MAX1874ETE+T [MAXIM]

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220-WHHB, TQFN-16;
MAX1874ETE+T
型号: MAX1874ETE+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220-WHHB, TQFN-16

信息通信管理
文件: 总17页 (文件大小:899K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2912; Rev 1; 2/07  
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
General Description  
Features  
The MAX1874 charges a single-cell Li+ battery from  
both USB and AC adapter sources. It also includes bat-  
tery-to-input power switchover, so the system can be  
powered directly from the power source rather than  
from the battery.  
Charge from USB or AC Adapter  
Automatic Switchover to AC Adapter  
Thermal Limiting Simplifies Board Design  
Small, High-Power 16-Pin Thin QFN Package  
Input Protection Up to 18V  
In its simplest application, the MAX1874 needs no  
external MOSFET or diodes, and accepts input volt-  
ages up to 6.5V; however, DC input overvoltage protec-  
tion up to 18V can be added with a single SOT PFET.  
Soft-Start  
Automatic Battery-to-Input Load Switch  
On-chip thermal limiting simplifies printed circuit board  
(PCB) layout and allows optimum charging rate without  
the thermal limits imposed by worst-case battery and  
input voltage. When the MAX1874 thermal limit is  
reached, the charger does not shut down but simply  
reduces charging current.  
Ordering Information  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
TEMP RANGE  
Ambient or battery temperature can be monitored with  
an external thermistor. When the temperature is out of  
range, charging pauses.  
16 Thin QFN  
5mm x 5mm  
MAX1874ETE  
-40°C to +85°C  
T1655-2  
Other features include a CHG output to indicate when  
battery current tapers below a predetermined level. DC  
power-OK (DCOK), USB power-OK (UOK), and power-  
on (PON) outputs indicate when valid power is present.  
These outputs drive logic or power-selection MOSFETs  
to disconnect the charging sources from the load and  
to protect the MAX1874 from overvoltage.  
Typical Operating Circuit  
DC INPUT  
DC  
PON  
MAX1874  
The MAX1874 contains no logic for communication with  
the USB host. It must receive instructions from a local  
microcontroller. The MAX1874 is available in a 16-pin  
5mm 5mm thin QFN package and operates over the  
-40°C to +85°C temperature range.  
DCOK  
DCLV  
BATT  
Li+  
CELL  
UOK  
USB  
Applications  
CHG  
USEL  
EN  
USB INPUT  
TO REF  
PDAs  
Cell Phones  
500mA  
100mA  
Wireless Appliances Digital Cameras  
DCI  
Pin Configuration  
REGULATOR  
REF  
TOP VIEW  
16 15 14 13  
THRM  
GND  
DCLV  
1
2
3
4
12 USB  
11 BYP  
10 PGND  
DC  
CHG  
NTC  
THERMISTOR  
MAX1874  
BYP  
PGND  
USEL  
9
REF  
5
6
7
8
THIN QFN  
5mm x 5mm  
Functional Diagram appears at the end of the data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
ABSOLUTE MAXIMUM RATINGS  
DC, DCOK to GND.................................................-0.3V to +20V  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin 5mm 5mm Thin QFN  
DCLV, BYP, USB, UOK, DCI, REF, USEL, THRM,  
(derate 21.3mW/°C above +70°C)...................................1.7W  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Maximum Junction Temperature .....................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
EN, BATT, CHG, PON to GND .............................-0.3V to +7V  
PGND to GND .......................................................-0.3V to +0.3V  
Continuous Current (DCLV) ..................................................1.1A  
Continuous Current (USB) ....................................................0.6A  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= V  
= V = V  
= 5V, V  
= 4.2V, V  
= V  
/ 2, Circuit of Figure 2, T = 0°C to +85°C, unless otherwise  
REF A  
USB  
DC  
DCLV  
EN  
USEL  
BATT  
THRM  
noted. Typical values are at T = +25°C.)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUT VOLTAGE RANGES AND INPUT CURRENT  
Maximum DC Input Voltage with  
Overvoltage Protection  
Q2 input MOSFET must be in place; charging  
occurs only below 6.2V, Figures 3, 4, and 5  
18  
V
Maximum DC Input Voltage Without  
Overvoltage Protection  
DC = DCLV, Q2 input MOSFET not on circuit,  
Figure 2  
6.5  
V
V
Maximum Input Voltage for Charging  
6.0  
6.2  
2
6.5  
4
V
V
= 0V  
= 5V  
EN  
EN  
DC Supply Current  
mA  
4
6
DCLV Operating Voltage Range  
DCLV Shutdown Supply Current  
USB Input Voltage Range  
4.35  
4.35  
6.00  
500  
6.50  
750  
3
V
µA  
V
V
= 0V  
= 0V  
300  
EN  
V
V
V
500  
2
µA  
mA  
µA  
nA  
EN  
EN  
EN  
USB Supply Current  
= 5V, V = 0V  
DC  
= 5V, V = 5V  
160  
1
300  
100  
DC  
DCI Input Current  
BYP Output Resistance  
THRM Input Bias Current  
BATTERY VOLTAGE  
(Note 1)  
5
1
100  
nA  
BATT Regulation Voltage  
BATT Prequal Voltage Threshold  
Prequal Threshold Hysteresis  
4.1685  
2.8  
4.20  
3
4.2315  
3.2  
V
V
BATT rising  
70  
mV  
I
I
I
= 100mA  
= 500mA  
100  
200  
250  
USB  
USB  
DCIN  
USB Charging Headroom  
DC Charging Headroom  
mV  
mV  
V
= 800mA  
I
= 0 to 500µA, 4V < V  
or V  
< 6.5V;  
USB  
REF  
DC  
REF Voltage (Buffered Output)  
2.94  
3
3.06  
does not affect BATT regulation accuracy  
2
