MAX1894 [MAXIM]

Advanced Li+ Battery-Pack Protectors; 先进的锂离子电池组保护
MAX1894
型号: MAX1894
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Advanced Li+ Battery-Pack Protectors
先进的锂离子电池组保护

电池
文件: 总16页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2278; Rev 0; 4/02  
Advanced Li+ Battery-Pack Protectors  
General Description  
Features  
The MAX1894/MAX1924 are lithium-ion/lithium-polymer  
(Li+) battery-pack protector ICs for 3- or 4-series Li+ bat-  
tery packs. The MAX1894/MAX1924 enhance the useful  
operating life of Li+ batteries by monitoring individual cell  
voltages and preventing over/undervoltage conditions.  
The MAX1894/MAX1924 also protect the battery pack  
against charge current, discharge current, and pack-  
short fault conditions.  
Protect Against Cell Overvoltage  
Factory Programmable Limits from 4V to 4.4V  
Accurate to ±±.ꢀ5  
Protect Against Cell Undervoltage  
Factory Programmable Limits from 2V to 3.2V  
Accurate to ±2.±5  
Protect Against Charge, Discharge, and Pack-  
In case of a fault condition, on-board drivers control  
external P-channel MOSFETs, which disconnect the cells  
from the pack external terminals. The external protection  
MOSFETs are connected in a common-source configura-  
tion that does not require external pullup resistors. The  
MAX1894/MAX1924 use only one current-sense resistor  
to achieve the protection features. All protection thresh-  
olds and delays do not require any external components  
and are trimmed at the factory.  
Short Current Faults  
Automatically Trickle Charges Deeply Discharged  
Cells  
Fully Integrated MOSFET Drivers Do Not Require  
Pullup Resistors  
±.8µA (typ) Shutdown Supply Current Prevents  
Deep Discharge of Cells  
3±µA (typ) Operating Supply Current  
28V (max) Input Voltage  
If any cell voltage drops below the undervoltage thresh-  
old, the MAX1894/MAX1924 disconnect the pack from  
the load and power down to prevent deep discharge of  
the pack. The MAX1894/MAX1924 offer a trickle-charge  
feature, which provides a low-current path to safely  
charge a deeply discharged pack. The MAX1894/  
MAX1924 also have two logic-level inputs, which can be  
used by a microcontroller to disable the protection  
MOSFETs and to put the device in shutdown. The  
MAX1894/MAX1924 have low quiescent current (30µA  
typ) and ultra-low shutdown current (0.8µA typ) to pre-  
vent deep-cell discharge.  
Available in Small 16-Pin QSOP Package  
Pin Configuration  
TOP VIEW  
B4P  
1
2
3
4
5
6
7
8
16 SRC  
15 DSO  
V
CC  
CGO  
14  
B3P  
IC3  
B2P  
IC2  
B1P  
IC1  
13 TKO  
12 SHDN  
11 CTL  
10 PKN  
The MAX1894X is designed for 4-series battery packs,  
without hysteresis on the protection thresholds. The  
MAX1924V and MAX1924X include hysteresis for the 3-  
and 4-series packs, respectively.  
MAX1894  
MAX1924  
9
BN  
Applications  
QSOP  
3- or 4-Series Li+ Battery Packs  
Ordering Information  
OVERVOLTAGE  
THRESHOLD HYSTERESIS  
PART  
TEMP RANGE  
PIN-PACKAGE  
CELLS  
OVERVOLTAGE  
MAX1894XEEE  
MAX1924VEEE  
MAX1924XEEE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
16 QSOP  
16 QSOP  
16 QSOP  
4
3
4
4.25V*  
4.35V*  
4.35V*  
No  
Yes  
Yes  
*Contact factory for alternative threshold voltages.  
Typical Applications Circuits appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Advanced Li+ Battery-Pack Protectors  
ABSOLUTE MAXIMUM RATINGS  
SRC, IC2, IC3, V  
to BN.......................................-0.3V to +28V  
PKN to BN ...................................................................-2V to +2V  
ESD Protection on All Pins............................................... 2000V  
CC  
IC1 to BN..................................................................-0.3V to +6V  
DSO, TKO, CGO to BN.............................-0.3V to (V + 0.3V)  
Continuous Power Dissipation (T = +70°C)  
SRC  
A
B4P to B3P ...............................................................-0.3V to +6V  
B3P to B2P ...............................................................-0.3V to +6V  
B2P to B1P ...............................................................-0.3V to +6V  
B1P to BN.................................................................-0.3V to +6V  
CTL, SHDN to PKN...................................................-0.3V to +6V  
16-Pin QSOP (derate 8.3mW/°C above +70°C)...........667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
+ 0.1V, each battery cell voltage (V  
) = 3.6V, V  
= V  
