUXTIMEREG (0ꢀ61)  
AUXTIMEREG is a read-/write-accessible register that governs the settling time allowed for biasing AUX/GPIO pins  
prior to measurements.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUXTIME[9:8]  
Reset  
0x000  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXTIME[7:0]  
Reset  
0x000  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary Pre-Conversion-Settling TIme:  
Configures the preconversion settling time for all enabled AUXn inputs from  
0µs (default) up to 6.138ms according to the equation:  
t
= (AUXTIME[9:0]) x 6μs  
SETTLE  
AUXTIME  
9:0  
This is to allow extra settling time if the application circuit requires it since the  
THRM voltage is not driven out until the start of the acquisition (in auto mode).  
This time is inserted at the beginning of each requested scan. If AUXTIME  
has not expired, but no other scan measurement is active, the HVCP be  
refreshed during the AUXTIME.  
Maxim Integrated │ 255  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ACQCFG (0ꢀ62)  
ACQCFG is a read-/write-accessible register that governs several aspects of the measurement and acquisition  
procedure.  
BIT  
Field  
Reset  
15  
14  
ADCCALEN  
0b0  
13  
12  
11  
10  
9
8
ADCZSF-  
SEN  
COMPAC-  
CEN  
FOSR[1:0]  
THRMMODE[1:0]  
0b0  
0b0  
0b00  
0b00  
Access Type Write, Read Write, Read Write, Read  
Write, Read  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
Reset  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
End-of-Sequence ADC Stuck-At-Fault Diagnostic Enable:  
0 = Disable ADC ZS/FS diagnostics (default)  
1 = Enable ADC ZS/FS diagnostics  
ADCZSFSEN  
ADCCALEN  
15  
If enabled, at the end of any measurement sequence using the ADC  
(SCANCFG ! = 010), the ADC is automatically tested with overdriven inputs de-  
signed to force outputs to zero scale and full scale. Any result other than 0x000  
or 0xFFF is reported through ALRTADCZS and ALRTADCFS, respectively.  
ADC Calibration Enable:  
0 = Calibration not applied to scan results  
1 = Calibration applied to scan results  
Note: Does not impact comparator operations.  
14  
13  
End-of-Sequence Comparator Accuracy Diagnostic Enable:  
0 = Disable COMPACC diagnostics (default)  
1 = Enable COMPACC diagnostics  
If enabled, at the end of any measurement sequence using the comaparator  
(SCANCFG = 001 or 010), the comparator automatically be tested with  
COMPACCEN  
COMP = V  
through the LSA2 path (gain = 6/13) and DAC  
= V  
IN  
REF  
REF REF  
against bracketing thresholds COMPACCOVTHR and COMPACCUVTHR. If  
an unexpected result is found, ALRTCOMPACCOV or ALRTCOMPACCUV be  
issued.  
Oversampling Frequency Selection:  
00 = f  
01 = f  
1x = f  
= Frequency determined by selected features  
= 1.60kHz, useful for 50Hz rejection  
= 1.92kHz, useful for 60Hz rejection  
OSR  
OSR  
OSR  
For ADC and comparator scans, F  
sets a specific effective sampling  
OSR  
frequency for use with oversampled acquisitions (OVSAMPL > 000). This  
FOSR  
12:11  
can be used to place nulls at n x (f /OSR) to help reject noise at a given  
OSR  
frequency. For example, with f  
= 1.60kHz and OSR = 32, noise at 50Hz  
OSR  
and its harmonics can be attenuated.  
Selection 00 results in an arbitrary but maximum effective sampling frequency  
determined solely by the number of channels and diagnostics selected for  
measurement, in addition to analog overhead operations (HVCP refresh, etc.).  
Worst case is estimated at 2.2kHz with all features enabled.  
Maxim Integrated │ 256  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Thermistor Bias Control Mode:  
Controls application of V to the THRM pin through the internal switch, to  
AA  
bias external thermistors for measurement.  
0x = Automatic mode (switch ON during acquisition mode)  
10 = Manual off mode (switch always OFF)  
11 = Manual on mode (switch always ON)  
THRMMODE  
10:9  
BALSWDLY (0ꢀ63)  
BALSWDLY is a read-/write-accessible register that selects the delay intervals used within manual and automated cell-  
balancing operations when ADC measurements are requested.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CELLDLY[7:0]  
Reset  
0x00  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
SWDLY[7:0]  
0x00  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Cell-Path Recovery-Delay Selection:  
Time delay for C[n] (HVMUX) recovery from voltage drop during cell balancing  
prior to ADC measurement.  
Values of 0μs (default) to 24.480ms can be realized (96μs step size).  
This delay is used in manual Cell-Balancing modes when using  
AUTOBALSWDIS = 1 and ALTMUXSEL = 0. Also used in automatic cell  
balancing and Discharge modes after each pair of even and odd discharge  
cycles when CBMEASEN = 1x and ALTMUXSEL = 0.  
CELLDLY  
15:8  
Cell-Balancing Switch-Path Recovery-Delay Selection:  
Time delay for SW[n] (ALTMUX) recovery from voltage drop during cell  
balancing prior to ADC Measurement.  
Values of 0μs (default) to 24.480ms can be realized (96μs step size).  
This delay is used in manual Cell-Balancing modes when using  
AUTOBALSWDIS = 1 and ALTMUXSEL = 1. Also used in automatic cell  
balancing and discharge modes after each pair of even and odd discharge  
cycles when CBMEASEN = 1x and ALTMUXSEL = 1.  
SWDLY  
7:0  
Maxim Integrated │ 257  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
MEASUREEN1 (0ꢀ64)  
MEASUREEN1 is a read-/write-accessible register that governs the channels measured during ADC and COMP acqui-  
sition sequences.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
BLOCKEN  
0b0  
CELLEN[14:9]  
Reset  
0x0000  
Access Type  
Write, Read  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
CELLEN[8:1]  
Reset  
0x0000  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Block-Voltage-Measurement Enable:  
0 = Disable VBLK/TOPBLOCK measurement and automatic divider  
connection (default)  
1 = Enable VBLK/TOPBLOCK measurement and automatic divider connection  
Applies to ADC scans only; block is not subject to comparator measurements.  
In addition to enabling the ADC measurement, BLOCKEN automatically engage  
the VBLOCK resistive divider for the duration of the scan.  
BLOCKEN  
14  
Note: In FLXPCKEN1/2 applications (FLXPCKEN = 1), the resistive divider is  
connected to a selected Cn pin, and the resulting bias current impact the Cn  
result. Therefore, in Flex Pack applications, it is generally recommended to set  
BLOCKEN = 1 only for scans with ALTMUXSEL = 1.  
Cell-Voltage-Measurement Enable:  
0 = Disable CELLn measurement (default)  
1 = Enable CELLn measurement  
CELLEN  
13:0  
Enables measurement of the respective cell in the acquisition mode.  
MEASUREEN2 (0ꢀ65)  
MEASUREEN2 is a read-/write-accessible register that governs the auxiliary channels measured during ADC and  
COMP acquisition sequences, as well as IIR initialization.  
BIT  
Field  
Reset  
15  
14  
13  
12  
11  
10  
9
8
SCANI-  
IRINIT  
0b0  
Access Type Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXEN[5:4]  
0x0  
AUXEN[3:0]  
0x0  
Reset  
Access Type  
Write, Read, Ext  
Write, Read, Ext  
Maxim Integrated │ 258  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Sequencer IIR Initialization Request:  
0 = IIR filter continuation (default)  
1 = IIR filter initialized  
In continuation mode, the current value in the IIR accumulators is kept  
(presumably from previous cell measurements) and sequencer  
measurements are amended normally.  
SCANIIRINIT  
15  
In Initialization mode, the IIR accumulators be reinitialized to the first  
measurement taken, and further cell-balancing measurements are amended  
normally.  
Auxiliary-Input-Measurement Enable:  
0 = Auxiliary ADC measurement disabled (default)  
1 = Auxiliary ADC measurement enabled  
Enables measurement of the respective auxiliary inputs in acquisition mode.  
Note: If the respective GPIOEN bit is set (GPIO mode), this bit is ignored, but  
still reads back the user setting.  
AUXEN  
5:4  
3:0  
Auxiliary-Input-Measurement Enable:  
0 = Auxiliary ADC measurement disabled (default)  
1 = Auxiliary ADC measurement enabled  
Enables measurement of the respective auxiliary inputs in acquisition mode.  
Note: If the respective GPIOEN bit is set (GPIO mode), this bit is ignored, but  
still reads back the user setting.  
AUXEN  
SCANCTRL (0ꢀ66)  
SCANCTRL is a read-/write-accessible register that governs the internal measurement acquisitions (scan) requested of  
the device. The register also manages the handling of data generated as a result of any scan request.  
ADC Scans are used for precision measurements of cell and auxiliary voltages.  
COMP Scans are used for periodic safety/redundancy checking of ADC results, and in some cases, enhanced commu-  
nication efficiency.  
On Demand Calibration run an internal calibration of the ADC and update the Calibration Data Registers. All ADC mea-  
surements requested by Scan and Diagnostic Configuration and Control settings be ignored.  
Balance Switch and Cell Sense Wire Open ADC Diagnostic Scans are a special class of ADC Scan. Use of these set-  
tings temporarily override other Scan and Diagnostic Configuration and Control settings. See BALSW and Cell Sense  
Wire Open Diagnostics for details.  
BIT  
15  
14  
13  
DATARDY  
0b0  
12  
11  
10  
AMENDFILT  
0b0  
9
8
SCAN-  
DONE  
SCANTIME-  
OUT  
AUTO-  
BALSWDIS  
ALRTFILT-  
SEL  
SCAN-  
CFG[2]  
Field  
RDFILT  
0b0  
Reset  
0b0  
0b0  
0b0  
0b0  
0b000  
Write 0 to  
Clear, Read Clear, Read  
Write 0 to  
Write, Read,  
Ext  
Access Type  
Write, Read Write, Read Write, Read Write, Read Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
ALTMUX-  
SEL  
SCAN-  
MODE  
SCANCFG[1:0]  
0b000  
OVSAMPL[2:0]  
0b000  
SCAN  
0b0  
Reset  
0b0  
0b0  
Write, Read,  
Pulse  
Access Type  
Write, Read  
Write, Read  
Write, Read Write, Read  
Maxim Integrated │ 259  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Acquisition-Complete-Indicator Bit:  
0 = Indicates a SCAN acquisition is in progress if requested  
1 = Indicates the SCAN acquisition has completed  
SCANDONE  
15  
Once a SCAN acquisition has completed, the device set this bit high to  
indicate completion.  
This bit is cleared by writing to zero. When this bit is high, further acquisitions  
requested using SCAN are ignored. Writing to logic one has no internal effect.  
Scan-Timeout-Indicator Bit:  
Indicates the acquisition did not complete in the expected period of time. The  
timeout threshold depends on the oversampling configuration.  
If a SCANTIMEOUT is issued, the resulting partial data should be treated as  
suspect and ignored. In applications using the IIR, SCANIIRINIT should be  
issued to avoid any corruption resulting from the timeout event.  
The acquisition watchdog can be disabled by setting SCANTODIS in the  
DEVCFG2 register.  
SCANTIMEOUT  
14  
Cleared by writing to logic zero to allow detection of future timeout events.  
Writing to logic one has no internal effect.  
Data-Ready Indicator Bit:  
Indicates the measurement data from the acquisition has been transferred  
from the ALU to the data registers and may now be read. Data for all mea-  
surement registers and MIN/MAX/TOTAL is transferred at the same time.  
Cleared by writing to logic zero to allow detection of the next data transfer.  
Writing to logic one has no internal effect.  
DATARDY  
13  
Automatic Balancing-Switch Disable:  
0 = Cell-balance operations not impacted by measurement sequences  
(default)  
1 = Cell-balance manual operations temporarily disabled during measurement  
sequences  
Enables automatic suspension of active manual cell-balancing operations  
during measurement sequences.  
AUTOBALSWDIS  
12  
The delay for cell-recovery settling time and for the diagnostic recovery is  
selected automatically based on the ALTMUXSEL setting for the sequence as  
follows:  
0 = CELLDLY is used  
1 = SWDLY is used  
Alert-Filtering Selection:  
0 = Alert issuance based on raw sequencer results (default)  
1 = Alert issuance based on IIR filter results  
Determines whether the cell and block alerts are issued based on raw  
sequencer outputs (oversampling still applies) or IIR filtered outputs.  
If mode 1 is selected, MEASUREEN2:SCANIIRINIT should be used with the  
first scan to avoid triggering false alerts due to the IIR settling behavior.  
Note: This bit is ignored for measurement scans taken in automated Cell-  
Balancing modes (ALRTFILTSEL = 1 is used).  
ALRTFILTSEL  
11  
Maxim Integrated │ 260  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Amend-IIR Filter Enable:  
0 = ADC result is not included in the IIR accumulator (default)  
1 = ADC result is included in the IIR accumulator  
When set high, for ADC outputs that have IIR filters/accumulators, the new  
ADC conversion in the ALU is automatically scaled and transferred into the  
IIR accumulator at the end of the sequence. This is often used for normal-  
measurement sequences.  
AMENDFILT  
10  
When set low, the new ADC conversion in the ALU is not transferred into the  
IIR accumulator at the end of the sequence. This is often used for diagnostic-  