_______________________________________________________________________________________  
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
= V = V  
= 5V, V  
= 4.2V, V  
= V  
/ 2, Circuit of Figure 2, T = 0°C to +85°C, unless otherwise  
REF A  
USB  
DC  
DCLV  
EN  
USEL  
BATT  
THRM  
noted. Typical values are at T = +25°C.)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BATTERY CHARGING AND PRECHARGE CURRENT  
DCI Voltage Range  
0.1 x V  
950  
V
V
REF  
REF  
V
V
= V  
= V  
1000  
520  
455  
82  
7
1050  
550  
495  
95  
DCI  
DCI  
REF  
REF  
DCI Voltage to BATT Current  
USB Charging Current  
mA  
/ 2  
490  
USEL = high  
USEL = low  
mA  
Soft-Start Current-Ramp Time  
Prequal Charging Current  
BATT Input Current  
Measured from 10% to 90%  
= 2.5V  
ms  
mA  
µA  
µA  
V
35  
55  
5
70  
7.5  
2
BATT  
No DC or USB power, V  
= 4.2V  
BATT  
BATT Shutdown Current  
EN = GND, USB- and/or DC-powered  
1
THERMISTOR MONITOR AND DIE-TEMPERATURE REGULATION  
THRM COLD Trip Level  
THRM HOT Trip Level  
THRM Disable Threshold  
Internal Die Thermal Limit  
(Note 2)  
(Note 2)  
0.72  
0.28  
50  
0.74  
0.29  
100  
0.76  
0.30  
150  
V
V
REF  
REF  
mV  
+105  
°C  
LOGIC INPUT/OUTPUTS AND GATE DRIVERS  
PON pulled up to active input (DCLV or USB),  
or V = 5V  
PON High Output Resistance  
25  
V
DCLV  
USB  
PON Low Output Resistance  
DCOK Low Output Resistance  
DCOK Off-Leakage Current  
UOK Output Resistance  
PON resistance to GND, V  
= V  
= 0  
USB  
120  
25  
kΩ  
DCLV  
DCOK pulled low  
V
= 12V, V  
= 0V  
DC  
1
µA  
DCOK  
UOK resistance to GND, V  
= 0  
25  
DC  
UOK Off-Leakage Current  
V
= 6.5V  
1
µA  
UOK  
DC input (% of charge current set at DCI)  
8
12.5  
25  
19  
30  
USB input, USEL = 5V (% of USB charging current)  
20  
CHG Threshold to Indicate Battery Full,  
Battery Current Falling (Note 3)  
%
Voltage  
mode  
USB input with USEL = 0  
Sinking 10mA sink  
CHG Logic-Low Output  
0.4  
1
V
µA  
V
CHG Leakage Current  
V
= 6.5V  
CHG  
EN, USEL Logic-Input High Level  
EN, USEL Logic-Input Low Level  
EN, USEL Input Bias Current  
1.6  
0.4  
1
V
µA  
_______________________________________________________________________________________  
3
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
= V = V  
= 5V, V  
= 4.2V, V  
= V  
/ 2, Circuit of Figure 2, T = 0°C to +85°C, unless otherwise  
REF A  
USB  
DC  
DCLV  
EN  
USEL  
BATT  
THRM  
noted. Typical values are at T = +25°C.)  
A
PARAMETER  
TIMING  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC Rising to DCOK Falling  
USB Rising to UOK Falling  
USB = open, DC rising to 5V  
DC = open, USB rising to 5V  
20  
20  
ms  
ms  
DC Falling to DCOK Going  
Open-Drain Propagation Delay  
USB = open, 1kpullup  
DC = open, 10kpullup  
2
2
µs  
µs  
USB Falling to UOK Going  
Open-Drain Propagation Delay  
USB = open, DC step to 5V, BATT = 3.6V,  
100kpulldown  
DC Rising to PON Rising (90%)  
USB Rising to PON Rising (90%)  
20  
20  
2
ms  
ms  
µs  
DC = open, V  
step to 5V, V  
= 3.6V,  
BATT  
USB  
100kpulldown  
DC Falling to PON Going  
Open-Drain Propagation Delay  
USB = open, 100kpulldown  
DC = open, 100kpulldown  
USB Falling to PON Going  
Open-Drain Propagation Delay  
2
µs  
ELECTRICAL CHARACTERISTICS  
(V  
= V = V  
= V = V  
= 5V, V  
= 4.2V, V  
= V / 2, Circuit of Figure 2, T = -40°C to +85°C, unless otherwise  
REF A  
USB  
DC  
DCLV  
EN  
USEL  
BATT  
THRM  
noted. Typical values are at T = +25°C.) (Note 4)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUT VOLTAGE RANGES AND INPUT CURRENT  
Maximum DC Input Voltage with  
Overvoltage Protection  
Q2 input MOSFET must be in place; charging  
occurs only below 6.2V, Figures 3, 4, and 5  
18  
V
Maximum DC Input Voltage Without  
Overvoltage Protection  
DC = DCLV, Q2 input MOSFET not on circuit,  
Figure 3  
6.5  
V
V
Maximum Input Voltage for Charging  
6.0  
6.5  
4
V
V
= 0V  
= 5V  
EN  
EN  
DC Supply Current  
mA  
6
DCLV Operating Voltage Range  
DCLV Shutdown Supply Current  
USB Input Voltage Range  
4.35  
4.35  
6.00  
500  
6.50  
750  
3
V
V
= 0V  
= 0V  
µA  
V
EN  
V
V
V
µA  
mA  
µA  
nA  
nA  
EN  
EN  
EN  
USB Supply Current  
= 5V, V = 0V  
DC  
= 5V, V = 5V  
300  
100  
100  
DC  
DCI Input Current  
THRM Input Bias Current  
4
_______________________________________________________________________________________  
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V = V  
= V = V  
= 5V, V  
= 4.2V, V  
= V  
/ 2, Circuit of Figure 2, T = -40°C to +85°C, unless otherwise  
USB  
DC  
DCLV  
EN  
USEL  
BATT  
THRM  
REF A  
noted. Typical values are at T = +25°C.) (Note 4)  
A
PARAMETER  
BATTERY VOLTAGE  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
4.1685  
2.8  
BATT Regulation Voltage  
4.2315  
3.2  
V
V
BATT Prequal Voltage Threshold  
BATT rising  
= 0 to 500µA, 4V < V  
I
or V  
< 6.5V;  
USB  
REF  
DC  
REF Voltage (Buffered Output)  
2.94  
3.06  
V
does not affect BATT regulation accuracy  
BATTERY CHARGING AND PRECHARGE CURRENT  
DCI Voltage Range  
0.1 x V  
930  
V
V
REF  
REF  
V
V
= V  
= V  
1070  
565  
495  
95  
DCI  
DCI  
REF  
REF  
DCI Voltage to BATT Current  
USB Charging Current  
mA  
/ 2  
490  
USEL = high  
USEL = low  
mA  
Prequal Charging Current  
BATT Input Current  
V
= 2.5V  