= V , T = ±°C to +8ꢀ°C, unless otherwise noted.  
PKN A  
SRC  
B4P  
CELL  
CTL  
SHDN  
Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 1V  
B_P  
MIN  
TYP  
MAX  
UNITS  
SRC Input Current  
V
- V  
20  
40  
µA  
SRC  
Supply Current (Note 1)  
Shutdown Supply Current  
I
No faults  
Undervoltage without charge source  
30  
45  
2
µA  
µA  
SUP  
I
0.8  
SHDN  
Top Cell Sampling Current  
(Note 2)  
V
V
= 3.6V  
= 3.6V  
60  
500  
4.5  
µA  
pA  
V
CELL  
CELL  
Intermediate Cell Input Bias  
Current (Note 3)  
V
Undervoltage Lockout  
CC  
Rising edge, hysteresis = 1% falling edge  
- V  
Threshold  
Charge-Mode Detection  
Threshold  
V
25  
100  
mV  
SRC  
B4P  
MAX1894X cell voltage rising  
4.225  
4.325  
4.250  
4.350  
4.275  
4.375  
Overvoltage Threshold (Note 4)  
V
V
OV_TH  
MAX1924X, MAX1924V cell voltage rising  
Overvoltage Threshold  
Hysteresis  
V
MAX1924X, MAX1924V cell voltage falling  
Cell voltage falling  
200  
2.300  
145  
mV  
V
OV_HYT  
Undervoltage Threshold (Note 4)  
V
2.260  
130  
2.340  
160  
UV_TH  
PKN to BN Discharge Current  
Fault Threshold  
V
mV  
OD_TH  
PKN to BN Charge Current  
Fault Threshold  
V
-120  
385  
-100  
405  
-80  
mV  
mV  
OC_TH  
PKN to BN Discharge Current  
Fault Threshold, Pack-Short  
Condition  
V
425  
PS_TH  
Discharge or Charge Current  
Fault to DSO, CGO, TKO  
Transition Delay Time  
Discharge Current Fault to DSO  
Transition Time Delay for Pack-  
Short Condition  
t
2.5  
3
3.5  
ms  
µs  
I-DELAY  
t
400  
450  
500  
P-DELAY  
2
_______________________________________________________________________________________  
Advanced Li+ Battery-Pack Protectors  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
+ 0.1V, each battery cell voltage (V  
) = 3.6V, V  
= V  
= V , T = 0°C to +85°C, unless otherwise noted.  
PKN A  
SRC  
B4P  
CELL  
CTL  
SHDN  
Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Charge-Voltage Comparator  
Threshold for Resetting  
V
- V  
B4P  
25  
100  
mV  
SRC  
Discharge-Current Fault Latch  
Discharge-Voltage Comparator  
Threshold for Resetting Charge-  
Current Fault Latch  
V
V
- V  
25  
100  
mV  
B4P  
SRC  
SRC  
DSO, CGO, and TKO Sink  
Current  
= 12V, V  
= 12V, V  
= 5V (Note 5)  
= 10V  
100  
3.5  
200  
5
µA  
mA  
ms  
PIN  
PIN  
DSO, CGO, and TKO  
Source Current  
V
V
SRC  
CTL  
= 3V (Note 5)  
Under/Overvoltage to DSO,  
CGO, TKO Transition Delay  
t
270  
2.4  
320  
370  
V-DELAY  
SHDN, CTL Input High (Note 6)  
SHDN, CTL Input Low (Note 6)  
Rising edge  
Falling edge  
V
V
1.2  
1
SHDN, CTL Input Leakage  
Current  
PKN = BN  
µA  
ns  
V
SHDN, CTL Delay to Output  
Change  
50  
-0.1  
-14  
DSO, CGO, TKO Output High  
(Note 7)  
V
V
= 4V, V  
= 4V  
= 3V  
CTL  
B_P  
B_P  
DSO, CGO, TKO Output Low  
(Note 7)  
V
_______________________________________________________________________________________  
3
Advanced Li+ Battery-Pack Protectors  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
+ 0.1V, each battery cell voltage (V  
) = 3.6V, V  
= V  
= V , T = -40°C to +85°C, unless otherwise noted.)  
PKN A  
SRC  
B4P  
CELL  
CTL  
SHDN  
PARAMETER  
SYMBOL  
CONDITIONS  
= 1V  
MIN  
TYP  
MAX  
40  
UNITS  
µA  
SRC Input Current  
V
- V  
SRC B_P  
Supply Current (Note 1)  
Shutdown Supply Current  
I
No faults  
Undervoltage without charge source  
50  
µA  
SUP  
I
2
µA  
SHDN  
Charge-Mode Detection  
Threshold  
V
- V  
25  
100  
mV  
V
SRC  
B4P  
MAX1894X cell voltage rising  
MAX1924X, MAX1924V cell voltage rising  
Cell voltage falling  
4.21  
4.32  
2.24  
4.29  
4.38  
2.36  
Overvoltage Threshold (Note 4)  
V
V
OV_TH  
Undervoltage Threshold (Note 4)  
V
UV_TH  
OD_TH  
PKN to BN Discharge-Current  
Fault Threshold  
V
V
120  
170  
-70  
mV  
PKN to BN Charge-Current  
Fault Threshold  
-130  
mV  
mV  
OC_TH  
PKN to BN Discharge-Current  
Fault Threshold, Pack Short  
Condition  
Discharge- or Charge-Current  
Fault to DSO, CGO, TKO  
Transition Delay Time  
Discharge-Current Fault to DSO  
Transition Time Delay for Pack  
Short Condition  
Charge-Voltage Comparator  
Threshold for Resetting  
V
345  
2
465  
4
PS_TH  
t
ms  
µs  
I-DELAY  
t
370  
25  
25  
480  
100  
100  
P-DELAY  
V
- V  
- V  
mV  
mV  
SRC  
B4P  
Discharge-Current Fault Latch  
Discharge-Voltage Comparator  
Threshold for Resetting Charge-  
Current Fault Latch  
V
V
B4P  
SRC  
SRC  
DSO, CGO, and TKO Sink  
Current  
= 12V, V  
= 12V, V  
= 5V (Note 5)  
= 10V  
100  
3.5  
µA  
mA  
ms  
