MAX1836ETT33+T [MAXIM]

Switching Regulator, 0.45A, BICMOS, PDSO6, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEA, TDFN-6;
MAX1836ETT33+T
型号: MAX1836ETT33+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator, 0.45A, BICMOS, PDSO6, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEA, TDFN-6

信息通信管理 开关 光电二极管
文件: 总15页 (文件大小:1963K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
General Description  
Features  
4.5V to 24V Input Voltage Range  
The MAX1836/MAX1837 high-efficiency step-down con-  
verters provide a preset 3.3V or 5V output voltage from  
supply voltages as high as 24V. Using external feedback  
resistors, the output voltage can be adjusted from 1.25V  
Preset 3.3V or 5V Output  
Adjustable Output from 1.25V to V  
IN  
Output Currents Up to 125mA (MAX1836) or  
to V . An internal current-limited switching MOSFET  
delivers load currents up to 125mA (MAX1836) or 250mA  
(MAX1837).  
IN  
250mA (MAX1837)  
Efficiency Over 90%  
The unique current-limited control scheme, operating  
with duty cycles up to 100%, minimizes the dropout volt-  
age (120mV at 100mA). Additionally, this control scheme  
reduces supply current under light loads to 12μA. High  
switching frequencies allow the use of tiny surface-mount  
inductors and output capacitors.  
● 12μA Quiescent Current  
● 3μA Shutdown Current  
100% Maximum Duty Cycle for Low Dropout  
Small 6-Pin SOT23 and TDFN Packages  
The MAX1836/MAX1837 step-down converters with inter-  
nal switching MOSFETs are available in 6-pin SOT23  
and 3mm x 3mm TDFN packages, making them ideal  
for low-cost, low-power, space-sensitive applications.  
For increased output drive capability, use the MAX1776  
step-down converter that uses an internal 24V switch to  
deliver up to 500mA. For even higher currents, use the  
MAX1626/MAX1627 step-down controllers that drive an  
external P-channel MOSFET to deliver up to 20W.  
Ordering Information  
PIN-  
PACKAGE  
TOP  
PART  
TEMP RANGE  
MARK  
MAX1836ETT33-T -40°C to +85°C 6 TDFN-EP*  
MAX1836ETT50-T -40°C to +85°C 6 TDFN-EP*  
MAX1836EUT33-T -40°C to +85°C 6 SOT23  
MAX1836EUT50-T -40°C to +85°C 6 SOT23  
MAX1837ETT33-T -40°C to +85°C 6 TDFN-EP*  
MAX1837ETT50-T -40°C to +85°C 6 TDFN-EP*  
MAX1837EUT33-T -40°C to +85°C 6 SOT23  
MAX1837EUT50-T -40°C to +85°C 6 SOT23  
*EP = Exposed pad.  
AJG  
AJE  
AANY  
AANW  
AJH  
Applications  
9V Battery Systems  
AJF  
AANZ  
AANX  
Notebook Computers  
Distributed Power Systems  
Backup Supplies  
4mA to 20mA Loop Power Supplies  
Industrial Control Supplies  
● Handheld Devices  
T = Tape and reel.  
Selector Guide appears at end of data sheet.  
Typical Operating Circuit  
Pin Configurations  
OUTPUT  
3.3V OR 5V  
INPUT  
4.5V TO 24V  
TOP VIEW  
IN  
LX  
OUT  
FB  
FB  
GND  
IN  
1
2
3
6
5
4
OUT  
SHDN  
LX  
FB  
GND  
IN  
1
2
3
6
5
4
OUT  
SHDN  
LX  
SHDN  
MAX1836  
MAX1837  
MAX1836  
MAX1837  
MAX1836  
MAX1837  
GND  
TDFN  
SOT23  
NOTE: HIGH-CURRENT PATHS SHOWN WITH BOLD LINES.  
19-1919; Rev 3; 7/06  
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Absolute Maximum Ratings  
IN, SHDN to GND...................................................-0.3V to +25V  
LX to GND.......................................................-2V to (V + 0.3V)  
Operating Temperature Range..............................-40°C to +85°C  
Junction Temperature.......................................................+150°C  
Storage Temperature Range...............................-65°C to +150°C  
Lead Temperature (soldering, 10s)...................................+300°C  
IN  
OUT, FB to GND.......................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C) (Note 1)  
A
6-Pin SOT23 (derate 8.7mW/°C above +70°C)...........696mW  
6-Pin TDFN (derate 24.4mW/°C above +70°C).........1951mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
2