measurement sequences where the ADC result would corrupt the settled  
normal data.  
Note: This bit is ignored for measurement scans taken in automated Cell-  
Balancing modes (AMENDFILT = 1 is used).  
Read-IIR Filter Selection:  
0 = Unfiltered ADC data is loaded into the output data registers (default)  
1 = Filtered ADC data is loaded into the output data registers  
This bit chooses the source for data loaded to the CELLnREG and  
BLOCKREG registers for read back. The setting of this bit at the time of a  
measurement scan request (SCAN = 1) also determines the source data  
(filtered/unfiltered) used for TOTAL, MINCELL, MAXCELL, MSMTCH, and all  
OV/UV alert computations.  
RDFILT  
9
Scan Configuration:  
Selects the type of scan to be performed based on the selections below.  
FOSR selection applies to all scans where oversampling applies.  
000 = ADC-only scan  
001 = ADC+COMP scan (Pyramid only)  
010 = COMP-only scan (Pyramid only)  
011 = On-demand calibration  
100 = Balancing switch short  
101 = Balancing switch open  
110 = Cell sense open odds  
111 = Cell sense open evens  
SCANCFG  
8:6  
Some of these selections are formatted by other register content. Some  
selections temporarily modify/override other register content. See register  
descriptions for further details.  
For COMP scans, polarity is always defaulted to unipolar; any cell  
measurements requested in bipolar mode are skipped.  
On-demand calibration executes an automated routine that updates the  
contents of the CALOSADC, CALOSR, CALOSTHRM, CALGAINP, and  
CALGAINR correction coefficients. No other measurements are taken during  
this operation.  
Note: This bitfield is ignored for measurement scans taken in automated Cell-  
Balancing modes (SCANCFG = 000 is used).  
Maxim Integrated │ 261  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Oversampling Selection for ADC Acquisitions:  
000 = Single acquisition  
001 = 4x oversampling  
010 = 8x oversampling  
011 = 16x oversampling  
OVSAMPL  
5:3  
100 = 32x oversampling  
101 = 64x oversampling  
11x = 128x oversampling  
Note: This bitfield is ignored during calibration (SCANCFG = 011) scans.  
This bitfield is ignored for measurement scans taken in automated cell-  
balancing modes (OVSAMPL = 011 is used).  
Cell-Measurement Path Selection:  
0 = HVMUX signal path (default)  
1 = ALTMUX signal path  
See the Diagnostics section.  
Note: Where ALTMUX settings disagree with SCANCFG (BALSWDIAG),  
SCANCFG takes precedence.  
ALTMUXSEL  
SCANMODE  
2
1
ADC-Scan Mode Selection:  
0 = Pyramid scan mode (default)  
1 = Ramp scan mode  
Ramp scan mode is not supported for scans using the comparator or  
calibration scan requests (the setting is ignored in these modes).  
Note: This bit is ignored for measurement scans taken in automated Cell-  
Balancing modes (SCANMODE = 0 is used).  
Scan (Measurement Sequence) Request:  
0 = Used to initiate a data transfer and/or set up measurement conditions  
without initiating a measurement sequence  
1 = Used to request a new measurement sequence (scan) and initiate a data  
transfer  
Acts as a strobe bit and therefore does not need to be cleared (self-clearing).  
Always reads logic zero. Writes to SCANCTRL with SCAN = 1 requesting new  
scans are ignored if a scan is already in progress, or if SCANDONE is high. In  
this case, the content written to SCANCTRL[15:1] is accepted but the conflict-  
ing scan will not be executed and ALRTRJCT be issued, notifying the user of  
the conflict.  
SCAN  
0
Note: The intended use of this bit is to enter/exit BALSWDIAG modes using  
SCANCFG, and allow the alternate conditions to settle prior to requesting the  
measurement (with a subsequent write to SCANCRTL with SCAN = 1).  
This bit can also be used to realize a variety of data-move options (see  
DBLBUFEN and RDFILT for details), or to clear SCANDONE, SCANTIMEOUT,  
and DATARDY bits without requesting a measurement sequence/scan.  
ADCTEST1AREG (0ꢀ67)  
ADCTEST1A is a read-/write-accessible register that contains user-specified arguments used in ALU diagnostics.  
BIT  
Field  
Reset  
15  
ADCTSTEN  
0b0  
14  
13  
12  
11  
10  
9
8
ADCTEST1A[11:8]  
0x000  
Access Type Write, Read  
Write, Read  
Maxim Integrated │ 262  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BIT  
Field  
7
6
5
4
3
2
1
0
ADCTEST1A[7:0]  
0x000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
ADC/ALU Self-Test Mode Enable:  
0 = Normal operation (default)  
1 = Enables the ALU test mode  
This mode feeds 12-bit data from the ADCTEST registers directly into the ALU  
instead of the ADC-conversion data. Scans can then be performed, confirming  
proper operation of the ALU and calibration MAC.  
ADCTSTEN  
15  
Notes: No calibration coefficients are applied to ensure deterministic results  
(gain =1.0, offset = 0.0).  
ADCTESTEN is ignored for on-demand calibration scans (SCANCFG = 011) to  
avoid miscalibration, and all scans performed during automated Cell-Balancing  
modes to avoid inaccurate balancing results.  
ALU ADC Input Argument 1A:  
User-specified test data for the ALU diagnostic (ADCTESTEN = 1). This 12-bit  
data is fed into the ALU during the first conversion of odd-numbered samples  
(e.g., first sample).  
ADCTEST1A  
11:0  
ADCTEST1BREG (0ꢀ68)  
ADCTEST1B is a read-/write-accessible register that contains user-specified arguments used in ALU diagnostics.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
0
ADCTEST1B[11:8]  
0x000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
ADCTEST1B[7:0]  
0x000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
ALU ADC Input Argument 1B:  
User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-  
bit data is fed into the ALU during the second conversion of odd-numbered  
samples (e.g., first sample).  
ADCTEST1B  
11:0  
Maxim Integrated │ 263  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ADCTEST2AREG (0ꢀ69)  
ADCTEST2A is a read-/write-accessible register that contains user-specified arguments used in ALU diagnostics.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
ADCTEST2A[11:8]  
0x000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
ADCTEST2A[7:0]  
0x000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
ALU ADC Input Argument 2A:  
User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit  
data is fed into the ALU during the first conversion of even-numbered samples  
in oversampling mode.  
ADCTEST2A  
11:0  
ADCTEST2BREG (0ꢀ6A)  
ADCTEST2B is a read-/write-accessible register that contains user-specified arguments used in ALU diagnostics.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
0
ADCTEST2B[11:8]  
0x000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
ADCTEST2B[7:0]  
0x000  
Reset  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
ALU ADC Input Argument 2B:  
User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit  
data is fed into the ALU during the second conversion of even-numbered  
samples in oversampling mode.  
ADCTEST2B  
11:0  
Maxim Integrated │ 264  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
DIAGCFG (0ꢀ6B)  
DIAGCFG is a read-/write-accessible register that governs diagnostic source and mode options applied to the internal  
measurement acquisitions (scans).  
BIT  
15  
14  
13  
12  
11  
CTSTSRC  
0b0  
10  
9
8
MUXDIAG-  
BUS  
MUXDIAG-  
PAIR  
Field  
CTSTDAC[3:0]  
MUXDIAGEN  
0b0  
Reset  
0x0  
0b0  
0b0  
Access Type  
Write, Read  
Write, Read Write, Read Write, Read Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
DIAGSEL2[3:0]  
0x0  
DIAGSEL1[3:0]  
0x0  
Reset  
Access Type  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Current-Level Configuration for All Enabled Test Sources:  
Per the table below (6.25µA LSB for Cn, AUXIN, 3.125µA LSB for HVMUX)  
CTSTDAC  
[3:0]  
0x0  
TEST SOURCE  
Cn, AUXIN  
6.25µA  
CURRENT  
HVMUX  
3.125µA  
6.250µA  
9.375µA  
...  
0x1  
12.50µA  
18.75µA  
...  
CTSTDAC  
15:12  
0x2  
...  
0xD  
87.5µA  
43.75µA  
46.875µA  
50µA  
0xE  
93.75µA  
100µA  
0xF  
Test Current-Source Polarity:  
0 = Sink current to GND (default)  
CTSTSRC  
11  
10  
9
1 = Source current from V  
AA  
Note: Polarity selection applies to AUX test current sources only.  
Selects the HVMUX output to which the HVMUX test current source is connected,  
if MUXDIAGPAIR is enabled:  
0 = Output used for even cells, C0, and AGND  
MUXDIAGBUS  
MUXDIAGPAIR  
1 = Output used for odd cells, REF, and ALTREF  
MUX Diagnostic Bus Configuration:  
0 = Both HVMUX test-current sources are connected to both HVMUX outputs (default)  
1 = A single HVMUX test-current source is connected to only one HVMUX output (as  
selected by MUXDIAGBUS)  
HVMUX Test-Current Source(s) Enable:  
0 = Disable (default)  
MUXDIAGEN  
8
1 = Enable  
The current level is configured by CSTDAC and the connectivity is configured by  
MUXDIAGPAIR and MUXDIAGBUS  
Maxim Integrated │ 265  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Acquisition Diagnostic2-Measurement Selection:  
0000 = No diagnostic requested  
0001 = Die temperature (ADC = V  
, ADC  
= V  
REF  
)
IN  
PTAT  
REF  
0010 = V (ADC = V  
through LSAmp, ADC  
= V  
)
AA  
IN  
REF  
REF  
AA  
0011 = Cell signal-path ADC fault, V  
(ADC = V  
through LSAmp,  
ALTREF  
IN  
ALTREF  
ADC  
= V  
)
REF  
REF  
0100 = Comparator-cell signal-path fault (ADC = V  
through LSAmp2 - V  
at  
DAC  
IN  
REF  
DAC  
= 0x1D8 (6/13), ADC  
= DAC  
= V  
, bipolar mode)  
CODE  
REF  
REF  
REF  
0101 = Cell calibration (ADC = V  
through LSAmp, ADC  
= V  
), calibration  
IN  
REF  
REF  
REF  
gain and offset coefficients and chopping applied according to SCANMODE selection.  
0110 = Offset calibration (ADC = Short (Pyramid) or ADC = Short through LSAmp  
IN  
IN  
(Ramp), ADC  
= V  
, bipolar mode), calibration offset coefficients applied  
REF  
REF  
according to SCANMODE selection.  
0111 = 3/4-scale DAC test (DAC = 0x2FF ADC = V  
, ADC  
, ADC  
= DAC  
= DAC  
= V  
= V  
).  
).  
IN  
DAC  
DAC  
REF  
REF  
REF  
1000 = 1/4-scale DAC test (DAC = 0x100 ADC = V  
IN  
REF  
REF  
REF  
DIAGSEL2  
7:4  
1001 = THRM offset calibration (ADC = Short, ADC  
= V  
, bipolar mode),  
IN  
REF  
THRM  
CALOSTHRM coefficient applied.  
Selects the second diagnostic measurement appended to the acquisition, with the result  
stored in DIAG2. Appropriate calibrations (or factory defaults if ADCALEN = 0) and chop-  
ping are applied as needed.  
Detailed Diagnostics:  
1010 = Zero-scale ADC test (0x0000, ADC = -V , ADC  
= V  
, bipolar mode),  
IN  
AA  
REF  
REF  
full result available through DIAG.  
1011 = Full-scale ADC test (0x3FFC, ADC = V , ADC  
= V  
, bipolar mode), full  
IN  
AA  
REF  
REF  
result available through DIAG.  
1100 = LSAMP offset (ADC = V  
, ADC  
= V  
, bipolar mode)  
IN  
LSA_0V  
REF  
REF  
Detailed diagnostics are normally performed at the end of an acquisition (with the  
exception of LSAMP offset, which is covered by the V diagnostic), and the  
ALTREF  
pass/fail results are available in the FMEA2 BIST alerts; however, if necessary to  
examine detailed results, these can be made available in the DIAG2 register using the  
modes above.  
Maxim Integrated │ 266  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Acquisition Diagnostic1-Measurement Selection:  
0000 = No diagnostic requested  
0001 = Die temperature (ADC = V  
, ADC  
= V  
REF  
)
IN  
PTAT  
REF  
0010 = V (ADC = V  
through LSAmp, ADC  
= V  
)
AA  
IN  
REF  
REF  
AA  
0011 = Cell signal-path ADC fault, V  
(ADC = V  
through LSAmp,  
ALTREF  
IN  
ALTREF  
ADC  
= V  
)
REF  
REF  
0100 = Comparator-cell signal-path fault (ADC = V  
through LSAmp2 - V  
at  
DAC  
IN  
= DAC  
REF REF  
REF  
DAC  
= 0x1D8 (6/13), ADC  
CODE  
V
, bipolar mode)  
REF  
0101 = Cell calibration (ADC = V  
through LSAmp, ADC  
= V  
). Calibration  
IN  
REF  
REF  
REF  
gain and offset coefficients and chopping applied according to SCANMODE selection.  
0110 = Offset calibration (ADC = Short (Pyramid) or ADC = Short through LSAmp  
IN  
IN  
(ramp), ADC  
= V  
, bipolar mode). Calibration offset coefficients applied accord-  
REF  
REF  
ing to SCANMODE selection.  
DIAGSEL1  
3:0  
0111 = 3/4-scale DAC test (DAC = 0x2FF, ADC = V  
, ADC  
= DAC  
= V  
)
IN  
DAC  
REF  
REF  
REF  
1000 = 1/4-scale DAC test (DAC = 0x100, ADC. = V  
, ADC  
= DAC  
= V  
)
IN  
DAC  
REF  
REF  
REF  
1001 = THRM offset calibration (ADC = short, ADC  
= V  
, bipolar mode)  
IN  
REF  
THRM  
CALOSTHRM coefficient applied.  
Selects the first diagnostic measurement appended to the acquisition, with the result  
stored in DIAG1. Appropriate calibrations (or factory defaults if ADCALEN = 0) and  
chopping are applied as needed.  
Detailed Diagnostics:  
1010 = Zero-scale ADC test (0x0000, ADC = -V , ADC  
= V  
, bipolar mode),  
IN  
AA  
REF  
REF  
full result available through DIAG  
1011 = Full-scale ADC test (0x3FFC, ADC = V , ADC  
= V  
, bipolar mode),  
IN  
AA  
REF  
REF  
full result available through DIAG  
1100 = LSAMP offset (ADC = V  
, ADC  
= V  
bipolar mode)  
IN  
LSA_0V  
REF  
REF.  
Detailed diagnostics are normally performed at the end of an acquisition (with the  