PIN  
PIN  
DSO, CGO, and TKO  
Source Current  
V
V
SRC  
CTL  
= 3V (Note 5)  
Under/Overvoltage to DSO,  
CGO, TKO Transition Delay  
t
270  
2.4  
370  
1.2  
V-DELAY  
SHDN, CTL Input High (Note 6)  
SHDN, CTL Input Low (Note 6)  
Rising edge  
Falling edge  
V
V
Note 1: Average current from the top of the battery pack. Measured at V  
.
CC  
Note 2: Typical supply current for the top cell during the 0.5ms sampling period.  
Note 3: Input bias current for this measurement is valid when all cell voltages are equal and the measurement is made over a time  
greater than 3 seconds.  
Note 4: Each cell voltage is sampled individually and a differential measurement is made (V  
- V  
, V  
B3P B3P  
- V  
, V  
B2P B2P  
- V  
,
B1P  
B4P  
and V  
- BN).  
B1P  
Note 5: V  
represents V  
, V  
, or V  
.
TKO  
PIN  
DSO CGO  
Note 6: Inputs to SHDN and CTL pins are referred to PKN.  
Note 7: Measurements are with respect to V  
.
SRC  
4
_______________________________________________________________________________________  
Advanced Li+ Battery-Pack Protectors  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
UNDERVOLTAGE THRESHOLD  
vs. TEMPERATURE  
50  
40  
30  
20  
10  
0
1.2  
2.310  
2.305  
2.300  
4-SERIES BATTERY PACK  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
4-SERIES BATTERY PACK  
B1P  
B3P  
B4P  
B2P  
2.295  
2.290  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CHARGE-CURRENT FAULT  
THRESHOLD vs. TEMPERATURE  
CHARGE-CURRENT FAULT RECOVERY  
THRESHOLD vs. TEMPERATURE  
OVERVOLTAGE THRESHOLD  
vs. TEMPERATURE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
130  
120  
110  
100  
90  
4.360  
4.355  
4.350  
4.345  
4.340  
MAX1924X  
B1P  
B3P  
B4P  
B2P  
80  
70  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DISCHARGE-CURRENT FAULT THRESHOLD  
vs. TEMPERATURE  
DISCHARGE-CURRENT FAULT RECOVERY  
THRESHOLD vs. TEMPERATURE  
PACK-SHORT CURRENT FAULT  
THRESHOLD vs. TEMPERATURE  
155  
150  
145  
140  
135  
100  
90  
80  
70  
60  
50  
40  
30  
20  
415  
410  
405  
400  
395  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Advanced Li+ Battery-Pack Protectors  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
DISCHARGE-CURRENT FAULT TIMING  
CHARGE-CURRENT FAULT TIMING  
PACK-SHORT CURRENT FAULT TIMING  
MAX1894 toc10  
MAX1894 toc11  
MAX1894 toc12  
0
V
- V  
V
- V  
BN  
PKN BN  
200mV/div  
PKN  
100mV/div  
V
- V  
BN  
PKN  
100mV/div  
0
0
DSO  
5V/div  
DSO  
5V/div  
CGO  
5V/div  
0
0
0
1ms/div  
1ms/div  
100µs/div  
Pin Description  
PIN  
NAME  
B4P  
FUNCTION  
1
Cell 4 Positive Connection. Short B4P to B3P for MAX1924V.  
Supply Input. Connect this pin to the top of the battery pack through a diode and a capacitor  
(see the Typical Application Circuit).  
2
V
CC  
3
4
5
6
7
8
B3P  
IC3  
B2P  
IC2  
B1P  
IC1  
Cell 3 Positive Connection  
Internal Connection. Float this pin.  
Cell 2 Positive Connection  
Internal Connection. Float this pin.  
Cell 1 Positive Connection  
Internal Connection. Float this pin.  
Battery Negative. Connection for the cell 1 negative terminal and the top of the current-sense  
9
BN  
PKN  
CTL  
resistor R . BN is also chip ground.  
SENSE  
10  
11  
Pack Negative. The sense resistor (R ) is connected between BN and PKN.  
SENSE  
Control Input. Drive CTL low for normal operation. Drive CTL high to turn off the three external  
protection MOSFETs.  
Shutdown. Drive SHDN low for normal operation. Drive SHDN high to put the device into shutdown  
if no charger is present.  
12  
13  
14  
15  
16  
SHDN  
TKO  
Trickle-Charge Driver Output. TKO drives the gate of an external P-channel trickle-charge MOSFET  
low (on) in normal operation.  
Fast-Charge Driver Output. CGO drives the gate of an external P-channel fast-charge MOSFET low  
(on) in normal operation.  
CGO  
DSO  
SRC  
Discharge Driver Output. DSO drives the gate of an external P-channel discharge control MOSFET  
low (on) in normal operation.  
Common Source Connection for MOSFETs. SRC provides the bias for gate drivers DSO, TKO,  
and CGO.  
6
_______________________________________________________________________________________  
Advanced Li+ Battery-Pack Protectors  
Detailed Description  
Table 1. Flow Chart Symbol Table  
The MAX1894/MAX1924 battery-pack protectors super-  
vise the charging and discharging process of Li+ cells.  
Designed for 3-series (MAX1924V) and 4-series  
(MAX1894X/MAX1924X) applications, these devices  