Note 1: Thermal properties are specified with product mounted on PC board with 1in of copper area and still air.  
Electrical Characteristics  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = 0°C to +85°C. Typical values are at T = +25°C,  
IN  
A
A
unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
4.5  
TYP  
MAX  
24  
UNITS  
Input Supply Range  
V
V
IN  
V
V
rising  
falling  
3.55  
3.45  
4.0  
3.9  
12  
18  
3
4.4  
4.3  
25  
Input Undervoltage Lockout  
Threshold  
IN  
V
V
UVLO  
IN  
Input Supply Current  
I
µA  
µA  
µA  
IN  
Input Supply Current in Dropout  
Input Shutdown Current  
I
V
= 5V  
IN(DROP)  
IN  
SHDN = GND  
7
MAX183_EUT50,  
MAX183_ETT50  
FB = GND,  
4.80  
3.168  
1.25  
5.00  
3.30  
5.20  
I
= 0 to 125mA  
LOAD  
Output Voltage (Preset Mode)  
V
V
V
OUT  
(MAX1836) or  
250mA (MAX1837)  
MAX183_EUT33,  
MAX183_ETT33  
3.432  
Output Voltage Range  
(Adjustable Mode)  
(Note 2)  
V
V
V
OUT  
IN  
Feedback Set Voltage  
(Adjustable Mode)  
V
1.200  
1.25  
2.5  
1.300  
FB  
OUT Bias Current  
V
V
V
= 5V  
7.4  
+25  
150  
0.6  
13  
µA  
nA  
mV  
µs  
µs  
OUT  
FB Bias Current  
I
= 0 or 1.25V, T = +25°C  
A
-25  
50  
0.2  
7
FB  
FB  
FB  
FB Dual ModeTM Threshold  
LX Switch Minimum Off-Time  
LX Switch Maximum On-Time  
LX Switch On-Resistance  
rising or falling  
100  
0.4  
10  
t
OFF(MIN)  
t
V
V
= 1.3V  
= 6V  
ON(MAX)  
FB  
R
1.1  
312  
625  
2
LX  
IN  
MAX1836  
MAX1837  
250  
500  
-75  
450  
850  
+75  
LX Current Limit  
I
mA  
mV  
LIM  
LX Zero-Crossing Threshold  
Dual Mode is a trademark of Maxim Integrated Products, Inc.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Electrical Characteristics (continued)  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = 0°C to +85°C. Typical values are at T = +25°C,  
IN  
A
A
unless otherwise noted.)  
PARAMETER  
Zero-Crossing Timeout  
LX Switch Leakage Current  
Dropout Voltage  
SYMBOL  
CONDITIONS  
LX does not rise above the threshold  
MIN  
TYP  
MAX  
UNITS  
µs  
30  
V
= 18V, LX = GND, T = +25°C  
1
µA  
IN  
A
V
I
= 100mA, V = 5V  
IN  
120  
mV  
%
DROPOUT  
OUT  
Line Regulation  
V
= 5V to 24V  
0.05  
IN  
I
= 0 to 125mA (MAX1836) or 250mA  
OUT  
Load Regulation  
0.3  
%
(MAX1837)  
Shutdown Input Threshold  
Shutdown Leakage Current  
Thermal Shutdown  
V
V
V
= 4.5V to 24V (Note 3)  
0.8  
-1  
2.4  
+1  
V
SHDN  
IN  
I
= 0 or 24V  
µA  
°C  
SHDN  
SHDN  
10°C hysteresis (typ)  
160  
Electrical Characteristics  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = -40°C to +85°C, unless otherwise noted.) (Note 4)  
IN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
4.5  
TYP  
MAX  
24  
UNITS  
Input Supply Range  
V
V
IN  
V
V
rising  
falling  
3.55  
3.45  
4.4  
4.3  
25  
Input Undervoltage Lockout  
Threshold  
IN  
V
V
UVLO  
IN  
Input Supply Current  
I
µA  
µA  
IN  
Input Shutdown Current  
SHDN = GND  
7
MAX183_EUT50,  
MAX183_ETT50  
FB = GND,  
4.80  
3.168  
1.25  
5.20  
I
= 0 to 125mA  
LOAD  
Output Voltage (Preset Mode)  
V
V
OUT  
(MAX1836) or  
250mA (MAX1837)  
MAX183_EUT33,  
MAX183_ETT33  
3.432  
Output Voltage Range  
(Adjustable Mode)  
V
(Note 2)  
V
V
V
OUT  
IN  
Feedback Set Voltage  
(Adjustable Mode)  
V
1.200  
1.300  
FB  
OUT Bias Current  
V
V
= 5V  
7.4  
150  
0.6  
13  
µA  
mV  
µs  
µs  
OUT  
FB Dual Mode Threshold  
LX Switch Minimum Off-Time  
LX Switch Maximum On-Time  
LX Switch On-Resistance  
rising or falling  
50  
0.2  
7
FB  
t
OFF(MIN)  
t
V
V
= 1.3V  
= 6V  
ON(MAX)  
FB  
R
2
LX  
IN  
MAX1836  
MAX1837  
250  
500  
450  
900  
LX Current Limit  
I
mA  
LIM  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Electrical Characteristics (continued)  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = -40°C to +85°C, unless otherwise noted.) (Note 4)  
IN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
-75  
0.8  
-1  
TYP  
MAX  