exception of LSAMP offset, which is covered by the V diagnostic), and the  
ALTREF  
pass/fail results are available in the FMEA2 BIST alerts; however, if it is necessary to  
examine detailed results, these can be made available in the DIAG1 register using the  
modes above.  
Maxim Integrated │ 267  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
CTSTCFG (0ꢀ6C)  
CTSTCFG is a read-/write-accessible register that controls the application of diagnostic current sources to selected cell  
input channels.  
BIT  
Field  
Reset  
15  
14  
13  
12  
11  
10  
9
8
CEL-  
LOPNDIAG-  
SEL  
CTSTEN[14:8]  
0b0  
0x0000  
Access Type Write, Read  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
CTSTEN[7:0]  
Reset  
0x0000  
Access Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Cell Open-Diagnostic-Mode Selection:  
0 = Normal operation (default)  
1 = Open-diagnostic operation  
In normal mode (0), measured CELLn channels are selected by CELLEN and  
measured with standard thresholds on a per-channel basis for both ADC and  
comparator-acquisition sequences.  
In open-diagnostic mode (1), measured CELLn channels are selected by  
(CELLENn & !POLARITYn), on a per-channel basis. Only low-side comparator  
checks are performed using alternate-open (OPN) thresholds.  
Normally, in open-diagnostic modes, pulldown current sources are enabled on  
all measured channels using CTSTEN, and only comparator measurements  
are selected (SCANCFG = 010).  
CELLOPNDIAGSEL  
15  
This mode is most often used with an appropriate auxiliary open-diagnostic  
mode (AUXDIAGSEL = 010 or 011).  
Cell Diagnostic-Current-Source Enable:  
Enables the current sources connected to the corresponding cell inputs for  
diagnostic testing. The current level is configured by the CTSTDAC in the  
DIAGCFG register.  
CTSTEN  
14:0  
Maxim Integrated │ 268  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
AUXTSTCFG (0ꢀ6D)  
AUXTSTCFG is a read-/write-accessible register that controls the application of diagnostic modes and current sources  
to selected auxiliary input channels.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
1
0
AUXTSTEN[5:4]  
0x0  
AUXTSTEN[3:0]  
0x0  
Reset  
Access Type  
Write, Read, Ext  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Auxiliary-Diagnostic Current-Source Enable:  
Enables the current source connected to the corresponding auxiliary input for  
diagnostic testing. The current level is configured by DIAGCFG:CTSTDAC  
and the current direction is configured by DIAGCFG:CTSTSRC.  
Note: If the respective GPIOEN bit is set (GPIO mode), this bit is ignored but  
still reads back the user setting.  
AUXTSTEN  
AUXTSTEN  
5:4  
Auxiliary-Diagnostic Current-Source Enable:  
Enables the current sources connected to the corresponding auxiliary input  
for diagnostic testing. The current level is configured by DIAGCFG:CTSTDAC  
and the current direction is configured by DIAGCFG:CTSTSRC.  
Note: If the respective GPIOEN bit is set (GPIO mode), this bit is ignored, but  
still reads back the user setting.  
3:0  
DIAGGENCFG (0ꢀ6E)  
DIAGGENCFG is a read-/write-accessible register that controls the application of general diagnostic modes to the  
selected auxiliary input paths.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
AUXDIAGSEL[2:0]  
0b000  
Reset  
Access Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
Reset  
Access Type  
Maxim Integrated │ 269  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
AUX Diagnostic Mode Selection:  
00x = Normal operation (default)  
010 = AUX accelerated discharge operation (ratio metric only)  
011 = THRM output connected to AGND  
100 = Reserved for Maxim Use Only  
AUXDIAGSEL  
15:13  
101 = Reserved for Maxim Use Only  
110 = Reserved for Maxim Use Only  
111 = Reserved for Maxim Use Only  
Control bits used for AUXINn pin diagnostic testing. Only to ports configured  
as AUX inputs are tested.  
BALSWCTRL(0ꢀ6F)  
BALSWCTRL is a read-/write-accessible register that governs the behavior of the charge-balacing switches in manual  
and automated cell-balacing modes.  
Write access to this register is blocked during automated cell-balacing operations (CBMODE = 001, 1xx).  
BIT  
15  
14  
13  
12  
11  
10  
9
8
CBRE-  
START  
Field  
BALSWEN[14:9]  
0x0000  
Reset  
0b0  
Write, Read,  
Pulse  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
BALSWEN[8:1]  
0x0000  
Reset  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Maxim Integrated │ 270  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Watchdog Timer Restart for Manual Mode:  
0 = CBTIMER continues to run  
1 = CBTIMER is reset to zero  
Acts as a strobe bit and therefore does not need to be cleared. Always reads  
logic zero.  
CBRESTART  
15  
Accessible and applies in manual mode only.  
Writing 1 to CBRESTART after cell-balancing timer expiration has no effect.  
To perform another manual-mode cell-balancing event, user must issue a  
separate write to the BALCTRL register.  
Balance-Switch Enable:  
BALSWEN  
13:0  
BALSWEN[n] enables the balancing switch (allowing conduction) between  
SWn and SWn-1, balancing CELLn.  
BALEXP1 (0ꢀ70)  
BALEXPn is a read-/write-accessible register that holds the cell-balacing expiration time for CELLn (using the switch  
across SWn and SWn-1).  
BALEXP1 sets the expiration time for all group automated cell-balancing and discharge modes and the watchdog time-  
out for manual cell-balacing mode.  
Write access to this register is blocked during all cell-balancing operations (CBMODE! = 000).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP1[9:8]  
0x000  
Reset  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP1[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell Balancing Expiration Time:  
Cell-balancing expiration time for CELLn; unit (LSB = hour, minute, or second)  
determined by CBMODE.  
CBEXP1  
9:0  
CBEXP1 is used as the master/watchdog timeout setting for manual,  
discharge, and automated group Cell-Balancing modes.  
Value 0x3FF operates balancing indefinitely (no timer expiration). Default  
value 0x000 disables cell balancing (preconfigured timer expiration).  
Maxim Integrated │ 271  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BALEXP2 (0ꢀ71)  
BALEXP2 is a read-/write-accessible register that holds the cell-balacing expiration time for CELLn (using the switch  
across SWn and SWn-1). Used in individual Auto Cell-Balancing modes only.  
Write access to this register is blocked during automated cell-balancing operations (CBMODE = 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP2[9:8]  
0x000  
Reset  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP2[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Expiration Time:  
Cell-balancing expiration time for CELLn; unit (LSB = hour, minute, or second)  
determined by CBMODE.  
CBEXP2  
9:0  
Value 0x3FF operates balancing indefinitely (no timer expiration).  
Default value 0x000 disables cell balancing (preconfigured timer expiration).  
BALEXP3 (0ꢀ72)  
BALEXP3 is a read-/write-accessible register that holds the cell-balacing expiration time for CELLn (using the switch  
across SWn and SWn-1). Used in individual auto Cell-Balancing modes only.  
Write access to this register is blocked during automated cell-balancing operations (CBMODE = 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP3[9:8]  
0x000  
Reset  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP3[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Expiration Time:  
Cell-balancing expiration time for CELLn; unit (LSB = hour, minute, or second)  
determined by CBMODE.  
CBEXP3  
9:0  
Value 0x3FF operates balancing indefinitely (no timer expiration).  
Default value 0x000 disables cell balancing (preconfigured timer expiration).  
Maxim Integrated │ 272  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BALEXP4 (0ꢀ73)  
BALEXP4 is a read-/write-accessible register that holds the cell-balancing expiration time for CELLn (using the switch  
across SWn and SWn-1). Used in individual automated Cell-Balancing modes only.  
Write access to this register is blocked during automated cell-balancing operations (CBMODE = 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP4[9:8]  
0x000  
Reset  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP4[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Expiration Time:  
Cell-balancing expiration time for CELLn; unit (LSB = hour, minute, or second)  
determined by CBMODE.  
CBEXP4  
9:0  
Value 0x3FF operates balancing indefinitely (no timer expiration).  
Default value 0x000 disables cell balancing (preconfigured timer expiration).  
BALEXP5 (0ꢀ74)  
BALEXP5 is a read-/write-accessible register that holds the Cell-Balacing-Expiration Time for CELLn (using the switch  
across SWn and SWn-1). Used in Individual Auto-Cell Balancing modes only.  
Write access to this register is blocked during Automated Cell-Balancing operations (CBMODE = 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP5[9:8]  
0x000  
Reset  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP5[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Expiration Time:  
Cell-balancing expiration time for CELLn; unit (LSB = hour, minute, or second)  
determined by CBMODE.  
CBEXP5  
9:0  
Value 0x3FF operates balancing indefinitely (no timer expiration).  
Default value 0x000 disables cell balancing (preconfigured timer expiration).  
Maxim Integrated │ 273  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BALEXP6 (0ꢀ75)  
BALEXP6 is a read-/write-accessible register that holds the Cell-Balacing Expiration Time for CELLn (using the switch  
across SWn and SWn-1). Used in Individual Automated Cell-Balancing modes only.  
Write access to this register is blocked during Automated Cell-Balancing operations (CBMODE = 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP6[9:8]  
0x000  
Reset  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP6[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Expiration Time:  
Cell-balancing expiration time for CELLn; unit (LSB = hour, minute, or second)  
determined by CBMODE.  
CBEXP6  
9:0  
Value 0x3FF operates balancing indefinitely (no timer expiration).  
Default value 0x000 disables cell balancing (preconfigured timer expiration).  
BALEXP7 (0ꢀ76)  
BALEXP7 is a read-/write-accessible register that holds the Cell-Balacing Expiration Time for CELLn (using the switch  
across SWn and SWn-1). Used in Individual Automated Cell-Balancing modes only.  
Write access to this register is blocked during Automated Cell-Balancing operations (CBMODE = 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP7[9:8]  
0x000  
Reset  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP7[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Expiration Time:  
Cell-balancing expiration time for CELLn; unit (LSB = hour, minute, or second)  
determined by CBMODE.  
CBEXP7  
9:0  
Value 0x3FF operates balancing indefinitely (no timer expiration).  
Default value 0x000 disables cell balancing (preconfigured timer expiration).  
Maxim Integrated │ 274  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BALEXP8 (0ꢀ77)  
BALEXP8 is a read-/write-accessible register that holds the Cell-Balacing Expiration Time for CELLn (using the switch  
across SWn and SWn-1). Used in Individual Automated Cell-Balancing modes only.  
Write access to this register is blocked during Automated Cell-Balancing operations (CBMODE = 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP8[9:8]  
0x000  
Reset  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP8[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Expiration Time:  
Cell-balancing expiration time for CELLn; unit (LSB = hour, minute, or second)  
determined by CBMODE.  
CBEXP8  
9:0  
Value 0x3FF operates balancing indefinitely (no timer expiration).  
Default value 0x000 disables cell balancing (preconfigured timer expiration).  
BALEXP9 (0ꢀ78)  
BALEXP9 is a read-/write-accessible register that holds the Cell-Balancing Expiration Time for CELLn (using the switch  
across SWn and SWn-1). Used in Individual Automated Cell-Balancing modes only.  
Write access to this register is blocked during Automated Cell-Balancing operations (CBMODE = 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP9[9:8]  
0x000  
Reset  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP9[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Expiration Time:  
Cell-balancing expiration time for CELLn; unit (LSB = hour, minute, or second)  
determined by CBMODE.  
CBEXP9  
9:0  
Value 0x3FF operates balancing indefinitely (no timer expiration).  
Default value 0x000 disables cell balancing (preconfigured timer expiration).  
Maxim Integrated │ 275  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BALEXP10 (0ꢀ79)  
BALEXP10 is a read-/write-accessible register that holds the Cell-Balancing Expiration Time for CELLn (using the  
switch across SWn and SWn-1).Used in Individual Automated Cell-Balancing modes only.  