monitor the voltage across each cell to provide protec-  
tion against undervoltage, overvoltage, and  
overcurrent damage.  
SYMBOL  
DESCRIPTION  
Charge-Current Fault Threshold  
(Negative Value)  
V
V
OC_TH  
OD_TH  
Discharge-Current Fault Threshold  
Pack-Short Discharge-Current Fault  
Threshold  
V
V
PS_TH  
Output pins CGO, TKO, and DSO control external  
MOSFET gates. These MOSFETs, in turn, control the  
fast-charging, trickle-charging, and discharge process-  
es of the battery pack (Figure 1).  
Undervoltage Threshold  
UV_TH  
OV_TH  
V
Overvoltage Threshold  
V
MOSFET Common Source Voltage  
Sense Resistor Voltage  
SRC  
V
V
RSENSE  
OV_HYT  
OVF  
Modes of Operation  
Overvoltage Threshold Hysteresis  
Overvoltage Sample Counter  
Undervoltage Sample Counter  
Shutdown Mode  
The MAX1894/MAX1924 go into shutdown mode under  
two conditions: the SHDN pin is driven high without a  
charger applied, or a battery cell undervoltage fault is  
detected, also without a charger applied. In shutdown  
UVF  
are returned to the normal low state (see Figure 3). The  
MAX1924 also includes a hysteresis of 200mV.  
mode, the device consumes 0.8µA (typ) on the V  
pin  
CC  
The overvoltage threshold is preprogrammed and  
requires no external components. The overvoltage thresh-  
old is factory set at 4.25V (typ) for the MAX1894 and  
4.35V (typ) for the MAX1924. Contact Maxim for more  
information on threshold levels between 4V and 4.4V.  
and all MOSFETs are off. The MAX1894/MAX1924 stay  
in shutdown mode as long as no charging voltage is  
applied to the battery pack (V  
is less than the pack  
SRC  
voltage). When the battery pack is connected to a  
charger (V > V + 0.1V) and the pack voltage is  
SRC  
B4P  
above 4.5V, the device goes into normal operating  
mode and begins monitoring the pack (see Figure 2).  
Undervoltage Protection  
The MAX1894/MAX1924 provide undervoltage protec-  
tion to avoid overdischarging the cells. With no battery  
charger present, and an undervoltage fault is detected  
in four consecutive samples, DSO, CGO, and TKO go  
high and the device goes into shutdown mode (see  
Figure 4).  
Normal Mode  
In the normal mode of operation, the MAX1894/MAX1924  
are in either a standby mode (29µA typ) or sample mode  
(160µA typ). The device enters the standby mode from  
shutdown mode. The standby mode lasts for 79ms; then  
the device goes into the sample mode. During sample  
mode, the MAX1894/MAX1924 check each cell for over-  
voltage and undervoltage. Sample mode lasts for 0.5ms;  
then the MAX1894/MAX1924 return to standby mode.  
During sample mode, the MAX1894/MAX1924 do not intro-  
duce cell mismatch.  
If a battery charger is applied to the battery pack and  
one or more cells are below V  
, then only TKO  
UV_TH  
goes low, allowing trickle-charge current to flow. If no  
undervoltage is detected in any sample, DSO, CGO,  
and TKO all go low.  
The undervoltage threshold is preprogrammed at 2.30V  
(typ). Contact Maxim for more information on threshold  
levels between 2V and 3.2V.  
During normal mode operation, the MAX1894/MAX1924  
continuously monitor the voltage across R  
for charge  
SENSE  
or discharge current faults, or battery pack-short faults.  
Charge-Current Fault Protection  
The MAX1894/MAX1924 protect against excessive  
charge current by monitoring the voltage developed  
Protection Features  
Overvoltage Protection  
The MAX1894/MAX1924 provide overvoltage protection  
to avoid overcharging cells. When an overvoltage fault  
is detected in four consecutive samples, CGO and TKO  
go high, stopping the charging process. The  
MAX1894/MAX1924 continue to sample the cell volt-  
ages, and if no overvoltage is detected, CGO and TKO  
across R  
. R  
is connected between BN and  
exceeds the charge-current fault  
, typically 100mV) for more than 3ms,  
SENSE SENSE  
PKN. If V  
RSENSE  
threshold (V  
OC_TH  
the charge current comparator is tripped, setting CGO  
and TKO high.  
The charge-current fault condition is latched and is not  
reset until the MAX1894/MAX1924 detect a reversal in  
_______________________________________________________________________________________  
7
Advanced Li+ Battery-Pack Protectors  
OVERDISCHARGE  
PROTECTION  
R5  
10Ω  
C5  
2.2µF  
PACK +  
TRICKLE  
CHARGE  
16  
SRC  
BN  
15  
DSO  
OVERCHARGE  
PROTECTION  
14  
13  
CGO  
TKO  
R
TKO  
510Ω  
D1  
CMPSH-3  
2
1
V
CC  
B4P  
C6  
0.1µF  
R4  
51Ω  
MAX1894X  
MAX1924X  