40  
70  
mA  
µA  
µA  
BATT  
No DC or USB power, V  
= 4.2V  
7.5  
2
BATT  
BATT Shutdown Current  
EN = GND, USB and/or DC powered  
THERMISTOR MONITOR AND DIE-TEMPERATURE REGULATION  
THRM COLD Trip Level  
THRM HOT Trip Level  
THRM Disable Threshold  
(Note 2)  
(Note 2)  
0.72  
0.28  
50  
0.76  
0.30  
150  
V
V
REF  
REF  
mV  
LOGIC INPUT/OUTPUTS AND GATE DRIVERS  
DCOK Off-Leakage Current  
UOK Off-Leakage Current  
V
V
= 12V, V  
= 0V  
DC  
1
1
µA  
µA  
DCOK  
= 6.5V  
UOK  
DC input (% of charge current set at DCI)  
8
20  
CHG Threshold to Indicate Battery Full,  
Battery Current Falling (Note 3)  
%
USB input, USEL = 5V  
(% of USB charging current)  
20  
30  
CHG Logic-Low Output  
Sinking 10mA sink  
0.4  
1
V
µA  
V
CHG Leakage Current  
V
= 6.5V  
CHG  
EN, USEL Logic-Input High Level  
EN, USEL Logic-Input Low Level  
EN, USEL Input Bias Current  
1.6  
0.4  
1
V
µA  
Note 1: BYP internally connects to the active power input (DCLV or USB). DCLV takes priority if both inputs are powered.  
Note 2: These limits guarantee +5°C accuracy with 5% accuracy of thermistor beta (3450 nominal) with 2°C of hysteresis.  
Note 3: The CHG output does not go high unless charge current is below the indicated threshold (as set by DCI) and the charger is in  
voltage-mode operation. In 100mA USB mode, CHG goes high when the charger transitions from current to voltage mode.  
Note 4: Specifications to -40°C are guaranteed by design, not production tested.  
_______________________________________________________________________________________  
5
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
Typical Operating Characteristics  
(V  
= V  
= V  
= V  
= 5V, V  
= 4.2V, V  
= V  
/ 2, V  
= V  
, V  
REF USEL  
= 5V, Circuit of Figure 4, T = +25°C,  
USB  
DC  
DCLV  
EN  
BATT  
THRM  
REF  
DCI  
A
unless otherwise noted.)  
USB INPUT CURRENT  
vs. USB INPUT VOLTAGE  
DC INPUT CURRENT  
vs. DC INPUT VOLTAGE  
USB INPUT CURRENT  
vs. USB INPUT VOLTAGE (V = 0)  
EN  
5.0  
V
= 5V, V FLOATING  
DC  
INCLUDES R3 AND R4 CURRENTS  
V
V
V
= 0  
BATT  
= 5V  
EN  
V
= 0  
EN  
14  
12  
10  
8
USB  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= 4.2V  
INCLUDES R3 AND R4 CURRENTS  
EN  
INCLUDES R2 CURRENT  
6
4
2
0
0
2
4
6
8
10 12 14 16 18 20  
(V)  
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
V
V
(V)  
DC  
USB  
V
(V)  
USB  
CHARGE CURRENT vs. BATTERY VOLTAGE  
(I vs. V  
CHARGE CURRENT  
vs. DC INPUT-VOLTAGE HEADROOM  
CHARGE CURRENT  
vs. USB VOLTAGE HEADROOM  
)
BATT  
BATT  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
V
V
= 5  
= 0  
EN  
USB  
I
= SET TO 750mA  
BATT  
DCI SET FOR I  
= 750mA  
BATT  
V
= V  
= 5V  
DC  
DCLV  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
(V)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
(V - V ) (V)  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
(V - V ) (V)  
V
BATT  
DC BATT  
USB  
BATT  
BATTERY TERMINATION VOLTAGE  
vs. TEMPERATURE  
CHARGE CURRENT vs. TEMPERATURE  
WITH THERMAL REGULATION  
CHARGE CURRENT vs. V  
DCI  
4.25  
4.24  
4.23  
4.22  
4.21  
4.20  
4.19  
4.18  
4.17  
4.16  
4.15  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.2  
1.0  
0.8  
V
V
V
= V  
REF  
= 5V  
= 3.9V  
DCI  
DC  
BATT  
0.6  
0.4  
0.2  
0
-40 -25 -10  
5
20 35 50 65 80  
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
V
TEMPERATURE (°C)  
DCI  
6
_______________________________________________________________________________________  
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= 4.2V, V  
= V  
/ 2, V  
= V  
, V  
REF USEL  
= 5V, Circuit of Figure 4, T = +25°C,  
USB  
DC  
DCLV  
EN  
BATT  
THRM  
REF  
DCI  
A
unless otherwise noted.)  
OFF-BATTERY LEAKAGE  
vs. DC INPUT VOLTAGE  
OFF-BATTERY LEAKAGE  
vs. USB INPUT VOLTAGE  
USB LEAKAGE vs. DC INPUT VOLTAGE  
10  
9
10  
9
8
7
6
5
4
3
2
1
0
600  
V
V
V
V
= 0  
USB  
BATT  
EN  
LEAKAGE FROM USB TO GND  
V
V
V
= 0  
EN  
DCLV  
BATT  
= 0  
V
= 5V  
= V = 0  
EN  
DC  
500  
400  
300  
200  
100  
0
= 4.2V  
DCLV  
8
= 4.2V  
= V  
DC  
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
2
4
6
8
10 12 14 16 18  
(V)  
V
DCIN  
(V)  
V
(V)  
V
USB  
DCIN  
DC CONNECT WAVEFORMS  
= 0, V = 3.9V  
BATTERY CURRENT AND VOLTAGE  
vs. TIME  
RESPONSE TO OVERVOLTAGE INPUT  
V
USB  
USB = 0  
BATT  
MAX1874 toc15  
MAX1874 toc14  
MAX1874 toc13  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
8.0  
7.2  
6.4  
5.6  
4.8  
4.0  
3.2  
2.4  
1.6  
0.8  
0
1.5AHr CELL  
DC  
10V/div  
I
BATT  
20V/div  
DC  
CHG  
DCLV  
PON  
10V/div  
10V/div  
DCLV  
PON  
5V/div  
5V/div  
V
BATT  
100  
1A/div  
I
BATT  
DCOK  
20V/div  
DCOK  
10V/div  
40ms/div  
0
50  
150  
200  
250  
300  
40ms/div  
TIME (MIN)  
DC STARTUP WAVEFORMS FOR ENABLE  
= 3.9V  
DC CONNECT WAVEFORMS  
= 5V, V = 3.9V  
USB CONNECT WAVEFORMS  
V
BATT  
V
V
DC  
= 0, V  
= 3.9V  
USB  
BATT  
BATT  
MAX1874 toc16  
MAX1874 toc18  
MAX1874 toc17  
DC  
10V/div  
5V/div  
5V/div  
EN  
5V/div  
5V/div  
USB  
PON  
DCLV  
PON  
10V/div  
10V/div  
CHG  
1A/div  
500mA/div  
5V/div  
I
I
BATT  
BATT  
I
500mA/div  
BATT  
DCOK  
10V/div  
UOK  
40ms/div  
10ms/div  
40ms/div  
_______________________________________________________________________________________  
7