Write access to this register is blocked during Automated Cell Balancing operations (CBMODE = 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP10[9:8]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP10[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Expiration Time:  
Cell-balancing expiration tme for CELLn; unit (LSB = hour, minute, or second)  
determined by CBMODE.  
CBEXP10  
9:0  
Value 0x3FF operates balancing indefinitely (no timer expiration).  
Default value 0x000 disables cell balancing (preconfigured timer expiration).  
BALEXP11 (0ꢀ7A)  
BALEXP11 is a read-/write-accessible register that holds the Cell-Balacing Expiration Time for CELLn (using the switch  
across SWn and SWn-1). Used in Individual Automated Cell-Balancing modes only.  
Write access to this register is blocked during Automated Cell-Balancing operations (CBMODE = 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP11[9:8]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP11[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Expiration Time:  
Cell-balancing expiration time for CELLn; unit (LSB = hour, minute, or second)  
determined by CBMODE.  
CBEXP11  
9:0  
Value 0x3FF operates balancing indefinitely (no timer expiration).  
Default value 0x000 disables cell balancing (preconfigured timer expiration).  
Maxim Integrated │ 276  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BALEXP12 (0ꢀ7B)  
BALEXP12 is a read-/write-accessible register that holds the Cell-Balacing Expiration Time for CELLn (using the switch  
across SWn and SWn-1). Used in Individual Automated Cell-Balancing modes only.  
Write access to this register is blocked during Automated Cell-Balancing operations (CBMODE = 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP12[9:8]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP12[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Expiration Time:  
Cell-balancing expiration time for CELLn; unit (LSB = hour, minute, or second)  
determined by CBMODE.  
CBEXP12  
9:0  
Value 0x3FF operates balancing indefinitely (no timer expiration).  
Default value 0x000 disables cell balancing (preconfigured timer expiration).  
BALEXP13 (0ꢀ7C)  
BALEXP13 is a read-/write-accessible register that holds the Cell-Balacing Expiration Time for CELLn (using the switch  
across SWn and SWn-1). Used in Individual Automated Cell-Balancing modes only.  
Write access to this register is blocked during Automated Cell-Balancing operations (CBMODE = 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP13[9:8]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP13[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Expiration Time:  
Cell-balancing expiration time for CELLn; unit (LSB = hour, minute, or  
second) determined by CBMODE.  
CBEXP13  
9:0  
Value 0x3FF operates balancing indefinitely (no timer expiration).  
Default value 0x000 disables cell balancing (preconfigured timer expiration).  
Maxim Integrated │ 277  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BALEXP14 (0ꢀ7D)  
BALEXP14 is a read-/write-accessible register that holds the Cell-Balacing Expiration Time for CELLn (using the switch  
across SWn and SWn-1). Used in Individual Automated Cell-Balancing modes only.  
Write access to this register is blocked during Automated Cell-Balancing operations (CBMODE = 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBEXP14[9:8]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBEXP14[7:0]  
Reset  
0x000  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Expiration Time:  
Cell-balancing expiration time for CELLn; unit (LSB = hour, minute, or second)  
determined by CBMODE.  
CBEXP14  
9:0  
Value 0x3FF operates balancing indefinitely (no timer expiration).  
Default value 0x000 disables cell balancing (preconfigured timer expiration).  
BALAUTOUVTHR (0ꢀ7E)  
BALAUTOUVTHR is a read-/write-accessible register that selects the cell undervoltage exit threshold for the ADC  
when used in Automated Cell-Balancing operations.  
A write to this register allows direct setting or automatic selection of this threshold.  
Write access to this register is blocked during Automated Cell-Balancing operations (CBMODE = 1xx). Also, during  
active measurement scans, all writes with CBUVMINCELL = 1 will be blocked and result in ALRTRJCT being issued  
(since the MINCELL data may be altered as a result of the scan in progress).  
A read from this register displays the current value of the threshold and the method used for its selection.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBUVTHR[13:6]  
0x3FFF  
Reset  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBUVMIN-  
CELL  
CBUVTHR[5:0]  
Reset  
0x3FFF  
0b0  
Write, Read,  
Ext  
Access Type  
Write, Read, Ext  
Maxim Integrated │ 278  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Undervoltage Threshold  
14-bit ADC threshold, of a 5V input range, below which Cell Balancing Operations  
are suspended on each CELL.  
CBUVTHR  
15:2  
Default of 0x3FFF, ensures no cell balancing occur without prior configuration.  
Cell Balancing Undervoltage Threshold Selection  
0 = User-Defined CBUVTHR  
1 = MINCELL-Defined CBUVTHR  
In mode 0, the value written to CBUVTHR during a valid write to  
BALAUTOUVTHR be loaded to CBUVTHR.  
CBUVMINCELL  
0
In mode 1, the current value in the CELLn register corresponding to the  
MINCELL address be automatically loaded to CBUVTHR during a valid write to  
BALAUTOUVTHR (and the content in CBUVTHR during the write be ignored).  
Note: Automated Cell Balancing with CBUVTHR checking is only supported for  
unipolar cell measurements. If CBUVMINCELL = 1 is written while  
MINMAXPOL = 1, CBUVTHR be set to 0x3FFF\h as a result.  
BALDLYCTRL (0ꢀ7F)  
BALDLYCTRL is a read-/write-accessible register that selects the delay/timing intervals used within Automated Cell-  
Balancing operations.  
Write access to this register is blocked during Automated Cell-Balancing operations (CBMODE = 001, 1xx).  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBNTFYCFG[1:0]  
0b00  
Reset  
Access Type  
Write, Read, Ext  
BIT  
Field  
7
6
5
4
3
2
1
0
CBCALDLY[2:0]  
0b000  
Reset  
Access Type  
Write, Read, Ext  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Notification Alert Configuration:  
00 = Disable cell-balancing notification alert (default)  
01 = Notification issued every 1 Hr  
10 = Notification issued every 2 Hrs  
11 = Notification issued every 4 Hrs  
In automated and discharge modes, the cell-balancing notification alert  
CBNTFYCFG  
9:8  
(ALRTCBNTFY) can be issued to confirm normal progression of automated  
operations. The frequency of issuance is selected as described above, in real  
time (i.e., not CBDUTY adjusted). Notification alerts continue to be issued  
during HOLDSHDNL.  
Maxim Integrated │ 279  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Calibration Period Selection:  
In automated and discharge modes, after each pair of even and odd cell-  
balancing periods, a supervisory ADC measurement is taken (and checked  
against CBUVTHR, if enabled/applicable).  
CBCALDLY allows a calibration operation to be substituted in place of a mea-  
surement at the frequency indicted below. A value of 000 (default) disables  
CAL operations (only ADC operations are performed).  
000 = Periodic calibration disabled  
CBCALDLY  
2:0  
001 = 2 (every other) cycle  
010 = 4 (every forth) cycle  
011 = 8 cycles  
100 = 12 cycles  
101 = 16 cycles  
110 = 24 cycles  
111 = 32 cycles  
If CBMEASEN = 0x (ADC/CAL measurements disabled), this bitfield is ig-  
nored and has no effect.  
BALCTRL (0ꢀ80)  
BALCTRL is a read-/write-accessible register that initiates and controls all internal Cell-Balancing modes and  
operations.  
Any write to this register to a mode other than CBMODE = 000 (disable) restarts the CBTIMER at zero and launches  
the requested mode of operation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBACTIVE[1:0]  
CBMODE[2:0]  
0b000  
CBIIRINIT  
0b0  
HOLDSHDNL[1:0]  
0b00  
Reset  
0b00  
Access Type  
Read Only  
Write, Read, Ext  
Write, Read  
Write, Read  
BIT  
7
6
5
4
3
2
1
0
CBDONE-  
ALRTEN  
Field  
CBDUTY[3:0]  
CBTEMPEN  
0b0  
CBMEASEN[1:0]  
Reset  
0x0  
0b0  
0x0  
Access Type  
Write, Read  
Write, Read Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Cell Balancing Timer Active Indicator:  
00 = Cell balancing is disabled (default)  
01 = Cell balancing operations are active  
10 = Cell balancing completed normally due to reaching CBUVTHR or CBEXP  
exit conditions  
CBACTIVE  
15:14  
11 = Cell balancing halted unexpectedly due to thermal exit (ALRTCBTEMP),  
timeout (ALRTCBTIMEOUT), or calibration fault (ALRTCBCAL) conditions  
Read only.  
Maxim Integrated │ 280  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Cell Balancing Mode Selection  
000 = Cell Balancing Disabled (default)  
001 = Emergency/EOL Discharge by Hour  
010 = Manual Cell Balancing by Second  
011 = Manual Cell Balancing by Minute  
100 = Auto Individual Cell Balancing by Second  
101 = Auto Individual Cell Balancing by Minute  
110 = Auto Group Cell Balancing by Second  
111 = Auto Group Cell Balancing by Minute  
CBMODE  
13:11  
Cell Balancing IIR Initialization Request  
0 = IIR Filter Continuation (default)  
1 = IIR Filter Initialized  
CBIIRINIT  
10  
If enabled, the IIR filter contents be initialized during the first measurement  
scan and CBUVTHR checks be suspended for 16 measurement scans, giving  
the IIR time to settle.  
SHDNL Hold Mode Enable  
00 = No Hold (default)  
01 = SHDNL Held High for the duration of Automated Cell Balancing or Dis-  
charge operation  
HOLDSHDNL  
9:8  
10 = SHDNL Held High for duration of Automated Cell Balancing or Discharge  
operations, plus 5 minutes or 6.25% of the maximum applicable CBEXP inter-  
val (whichever is greater)  
11 = SHDNL Held High for duration of Automated Cell Balancing or Discharge  
operations, and until removed  
Cell Balancing Duty Cycle  
Sets the active duty cycle within each T  
period.  
CBEO  
0000 = 6.25% (default)  
0001 = 12.5%  
...  
CBDUTY  
7:4  
1110 = 93.75%  
1111 = 100%, less NOL and Measurement/Calibration overhead.  
Cell Balancing Complete Alert Enable  
0 = ALRTCBDONE masked in STATUS1:ALRTCBAL (default)  
1 = ALRTCBDONE included in STATUS1:ALRTCBAL  
Masking of this alert component allows the user the choice to be notified only  
for unexpected exits, or normal completions as well.  
CBDONEALRTEN  
CBTEMPEN  
3
2
Cell Balancing Thermal Exit Enable  
0 = Cell Balancing not impacted by ALRTTEMP (default)  
1 = Cell Balancing halts in response to ALRTTEMP  
Cell Balancing Measurement Enable  
0x = Embedded ADC/CAL Measurements and CBUVTHR checking disabled  
(default)  
10 = Embedded ADC/CAL Measurements enabled, CBUVTHR checking  
CBMEASEN  
1:0  
disabled  
11 = Embedded ADC/CAL Measurements enabled, CBUVTHR checking  
enabled  
Note: Automated Cell Balancing with CBUVTHR checking is only supported  
for unipolar cell measurements.  
Maxim Integrated │ 281  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BALSTAT (0ꢀ81)  
BALSTAT is a read-accessible register that allows the monitoring of any Automated Cell-Balancing operations currently  
in progress.  
Once a CBMODE is initiated, all status bits persist and are cleared only when CBMODE is written to 000 (disabled) or  
when a new CBMODE operation is initiated through CBSTART.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
CBACTIVE_M1[1:0]  
0b00  
CBUNIT[1:0]  
CBCNTR[1:0]  
CBTIMER[9:8]  
Reset  
0b00  
0b00  
0x000  
Access Type  
Read Only  
Read Only  
Read Only  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CBTIMER[7:0]  
Reset  
0x000  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Timer Active Indicator (Mirror):  
00 = Cell balancing is disabled (default)  
01 = Cell balancing operations are active  
10 = Cell balancing completed normally due to reaching CBUVTHR or CBEXP  
exit conditions  
CBACTIVE_M1  
15:14  
11 = Cell balancing halted unexpectedly due to thermal exit (ALRTCBTEMP),  
Time Out (ALRTCBTIMEOUT), or Calibration Fault (ALRTCBCAL) conditions  
Read only.  
Cell-Balancing Timer Unit Indicator:  
00 = Cell balancing is disabled (default)  
01 = CBTIMER measures Seconds  
10 = CBTIMER measures Minutes  
11 = CBTIMER measures Hours  
CBUNIT  
13:12  
Allows confirmation of cell-balancing timer operating mode (LSB weight).  
Read only,  
Cell-Balancing Active Counter:  
1Hz counter that can be read to verify CBTIMER operation/activity when the  
CBTIMER is operated in minute or hour modes. The counter counts from 0 to  
3, rolling over to 0 approximately every 4 seconds in all active Cell-Balancing  
modes (CBMODE! = 000).  
CBCNTR  
11:10  
Read only.  
Notes:  
During Hold SHDNL extension periods (HOLDSHDNL = 1x), CBCNTR continues  
to run.  
If the governing CBEXP setting is set to 0x3FF (infinite), this counter continues to  
run, even though it has no impact on the active Cell-Balancing mode.  
Maxim Integrated │ 282  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Timer Value:  
Reads the current cell-balancing timer value in seconds, minutes or hours,  
depending on CBMODE, as indicated by CBUNIT.  
Read only.  
Notes:  
CBTIMER  
9:0  
During SHDNL hold/extension periods (HOLDSHDNL = 1x), CBTIMER reads  