C4  
R3  
1µF  
1kΩ  
3
4
B3P  
IC3  
C3  
0.1µF  
R2  
1kΩ  
5
6
B2P  
IC2  
12  
11  
SHDN  
CTL  
MICRO-  
CONTROLLER  
C2  
0.1µF  
R1  
1kΩ  
7
B1P  
C1  
0.1µF  
8
9
IC1  
BN  
PKN  
10  
R
SENSE  
0.02Ω  
PACK -  
Figure 1. Typical Applications Circuit with Trickle Charge  
the direction of current flow. To reverse the current flow,  
the charger has to be removed (Figure 5). The sustain-  
ing condition for the latch is a 100mV (max) voltage  
drop across SRC and B4P. Since the charge-current  
fault threshold between BN and PKN is also 100mV  
than 3ms, the discharge-current comparator is tripped,  
setting DSO, CGO, and TKO high.  
Discharge-current fault is latched and is not reset until  
the MAX1894/MAX1924 detect a reversal in the direc-  
tion of current flow. To reverse the current flow, a  
charger must be applied (Figure 6).  
(typ), the R  
of the overcharge protection MOSFET  
DS_ON  
must be greater than the sense resistor in order to  
ensure a latched state.  
Pack-Short Current Fault Protection  
The MAX1894/MAX1924 protect against a shorted  
pack by monitoring the voltage developed across  
Discharge-Current Fault Protection  
The MAX1894/MAX1924 protect against excessive dis-  
charge-current by monitoring the voltage developed  
R
. If V  
PS_TH  
exceeds the pack-short threshold  
RSENSE  
SENSE  
(V  
, typically 405mV) for more than 450µs, the  
across R  
. If V  
exceeds the discharge-cur-  
OD_TH  
SENSE  
rent fault threshold (V  
RSENSE  
pack-short comparator is tripped, setting CGO, DSO,  
and TKO high.  
, typically 145mV) for more  
8
_______________________________________________________________________________________  
Advanced Li+ Battery-Pack Protectors  
V
= 2.3V typ &  
OV_TH  
UV_TH  
V
= 4.25V typ  
SHUTDOWN PIN  
OPERATION  
SHUTDOWN  
DSO, CGO, TKO = H  
NORMAL OPERATION  
NO  
NO  
V
> V  
B4P  
SRC  
+ 0.1V  
YES  
TKO = L  
NO  
NO  
SHDN = H  
YES  
V
> 4.5V  
CC  
YES  
STANDBY = 79ms  
SHUTDOWN  
DSO, CGO,  
TKO = H  
NO  
NO  
V
> V + 0.1V  
B4P  
SRC  
V
< V  
UV_TH  
CELL  
YES  
LATCH UVF = UVF + 1  
RESET UVF  
RESET OVF  
YES  
V
> V  
CELL  
OV_TH  
DSO, CGO, TKO = H  
YES  
LATCH OVF = OVF + 1  
MAX1924 V  
= 200mV  
OV_HYT  
OV_HYT  
MAX1894 V  
CONTROL PIN  
OPERATION  
= 0  
YES  
OVF = 4  
NO  
TKO, CGO = H  
NORMAL OPERATION  
RESET V  
= 4.25V typ  
OV_TH  
NO  
NO  
UVF = 4  
YES  
CTL = H  
YES  
DSO, CGO, TKO = H  
V
> V + 0.1V  
B4P  
SRC  
NO  
YES  
CGO = DSO = H  
Figure 2. Undervoltage and Overvoltage Protection Flow Chart  
Figure 3. Shutdown and Control Pin Flow Charts  
Pack-short current fault is latched and is not reset until  
the MAX1894/MAX1924 detect a reversal in the direc-  
tion of current flow. A charger must be applied to  
reverse the current flow (Figure 7).  
Design Procedure  
Fast and Trickle-Charge Paths  
The MAX1894/MAX1924 offer the designer the flexibility  
of two charging paths: a fast charging path and a trick-  
le-charge path (see Figure 1). Trickle charging is  
enabled and TKO is set low when one or more cells are  
belows V  
.
UV_TH  
_______________________________________________________________________________________  
9
Advanced Li+ Battery-Pack Protectors  
UNDERVOLTAGE CONDITION  
320ms  
UNDERVOLTAGE THRESHOLD  
CELL VOLTAGE  
SAMPLING  
DSO, CGO, TKO  
OVERVOLTAGE CONDITION (MAX1894, NO HYSTERESIS)  
320ms  
80ms  
OVERVOLTAGE THRESHOLD  
CELL VOLTAGE  
SAMPLING  
TKO, CGO  
OVERVOLTAGE CONDITION (MAX1894, WITH HYSTERESIS)  
320ms  
OVERVOLTAGE THRESHOLD  
CELL VOLTAGE  
OVERVOLTAGE THRESHOLD HYSTERESIS  
SAMPLING  
TKO, CGO  
Figure 4. Undervoltage and Overvoltage Timing Diagrams  
10 ______________________________________________________________________________________  
Advanced Li+ Battery-Pack Protectors  
NORMAL OPERATION  
NORMAL OPERATION  
OD FAULT  
RSENSE  
FOR 3ms  
OC FAULT  
NO  
NO  
V
> V  
OD_TH  
V
< V  
RSENSE  
OC_TH  
FOR 3ms  
YES  
YES  
DSO, TKO, CGO = H  
TKO, CGO = H  
NO  
YES  
NO  
YES  
V
> V + 0.1V  
B4P  
SRC  
V
> V  
+ 0.1V  
SRC  
B4P  
Figure 5. Charge-Current Fault  
Figure 6. Discharge-Current Fault  
Set the nominal values of the trickle charge current by  
R
Selection  
SENSE  
selecting resistor R  
based on the following equation:  
All current faults are detected using a current-sense  
resistor connected between BN and PKN. The value of  
this resistor sets the fault current levels. Charge-current  
fault is given by:  
TKO  
R
= (V  
- VP )/I  
ACK TKO  