+75  
2.4  
UNITS  
mV  
V
LX Zero-Crossing Threshold  
Shutdown Input Threshold  
Shutdown Leakage Current  
V
V
V
= 4.5V to 24V (Note 3)  
SHDN  
IN  
I
= 0 or 24V  
+1  
µA  
SHDN  
SHDN  
Note 2: When using the shutdown input, the maximum output voltage allowed with external feedback is 5.5V. If the output voltage is  
set above 5.5V, connect shutdown to the input.  
Note 3: Shutdown input minimum slew rate (rising or falling) is 10V/ms.  
Note 4: Specifications to -40°C are guaranteed by design, not production tested.  
Typical Operating Characteristics  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = +25°C.)  
IN  
A
MAX1836EUT33  
OUTPUT VOLTAGE vs. LOAD CURRENT  
MAX1836EUT33  
EFFICIENCY vs. LOAD CURRENT  
MAX1837EUT33  
OUTPUT VOLTAGE vs. LOAD CURRENT  
100  
95  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
FIGURE 1  
= 3.3V  
FIGURE 2  
FIGURE 1  
V
OUT  
V
= 5V  
IN  
V
IN  
= 5V  
V
= 9V  
IN  
90  
85  
80  
V
IN  
= 5V  
V
IN  
= 9V  
V
= 12V  
IN  
V
IN  
= 9V to 12V  
V
IN  
= 12V  
100  
75  
70  
0
50  
100  
150  
200  
0.1  
1
10  
1000  
0
50 100 150 200 250 300 350  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX1837EUT33  
SWITCHING FREQUENCY vs. LOAD CURRENT  
MAX1837EUT33  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
MAX1837EUT33  
EFFICIENCY vs. LOAD CURRENT  
100  
95  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
180  
FIGURE 2  
= 3.3V  
FIGURE 2  
= 3.3V  
I
= 10mA  
OUT  
160  
140  
120  
100  
80  
V
OUT  
V
OUT  
V
IN  
= 9V  
V
IN  
= 12V  
V
= 5V  
IN  
90  
85  
80  
I
= 200mA  
OUT  
V
= 9V  
IN  
60  
40  
FIGURE 2  
= 3.3V  
L1 = 47µH  
75  
70  
V
IN  
= 5V  
20  
V
OUT  
V
IN  
= 12V  
100  
0
0.1  
1
10  
1000  
0
50 100 150 200 250 300 350  
LOAD CURRENT (mA)  
0
4
8
12  
16  
20  
24  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Typical Operating Characteristics (continued)  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = +25°C.)  
IN  
A
MAX1837EUT33  
PEAK INDUCTOR CURRENT vs. INPUT VOLTAGE  
MAX1837EUT33  
SWITCHING FREQUENCY vs. INPUT VOLTAGE  
MAX1837EUT33  
EFFICIENCY vs. INPUT VOLTAGE  
100  
1000  
100  
95  
90  
85  
80  
75  
70  
FIGURE 2  
= 3.3V  
L1 = 47µH  
I
= 200mA  
FIGURE 2  
OUT  
V
OUT  
V
= 3.3V  
OUT  
I
= 200mA  
OUT  
L1 = 47µH  
800  
I
= 10mA  
OUT  
600  
400  
FIGURE 2  
= 3.3V  
10  
V
OUT  
I
= 200mA  
OUT  
L1 = 47µH  
I
= 10mA  
12  
200  
0
OUT  
I
= 10mA  
20  
OUT  
LIMITED BY  
LIMITED BY  
t
I
ON(MIN)  
LIM  
1
0
4
8
12  
16  
24  
0
4
8
12  
16  
20  
24  
0
4
8
16  
20  
24  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
MAX1837EUT50  
OUTPUT VOLTAGE vs. LOAD CURRENT  
MAX1837EUT50  
EFFICIENCY vs. LOAD CURRENT  
5.04  
5.02  
5.00  
4.98  
100  
95  
FIGURE 6  
V
= 12V TO 24V  
IN  
V
OUT  
= 5V  
V
= 9V  
V
= 7V  
IN  
IN  
V
= 9V  
IN  
V
IN  
= 12V  
90  
85  
80  
V
= 7V  
IN  
V
= 24V  
IN  
75  
70  
V
= 18V  
10  
IN  
FIGURE 6  
50  
4.96  
0.1  
1
100  
1000  
0
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
NO-LOAD SUPPLY CURRENT  
vs. INPUT VOLTAGE  
MAX1837EUT50  
DROPOUT VOLTAGE vs. LOAD CURRENT  
15  
14  
13  
12  
11  
10  
400  
350  
300  
250  
200  
150  
100  
FIGURE 6  
V
OUT  
= 5V  
50  
0
0
100  
200  
300  
0
4
8
12  
16  
20  
24  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Typical Operating Characteristics (continued)  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = +25°C.)  
IN  
A
MAX1837EUT50  
LOAD TRANSIENT  
MAX1837EUT50  
LINE TRANSIENT  
MAX1836/7 toc14  
MAX1836/7 toc15  
400mA  
20V  
10V  
A
200mA  
0
A
0
5.1V  
5.0V  
5.02V  
5.00V  
4.98V  
B
C
B
C
4.9V  
500mA  
0
750mA  
250mA  
0
100µs/div  
400µs/div  
A: I  
B: V  
= 10mA to 250mA, 200mA/div  
= 5V, 20mV/div  
A: V = 9V to 18V, 10V/div  
OUT  
IN  
B: V  
= 5V, R  
= 100, 100mV/div  
OUT  
OUT  
OUT  
C: I , 500mA/div  
L
C: I , 500mA/div  
L
V