back the governing expiration time (CBEXP), indicating that the requested bal-  
ancing operation has completed.  
If the governing CBEXP setting is set to 0x3FF (infinite), this timer still runs and  
rolls over, even though it has no impact on the active Cell-Balancing mode.  
BALUVSTAT (0ꢀ82)  
BALUVSTAT is a read-accessible register that relates current summary information on the Cell voltages vs. the  
CBUVTHR undervoltage threshold.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
0
CBACTIVE_M2[1:0]  
0b00  
CBUVSTAT[14:9]  
0x0000  
Reset  
Access Type  
Read Only  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
CBUVSTAT[8:1]  
0x0000  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Cell Balancing Timer Active Indicator (Mirror):  
00 = Cell balancing is disabled (default)  
01 = Cell-balancing operations are active  
10 = Cell balancing completed normally due to reaching CBUVTHR or CBEXP  
exit conditions  
CBACTIVE_M2  
15:14  
11 = Cell balancing halted unexpectedly due to thermal exit (ALRTCBTEMP),  
timeout (ALRTCBTIMEOUT), or calibration-fault (ALRTCBCAL) conditions  
Read only.  
Cell-Balance CBUVTHR Check Status:  
CBUVSTAT[n] = 1 indicates the corresponding CELLn result falls below the  
threshold specified by CBUVTHR and that cell-balancing operations on that  
cell have ended.  
Cleared only when CBMODE is written to 000 (disabled) or when a new  
CBMODE operation is initiated through a write to BALCTRL.  
Read only.  
CBUVSTAT  
13:0  
Note: Automated cell balancing with CBUVTHR checking is only supported  
for unipolar cell measurements in locations with BALSWENn = 1. The user  
must also ensure CELLENn = 1 and POLARITYn = 0 to allow the required  
measurement updates; if the measurement is not supported, balancing of the  
cell automatically ends with a CBUVSTATn = 1 exit condition.  
Maxim Integrated │ 283  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BALDATA (0ꢀ83)  
BALDATA is a read-accessible register that relates current summary information on the Cell voltages vs. the  
CBUVTHR undervoltage threshold.  
BIT  
Field  
15  
14  
13  
DATARDY_M  
0b0  
12  
11  
10  
9
8
CBACTIVE_M3[1:0]  
0b00  
Reset  
Write, Read,  
Ext  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
CBSCAN  
0b0  
Reset  
Write, Read,  
Pulse  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
Cell-Balancing Timer Active Indicator (Mirror):  
00 = Cell balancing is disabled (default)  
01 = Cell-balancing operations are active  
10 = Cell balancing completed normally due to reaching CBUVTHR or CBEXP  
exit conditions  
CBACTIVE_M3  
15:14  
11 = Cell balancing halted unexpectedly due to thermal exit (ALRTCBTEMP),  
timeout (ALRTCBTIMEOUT), or calibration-fault (ALRTCBCAL) conditions  
Read only.  
Data-Ready Indicator Bit (Mirror):  
Indicates the measurement data from the acquisition has been transferred to  
the data registers and may now be read. Data for all measurement registers  
and MIN/MAX/TOTAL is transferred at the same time.  
Cleared by writing to logic zero to allow detection of the next data transfer.  
Writing to logic one has no internal effect.  
DATARDY_M  
13  
This is a mirror of the DATARDY bit in SCANCFG, provided to support  
readback of measurement results taken during automated and discharge Cell-  
Balancing modes.  
Manually Transfer Measurement Results from IIR to Data Registers:  
0 = No transfer requested  
1 = Measurement transferred from the IIR (regardless of RDFILT setting) to  
data registers; once transfer is complete, DATARDY bit is set.  
Acts as a strobe bit and therefore does not need to be cleared (self-clearing).  
This bit has no effect in cell-balancing manual or disable mode, or when CB-  
MEASEN = 0x. Always reads logic zero.  
CBSCAN  
0
Maxim Integrated │ 284  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
ID1 (0ꢀ8C)  
ID1 is a read-accessible register that contains the 2 LSBytes of the unique Device ID stored in ROM and subject to  
ROMCRC validation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
DEVID[15:8]  
Reset  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
DEVID[7:0]  
Read Only  
Reset  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
Device ID (Partial):  
The two least-significant bytes of the 24-bit factory-programmed device ID.  
DEVID  
15:0  
ID1,0 always reads logic one. A valid device ID has two or more bits set to  
logic one.  
Read only.  
ID2 (0ꢀ8D)  
ID2 is a read-accessible register that contains the 2 MSBytes of the unique Device ID stored in ROM and subject to  
ROMCRC validation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
DEVID[31:24]  
Reset  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
DEVID[23:16]  
Reset  
Access Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Device ID (Partial):  
The most-significant byte of the 24-bit factory-programmed device ID. A valid  
device ID has two or more bits set to logic one.  
Read only.  
DEVID  
15:0  
Maxim Integrated │ 285  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
OTP2 (0ꢀ8E)  
Factory-Calibration Data ROM and subject to ROMCRC validation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
1
8
0
OTP2[15:8]  
Read Only  
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
OTP2[7:0]  
Read Only  
Reset  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
Factory-Calibration Data:  
Read Only.  
OTP2  
15:0  
OTP3 (0ꢀ8F)  
Factory-Calibration Data ROM and subject to ROMCRC validation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
1
8
0
OTP3[15:8]  
Read Only  
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
OTP3[7:0]  
Read Only  
Reset  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
Factory-Calibration Data:  
Read Only.  
OTP3  
15:0  
Maxim Integrated │ 286  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
OTP4 (0ꢀ90)  
Factory-Calibration Data ROM and subject to ROMCRC validation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
1
8
0
OTP4[15:8]  
Read Only  
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
OTP4[7:0]  
Read Only  
Reset  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
Factory-Calibration Data  
Read Only.  
OTP4  
15:0  
OTP5 (0ꢀ91)  
Factory-Calibration Data ROM and subject to ROMCRC validation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
1
8
0
OTP5[15:8]  
Read Only  
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
OTP5[7:0]  
Read Only  
Reset  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
Factory-Calibration Data  
Read Only.  
OTP5  
15:0  
Maxim Integrated │ 287  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
OTP6 (0ꢀ92)  
Factory-Calibration Data ROM and subject to ROMCRC validation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
1
8
0
OTP6[15:8]  
Read Only  
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
OTP6[7:0]  
Read Only  
Reset  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
Factory-Calibration Data:  
Read Only.  
OTP6  
15:0  
OTP7 (0ꢀ93)  
Factory-Calibration Data ROM and subject to ROMCRC validation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
1
8
0
OTP7[15:8]  
Read Only  
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
OTP7[7:0]  
Read Only  
Reset  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
Factory-Calibration Data:  
Read Only.  
OTP7  
15:0  
Maxim Integrated │ 288  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
OTP8 (0ꢀ94)  
Factory-Calibration Data ROM and subject to ROMCRC validation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
1
8
0
OTP8[15:8]  
Read Only  
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
OTP8[7:0]  
Read Only  
Reset  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
Factory-Calibration Data  
Read Only.  
OTP8  
15:0  
OTP9 (0ꢀ95)  
Factory-Calibration Data ROM and subject to ROMCRC validation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
1
8
0
OTP9[15:8]  
Read Only  
Reset  
Access Type  
BIT  
Field  
7
6
5
4
3
2
OTP9[7:0]  
Read Only  
Reset  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
Factory-Calibration Data  
Read Only.  
OTP9  
15:0  
Maxim Integrated │ 289  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
OTP10 (0ꢀ96)  
Factory Calibration Data ROM and subject to ROMCRC validation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
1
8
0
OTP10[15:8]  
Reset  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
OTP10[7:0]  
Read Only  
Reset  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
Factory-Calibration Data:  
Read Only.  
OTP10  
15:0  
OTP11 (0ꢀ97)  
Factory-Calibration Data ROM and subject to ROMCRC validation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
1
8
0
OTP11[15:8]  
Reset  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
OTP11[7:0]  
Read Only  
Reset  
Access Type  
BITFIELD  
OTP11  
BITS  
DESCRIPTION  
Factory-Calibration Data:  
Read Only.  
15:0  
Maxim Integrated │ 290  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
OTP12 (0ꢀ98)  
Factory-Calibration Data ROM and subject to ROMCRC validation.  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
1
8
0
ROMCRC[7:0]  
Reset  
Access Type  
Read Only  
BIT  
Field  
7
6
5
4
3
2
OTP12[7:0]  
Read Only  
Reset  
Access Type  
BITFIELD  
BITS  
DESCRIPTION  
ROM CRC Value:  
8-bit CRC value computed from the onboard read-only memory content. ID  
and OTP ROM output data content is protected by an 8-bit CRC with  
polynomial 0xA6 (x +x +x +x +1).  
Read only.  
ROMCRC  
OTP12  
15:8  
8
6
3
2
Factory-Calibration Data:  
Read Only.  
7:0  
Maxim Integrated │ 291  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
For zero-scale diagnostic: ADC  
= V  
and ADC  
REF IN  
Calibration-Alert Diagnostics  
REF  
= -V  
AA  
To validate the integrity of the calibration, the CALOS  
ADCCALFRC,CALOSRALRTFRC,CALOSTHRMALR  
TFRC, CALGAINPALRTFRC, CALGAINRALRTFRC bits  
can be used to inject an expected overranged input to  
the digital-calibration circuitry. This sets the correspond-  
ing ALRTCALOSADC, ALRTCALOSR, ALRTCALOSTHRM,  
ALRTCALGAINP, ALRTCALGAINR bit in the ALRTSUM reg-  
ister and demonstrates proper functionality of digital circuitry.  
If the result from the ADC is greater than 000h, an alert  
is issued by setting the ALRTADCZS bit in the FMEA2  
register.  
The DIAGSEL1 and DIAGSEL2 registers can be configured  
to obtain further diagnostic information regarding the ADC.  
BATTERY PACK  
PLUG  
AC/DC CHARGING SWTICH  
PRE CHARGING SWITCH  
PLUG  
PLUG  
MAIN HV+ CONTRACTOR  
VEHICLE 12V PWR  
PHASE 1  
PHASE 2  
PHASE 3  
VEHICLE GND  
BATTERY  
MANAGEMENT  
SYSTEM (BMS)  
COMM BUS  
COMM  
BUS  
VEHICLE  
CONTROL  
SYSTEM  
(VCS)  
INVERTER  
SERVICE  
SWTICH  
MOTOR  
PLUG  
MAIN HV- CONTRACTOR  
CHASSIS GROUND  
Figure 96. Electric Vehicle System  
Maxim Integrated │ 292  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Note: The analog verification of the calibration is performed  
using the cell gain-calibration diagnostic, offset-calibration  
diagnostic, and THRM offset-calibration diagnostic.  
Supply Connection Diagnostics  
The V , V , and V supply voltages are con-  
DDL1 DDL2  
DDL3  
tinuously monitored to be above V  
. If a supply  
VDDL_OC  
goes below the threshold, the ALRTVDDL1, ALRTVDDL2,  
or ALRTVDDL3 alert is set.  
MAIN HV+  
INVERTER+  
CONTACTOR  
BATTERY  
MODULE  
PRE  
CHARGING  
PRE CHARGING  
SWTICH  
MAX17853  
SLAVE  
MONITOR  
AND  
AC/DC  
CHARGING  
AC/DC CHARGING  
SWTICH  
CONTROL  
TEMP  
UART  
ALERT  
INTERFACE  
INTERFACE  
BATTERY  
MODULE  
MAX17853  
SLAVE  
MONITOR  
AND  
CONTROL  
TEMP  
UART  
INTERFACE  
ALERT  
INTERFACE  
BATTERY  
MODULE  
BATTERY  
PACK  
HVAC  
MAX17853  
SLAVE  
MONITOR  
AND  
VEHICLE  
12V PWR  
MASTER  
CONTROLLER  
CONTROL  
TEMP  
SPI INTERFACE  
UART INTERFACE  
VEHICLE COMM BUS  
(CAN INTERFACE)  
ISOLATION  
ISOLATION  
MAX17841  
ALERT INTERFACE  
GROUND  
FAULT  
CHECK  
INVERTER-  
MAIN HV- CONTACTOR  
MICRO-Ω  
SHUNT  
CHASSIS GROUND  
Figure 97. Daisy-Chain System  
Maxim Integrated │ 293  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
The GNDL1, GNDL2, and GNDL3 supply voltages are  
ground goes below the threshold, the ALRTGNDL1,  
ALRTGNDL2, or ALRTGNDL3 alert is set.  
continuously monitored to be below V  
. If a  
GNDL_OC  
MAIN HV+  
INVERTER+  
CONTACTOR  
PRE  
CHARGING  
PRE CHARGING  
SWTICH  
AC/DC  
CHARGING  
AC/DC CHARGING  
SWTICH  
BATTERY  
MODULE  
MAX17853  
CAN INTERFACE  
CAN INTERFACE  
SPI INTERFACE  
µC ALERT INTERFACE  
CAN  
ISOLATOR  
SLAVE  
MONITOR  
AND  
CONTROL  
TEMP  
BATTERY  
MODULE  
MAX17853  
CAN INTERFACE  
CAN INTERFACE  
SPI INTERFACE  
µC ALERT INTERFACE  
CAN  
ISOLATOR  
SLAVE  
MONITOR  
AND  
CONTROL  
TEMP  
MASTER  
CONTROLLER  
BATTERY  
PACK  
HVAC  
VEHICLE  
12V PWR  
BATTERY  
MODULE  
MAX17853  
CAN INTERFACE  
CAN INTERFACE  
SPI INTERFACE  
µC ALERT INTERFACE  
VEHICLE COMM BUS  
(CAN INTERFACE)  
CAN  
ISOLATOR  
SLAVE  
MONITOR  
AND  
GROUND  
FAULT  
CONTROL  
TEMP  
CHECK  
INVERTER-  
MAIN HV- CONTACTOR  
MICRO-Ω  
SHUNT  
CHASSIS GROUND  
Figure 98. Distributed System  
Maxim Integrated │ 294  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