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
Pin Description  
PIN  
1
NAME  
DCLV  
DC  
FUNCTION  
Low-Voltage Charger Input. DCLV charges BATT through an internal MOSFET. Maximum operating  
voltage at this pin is 6.0V. When an overvoltage protection MOSFET is connected, DCLV is connected to  
DC when the input voltage is suitable for charging.  
2
Voltage-Sense Pin for DC Input from AC Adapter. Maximum operating voltage at this pin is 18V.  
CHG is an active-low, open-drain output that goes low when the MAX1874 is charging and goes high  
when both of the following conditions are met (see the Battery Full (CHG) section):  
1) Charge current drops to a set threshold (Table 2).  
3
4
CHG  
2) The charger is in voltage mode.  
USEL is a logic input that sets USB source charging current to 500mA when USEL is logic high and to  
100mA when USEL is logic low.  
USEL  
Enable/Disable Input. Drive EN high to enable the device. When EN is low, UOK, DCOK, PON, and REF  
remain active.  
5
6
7
EN  
GND  
DCI  
Ground  
The voltage at this input sets the fast-charge current when the DCLV input is powering the charger. See  
the Charging Current section.  
THRM pauses charging when an externally connected thermistor (10kat +25°C) is at less than 0°C or  
greater than +50°C. Connect to GND to disable. See the External Thermistor Monitor (THRM) section.  
8
THRM  
3V Reference Output. Sources up to 500µA to bias I  
GND. REF loading does not affect BATT regulation accuracy.  
and external thermistor. Bypass with 0.1µF to  
DCI  
9
REF  
PGND  
BYP  
10  
11  
12  
13  
Power Ground. Connect to GND at a single, low-impedance point.  
BYP powers internal circuitry and switches to the active input (either DCLV or USB). Bypass with a 2.2µF  
capacitor to GND.  
USB  
USB Charger Input. Charges BATT through an internal MOSFET.  
UOK is an active-low, open-drain output that goes low to indicate when the USB input is the valid  
charging source.  
UOK  
PON is an active-high, open-drain output with an internal 120kresistor to ground that goes high when  
V
or V  
> V  
. PON can directly drive an external PFET that disconnects the battery from the  
BATT  
14  
PON  
DC  
USB  
system load when power is applied.  
15  
16  
BATT  
Charge Output. Connect to the positive terminal of the Li+ battery.  
DCOK  
DCOK is an active-low, open-drain output that goes low when 3.5V < V  
< 6.2V.  
DC  
8
_______________________________________________________________________________________  
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
Functional Diagram  
BYP  
5Ω  
DC  
OVERVOLTAGE AND  
UNDERVOLTAGE  
DETECT  
5Ω  
INPUT POWER-  
OK SELECT  
DCOK  
PON  
N
120kΩ  
DCLV  
USB  
BATT  
0.25Ω  
0.4Ω  
MAX1874  
USB/DCLV  
DETECT  
CHG  
V
I
BATT  
USB_SENSE  
I
DCLV_SENSE  
UOK  
LINEAR  
REGULATOR  
N
N
TEMPERATURE  
DCI  
USEL  
3.00V  
REFERENCE  
REF  
THERMISTOR  
COMPARATORS  
GND  
_______________________________________________________________________________________  
9
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
100mA through the USEL input. When power is taken  
Detailed Description  
from the DC input, charge current is linearly set by the  
The MAX1874 charges a single-cell Li+ battery from  
voltage at DCI. The MAX1874 charge current can also  
either USB power sources or AC adapter sources. It  
be DAC controlled with the output of a DAC connected  
contains a complete two-input linear charger that controls  
to DCI. See the Charging Current section.  
both battery charge current and voltage. In addition to  
all charging functions, the MAX1874 includes voltage-  
sensing and switchover circuitry that selects the active  
input source. When both inputs are active, priority is  
given to the AC adapter (DC). Charging current is regu-  
lated with on-chip power MOSFETs, so no external  
MOSFETs are required for a basic two-input charger.  
Additional features such as input-voltage protection and  
battery-load switching can be added with external  
MOSFETs that are driven directly from MAX1874 outputs.  
Enable (EN)  
The enable input, EN, switches the MAX1874 on or off.  
With EN high, the MAX1874 is on and can begin charg-  
ing. When EN is low, UOK, DCOK, PON, and REF remain  
active. Charging stops when EN is low, but the chip  
remains biased and continues to draw current from the  
input supplies so power-monitoring outputs can remain  
valid.  
USB-to-Adapter Power Handoff  
The MAX1874 can charge from either the USB input or  
the DC input. It cannot charge from both sources at the  
same time. The IC automatically selects the active input  
and charges from that. If both power sources are  
active, the adapter input (DC) takes precedence. Table  
1 describes the switchover between DC and USB.  
The MAX1874 also features a thermal regulation loop  
that adjusts charging current so the die temperature  
remains below +105°C. See the Package Thermal  
Limiting section. This on-chip thermal control simplifies  
PCB layout and allows the optimum charging rate to be  
set without the thermal limits imposed by worst-case  
battery and input voltage. When the MAX1874 thermal  
limit is reached, the charger does not shut down but  
reduces charging current.  