= 12V, FIGURE 6  
FIGURE 6  
IN  
MAX1837EUT50  
STARTUP WAVEFORM  
MAX1837EUT50  
LINE TRANSIENT NEAR DROPOUT  
MAX1836/7 toc17  
MAX1836/7 toc16  
15V  
10V  
2V  
A
A
B
0
5V  
5.1V  
5.0V  
4V  
2V  
B
C
0
500mA  
0
4.9V  
500mA  
0
C
200µs/div  
= 0 to 2V, 2V/div  
400µs/div  
A: V = 5V to 12V, 5V/div  
A: V  
B: V  
SHDN  
OUT  
IN  
= 5V, R  
= 100, 2V/div  
B: V  
= 5V, R  
= 100, 100mV/div  
OUT  
OUT  
OUT  
C: I , 500mA/div  
L
C: I , 500mA/div  
L
V
= 12V, FIGURE 6  
FIGURE 6  
IN  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Pin Description  
PIN  
NAME  
FUNCTION  
Dual-Mode Feedback Input. Connect to GND for the preset 3.3V (MAX183_EUT33) or 5.0V (MAX183_  
EUT50) output. Connect to a resistive divider between the output and FB to adjust the output voltage between  
1
FB  
1.25V and V , and connect the OUT pin to GND. When setting output voltages above 5.5V, permanently  
IN  
connect SHDN to IN.  
2
3
4
GND  
IN  
Ground  
Input Voltage. 4.5V to 24V input range. Connected to the internal p-channel power MOSFET’s source.  
Inductor Connection. Connected to the internal p-channel power MOSFET’s drain.  
LX  
Shutdown Input. A logic-low shuts down the MAX1836/MAX1837 and reduces supply current to 3µA. LX is  
high impedance in shutdown. Connect to IN for normal operation. When setting output voltages above 5.5V,  
permanently connect SHDN to IN.  
5
SHDN  
Regulated Output Voltage High-Impedance Sense Input. Internally connected to a resistive divider. Connect to  
the output when using the preset output voltage. Connect to GND when using an external resistive divider to  
adjust the output voltage.  
6
OUT  
EP  
Exposed Metal Pad. Connect to GND. This pad is internally connected to GND through a soft connect. For  
proper grounding and good thermal dissipation. Connect the exposed pad to GND.  
L1  
47µH  
L1  
22µH  
OUTPUT  
3.3V OR 5V  
OUTPUT  
3.3V OR 5V  
INPUT  
4.5V OR 12V  
INPUT  
4.5V OR 12V  
IN  
LX  
IN  
LX  
C
C
OUT  
150µF  
6.3V  
C
10µF  
25V  
OUT  
C
10µF  
25V  
IN  
IN  
D1  
D1  
SHDN  
MAX1836  
SHDN  
100µF  
6.3V  
MAX1837  
OUT  
OUT  
GND  
FB  
GND  
FB  
C
= TAIYO YUDEN TMK432BJ106KM  
C = TAIYO YUDEN TMK432BJ106KM  
IN  
IN  
L1 = SUMIDA CDRH5D28-470  
= SANYO POSCAP 6TPC100M (SMALLER CAPACITORS CAN BE USED FOR 5V)  
L1 = SUMIDA CDRH5D28-220  
C = SANYO OS-CON 6SA150M (SMALLER CAPACITORS CAN BE USED FOR 5V)  
OUT  
C
OUT  
D1 = NIHON EP05Q03L  
D1 = NIHON ED05Q03L  
NOTE: HIGH-CURRENT PATHS SHOWN WITH BOLD LINES.  
NOTE: HIGH-CURRENT PATHS SHOWN WITH BOLD LINES.  
Figure 1. Typical MAX1836 Application Circuit  
Figure 2. Typical MAX1837 Application Circuit  
high switching frequency minimize PC board space and  
component cost.  
Detailed Description  
The MAX1836/MAX1837 step-down converters are  
designed primarily for battery-powered devices, notebook  
computers, and industrial control applications. A unique  
current-limited control scheme provides high efficiency  
over a wide load range. Operation up to 100% duty cycle  
allows the lowest possible dropout voltage, increasing  
the useable supply voltage range. Under no-load, the  
MAX1836/MAX1837 draw only 12μA, and in shutdown  
mode, they draw only 3μA to further reduce power con-  
sumption and extend battery life. Additionally, an internal  
24V switching MOSFET, internal current sensing, and a  
Current-Limited Control Architecture  
The MAX1836/MAX1837 use a proprietary current-limited  
control scheme that operates with duty cycles up to 100%.  
These DC-DC converters pulse as needed to maintain  
regulation, resulting in a variable switching frequency that  
increases with the load. This eliminates the high supply  
currents associated with conventional constant-frequency  
pulse-width-modulation (PWM) controllers that switch the  
MOSFET unnecessarily.  
Maxim Integrated  
7  
www.maximintegrated.com  
 