,whereas all components would require redundant imple-  
mentation in a non-daisy-chain (distributed CAN system).  
See the Distributed CAN Systems section for further infor-  
Applications Information  
Vehicle Applications  
Battery cells can use various chemistries such as NiMH,  
Li-ion (NMC, LFP, LTO), SuperCap or lead-acid. SuperCap  
cells are used in fast-charge applications such as energy  
storage for regenerative braking. An electric-vehicle sys-  
tem may require a high-voltage battery pack voltage from  
400V to 800V, which translates from 100 to 200 Li-ion  
cells ,or up to 500 NiMH cells.  
mation regarding its implementation.  
Distributed CAN Systems  
A distributed CAN system(Figure 98) employs an individual  
CAN communication interface, battery-management micro-  
controller, and transformer isolation between each battery  
module and master controller/ECU. This system architec-  
ture, although realizable, yields increased system cost.  
A battery module is a number of cells connected in  
series that can be connected with other modules to build  
a high-voltage battery pack, as shown in Figure 96.  
The modularity allows for economy, configurability, quick  
assembly, and serviceability. The minimum number of  
cells connected to any one device is limited by the  
device’s minimum operating voltage. The 9V (min) for  
Standard Module Configuration  
Power-Supply Connection  
In a standard module configuration, both internal and  
external protection circuits permit the MAX17853 to derive  
its supply directly from the battery-module voltage using  
a filter network connecting the DCIN input to the top cell  
of the battery pack. These protection circuits protect  
against transients such as those that can occur when  
the battery voltage is first connected to the device, when  
the vehicle inverter is connected to the battery stack, or  
during charge/discharge transitions such as regenerative  
braking. The internal circuits include 72V tolerant battery  
inputs and a high-noise rejection ratio (PSRR) for the  
internal low-voltage regulator.  
V
DCIN  
usually requires at least two Li-ion, six NiMH or six  
SuperCap cells per module.  
Battery-Management Systems  
Daisy-Chain System  
A daisy-chain system employs a communication link  
between the host microcontroller and all the battery mod-  
ules. The daisy-chain method reduces overall system cost  
as it requires only a single microcontroller, CAN PHY, and  
transformers between the lowest module and the host  
The external protection circuit shown in Figure 99 filters  
and clamps the DCIN input. During negative-voltage tran-  
sients, the filter capacitor maintains power to the device  
through the transient.  
MODULE+  
For maximum measurement accuracy, dedicated wires  
separate from the cell sense wires should be used for the  
power-supply connection (Kelvin sense). This eliminates  
voltage drops in the sense wires induced by supply cur-  
rent. If the application can tolerate the induced error, the  
supply wires can serve as the sense wires to reduce the  
wire count.  
R80  
100Ω  
DCIN  
C20  
D80  
Connecting Cell Inputs  
2.2µF  
SMCJ58A  
100V  
As mentioned in the previous section, the DCIN input  
should be connected to the battery module's top cell to  
prevent charge imbalance between cells. If the battery  
module contains less than 14 cells, the lowest order inputs  
(e.g., C1 and C0) should be utilized first and connected to  
the lowest common-mode signals. Any unused cell inputs  
should be shorted together, and unused switch inputs  
should also be shorted together. The TOPCELL register  
Figure 99. Power-Supply Connection  
Maxim Integrated │ 295  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
must also be configured for stacks with less than 14 cells  
to mask out any false alerts corresponding to the unused  
channels.  
The Flexible Pack (Flex Pack) Configuration provides  
systemflexibilitysuchthatasingleMAX17853canmeetthe  
requirements of: varying battery module configuration(s)  
used across multiple mild EV, HEV, BEV distributed  
daisy-chain systems, as well as distributed daisy-chain  
Flexible Pack Configuration  
Power Supply, Cell Input Configuration  
TO CELL  
N+1  
MAX1785X  
SENSE WIRE  
R
C
N
FILTER  
TO  
HVMUX  
C
R
FILTER  
BIAS  
SW  
N
TO  
ALTMUX  
HV  
R
BALANCE  
BALSW  
N
Q
BALANCE  
R
GATE  
CELL  
N
D
C
GATE  
GATE  
R
C
SW  
N-1  
BIAS  
TO  
ALTMUX  
SENSE WIRE  
R
C
N-1  
FILTER  
TO  
HVMUX  
FILTER  
AGND  
TO CELL  
N-1  
Figure 100. External-Balancing FET  
Table 80. FET-Balancing Components  
COMPONENT NAME  
TYPICAL VALUE OR PART  
FUNCTION  
R
1kΩ  
100Ω  
Voltage-divider for transistor bias  
Hot-plug current-limiting resistor  
Reverse-voltage gate protection  
BIAS  
GATE  
GATE  
GATE  
R
D
C
S1B  
1nF  
Transient V  
suppression  
GS  
R
Q
per application  
SQ2310ES  
Balancing current-limiting resistor  
External switch  
BALANCE  
BALANCE  
Maxim Integrated │ 296  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
systemsthatemployunequalmodulesizeswithinastandard  
battery pack.  
required by discrete external traces. Due to this internal  
routing, the bill-of-materials (BOM) cost may be reduced  
through the elimination of the DCIN filter resistor as well  
as the block-voltage-measurement filter. Unused chan-  
nels are left unconnected, allowing any battery wiring  
harness to connect to a standard battery module. See the  
This flexibility is allowed through internal supply routing of  
the top battery cell as well as internal signal routing of the  
block voltage, where these connections were otherwise  
TO CELL  
N+1  
MAX1785X  
SENSE WIRE  
R
C
N
FILTER  
TO  
HVMUX  
C
R
FILTER  
BIAS  
SW  
N
TO  
ALTMUX  
HV  
R
BALANCE  
BALSW  
N
Q
BALANCE  
R
BASE  
CELL  
N
D
C
BASE  
BASE  
R
C
SW  
N-1  
BIAS  
TO  
ALTMUX  
SENSE WIRE  
R
C
N-1  
FILTER  
TO  
HVMUX  
FILTER  
AGND  
TO CELL  
N-1  
Figure 101. External Cell-Balancing BJT  
Table 81ꢀ BJT Balancing Components  
COMPONENT NAME  
TYPICAL VALUE OR PART  
FUNCTION  
R
R
D
C
R
22Ω  
15Ω  
S1B  
1nF  
Voltage-divider for transistor bias  
Hot-plug current-limiting resistor  
Reverse emitter-base voltage protection  
Transient VBE suppression  
BIAS  
BASE  
BASE  
BASE  
per balancing current requirements  
NST489AMT1  
Balancing current-limiting resistor  
External switch  
BALANCE  
Q
BALANCE  
Maxim Integrated │ 297  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Flexible Pack Configuration section for further details on  
implementation.  
FLXPCKSCAN bit in the PACKCFG register, resulting in  
total BOM cost reduction, as well as eliminating system  
cost and constraints for calibration.  
For non-distributed daisy-chain systems (centralized  
systems), the Flex Pack eliminates the need to route  
external sense wires as the voltage drops from the cell  
cabling, which can be significantly reduced using the  
External Cell Balancing  
DAISY-CHAIN  
DAISY-CHAIN  
DEVICE  
DEVICE  
N-1  
N
GNDL[1, 2, 3]  
(DEVICE )  
MAX1785x  
MAX1785x  
N
C40  
15pF  
R42  
100kΩ  
C42  
2.2nF, 600V  
R40  
1.5kΩ  
R50  
47Ω  
RXLP  
RXLN  
TXUP  
TXUN  
C43  
2.2nF, 600V  
R41  
1.5kΩ  
R51  
47Ω  
C41  
R43  
SIGNAL  
15pF  
100kΩ  
TRACES OR  
WIRE  
HARNESS  
GNDL[1, 2, 3]  
(DEVICE  
)
N-1  
GNDL[1, 2, 3]  
(DEVICE )  
N
C50  
2.2nF, 600V  
C52  
15pF  
R52  
100kΩ  
R44  
47Ω  
R54  
1.5kΩ  
TXLP  
TXLN  
RXUP  
RXUN  
C51  
2.2nF, 600V  
R45  
47Ω  
R55  
1.5kΩ  
C53  
R53  
SIGNAL  
15pF  
100kΩ  
TRACES OR  
WIRE  
HARNESS  
GNDL[1, 2, 3]  
(DEVICE  
)
N-1  
GNDL[1, 2, 3]  
GNDL[1, 2, 3]  
GNDL[1, 2, 3]  
(DEVICE )  
GNDL[1, 2, 3]  
(DEVICE  
N
)
N-1  
Figure 102. UART Connection  
Maxim Integrated │ 298  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
The cell-balancing current can be switched by external  
transistors if more power dissipation is required. The inter-  
nal switches can be used to switch the external transistors,  
with the power limited by external current-limiting resistors.  
event. R  
inrush current. C  
sient noise coupled from the drain to the gate to maintain  
the transistor bias. The cell-balancing current is limited by  
protects the device by limiting the hot-plug  
GATE  
can be added to attenuate tran-  
GATE  
R
. The various external cell-balancing summary  
BALANCE  
External Cell-Balancing using FET Switches  
components are shown in Table 80.  
An application circuit for cell balancing that employs FET  
External Cell-Balancing Using BJT Switches  
switches is shown in Figure 100. Q  
is selected  
BALANCE  
for low V that meets the minimum V  
requirements  
An application circuit for cell balancing that employs  
T
CELLn  
of the application during balancing. D  
protects  
BJT switches is shown in Figure 101. Q  
is  
GATE  
BALANCE  
Q
from reverse V  
voltage during a hot-plug  
selected for power dissipation based on the IB drive  
BALANCE  
GS  
V
DDL[2, 3]  
MAX1785x  
R46  
10kΩ  
R48  
10kΩ  
FMB3906  
V
AA  
R44  
47Ω  
TX[U, L]P  
TX[U, L]N  
TO REST OF  
Tx CIRCUIT OR  
Rx CIRCUIT  
R45  
47Ω  
R47  
R49  
10kΩ  
10kΩ  
GNDL[2, 3]  
Figure 103. High-Z Idle Mode Application Circuit  
R44  
47Ω  
MAX1785x  
TX[U, L]P  
TO RECEIVER  
R45  
47Ω  
TX[U, L]N  
PESD1CAN  
GNDL[2, 3]  
Figure 104. External ESD Protection for UART Tx Ports  
Maxim Integrated │ 299  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
MAX1785x  
C50  
2.2nF,  
600V  
C52  
15pF  
50V  
R52  
100kΩ  
R54  
1.5kΩ  
100Ω  
RX[U, L]P  
FROM  
TRANSMITTER  
R55  
1.5kΩ  
100Ω  
RX[U, L]N  
C53  
R53  
C51  
2.2nF,  
600V  
15pF  
100kΩ  
50V  
PESD1CAN  
GNDL[1, 2, 3]  
Figure 105. External ESD Protection for UART Rx Ports  
ISOLATED OR  
NON-ISOLATED  
INVERTING  
MAX1785X  
RXLP  
LOGIC DRIVER  
R
F
1.5kΩ  
UART DATA  
RXLN  
C
f
15pF  
Figure 106. Application Circuit for Single-Ended UART Mode  
current available and the cell-balancing current. D  
External Cell-Balancing Short-Circuit Detection  
BASE  
protects Q  
from negative V  
protects the device by limiting the hot-plug  
during hot-plug  
BALANCE  
GS  
A short-circuit fault in the external balancing path results  
events. R  
BASE  
in continuous current flow through R  
and  
BALANCE  
inrush current. The cell-balancing current is limited by  
. The various external cell-balancing summary  
Q . To detect this fault, the voltage drop across  
BALANCE  
R
BALANCE  
components are shown in Table 81.  
Maxim Integrated │ 300  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
the sense-wire parasitic resistance must be measurable. A  
very small series resistor may be added for this purpose.  
UART Supplemental ESD Protection  
The UART ports may require supplemental protection to  
meet IEC 61000-4-2 requirements for contact discharge.  
The recommended circuits to meet ±8kV protection levels  
are shown in Figure 104 and Figure 105. The protection  
components should be placed as near as possible to the  
signal’s entry point on the PCB.  
UART Interface  
The UART pins employ both internal and external circuits  
to protect against noise. The recommended external filters  
are shown in Figure 102. ESD protection is shown in Figure  
104 and Figure 105.  
Single-Ended Rx Mode  
High-Z Idle Mode  
To configure the lower port for single-ended Rx mode, the  
RXLP input is connected to digital ground and the RXLN  
input receives the inverted signal, just as it does for dif-  
ferential mode. If the host cannot transmit inverted data,  
then the signal must be inverted as shown in Figure 106.  
Transmitter operation is not affected. If the up-stack  
device is single-ended, only the TXUN signal is required.  
The high-Z idle mode lowers radiated emissions from wire  
harnesses by minimizing the charging and discharging of  
the AC-coupling capacitors when entering and exiting the  
idle mode. The application circuit shown in Figure 103 uses  
a weak resistor-divider to bias the Tx lines to V  
during  
DDL  
the high-Z idle period and pnp transistor clamps to limit the  
maximum voltage at the Tx pins during high noise injection.  
The resistor-divider and pnp clamps are not needed for  
applications utilizing only the low-Z mode. The low-Z and  
high-Z idle modes both exhibit a similar immunity to noise  
injection. Low-Z mode may be preferred for ports driving  
inductive loads to minimize ringing.  
Note: In single-ended mode, SHDNL must be driven  
externally.  
UART Isolation  
The UART is expected to communicate reliably in noisy  
high-power battery environments where both high dV/dt  
DAISY-CHAIN DEVICE  
1
MAX17841  
MAX1785x  
GNDL[1, 2, 3]  
(DEVICE )  
1
15pF  
47Ω  
1.5kΩ  
1.5kΩ  
TXP  
RXLP  
RXLN  
47Ω  
TXN  
SIGNAL TRACES OR  
WIRE HARNESS  
15pF  
1nF  
GNDL  
GNDL[1, 2, 3]  
GNDL  
(DEVICE  
GNDL[1, 2, 3]  
(DEVICE )  
)
MAX17841  
1
Figure 107. UART Transformer Isolation  
Maxim Integrated │ 301  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
supply noise and common-mode current injection induced  
by electromagnetic fields are prevalent. Common-mode  
currents can also be induced by parasitic coupling of the  
system to a reference node such as a battery or vehicle  