DC serves as the sense input for the adapter power  
source. This input senses when DC is above 6.2V (maxi-  
mum range is 18V) or below 4V. When it senses the DC  
source is above 6.2V, DCOK goes high, indicating an  
invalid DC input. See the DC Power-OK (DCOK) section.  
In addition to, and separate from, its internal die tem-  
perature control, the MAX1874 can also monitor ambi-  
ent or cell temperature with an external thermistor  
connected to THRM. When the thermistor temperature  
is out of range (greater than +50°C or less than 0°C),  
charging stops until the temperature returns to normal.  
See the External Thermistor Monitor (THRM) section.  
When power is connected to DC, the MAX1874 requires  
20ms to validate the input. Consequently, charging is  
interrupted for 20ms until it is determined that input  
power is good. Also, when DC power is removed while  
valid USB power is present, charging is interrupted for  
20ms before transferring to the USB source.  
Other features include a CHG output to indicate battery  
full (when charge current tapers to a percentage of  
fast-charge current). DCOK, UOK, and power-on (PON)  
outputs indicate when valid power is present. These  
outputs can drive overvoltage protection and power  
selection MOSFETs (Figures 3, 4, and 5).  
DC Power-OK (DCOK)  
DCOK is an active-low, open-drain output that goes low  
when V  
is below 6.2V or above 3.5V. DCOK can be  
DC  
used as a logic output, but is also designed to drive an  
external MOSFET (Q2 in Figures 3, 4, and 5). This allows  
the charger to protect the input from overvoltage up to  
18V. Charging is disabled for inputs over 6.2V. An exter-  
nal 1kpullup resistor keeps DCOK high (external  
MOSFET off) until it is certain the voltage is within the  
When charging is stopped or input power is removed,  
battery leakage is typically 5µA. No input blocking  
diodes are required to prevent battery drain.  
With USB power connected, but without power at the  
DC input, charge current can be set to either 500mA or  
Table 1. USB and DC Input Selection  
4V < V  
< 6.2V AND  
4V < V  
< 6.5V AND  
V
< 4V OR V  
>
DC  
< 4V  
DC  
USB  
DC  
V
DC  
> 18V OR V  
> 6.5V  
USB  
0 < V  
< 6.5V  
V
DC  
< 4V OR V  
> 6.2V  
6.2V, AND V  
USB  
DC  
USB  
Exceeds operating input  
range. Not allowed. See the  
Absolute Maximum Ratings  
section.  
1)  
2)  
USB powers device and supplies charging  
current.  
DCLV disconnected from DC source through  
external MOSFET (Q2 Figures 3, 4, and 5).  
DCLV powers device  
and supplies charging  
current.  
No charging  
Note: V takes precedence when both inputs are valid.  
DC  
10 ______________________________________________________________________________________  
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
acceptable range. To verify that the input voltage is  
stable, DCOK has an internal delay of 20ms before con-  
necting power to DCLV. DCOK remains operational  
when EN is low (charger off).  
100mA. A logic low on USEL selects a 100mA maximum  
charging current. A logic high on USEL selects a 500mA  
maximum charging current.  
DCI  
When charging from the DCLV input, the voltage at DCI  
sets the charge current. The voltage-to-current transfer  
USB Power-OK (UOK)  
UOK is an active-low, open-drain output that goes low  
to indicate that V  
is valid (greater than 4V). UOK  
ratio from DCI to BATT is 1A/V . The DCI pin should  
REF  
USB  
remains operational when EN is low (charger off). An  
external 10kpullup resistor keeps UOK high until it is  
certain that power is within the acceptable range. UOK  
can be used as a logic output, or to control a MOSFET  
that switches USB power directly to the system load  
when the MAX1874 is powered from a USB source (Q1  
in Figure 4).  
be connected to a resistive divider from REF to DCI to  
GND (R5 and R6 in Figures 2 and 4). In this configura-  
tion, I  
is as follows:  
BATT  
I
= [R6 / (R5 + R6)] Amps  
BATT  
R5 and R6 should total 25kor more to minimize loading  
on REF. Connecting DCI directly to REF results in a 1A  
charge current.  
Bypass (BYP)  
BYP is the bypass connection for the MAX1874s inter-  
nal power rail. Bypass to GND with a 2.2µF or greater  
capacitor. The voltage at BYP is supplied from either  
DCLV or USB through an internal 5switch network.  
Battery Full (CHG)  
CHG is low when the MAX1874 is charging in either the  
prequal or full-charging state. CHG then goes high  
when the charging current falls below a percentage of  
the set fast-charge current (Table 2) and the charger is  
in voltage mode (V  
near 4.2V). The CHG current  
Power On (PON)  
BATT  
threshold is a function of the charger mode. When  
charging from a DC source, CHG goes high when  
PON goes high when V  
or V  
is within its normal  
DC  
USB  
operating range. PON can be used as a logic output to  
indicate power is connected or can drive an external  
P-channel MOSFET that switches the system load from  
the battery to an external source when power is applied.  
See Q3 in Figures 4 and 5.  
I
falls to 12.5% of the current set by V  
and the  
DCI  
BATT  
charger is in voltage mode (V  
near 4.2V). When  
BATT  
charging from a USB source with USEL high, CHG  