 
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
OUTPUT  
3.3V OR 5V  
INPUT  
4.5V OR 24V  
L1  
LX  
IN  
C
IN  
SHDN  
D1  
C
OUT  
V
SENSE  
OUT  
FB  
R
S
Q
MAXIMUM  
OFF-TIME  
DELAY  
Q
TRIG  
100mV  
V
SET  
1.25V  
Q
TRIG  
MAXIMUM  
ON-TIME  
DELAY  
MAX1836  
MAX1837  
GND  
Figure 3. Functional Diagram  
When the output voltage is too low, an error compara-  
tor sets a flip-flop, which turns on the internal p-channel  
MOSFET and begins a switching cycle (Figure 3). As  
shown in Figure 4, the inductor current ramps up linearly,  
charging the output capacitor and servicing the load. The  
MOSFET turns off when the current limit is reached, or  
when the maximum on-time is exceeded while the output  
voltage is in regulation. Otherwise, the MOSFET remains  
on, allowing a duty cycle up to 100% to ensure the lowest  
possible dropout voltage. Once the MOSFET turns off, the  
flip-flop resets, diode D1 turns on, and the current through  
the inductor ramps back down, transferring the stored  
energy to the output capacitor and load. The MOSFET  
remains off until the 0.5μs minimum off-time expires and  
the inductor current ramps down to zero, and the output  
voltage drops back below the set point.  
10V  
A
0
B
3.3V  
500mA  
0
C
4µs/div  
CIRCUIT OF FIGURE 2, V = 12V  
IN  
A. V , 5V/div  
LX  
B. V  
= 3.3V, 20mV/div, 200mA LOAD  
OUT  
C. INDUCTOR CURRENT, 500mA/div  
Figure 4. Discontinuous-Conduction Operation  
Maxim Integrated  
8  
www.maximintegrated.com  
 