chassis. The daisy-chain physical layer is designed for  
maximum noise immunity.  
The AC-coupled differential communication architecture  
has a ±30V common-mode range and +6V differential  
swing. This range is in addition to the static common-  
mode voltage across the AC-coupling capacitors between  
modules. Transmitter drivers have low internal impedance  
and are source-terminated by the application circuit so  
that impedances are well matched in the high- and low-  
driver states. This architecture minimizes differential noise  
DAISY-CHAIN DEVICE  
1
V
AA  
MAX1785x  
RXLP  
FROM UART  
DATA SOURCE  
R
F
GNDL[1, 2, 3]  
(DEVICE )  
4.7kΩ  
1
RXLN  
C
f
15pF  
GNDL[1, 2, 3]  
GNDL[1, 2, 3]  
(DEVICE )  
1
ACPL-M72T  
GND (UART  
DATA SOURCE)  
3.3V  
R
OPTO  
TXLN  
TO UART  
DATA SOURCE  
GND (UART  
DATA SOURCE)  
ACPL-M72T  
GNDL[1, 2, 3]  
(DEVICE )  
1
Figure 108. UART Optical Isolation  
Maxim Integrated │ 302  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
µC  
MAX1785x  
5V REGULATOR  
OUTPUT  
V
DDL2  
0.47µF  
GNDL2  
V
DDL3  
0.47µF  
CHASSIS GROUND  
GND  
GPO  
GNDL3  
SHDNL\  
R
10kΩ  
PULLUP  
R
PULLUP  
10kΩ  
GPI  
ALERTOUT  
(PASSIVE DRIVE)  
R
F
22Ω  
SCLK  
CSB  
TXUN (SCLK)  
TXLN (CSB)  
TXLP (SDO)  
TXLN (SDI)  
R
22Ω  
F
R
22Ω  
F
MOSI  
MISO  
R
22Ω  
F
Figure 109. 5V SPI Supply from System  
Maxim Integrated │ 303  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
µC  
MAX1785x  
V
AA  
1µF  
AGND  
5V REGULATOR  
OUTPUT  
V
DDL2  
0.47µF  
GNDL2  
V
DDL3  
0.47µF  
CHASSIS GROUND  
GND  
GPO  
GNDL3  
SHDNL\  
R
PULLUP  
10kΩ  
GPI  
SCLK  
CSB  
ALERTOUT  
(PASSIVE DRIVE)  
R
22Ω  
F
TXUN (SCLK)  
R
22Ω  
F
TXLN (CSB)  
TXLP (SDO)  
TXLN (SDI)  
R
22Ω  
F
MOSI  
MISO  
R
22Ω  
F
Figure 110. 3.3V SPI Supply from Device V  
LDO  
AA  
Maxim Integrated │ 304  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
induced by common-mode current injection. The receiver  
inputs are filtered above the fundamental communication  
frequency to prevent high-frequency noise from entering  
the device. The system is designed for use with isolation  
transformers or optocouplers to provide an even higher  
degree of common-mode noise rejection in circuit locations  
where extremely large common-mode noise is present,  
such as between vehicle chassis and the high-voltage  
battery-pack terminals.  
Since a mid-pack service disconnect safety switch is  
present in many battery packs, the device is designed  
to communicate with the entire daisy-chain whether the  
service-disconnect switch is engaged or open. This is  
possible with daisy-chains that employ capacitor isolation.  
DAISY-CHAIN DEVICE  
DAISY-CHAIN DEVICE  
N
N+1  
MAX1785x  
MAX1785x  
V
AA  
(DEVICE )  
N
V
AA  
R
OPTO  
ALERTOUT  
ALERTIN  
AGND  
AGND  
AGND  
(DEVICE )  
N
ACPL-M72T  
AGND  
(DEVICE  
)
N+1  
Figure 111. Single-End ALERT Interface in UART Mode  
Maxim Integrated │ 305  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
µC  
MAX1785x  
5V REGULATOR  
OUTPUT  
V
DDL2  
0.47µF  
GNDL2  
V
DDL3  
0.47µF  
CHASSIS GROUND  
GND  
GPO  
GNDL3  
SHDNL\  
R
10kΩ  
PULLUP  
GPI  
ALERTOUT  
(ACTIVE DRIVE)  
R
F
22Ω  
SCLK  
CSB  
TXUN (SCLK)  
TXLN (CSB)  
TXLP (SDO)  
TXLN (SDI)  
R
22Ω  
F
R
22Ω  
F
MOSI  
MISO  
R
22Ω  
F
Figure 112. Single-End ALERT Interface in SPI mode - Active Drive  
Maxim Integrated │ 306  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
µC  
MAX1785x  
5V REGULATOR  
OUTPUT  
V
DDL2  
0.47µF  
GNDL2  
V
DDL3  
0.47µF  
CHASSIS GROUND  
GND  
GPO  
GNDL3  
SHDNL\  
R
10kΩ  
PULLUP  
R
PULLUP  
10kΩ  
GPI  
ALERTOUT  
(PASSIVE DRIVE)  
R
F
22Ω  
SCLK  
CSB  
TXUN (SCLK)  
TXLN (CSB)  
TXLP (SDO)  
TXLN (SDI)  
R
22Ω  
F
R
22Ω  
F
MOSI  
MISO  
R
22Ω  
F
Figure 113. Single-End ALERT Interface in SPI mode - Passive Drive  
Maxim Integrated │ 307  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
between the MAX17841B interface and the MAX1785x  
UART Transformer Isolation  
provides excellent isolation and common-mode noise  
rejection (see Figure 107). The center-tap of a signal trans-  
former may be used to enhance common-mode rejection  
The UART ports may be transformer-coupled because of  
their DC-balanced differential design. Transformer coupling  
MAX1785X  
COMMUNICATION  
INITIALIZED  
MAX1785X  
FULLY FUNCTIONAL  
YES  
DUAL UART  
CONFIGURATION  
NO  
YES  
NO  
SEND PREAMBLES FOR  
~1MS/DEVICE UNTIL  
RECEIVED BY MAX17841/  
HOST  
DOWN MASTER  
CONFIGURATION  
EXPECTED  
ADDRESS  
YES  
ADDRESSING  
ERROR  
FAULT  
SEND PREAMBLES  
ON UP PATH UNTIL  
RECEIVED BY  
SEND PREAMBLES  
ON DOWN PATH UNTIL  
RECEIVED BY  
NO  
NO  
NO  
MAX17841/HOST  
MAX17841/HOST  
SEND HELLOALL COMMAND  
FAULT OR  
ADDRESSING  
ERROR  
YES  
YES  
PEC ERROR  
SEND PREAMBLES  
FOR N+1 DAISY  
CHAIN DEVICES ON  
DOWN PATH  
SEND PREAMBLES  
FOR N+1 DAISY  
CHAIN DEVICES ON  
UP PATH  
FAULT  
HELLOALL  
CORRECT RETURN  
ADDRESS  
NO  
YES  
YES  
SEND DOWNHOST COMMAND  
SEND DOWN PATH HELLOALL  
SEND UP PATH HELLOALL  
YES  
HELLOALL  
CORRECT RETURN  
ADDRESS  
HELLOALL  
CORRECT RETURN  
ADDRESS  
FAULT OR  
COUNT ERROR  
READ ADDRESS  
REGISTER  
YES  
YES  
WRITEALL BA[4:0]  
(IF RETURNED HELLOALL  
ADDR[4:0 ]0X1F)  
WRITEALL BA[4:0]  
(IF INITIAL HELLOALL  
ADDR[4:0] 0X00)  
WRITEALL TA[4:0]  
UART WITH  
EXTERNAL  
LOOPBACK  
YES  
CLEAR ALRTDUALUART  
WRITEALL UARTCFG = 0B00  
NO  
SINGLE UART  
WITH DIFF  
ALERT  
YES  
YES  
WRITEALL UARTCFG = 0B10  
WRITEALL UARTCFG = 0B10  
WRITEDEVICE UARTCFG =  
0B01 TO LAST DAISY CHAIN  
DEVICE  
UART WITH  
INTERNAL  
LOOPBACK  
NO  
FAULT OR  
COUNT ERROR  
Figure 114. Device Initialization Sequence  
Maxim Integrated │ 308  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
by AC-coupling the node to local ground. Common-mode  
currents that are able to pass through the parasitic cou-  
pling of the primary and secondary are shunted to ground  
to make a very effective common-mode noise filter.  
the entire command propagated without errors. Using the  
data-check and PEC bytes, complete transaction integrity  
for READALL and READDEVICE command packets can  
be verified.  
UART Optical Isolation  
PEC Errors  
The daisy-chain may use optical isolation instead of trans-  
former or capacitor isolation, as shown in Figure 108.  
If the MAX17853 receives an invalid PEC byte, the cor-  
responding ALRTPECUP, or ALRTPECDN bit in the  
STATUS2 register, and the summary ALRTPEC bit in the  
STATUS1 register are set. All single-UART configura-  
tions set the ALRTPECUP bit, since the Up path is used  
for received transactions. In a dual-UART configura-  
tion, a PEC error in the Up path sets ALRTPECUP, and  
a PEC error in the Down path set the ALRTPECDN.  
The MAX17853 does not execute/accept any written  
commands unless the received PEC byte matches the  
calculated CRC Remainder, confirming the validity of  
the received command and data stream. To confirm the  
command was accepted, the host should perform an  
appropriate read transaction to verify the contents of the  
written register(s).  
SPI Interface  
V
DDL2  
and VDDL3 are the supply pins for the SPI com-  
munication. SPI communication supports both 5V and  
3.3V. The SPI supply configuration with 5V provided by  
the system is shown in Figure 109.  
The SPI supply configuration with 3.3V provided by the  
device's V LDO output is shown in Figure 110.  
AA  
ALERT Interface  
V
DDL2  
and V  
are the supply pins for the Alert  
DDL3  
interface. When using the differential Alert interface in  
the UART daisy-chain configuration, the recommended  
external filters and ESD protection is same as the UART  
interface. When using single-end Alert interface (i.e.,  
ALERTIN and ALERTOUT pins) in the UART daisy-chain,  
optical isolation is used, as shown in Figure 111.  
PEC Calculations  
When directly communicating with the MAX17853 through  
the UART interface, the host must compute and send  
the PEC byte, protecting the data sent to the device.  
Likewise, for returned read packets, the host should store  
the received data, perform the CRC calculation, and com-  
pare the results to the received PEC byte provided by the  
MAX17853 before accepting the data received as valid.  
To support PEC-byte computation and checking, the host  
must implement a CRC-8 (8-bit cyclic-redundancy check)  
encoding and decoding algorithm based on the following  
polynomial (0xA6):  
In SPI mode, one MAX1785x is applied in the system.  
The system can choose to supply V  
and V  
DDL2  
DDL3  
from the system's 5V or the device's V LDO output. An  
AA  
active CMOS ALERTOUT output setting in the system is  
shown in Figure 112.  
A passive pulup ALERTOUT setting in the system is  
shown in Figure 113.  
Device Initialization Sequence  
8
6
3
2
Immediately after reset, all device addresses are set to  
0x00 and the UART baud rate and receive modes have not  
been auto-detected; therefore, the following initialization  
sequence is recommended after every reset or after any  
change to the hardware configuration.  
P x = x + x + x + x + 1  
( )  
This polynomial is capable of protecting a data stream of  
up to 247 bits with a Hamming distance of three, mean-  
ing any data stream 247 bits or less in length with any  
combination of 3 bits of error or less is guaranteed to be  
identified. If more than 3 bits of error are encountered, the  
PEC operation will very likely identify the problem, though  
this cannot be mathematically guaranteed.  
Error Checking  
Data integrity is provided by Manchester encoding, par-  
ity, character framing, and packet-error checking (PEC).  
The combination of these features verify stage-to-stage  
communication both in the write and read directions,  
with a Hamming distance (HD) value of 6 for commands  
with a length up to 247 bits (counted prior to Manchester  
encoding and character framing. This is equivalent to the  
longest possible command packet for a daisy-chain of  
up to 13 devices. The data-check byte is present in the  
READALL and READDEVICE commands to verify that  
A hardware implementation of the CRC calculation is  
shown in Figure 115. The CRC Engine shown is imple-  
mented internally within the MAX17853; a similar imple-  
mentation would be required in the host to support direct  
UART communication, for purposes of generating the  
PEC bytes sent to the MAX17853, or for checking PEC  
bytes received from the MAX17853. The incoming UART  
Maxim Integrated │ 309  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
data stream is fed into the CRC Engine LSB first. Once  
the data stream has been completely shifted into the  
engine, the CRC Remainder is known; this becomes the  
PEC byte for both incoming and outgoing data, PEC[7:0]  
=BIT[7:0] as shown (be sure to note the ordering of the  
bits within the Remainder). Note that all UART transac-  
tions supply the command and data stream LSB first.  
For outgoing UART data streams, the MAX17853 first  
clears the CRC Engine and then provides the outgo-  
ing data stream to the CRC Engine, LSB first. After the  
final bit of data is processed (in this case, the MSB of  
the outgoing data stream is applied to the Engine), the  
Engine is stopped and the CRC Remainder is known, so  
this becomes the outgoing PEC byte. The outgoing PEC  
byte, as calculated by the MAX17853 using its copy of the  
CRC Engine, then follows within the UART transaction  
(also LSB first). As the host receives the data stream from  
the MAX17853, it should apply the data to its copy of the  
CRC Engine (LSB first, in the order it arrives in the UART  
transaction, until the MSB of the data stream is applied to  
the engine). At this point, there are two equivalent ways  
the host can complete the PEC operation to establish the  
validity of the received data:  
For incoming UART data streams, the MAX17853 first  
clears the CRC Engine and then inputs the incoming data  
stream into the CRC Engine, LSB first. After the final bit  
of data is processed (in this case, the MSB of the incom-  
ing data stream is applied to the Engine), the Engine is  
stopped and the CRC Remainder is known. The incoming  
PEC byte as calculated by the host using its copy of the  
CRC Engine then follows within the UART transaction  
(also LSB first), and is internally compared against the  
CRC Remainder as calculated by the MAX17853. If the  
PEC byte received matches the CRC Remainder calcu-  
lated for the incoming data stream, the PEC operation is  
successful, and the transaction is accepted and executed  
by the MAX17853. If there is a mismatch, the MAX17853  
rejects the transaction and issues the ALRTPEC status  
bit, notifying the host of the issue so the transaction can  
be resent.  
Direct Comparison Method: The host stops the CRC  
Engine once the data stream MSB is applied and  
compares the resulting CRC Remainder to the PEC  
byte supplied by the MAX17853 (again, LSB first).  
If the 2 bytes match, the data is accepted as valid;  
otherwise, it should be rejected. This is the method  
employed by the MAX17853 internally, as described  
above.  
BIT 0  
BIT 1  