TKO  
CHRG  
where V  
the battery-pack voltage, and I  
current.  
is the charger output voltage, V  
is  
PACK  
CHRG  
is the trickle-charge  
TKO  
V
100mV  
R
SENSE  
OC_TH  
I
=
=
OC_TH  
When the trickle-charge option is not used, float CGO  
and connect TKO to the gate of the overcharge protec-  
tion MOSFET (see Figure 9). When a charger is applied  
and the voltage on one or more cells is less than  
R
SENSE  
Discharge-current fault is given by:  
V
, the MAX1894/MAX1924 modulate the TKO out-  
UV_TH  
V
145mV  
R
SENSE  
OC_TH  
I
=
=
put until all cells exceed V  
.
UV_TH  
OD_TH  
R
SENSE  
Protection FET Drivers  
All three external MOSFETs have their source pins con-  
nected to the SRC pin. When a MOSFET is turned off, FET  
drivers pull the gate to the SRC voltage. Additional exter-  
nal pullup resistors are not needed. When the MOSFET is  
Pack-short current fault is given by:  
V
405mV  
R
SENSE  
PS_TH  
I
=
=
PS_TH  
R
SENSE  
turned on, the V  
is limited to -14V by a clamp circuit  
GS  
built in the drivers. This allows use of MOSFETs with maxi-  
Select R  
to obtain the desired fault current levels.  
SENSE  
For example, a 20mR  
mum V of -20V. All three drivers have the same circuit-  
GS  
sets the charge current  
that can withstand the  
SENSE  
SENSE  
ry and drive capability. The quiescent current in normal  
operation is less than 3µA per driver.  
fault at 5A. Choose an R  
dissipation during normal operation and current fault  
conditions. For example, pack-short current is given by:  
______________________________________________________________________________________ 11  
Advanced Li+ Battery-Pack Protectors  
Table 2. State Table  
SHDN  
STATE  
CHARGER  
APPLIED  
GOES INTO  
SHUTDOWN MODE  
STATE  
CTL STATE  
TKO  
CGO  
DSO  
L
L
L
L
L
L
L
L
L
L
Yes  
No  
X
No  
Yes  
No  
No  
No  
L
H
H
H
H
H
H
H
L
Undervoltage  
H
H
H
H
Overvoltage  
Charge Current Fault  
Discharge Current Fault  
Yes  
No  
L
H
Pack Short Current  
Fault  
L
L
No  
No  
H
H
H
X
X
H
H
H
L
No  
Yes  
X
Yes  
No  
H
H
H
H
H
H
H
H
H
Forced Shutdown by  
External µP  
CTL  
No  
Deep Discharge  
L
L
L
L
Yes  
X
No  
No  
L
L
H
L
H
L
(V  
CC  
< 4.5V)  
Normal Operation  
X: Dont care.  
The power dissipation in the MOSFETs is given by:  
2
V
×N  
S
CELL  
I
=
PS  
N
S
P = I R  
R
+R  
+R  
+R  
×
DSON  
DSON_DSO  
DSON_CGO  
SENSE  
CELL  
N
P
The MOSFET should be chosen to withstand power dis-  
sipation during normal operation and all current fault  
conditions. Additional MOSFETs can be added in paral-  
lel to help these requirements. Table 3 lists some suit-  
able MOSFETs in a small SO-8 package.  
where N is the number of cells in series, N is number  
S
P
of cells in parallel, and V  
is the cell voltage.  
CELL  
Dissipation during pack-short current fault condition is  
given by:  
2
P
= (I  
)
× R  
SENSE  
PS  
PS  
Decoupling Considerations  
The MAX1894/MAX1924 must have a reliable V  
bias  
CC  
The R  
chosen should be able to withstand P  
PS  
SENSE  
to function properly. A severe overload, such as a short  
circuit at the pack terminals, can collapse the battery-  
dissipation. Verify power dissipation in normal operation  
and other current fault conditions as well.  
pack voltage below the V  
undervoltage lockout  
CC  
threshold. The use of a diode-capacitor peak detector  
on the V input ensures continued operation during  
voltage transients on the battery (Figure 1). Since the  
MAX1894/MAX1924 typically consume only 30µA, D1  
and C6 can be small, low-cost components. A 30V  
Schottky diode with a few mA current capability and a  
0.1µF capacitor are sufficient.  
Choosing External MOSFETs  
The external P-channel MOSFETs act as switches to  
enable or disable charging and discharging of batteries.  
Different P-channel MOSFETs may be selected depend-  
ing on the charge and discharge currents anticipated.  
In most applications, the requirements for fast-charge  
and discharge MOSFETs are similar and the same type  
of MOSFETs can be used. The trickle-charge MOSFET  
can be a small-signal type to minimize cost.  
CC  
The MAX1894/MAX1924 continuously monitor the differ-  
ential voltage between the B4P and SRC inputs to  
detect the application of a charger. RC filters with simi-  
lar time constants must be added to both inputs to  
ensure the differential voltage is not corrupted by noise.  
The MAX1894/MAX1924 MOSFET drivers have a V  
clamp of -14V typical and MOSFETs with maximum V  