 
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
the Selector Guide. For example, the MAX1836EUT33  
has a preset 3.3V output voltage.  
Input-Output (Dropout) Voltage  
A step-down converter’s minimum input-to-output volt-  
age differential (dropout voltage) determines the lowest  
useable input supply voltage. In battery-powered sys-  
tems, this limits the useful end-of-life battery voltage. To  
maximize battery life, the MAX1836/MAX1837 operate  
with duty cycles up to 100%, which minimizes the input-  
to-output voltage differential. When the supply voltage  
approaches the output voltage, the P-channel MOSFET  
remains on continuously to supply the load.  
The MAX1836/MAX1837 output voltage may be adjusted  
by connecting a voltage divider from the output to FB  
(Figure 5). When externally adjusting the output voltage,  
connect OUT to GND. Select R2 in the 10kΩ to 100kΩ  
range. Calculate R1 with the following equation:  
V
OUT  
R1 = R2  
1  
V
FB   
Dropout voltage is defined as the difference between the  
input and output voltages when the input is low enough for  
the output to drop out of regulation. For a step-down con-  
verter with 100% duty cycle, the dropout voltage depends  
where V = 1.25V, and V  
may range from 1.25V to  
FB  
OUT  
V . When setting output voltages above 5.5V, the shut-  
IN  
down feature cannot be used, so SHDN must be perma-  
nently connected to IN.  
on the MOSFET drain-to-source on-resistance (R  
)
DS(ON)  
and inductor series resistance; therefore, it is proportional  
to the load current:  
Inductor Selection  
When selecting the inductor, consider these four param-  
eters: inductance value, saturation current rating, series  
resistance, and size. The MAX1836/MAX1837 operate  
with a wide range of inductance values. For most applica-  
tions, values between 10μH and 100μH work best with  
the controller’s switching frequency. Calculate the mini-  
mum inductance value as follows:  
V
= I  
× R  
(
+ R  
DS(ON) INDUCTOR  
)
DROPOUT  
OUT  
Shutdown (SHDN)  
A logic-level low voltage on SHDN shuts down the  
MAX1836/MAX1837. When shut down, the supply cur-  
rent drops to 3μA to maximize battery life, and the internal  
P-channel MOSFET turns off to isolate the output from the  
input. The output capacitance and load current determine  
the rate at which the output voltage decays. A logic-level  
high voltage on SHDN activates the MAX1836/MAX1837.  
Do not leave SHDN floating. If unused, connect SHDN to  
IN. When setting output voltages above 5.5V, the shut-  
down feature cannot be used, so SHDN must be perma-  
nently connected to IN. The SHDN input voltage slew rate  
must be greater than 10V/ms.  
V
V  
t
(
)
IN(MAX)  
OUT ON(MIN)  
L
=
(MIN)  
I
LIM  
where t  
= 1.0μs. Inductor values up to six times  
ON(MIN)  
L
are acceptable. Low-value inductors may be small-  
(MIN)  
er in physical size and less expensive, but they result in  
higher peak-current overshoot due to current-sense com-  
parator propagation delay (300ns). Peak-current over-  
shoot reduces efficiency and could exceed the current  
ratings of the internal switching MOSFET and external  
components.  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipa-  
tion in the MAX1836/MAX1837. When the junction tem-  
OUTPUT  
1.25V TO V  
INPUT  
4.5V OR 24V  
perature exceeds T = +160°C, a thermal sensor turns off  
L1  
J
IN  
IN  
LX  
the pass transistor, allowing the IC to cool. The thermal  
sensor turns the pass transistor on again after the IC’s  
junction temperature cools by 10°C, resulting in a pulsed  
output during continuous thermal-overload conditions.  
C
IN  
D1  
C
OUT  
SHDN  
R1  
R2  
FB  
MAX1836  
MAX1837  
Design Information  
GND  
OUT  
Output Voltage Selection  
The feedback input features dual-mode operation.  
Connect the output to OUT and FB to GND for the preset  
output voltage. The MAX1836/MAX1837 are supplied  
with factory-set output voltages of 3.3V or 5V. The two-  
digit part number suffix identifies the output voltage. See  
NOTE: HIGH-CURRENT PATHS SHOWN WITH BOLD LINES.  
Figure 5. Adjustable Output Voltage  
Maxim Integrated  
9  
www.maximintegrated.com  
 