BIT 2  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
INPUT DATA BITSTREAM (LSB FIRST)  
Figure 115. PEC CRC Calculation  
Maxim Integrated │ 310  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Zero-Remainder Method: The host continues CRC Engine computations after the data MSB is applied by  
appending the received PEC byte to the end of the data stream, LSB first (i.e., in the order received during the  
UART transaction). Once the MSB of the PEC byte arrives at the input of the CRC Engine, if the resulting CRC  
Remainder=00h, the data is accepted as valid; otherwise, it should be rejected.  
PEC Calculation Pseudocode  
The host uses the algorithm to process all bytes received in the command packet prior to the PEC byte itself. Neither  
the PEC nor the alive-counter bytes are part of the calculation. The bits are processed in the order they are received,  
LSB first. A byte-wise pseudo-code algorithm is shown below, but lookup table solutions are also possible to reduce host  
calculation time.  
For commonly issued command packets, the host can pre-calculate (hard-code) the PEC byte. For commonly- used par-  
tial packets, the CRC value of a partial calculation may be used as the initial value for a subsequent run-time calculation.  
Function PEC_Calculation(ByteList(), NumberOfBytes, CRCByte)  
{
// CRCByte is initialized to 0 for each ByteList in this implementation, where  
// ByteList contains all bytes of a single command. It is passed into the  
// function in case a partial ByteList calculation is needed.  
// Data is transmitted and calculated in LSb first format  
// Polynomial = x^8+x^6+x^3+x^2+1 = 1010_0110_1 = 0xA6  
POLY = 8’hB2 // 10110010b – Polynomial binary representation is from left to right for  
LSB first (0xA6 -> 0xB2)  
//Loop once for each byte in the ByteList  
For ByteCounter = 0 to (NumberOfBytes – 1)  
(
//Bitwise XOR the current CRC value with the ByteList byte  
CRCByte = CRCByte XOR ByteList(ByteCounter)  
//Process each of the 8 CRCByte remainder bits  
For BitCounter = 1 To 8  
(
// The LSb should be shifted toward the highest order polynomial  
// coefficient. This is a right shift for data stored LSb to the right  
// and POLY having high order coefficients stored to the right.  
// Determine if LSb = 1 prior to right shift  
If CRCByte[1] = 1 Then  
// When LSb = 1, right shift and XOR CRCByte value with 8 LSbs  
// of the polynomial coefficient constant. “/ 2” must be a true right  
// shift in the target CPU to avoid rounding problems.  
CRCByte = ((CRCByte / 2) XOR POLY)  
Else  
//When LSb = 0, right shift by 1 bit. “/ 2” must be a true right  
// shift in the target CPU to avoid rounding problems.  
CRCByte = (CRCByte / 2)  
End If  
//Truncate the CRC value to 8 bits if necessary  
Maxim Integrated │ 311  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
CRCByte = CRCByte AND 8'hFF  
//Proceed to the next bit  
Next BitCounter  
OTP9[0:15], OTP10[0:15], OTP11[0:15], OTP12[0:7].  
Note that this is essentially the entire ID/OTP content pro-  
vided LSB-first - ID1[0] is the first bit applied to the CRC  
Engine and OTP12,7 is the last, and all 200 bits must be  
applied. At this point, there are two equivalent ways the  
)
//Operate on the next data byte in the  
ByteList  
host can complete the ROMCRC operation to establish  
the validity of the received ID/OTP data:  
Next ByteCounter  
)
Direct Comparison Method: The host stops the CRC  
Engine once the ID/OTP MSB is applied and com-  
pares the resulting CRC Remainder to the ROMCRC  
byte supplied by the MAX17853 as ROMCRC[7:0]  
(OTP12[15:8]). If the 2 bytes match, the data is  
accepted as valid; otherwise, it should be rejected  
and retried in case of a communication fault. If the  
failure persists, this may indicate a problem within  
the MAX17853 ROM.  
// All calculations done; CRCByte value is  
the CRC byte for ByteList() and  
// the initial CRCByte value  
Return CRCByte  
}
ROMCRC Calculation  
For safety purposes, the factory-trimmed ROM (OTP)  
content can be read back by the user and checked for  
errors using an 8-bit CRC (cyclic-redundancy check).  
ROMCRC is an 8-bit CRC Remainder computed using the  
ID/OTP content and stored in OTP12[15:8] at the factory.  
Both the ID and OTP output data content (excluding  
OTP12[15:8], which ROMCRC[7:0]) and is protected by  
the ROMCRC operation. To support ROMCRC compu-  
tation and checking, the host must implement a CRC-8  
encoding and decoding algorithm based on the following  
polynomial (0xA6):  
Zero-Remainder Method: The host continues CRC  
Engine computations after the data stream is applied  
by appending the received ROMCRC byte to the  
end of the data stream, LSB first (i.e., continu-  
ing the concatenation pattern shown above with  
OTP12[8:15], with OTP12,15 now being the last bit  
applied). Once the MSB of the ROMCRC byte arrives  
at the input of the CRC Engine, if the resulting CRC  
Remainder=00h, the data is accepted as valid;  
otherwise, it should be rejected and retried in case of  
a communication fault. If the failure persists, this may  
indicate a problem within the MAX17853 ROM.  
8
6
3
2
P x = x + x + x + x + 1  
( )  
Note: When using direct UART communication and a  
Block Readback of the ID/OTP content, the ROMCRC  
operation can be computed on the arriving data stream  
in the order received directly from the MAX17853 (since  
the UART interface transmits data LSB-first). If using this  
method, only the 200-bit OTP content should be applied  
to the CRC Engine (with or without the trailing ROMCRC,  
depending on the validation method selected above). If  
using the MAX17853 in UART mode in conjunction with  
a MAX17841, or in SPI mode, the host should first gather  
the entire contents of the ID/OTP, and then concatenate it  
and apply it to the CRC Engine as described above (with  
or without the trailing ROMCRC, depending on the valida-  
tion method selected above).  
This polynomial is capable of protecting the 200 bit ID/  
OTP content with a Hamming Distance of three, meaning  
any combination of three bits of error or less is guaranteed  
to be identified. If more than three bits of error are encoun-  
tered, the ROMCRC operation very likely identify the prob-  
lem, though this cannot be mathematically guaranteed.  
A hardware implementation of the CRC calculation is  
shown in Figure 116. The CRC Engine shown would be  
implemented within the host. The same engine is used  
in the production trim software to compute and store  
the ROMCRC byte at the factory, using the computation  
method outlined below. Be sure to note the ordering of  
the bits within the Remainder, as shown in the figure (i.e.  
BIT[7:0] = ROMCRC [7:0]). Note that this is also the same  
CRC Engine used for PEC Byte CRC operations in UART  
mode.  
In all cases, the user-interface transactions issued to  
fetch the ID/OTP data also will be protected by PEC  
operations (UART) or CRC operations (SPI). If either  
the PEC or CRC checks fail for the transaction itself, an  
interface issue has been identified. The user should retry  
the failed transactions to ensure the ID/OTP data and  
ROMCRC have been accurately received prior to accept-  
ing the results of the ROMCRC operation.  
To complete the ROMCRC operation, the host would first  
clear the CRC Engine and then apply the entire 200-bit  
content of the ID/OTP data received from the MAX17853  
concatenated in the in the following order: ID1[0:15],  
ID2[0:15], OTP2[0:15], OTP3[0:15], OTP4[0:15],  
OTP5[0:15], OTP6[0:15], OTP7[0:15], OTP8[0:15],  
Maxim Integrated │ 312  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
BIT 0  
BIT 1  
BIT 2  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
INPUT DATA BITSTREAM (LSB FIRST)  
Figure 116. ROMCRC Calculation  
5) The SHDNL capacitor and associated trace routing  
should be kept away and shielded from potential  
noise sources and digital signals such as those  
present with the communication or alert interfaces as  
these may affect the voltage seen by the SHDNL pin.  
PCB Layout Recommendations  
Careful PCB layout is critical to achieving the best accu-  
racy performance and robust performance against environ-  
mental conditions.  
Layout Procedure  
6) C traces are recommended to be routed on the  
n
1) Place the charge-pump capacitor close to the  
CPP and CPN pins and on the same layer as the  
MAX17853. Care should be taken to avoid using vias  
to prevent unwanted coupling into adjacent signals  
and planes.  
same layer as the MAX17853 to avoid the potential  
sources for noise injection into the primary measure-  
ment path. These traces carry a negligible current  
and can be kept at minimum trace widths.  
7) SW traces should be optimized for width in the  
n
2) Place the decoupling capacitors on the V  
, V  
DCIN AA  
,
permissible layout (20 mil recommended) to eliminate  
excessive voltage drop due to the balancing  
operation.  
V
DDL1  
close to the respective pins and on the same  
layer as the MAX17853. V  
and V  
should  
DDL2  
DDL3  
be placed close to the pins and is preferred on the  
same layer if possible. All capacitors should not  
share a ground return and each should via directly to  
the AGND internal layer.  
8) UART Rx and Tx ports should be routed for a 100Ω  
differential impedance. If the MAX17853 is used in  
a distributed BMS system, ESD protection is recom-  
mended placed as close to the UART communication  
connector with the ground return via’ed directly to the  
AGND plane to clamp transient events before they  
can couple to other nodes, which may affect device  
performance. For centralized BMS systems, ESD  
components on the UART can be omitted.  
3) AGND, GNDL1, GNDL2, GNDL3, AUXGND should  
via directly to a solid AGND plane placed under the  
MAX17853. Traces and vias should not be shared  
within before they enter the AGND plane.  
4) The DCIN input resistor must be sized depending on  
both device current consumption (I  
) and board  
9) SPI operation will be driven by a system microcon-  
troller, which is located on the same ground place as  
the MAX17853. Depending on trace length, optional  
source termination may be required to ensure that  
overshoot or undershoot does not violate the  
Absolute Maximum Operating Conditions. This  
source termination should be placed close to the Tx  
pins of the device.  
DCIN  
current consumption (I  
) to prevent false  
VAA_LOAD  
ALRTHVHDRM alerts. Adjustment of the DCIN resis-  
tor due to external loading should follow the following  
equation: R  
= R  
x
DCIN_LOAD  
/I ).  
DCIN_NOM  
(1 - I  
DCIN VAA_LOAD  
Note: In FlexPack operation, the DCIN filter resistor  
is omitted.  
Maxim Integrated │ 313  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
64 LQFP  
MAX17853ACB/V+  
-40°C to +125°C  
/V Denotes an automotive-qualified package.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Maxim Integrated │ 314  
www.maximintegrated.com  
MAX17853  
14-Channel High-Voltage Data-Acquisition System  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
7/18  
Initial release  
Updated Benefits and Features, Package Information, Electrical Characteristics table,  
Note 15, removed Note 18, updated Notes SPI-4 and SPI5, Pin Description, ADC  
Input Range, Ramp-Mode Acquisition Time, Comparator Acquisition, Cell Statistics,  
Temperature Alerts, Cell-Balancing Mode Configurations, Address Cyclic-Redundancy  
Check—CRCA[2:0] (DI[22:20]), Input Data Cyclic-Redundancy Check—CRCD[2:0]  
(DI[2:0]), Address Cyclic Redundancy Check—CRCA[2:0] (DI[22:20)]), Input-Data  
Cyclic-Redundany Check—CRCD[2:0] (DI[2:0]), Output-Data Cyclic-Redundancy  
Check—CRCO[2:0] (DO[2:0]), Status Cyclic Redundancy Check—CRCS[2:0]  
(DO[26:24]), Table 66, VERSION (0x00), DEVCFC1 (0x14), and Ordering Information  
1, 23, 25, 26,  
29, 32, 36, 65,  
73, 74, 94, 95,  
136–139, 141,  
148, 185, 208,  
314  
1
1/19  
2
3
4
5
3/19  
8/19  
11/19  
5/20  
Updated Figure 1 and Figure 3  
40. 42  
314  
29  
Updated Ordering Information to remove MAX17853GCB/V+  
Updated Electrical Characteristics table  
Updated Benefits and Features  
1
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2019 Maxim Integrated Products, Inc. │ 315  

相关型号:

MAX17853ACB

14-Channel High-Voltage Data-Acquisition System
MAXIM

MAX17853ACBV

14-Channel High-Voltage Data-Acquisition System
MAXIM

MAX17880

Ensures Safe Operation of Li-Ion Battery Packs While Reducing System Cost
MAXIM

MAX178ACNG

Calibrated 12-Bit ADC with T/H and Reference
MAXIM

MAX178ACNG+

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, PDIP24, PLASTIC, DIP-24
MAXIM

MAX178ACWG

Calibrated 12-Bit ADC with T/H and Reference
MAXIM

MAX178ACWG+

暂无描述
MAXIM

MAX178AENG

Calibrated 12-Bit ADC with T/H and Reference
MAXIM

MAX178AEWG

Calibrated 12-Bit ADC with T/H and Reference
MAXIM

MAX178AEWG+

ADC, Successive Approximation, 12-Bit, 1 Func, Parallel, 8 Bits Access, PDSO24, SOP-24
MAXIM

MAX178AEWG+T

ADC, Successive Approximation, 12-Bit, 1 Func, Parallel, 8 Bits Access, PDSO24, SOP-24
MAXIM

MAX178AMRG

Calibrated 12-Bit ADC with T/H and Reference
MAXIM