of -20V can be used. MOSFETs must have a V  
greater than the maximum pack voltage.  
GS  
GS  
DS  
12 ______________________________________________________________________________________  
Advanced Li+ Battery-Pack Protectors  
Table 3. MOSFET Selection  
P-CHANNEL  
MOSFETS  
MAXIMUM DRAIN  
CURRENT (A)  
NORMAL OPERATION  
IRF7404  
IRF7406  
6.7  
5.8  
Si4431  
5.8  
NO  
V
> V  
PS_TH  
RSENSE  
FOR 450µs  
Si4947 (dual)  
3.5 EA  
Protecting and Filtering Cell Inputs  
YES  
Resistors in series with each B_P pin are recommend-  
ed to limit the current in case there is a short between  
adjacent B_P pins (see Figure 1).  
SET OD = 1  
DSO, CGO, TKO = H  
The intermediate cell input bias current is typically  
0.5nA. A 1kresistor in series with any intermediate  
cell moves the overvoltage trip point by typically 0.5mV,  
which is insignificant compared to the 25mV tolerance  
in the overvoltage threshold. The top cell input bias cur-  
rent during sampling period is typically 60µA. To  
reduce the voltage change on the top cell input due to  
sampling current, a filter resistance of 10to 50Ω  
should be added in series with the top cell. To attain  
the desired filter characteristics, the capacitance  
across the two top cell input pins should be 1µF.  
NO  
YES  
V
> V + 0.1V  
B4P  
SRC  
Figure 7. Pack-Short Current Fault  
Layout Considerations  
Good layout is important to minimize the effects of  
noise on the system and to ensure accurate voltage  
and current measurements. Use the appropriate trace  
widths for the high-current paths and keep traces short  
to minimize parasitic inductance and capacitance.  
Minimize current-sense resistor trace lengths and make  
use of Kelvin connections to the resistor. Provide ade-  
quate space and board area for the external MOSFETs  
and sense resistor to dissipate the heat required. Place  
RC filters close to B1PB4P pins.  
The MAX1894/MAX1924 have internal ESD diodes on  
each B_P pin for ESD protection up to 2kV. When high-  
er ESD ratings are needed, capacitors (typically 0.1µF)  
can be added across adjacent B_P pins (see Figure 1).  
The RC filters improve the device immunity to ESD and  
filter the noise spikes on B1PB4P to prevent the  
MAX1894/MAX1924 from being triggered and latched  
prematurely by noise spikes.  
Control Pins SHDN and CTL  
SHDN and CTL allow external logic or microprocessors  
to control the MAX1894/MAX1924 gate drivers. Drive  
CTL high to turn off the three protection MOSFETs: DSO,  
CGO, and TKO. Drive SHDN high to force the MAX1894/  
MAX1924 into shutdown mode (with no charger applied).  
SHDN and CTL do not affect the state machine. Toggling  
these two pins does not change the state or reset any  
fault conditions. If external control circuitry or a micro-  
processor is not used, connect SHDN and CTL to PKN.  
Chip Information  
TRANSISTOR COUNT: 4259  
______________________________________________________________________________________ 13  
Advanced Li+ Battery-Pack Protectors  
SHDN  
CTL  
B4P  
B3P  
SRC  
HV  
CELL  
SELECTOR  
CLOCK  
RDY  
DSO  
DRIVER  
B2P  
B1P  
BN  
OV FAULT  
UV FAULT  
STATE  
MACHINE  
SRC  
CMP  
OVER AND  
UNDER  
THRESHOLDS  
FAULT  
LOGIC  
CGO  
TKO  
HV  
DRIVER  
REF  
HYSTERESIS  
BN  
SRC  
CMP  
+145mV  
HV  
DRIVER  
CHARGE CURRENT  
FAULT  
PKN  
DISCHARGE-CURRENT  
FAULT  
BN  
CMP  
-100mV  
SET/RESET  
TIMER  
PACK-SHORT  
CURRENT FAULT  
MAX1894  
MAX1924  
CMP  
+405mV  
BN  
V
CC  
ON  
DSCHG  
CHG  
CMP  
S
Q
-50mV  
LATCH  
3.5V REG  
BIAS  
R
B4P  
CMP  
+50mV  
RDY  
SRC  
UV FAULT  
SHDN  
Figure 8. Simplified Functional Diagram  
14 ______________________________________________________________________________________  
Advanced Li+ Battery-Pack Protectors  
OVERDISCHARGE  
PROTECTION  
R5  
10Ω  
PACK +  
C5  
2.2µF  
16  
SRC  
15  
14  
13  
DSO  
CGO  
TKO  
BN  
OVERCHARGE  
PROTECTION  
D1  
CMPSH-3  
2
1
V
CC  
B4P  
R4  
C6  
51Ω  
0.1µF  
C4  
1µF  
R3  
1kΩ  
MAX1894X  
MAX1924X  
3
4
B3P  
IC3  
B2P  
IC2  
B1P  
IC1  
BN  
C3  
0.1µF  
R2  
1kΩ  
5
C2  
0.1µF  
R1  
12  
11  
6
7
SHDN  
CTL  
MICRO-  
CONTROLLER  
1kΩ  
8
9
C1  
0.1µF  
PKN  
10  
R
SENSE  
0.02Ω  
PACK -  
Figure 9. Typical Applications Circuit without Trickle Charge  
______________________________________________________________________________________ 15  
Advanced Li+ Battery-Pack Protectors  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1894-MAX1924