 
 
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
The inductor’s saturation current rating must be greater  
than the peak switching current, which is determined  
by the switch current limit plus the overshoot due to the  
300ns current-sense comparator propagation delay:  
capacitor selection, but final values should be set by test-  
ing a prototype or evaluation circuit. As a general rule, a  
smaller amount of charge delivered in each pulse results  
in less output ripple. Since the amount of charge deliv-  
ered in each oscillator pulse is determined by the inductor  
value and input voltage, the voltage ripple increases with  
larger inductance but decreases with lower input voltages.  
V
V  
300ns  
(
+
LIM  
)
IN  
OUT  
L
I
= I  
PEAK  
With low-cost aluminum electrolytic capacitors, the ESR-  
induced ripple can be larger than that caused by the  
current into and out of the capacitor. Consequently, high-  
quality low-ESR aluminum-electrolytic, tantalum, polymer,  
or ceramic filter capacitors are required to minimize out-  
put ripple. Best results at reasonable cost are typically  
achieved with an aluminum-electrolytic capacitor in the  
100μF range, in parallel with a 0.1μF ceramic capacitor.  
where the switch current-limit (I ) is typically 312mA  
LIM  
(MAX1836) or 625mA (MAX1837). Saturation occurs  
when the inductor’s magnetic flux density reaches the  
maximum level the core can support, and the inductance  
starts to fall.  
Inductor series resistance affects both efficiency and  
dropout voltage. See the Input-Output (Dropout) Voltage  
section. High series resistance limits the maximum current  
available at lower input voltages and increases the drop-  
out voltage. For optimum performance, select an inductor  
with the lowest possible DC resistance that fits in the  
allotted dimensions. Typically, the inductor’s series resis-  
tance should be significantly less than that of the internal  
P-channel MOSFET’s on-resistance (1.1Ω typ). Inductors  
with a ferrite core, or equivalent, are recommended.  
Input Capacitor  
The input filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the circuit’s switching. The  
input capacitor must meet the ripple-current requirement  
(I  
) imposed by the switching currents defined by the  
RMS  
following equation:  
The maximum output current of the MAX1836/MAX1837  
current-limited converter is limited by the peak inductor  
current. For the typical application, the maximum output  
current is approximately:  
V
V
V  
(
)
OUT IN OUT  
I
= I  
LOAD  
RMS  
V
IN  
For most applications, nontantalum chemistries (ceramic,  
aluminum, polymer, or OS-CON) are preferred due to  
their robustness with high inrush currents typical of sys-  
tems with low-impedance battery inputs. Alternatively,  
two (or more) smaller-value low-ESR capacitors can be  
connected in parallel for lower cost. Choose an input  
capacitor that exhibits < +10°C temperature rise at the  
RMS input current for optimal circuit longevity.  
I
I
PEAK  
OUT(MAX)  
Output Capacitor  
Choose the output capacitor to supply the maximum load  
current with acceptable voltage ripple. The output ripple  
has two components: variations in the charge stored in  
the output capacitor with each LX pulse, and the voltage  
drop across the capacitor’s equivalent series resistance  
(ESR) caused by the current into and out of the capacitor:  
Diode Selection  
The current in the external diode (D1) changes abruptly  
from zero to its peak value each time the LX switch turns  
off. To avoid excessive losses, the diode must have a  
fast turn-on time and a low forward voltage. Use a diode  
with an RMS current rating of 0.5A or greater, and with a  
V
V  
+ V  
RIPPLE  
RIPPLE(ESR) RIPPLE(C)  
The output voltage ripple as a consequence of the ESR  
and output capacitance is:  
breakdown voltage > V . Schottky diodes are preferred.  
IN  
For high-temperature applications, Schottky diodes may  
be inadequate due to their high leakage currents. In  
such cases, ultra-high-speed silicon rectifiers are recom-  
mended, although a Schottky diode with a higher reverse  
voltage rating can often provide acceptable performance.  
V
= I  
ESR  
RIPPLE(ESR)  
PEAK  
2
L I  
(
I  
)
V
IN  
PEAK  
OUT  
V
=
RIPPLE(C)  
2C  
V
V
V  
OUT OUT  
IN OUT  
where I  
is the peak inductor current. See the Inductor  
PEAK  
Selection section. These equations are suitable for initial  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Table 1. Component Suppliers  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
INDUCTORS  
Coilcraft  
847-639-6400  
561-241-7876  
847-956-0666  
847-297-0070  
847-639-1469  
561-241-9339  
847-956-0702  
847-699-1194  
www.coilcraft.com  
www.coiltronics.com  
www.sumida.com  
www.tokoam.com  
Coiltronics  
Sumida USA  
Toko  
CAPACITORS  
AVX  
803-946-0690  
408-986-0424  
847-468-5624  
619-661-6835  
408-573-4150  
803-626-3123  
408-986-1442  
847-468-5815  
619-661-1055  
408-573-4159  
www.avxcorp.com  
www.kemet.com  
www.panasonic.com  
www.secc.co.jp  
Kemet  
Panasonic  
Sanyo  
Taiyo Yuden  
DIODES  
www.t-yuden.com  
Central Semiconductor  
International Rectifier  
Nihon  
516-435-1110  
310-322-3331  
847-843-7500  
602-303-5454  
516-543-7100  
516-435-1824  
310-322-3332  
847-843-2798  
602-994-6430  
516-864-7630  
www.centralsemi.com  
www.irf.com  
www.niec.co.jp  
On Semiconductor  
Zetex  
www.onsemi.com  
www.zetex.com  
coupling. The MAX1837 evaluation kit shows the recom-  
mended layout.  
MAX1836/MAX1837 Stability  
Commonly, instability is caused by excessive noise on the  
feedback signal or ground due to poor layout or improper  
component selection. When seen, instability typically  
manifests itself as “motorboating,” which is characterized  
by grouped switching pulses with large gaps and exces-  
sive low-frequency output ripple during no-load or light-  
load conditions.  
Applications Information  
High-Voltage Step-Down Converter  
The typical application circuits’ (Figure 1 and Figure 2)  
components were selected for 9V battery applications.  
However, the MAX1836/MAX1837 input voltage range  
allows supply voltages up to 24V. Figure 6 shows a modi-  
fied application circuit for high-voltage applications. When  
using higher input voltages, verify that the input capaci-  
PC Board Layout and Grounding  
High switching frequencies and large peak currents make  
PC board layout an important part of the design. Poor lay-  
out may introduce switching noise into the feedback path,  
resulting in jitter, instability, or degraded performance.  
High-power traces, bolded in the typical application cir-  
cuits (Figure 1 and Figure 2), should be as short and wide  
as possible. Additionally, the current loops formed by the  
tor’s voltage rating exceeds V  
and that the induc-  
IN(MAX)  
tor value exceeds the minimum inductance recommended  
in the Inductor Selection section.  
Inverter Configuration  
Figure 7 shows the MAX1836/MAX1837 in a floating  
ground configuration. By connecting what would nor-  
mally be the output to the supply-voltage ground, the IC’s  
ground pin is forced to regulate to -5V (MAX183_EUT50)  
or -3.3V (MAX183_EUT33). Avoid exceeding the maxi-  
mum ratings of 24V between IN and GND, and 5.5V  
between OUT and GND. Other negative voltages may be  
generated by placing a resistive divider across the output  
capacitor and connecting the tap to FB in the same man-  
ner as the normal step-down configuration.  
power components (C , C  
, L1, and D1) should be  
OUT  
IN  
as tight as possible to avoid radiated noise. Connect the  
ground pins of these power components at a common  
node in a star-ground configuration. Separate the noisy  
traces, such as the LX node, from the feedback network  
with grounded copper. Furthermore, keep the extra cop-  
per on the board, and integrate it into a pseudoground  
plane. When using external feedback, place the resistors  
as close to the feedback pin as possible to minimize noise  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
L1  
47µH  
OUTPUT  
5V  
INPUT  
4.5V TO 24V  
L1  
47µH  
INPUT  
3.6V TO 18V  
IN  
LX  
IN  
LX  
C
OUT  
C
IN  
C
D1  
IN  
SHDN  
68µF  
10V  
OUT  
10µF  
25V  
SHDN  
10µF  
MAX1837  
C
OUT  
D1  
MAX1836  
MAX1837  
OUT  
FB  
100µF  
OUTPUT  
-3.3V OR -5V  
GND  
FB  
GND  
NOTE: HIGH-CURRENT PATHS SHOWN WITH BOLD LINES.  
C
IN  
= TAIYO YUDEN TMK432BJ106KM  
L1 = SUMIDA CDRH5D28-470  
= SANYO POSCAP 10TPC68M  
D1 = NIHON EP05Q03L  
C
OUT  
Figure 7. MAX1836/MAX1837 Inverter Configuration  
NOTE: HIGH-CURRENT PATHS SHOWN WITH BOLD LINES.  
Chip Information  
TRANSISTOR COUNT: 731  
PROCESS: BiCMOS  
Figure 6. High-Voltage Application  
Selector Guide  
PRESET OUTPUT  
VOLTAGE (V)  
LOAD CURRENT  
(mA)  
PART  
MAX1836ETT33  
MAX1836ETT50  
MAX1836EUT33  
MAX1836EUT50  
MAX1837ETT33  
MAX1837ETT50  
MAX1837EUT33  
MAX1837EUT50  
3.3  
5
125  
125  
125  
125  
250  
250  
250  
250  
3.3  
5
3.3  
5
3.3  
5
Maxim Integrated  
12  
www.maximintegrated.com  
 