goes high when I falls to 125mA and the charger is  
BATT  
in voltage mode. If the MAX1874 is charging from a  
USB source with USEL low, CHG goes high when the  
charger enters voltage mode.  
Charging Current  
Precharge Current  
When the MAX1874 is powered with a battery connect-  
ed, the IC first detects if the cell voltage is ready for full  
charge current. If the cell voltage is less than the pre-  
qual level (3V typ), the battery is precharged with a  
50mA current until the cell reaches the proper level.  
The full charging current, as set by USEL or DCI, is  
then applied.  
Package Thermal Limiting  
On-chip thermal limiting in the MAX1874 simplifies PCB  
layout and allows charging rates to be automatically  
optimized without constraints imposed by worst-case  
minimum battery voltage, maximum input voltage, and  
maximum ambient temperature. When the MAX1874  
thermal limit is reached, the charger does not shut  
down but simply reduces charging current. This allows  
the board design to be optimized for compact size and  
typical thermal conditions. The MAX1874 reduces  
charging current to keep its die temperature below  
+105°C.  
USEL  
The charging current from the USB source is selected  
by USEL. A USB source can supply a maximum of  
100mA or 500mA. USB hosts and powered hubs typi-  
cally supply 500mA, while unpowered hubs supply  
Table 2. CHG Battery Full Indication  
CHARGING SOURCE  
CHARGE CURRENT THRESHOLD FOR CHG GOING HIGH  
12.5% of Charge Current Set by DCI and Charger in Voltage Mode  
125mA and Charger in Voltage Mode  
DCLV Charging  
USB Charging 500mA (USEL high)  
USB Charging 100mA (USEL low)  
Charger in Voltage Mode  
Note: CHG does not go high when charge current is reduced by the thermal regulation loop.  
______________________________________________________________________________________ 11  
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
The MAX1874s thin QFN package includes a bottom  
metal plate that reduces thermal resistance between the  
die and the PCB. The external pad should be soldered to  
a large ground plane. This helps dissipate power and  
keeps the die temperature below the thermal limit. The  
REF  
MAX1874 thermal resistance from the die to the package  
0.1µF  
10kΩ  
thermal pad is typically 5°C/W. The thermal resistance of  
100mV  
TO REGULATOR  
2
1in of 1oz copper on typical FR4 PC board material in  
THRM  
free air is +42°C/W (typ). Consequently, the PC board  
pad area dominates the MAX1874s ability to dissipate  
heat. The MAX1874s thermal regulator is set for a  
+105°C die temperature. With the example thermal resis-  
tance of +47°C/W, the MAX1874 charge-current thermal  
limiting can be expected to occur when dissipating  
approximately 1.7W at +25°C ambient, and when dissi-  
pating approximately 0.75W at +70°C ambient.  
T
COLD  
THERMISTOR  
10KAT +25°C  
T
HOT  
The power dissipated in the charger is P  
= [V  
IN  
DISS  
(either V  
or V  
) - V  
BATT  
] I . Power dis-  
USB  
DCLV  
CHARGE  
Figure 1. Thermistor Sensing Block Diagram  
sipation drops as the battery voltage rises, so thermal-  
charge current limiting, if it occurs, typically releases  
soon after charging begins and has little impact on  
charge time.  
Battery-Load Switch  
When input power is connected to the charger, some  
systems prefer that the battery is disconnected from the  
load and that system load current is taken directly from  
the DC input or USB source. This is an alternative to the  
basic case where the system load is permanently con-  
nected to the battery. The later setup is lower cost but  
has the disadvantage that if the battery is completely  
discharged, the system might not be ready to operate  
immediately, or might have limited functionality immedi-  
ately upon plugging in the charger. If the battery has a  
load-disconnect switch, the system is more complex,  
but operation does not depend on the state of the bat-  
tery. When system power is taken from the DC or USB  
input source, use D1, D2, Q1, and Q2 (Figure 4).  
External Thermistor Monitor (THRM)  
The MAX1874 features an internal window comparator to  
monitor battery pack temperature or ambient tempera-  
ture with an external negative temperature coefficient  
thermistor. In typical systems, temperature is monitored  
to prevent charging at ambient temperature extremes  
(below 0°C or above +50°C). When the temperature  
moves outside these limits, charging is stopped. If the  
V
returns to within its normal window, charging  
THERM  
resumes. Connect THRM to GND when not using this  
feature. The THRM block diagram is detailed in Figure 1.  
Note that the temperature monitor at THRM is entirely  
separate from the on-chip temperature limiting dis-  
cussed in the Package Thermal Limiting section.  
A partial approach to battery-load switching can con-  
nect the AC power adapter (DC) directly to the load, but  
not USB power (Figure 5). This can be useful when USB  
power is insufficient to fully power the system and  
charge the battery. When DC is powered, D2 provides a  
direct connection to the system and Q3 disconnects the  
battery. The battery does not power the load while it is  
charging. When only USB is connected, there is no  