Advanced Li+ Battery-Pack Protectors
MAXIM

MAX1894EVKIT

Evaluation Kits for the MAX1894/MAX1924
MAXIM

MAX1894XEEE

Advanced Li+ Battery-Pack Protectors
MAXIM

MAX1894XEEE+

暂无描述
MAXIM

MAX1894XEEE-T

Power Supply Support Circuit, Fixed, 1 Channel, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1895

High-Efficiency, Wide Brightness Range, CCFL Backlight Controllers
MAXIM

MAX1895EGI

High-Efficiency, Wide Brightness Range, CCFL Backlight Controllers
MAXIM

MAX1895EGI-T

Fluorescent Light Controller, Voltage-mode, 1A, 300kHz Switching Freq-Max, PQCC28, 5 X 5 MM, 0.90 MM HEIGHT, QFN-28
MAXIM

MAX1895ETI

High-Efficiency, Wide Brightness Range, CCFL Backlight Controllers
MAXIM

MAX1895EVSYS

Evaluation Systems for the MAX1895/MAX1995
MAXIM

MAX1896

1.4MHz SOT23 Current-Mode Step-Up DC-DC Converter
MAXIM

MAX1896EUT#TG16

Switching Regulator, Current-mode, 0.6A, 1800kHz Switching Freq-Max, PDSO6, MO-178AB, SOT-23, 6 PIN
MAXIM