 
 
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX1836/MAX1837  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Revision History  
Pages changed at Rev 3: 1, 7, 8, 12  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2006 Maxim Integrated Products, Inc.  
15  

相关型号:

MAX1836ETT50-T

Switching Regulator, 0.45A, BICMOS, PDSO6, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEEA, TDFN-6
MAXIM

MAX1836EUT33

24V Internal Switch, 100% Duty Cycle, Step-Down Converters
MAXIM

MAX1836EUT33#G16

Switching Regulator/Controller, 0.125A, BICMOS, PDSO6,
MAXIM

MAX1836EUT33#TG16

Switching Regulator, 0.45A, BICMOS, PDSO6, MO-178AB, SOT-23, 6 PIN
MAXIM

MAX1836EUT33-T

24V Internal Switch, 100% Duty Cycle, Step-Down Converters
MAXIM

MAX1836EUT50

24V Internal Switch, 100% Duty Cycle, Step-Down Converters
MAXIM

MAX1836EUT50#G16

Switching Regulator, 0.45A, BICMOS, PDSO6, MO-178AB, SOT-23, 6 PIN
MAXIM

MAX1836EUT50#TG16

Switching Regulator, 0.45A, BICMOS, PDSO6, MO-178AB, SOT-23, 6 PIN
MAXIM

MAX1836EUT50+

Switching Regulator, 0.45A, BICMOS, PDSO6, ROHS COMPLIANT, MO-178AB, SOT-23, 6 PIN
MAXIM

MAX1836EUT50+T

暂无描述
MAXIM

MAX1836EUT50-T

24V Internal Switch, 100% Duty Cycle, Step-Down Converters
MAXIM

MAX1837

24V Internal Switch, 100% Duty Cycle, Step-Down Converters
MAXIM