bypass path from USB to the system. The battery is  
charged from the BATT output, and any system power is  
drawn from the battery through D5. If the system load  
exceeds the current supplied by the charger from USB  
(500mA or 100mA), then the battery can still discharge.  
In addition, if the system load does not allow the BATT  
current to fall below the USB battery full current thresh-  
old listed in Table 2, then CHG does not go high to indi-  
cate a full battery.  
The input thresholds for the THRM input are 0.74 ✕  
V
for the COLD trip point and 0.29 V  
for the  
REF  
REF  
HOT trip point.  
Applications Information  
Input Overvoltage Protection Switch  
The DCLV input from an AC adapter or other source  
can be protected against overvoltage of up to 18V by  
connecting an external P-channel MOSFET (Q2 in  
Figures 3, 4, and 5) between DC and DCLV. When V  
DC  
exceeds 6.2V, the DCOK output turns the P-channel  
MOSFET off. On power-up, DCOK remains high until it  
has been verified that V  
is in range. If protection  
DC  
above 6.5V is not needed, then the MOSFET from the  
DC to DCLV can be omitted (Figure 2).  
12 ______________________________________________________________________________________  
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
DC INPUT  
UP TO 6.0V  
DC  
C5  
4.7µF  
10V CERAMIC  
MAX1874  
DCOK  
DCLV  
UOK  
PON  
BATT  
C3  
2.2µF  
6.3V CERAMIC  
Li+  
CELL  
250mΩ  
USB  
DCI  
CHG  
USEL  
EN  
USB INPUT  
C1  
4.7µF  
500mA  
100mA  
400mΩ  
6.3V CERAMIC  
R5  
100kΩ  
REGULATOR  
TO REF  
REF  
C6  
0.1µF  
R4  
10kΩ  
R6  
301kΩ  
10V CERAMIC  
THRM  
GND  
NTC  
THERMISTOR  
10kAT +25°C  
BYP  
PGND  
C4  
2.2µF  
10V CERAMIC  
Figure 2. A Minimal Circuit that Assumes System Load Is Only Connected to the Battery. The circuit has a 6.5V maximum input and  
disables charging for inputs over 6.2V.  
R2  
0VP UP TO 18V  
CHARGING UP TO 6.0V  
1kΩ  
5%  
DC  
C5  
4.7µF  
25V CERAMIC  
Q2  
FDN302  
0.055, -20V  
MAX1874  
DCOK  
PON  
BATT  
DCLV  
UOK  
C2  
C3  
1µF  
2.2µF  
Li+  
CELL  
250mΩ  
10V CERAMIC  
6.3V CERAMIC  
USB  
CHG  
USEL  
EN  
USB INPUT  
C1  
4.7µF  
500mA  
100mA  
6.3V CERAMIC  
400mΩ  
REGULATOR  
TO REF  
REF  
DCI  
C6  
0.1µF  
R4  
10kΩ  
10V CERAMIC  
THRM  
GND  
NTC  
THERMISTOR  
10kAT +25°C  
BYP  
PGND  
C4  
2.2µF  
10V CERAMIC  
Figure 3. A circuit with overvoltage protection MOSFET (Q2) on DC input withstands up to 18V from the AC adapter and disables  
charging at inputs over 6.2V.  
______________________________________________________________________________________ 13  
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
D2  
500mA,  
SCHOTTKY  
(MBR0520L)  
OVP UP TO 18V  
R2  
1kΩ  
CHARGING UP TO 6.0V  
TO SYSTEM  
LOAD  
DC  
D1  
500mA,  
SCHOTTKY  
(MBR0520L)  
Q2  
FDN302  
0.055, -20V  
C5  
4.7µF  
25V CERAMIC  
Q3  
FDN302  
0.055, -20V  
MAX1874  
DCOK  
PON  
BATT  
DCLV  
UOK  
Q1  
FDN302  
C3  
2.2µF  
6.3V CERAMIC  
C2  
1µF  
Li+  
CELL  
0.055, -20V  
250mΩ  
R3  
10kΩ  
10V CERAMIC  
USB  
CHG  
USEL  
EN  
USB INPUT  
C1  
4.7µF  
500mA  
100mA  
400mΩ  
6.3V CERAMIC  
R5  
100kΩ  
REGULATOR  
REF  
DCI  
TO REF  
C6  
0.1µF  
R4  
10kΩ  
R6  
301kΩ  
10V CERAMIC  
THRM  
GND  
NTC  
THERMISTOR  
10kAT +25°C  
BYP  
PGND  
C4  
2.2µF  
10V CERAMIC  
Figure 4. Full-Featured Circuit. Overvoltage protection MOSFET (Q2) on DC withstands up to 18V from the AC adapter, but disables  
charging at inputs over 6.2V. Output switch-over MOSFET (Q3) disconnects the battery from the system load when input power is  
applied. The input can power the system through D1, D2, Q1, and Q2 when either USB or AC power is present.  
14 ______________________________________________________________________________________  
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
TO SYSTEM  
LOAD  
D2  
500mA,  
SCHOTTKY  
(MBR0520L)  
OVP UP TO 18V  
R2  
1kΩ  
CHARGING UP TO 6.0V  
D5  
500mA,  
DC  
C5  
4.7µF  
25V CERAMIC  
SCHOTTKY  
(MBR0520L)  
Q2  
FDN302  
0.055, -20V  
Q3  
MAX1874  
DCOK  
PON  
FDN302  
0.055, -20V  
BATT  
TO BYP  
DCLV  
UOK  
D4  
LED  
C2  
1µF  
10V CERAMIC  
C3  
2.2µF  
Li+  
CELL  
250mΩ  
6.3V CERAMIC  
R7  
3kΩ  
USB  
CHG  
USEL  
EN  
USB INPUT  
C1  
4.7µF  
500mA  
100mA  
400mΩ  
6.3V CERAMIC  
REGULATOR  
TO REF  
REF  
DCI  
C6  
0.1µF  
R4  
10kΩ  
10V CERAMIC  
THRM  
GND  
NTC  
THERMISTOR  
10kAT +25°C  
BYP  
PGND  
C4  
2.2µF  
10V CERAMIC  
Figure 5. Partial-Battery Load Switching. AC adapter power is routed directly to the battery, but USB power is not. When USB power  
is connected, total USB current is limited to that set by USEL and system power is drawn from the battery through D5.  
Chip Information  
TRANSISTOR COUNT: 4997  
PROCESS: BICMOS  
______________________________________________________________________________________ 15  
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
16 ______________________________________________________________________________________  
Dual-Input, USB/AC Adapter, 1-Cell  
Li+ Charger with OVP and Thermal Regulation  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Revision History  
Pages changed at Rev 1: 1, 10, 11, 12, 14, 16  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1874ETE-T

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220WHHB, TQFN-16
MAXIM

MAX1874EVKIT

MAX1874 Evaluation Kit
MAXIM

MAX1875

Dual 180∑ Out-of-Phase PWM Step- Down Controllers with POR
MAXIM

MAX1875-MAX1876

Dual 180∑ Out-of-Phase PWM Step- Down Controllers with POR
MAXIM

MAX1875AEEG

Dual 180∑ Out-of-Phase Buck Controllers with Sequencing/Prebias Startup and POR
MAXIM

MAX1875AEEG+

Dual Switching Controller, Voltage-mode, 660kHz Switching Freq-Max, BICMOS, PDSO24, 0.150 INCH, 0.25 INCH PITCH, MO-137AE, QSOP-24
MAXIM

MAX1875AEEG+T

Dual Switching Controller, Voltage-mode, 660kHz Switching Freq-Max, BICMOS, PDSO24, 0.150 INCH, 0.25 INCH PITCH, MO-137AE, QSOP-24
MAXIM

MAX1875AEEG-T

Dual Switching Controller, Voltage-mode, 660kHz Switching Freq-Max, BICMOS, PDSO24, 0.150 INCH, 0.25 INCH PITCH, MO-137AE, QSOP-24
MAXIM

MAX1875EEG

Dual 180∑ Out-of-Phase PWM Step- Down Controllers with POR
MAXIM

MAX1875EEG+

Dual Switching Controller, Voltage-mode, 0.05A, 600kHz Switching Freq-Max, BICMOS, PDSO24, 0.150 INCH, QSOP-24
MAXIM

MAX1875EEG+T

Dual Switching Controller, Voltage-mode, 0.05A, 600kHz Switching Freq-Max, BICMOS, PDSO24, 0.150 INCH, QSOP-24
MAXIM

MAX1875EEG-T

Dual Switching Controller, Voltage-mode, 0.05A, 600kHz Switching Freq-Max, BICMOS, PDSO24, 0.150 INCH, QSOP-24
MAXIM