MAX191BEWG+T [MAXIM]

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial, Parallel, 8 Bits Access, CMOS, PDSO24, SOP-24;
MAX191BEWG+T
型号: MAX191BEWG+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial, Parallel, 8 Bits Access, CMOS, PDSO24, SOP-24

文件: 总24页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4506; Rev 4; 2/97  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
12-Bit Resolution, 1/2LSB Linearity  
+5V or ±5V Operation  
Built-In Track/Hold  
Internal Reference with Adjustment Capability  
The MAX191 is a monolithic, CMOS, 12-bit analog-to-  
digital converter (ADC) featuring differential inputs,  
track/hold (T/H), internal voltage reference, internal or  
external clock, and parallel or serial µP interface. The  
MAX191 has a 7.5µs conversion time, a 2µs acquisition  
time, and a guaranteed 100ksps sample rate.  
Low Power: 3mA Operating Mode  
20µA Power-Down Mode  
The MAX191 operates from a single +5V supply or from  
dual ±5V supplies, allowing ground-referenced bipolar  
input signals. The device features a logic power-down  
input, which reduces the 3mA VDD supply current to  
50µA max, including the internal-reference current.  
100ksps Tested Sampling Rate  
Serial and 8-Bit Parallel µP Interface  
24-Pin Narrow DIP and Wide SO Packages  
Ord e rin g In fo rm a t io n  
Decoupling capacitors are the only external compo-  
nents needed for the power supply and reference. This  
ADC operates with either an external reference, or an  
internal reference that features an adjustment input for  
trimming system gain errors.  
ERROR  
(LSB)  
PART  
TEMP. RANGE  
PIN-PACKAGE  
MAX191ACNG  
MAX191BCNG  
MAX191ACWG  
MAX191BCWG  
MAX191BC/D  
MAX191AENG  
MAX191BENG  
0°C to +70°C 24 Narrow Plastic DIP ±1/2  
0°C to +70°C 24 Narrow Plastic DIP ±1  
The MAX191 provides three interface modes: two 8-bit  
parallel modes, and a serial interface mode that is com-  
patible with SPITM, QSPITM, and MICROWIRETM serial-  
interface standards.  
0°C to +70°C 24 Wide SO  
0°C to +70°C 24 Wide SO  
0°C to +70°C Dice*  
±1/2  
±1  
±1  
-40°C to +85°C 24 Narrow Plastic DIP ±1/2  
-40°C to +85°C 24 Narrow Plastic DIP ±1  
________________________Ap p lic a t io n s  
Battery-Powered Data Logging  
PC Pen Digitizers  
MAX191AEWG -40°C to +85°C 24 Wide SO  
MAX191BEWG -40°C to +85°C 24 Wide SO  
±1/2  
±1  
MAX191AMRG  
MAX191BMRG  
-55°C to +125°C 24 Narrow CERDIP** ±1/2  
-55°C to +125°C 24 Narrow CERDIP** ±1  
High-Accuracy Process Control  
Electromechanical Systems  
Data-Acquisition Boards for PCs  
Automatic Testing Systems  
* Dice are specified at T = +25°C, DC parameters only.  
** Contact factory for availability and processing to MIL-STD-883.  
A
Telecommunications  
Digital Signal Processing (DSP)  
P in Co n fig u ra t io n  
TOP VIEW  
Fu n c t io n a l Dia g ra m  
PD  
V
1
2
DD  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
V
DD  
24  
CLK/SCLK  
23  
V
SS  
CLK/SCLK  
PAR  
18  
17  
16  
15  
14  
13  
11  
10  
5
6
AIN+  
D7/DOUT  
D6/SCLK  
3
VREF  
OSC  
3-STATE  
OUTPUT  
REFADJ  
OUT  
AIN-  
HBEN  
4
D5/SSTRB  
D4  
MAX191  
VREF  
REFADJ  
AGND  
BIP  
CS  
5
8-BIT  
BUS  
AND  
SERIAL  
I/O  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
RD  
6
2.46V  
REF  
D7/DOUT  
D6/SCLK  
7
12  
8
OUT  
3
4
AIN +  
AIN -  
BUSY  
D0/D8  
D1/D9  
DGND  
D5/SSTRB  
D4  
9
20  
CS  
RD  
BUSY  
HBEN  
10  
11  
12  
IN REF OUT  
19  
9
21  
CONTROL  
LOGIC  
12-BIT  
D3/D11  
D2/D10  
MAX191  
SAR ADC  
1
PD  
7
12  
AGND DGND  
2
V
SS  
22  
8
BIP  
PAR  
DIP/SO  
SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
ABSOLUTE MAXIMUM RATINGS  
V
to DGND............................................................-0.3V to +7V  
Operating Temperature Ranges  
DD  
V
to AGND ............................................................-7V to +0.3V  
to V ..............................................................................12V  
SS  
MAX191_C_ _ ................................................................0°C to +70°C  
MAX191_E_ _ .............................................................-40°C to +85°C  
MAX191_M_ _ ..........................................................-55°C to +125°C  
Storage Temperature Range.....................................-65°C to +160°C  
Lead Temperature (soldering, 10sec).....................................+300°C  
SS  
V
DD  
AGND, VREF, REFADJ to DGND................-0.3V to (V + 0.3V)  
AIN+, AIN-, PD to V .................................-0.3V to (V + 0.3V)  
CS, RD, CLK, BIP, HBEN, PAR, to DGND....-0.3V to (V + 0.3V)  
DD  
SS  
DD  
DD  
BUSY, D0–D7 to DGND..............................-0.3V to (V + 0.3V)  
DD  
MAX91  
Continuous Power Dissipation (T = +70°C)  
A
Narrow Plastic DIP (derate 13.33mW/°C above +70°C)....1067mW  
Wide SO (derate 11.76mW/°C above +70°C) ......................941mW  
Narrow CERDIP (derate 12.50mW/°C above +70°C) ........1000mW  
Stresses beyond those listed under Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 5V ±5%, V = 0V or -5V ±5%, f = 1.6MHz, 50% duty cycle, AIN- = AGND, BIP = 0V, slow-memory mode, internal-reference  
DD  
SS  
CLK  
mode, reference compensation mode—external, synchronous operation, Figure 6, T = T  
to T  
, unless otherwise noted.) (Note 1)  
A
MIN  
MAX  
PARAMETER  
DC ACCURACY (Note 2)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
12  
Bits  
MAX191A  
MAX191B  
±1/2  
LSB  
±1  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
No missing codes over temperature  
MAX191A  
±1  
±1  
±2  
±2  
±3  
LSB  
LSB  
MAX191B  
MAX191A  
Gain Error (Note 3)  
LSB  
MAX191B  
Gain-Error Tempco (Note 4)  
Excludes internal-reference drift  
±0.2  
ppm/°C  
DYNAMIC ACCURACY (sample rate = 100kHz, V = 4Vp-p)  
IN  
Signal-to-Noise plus Distortion  
Ratio  
1kHz input signal, T = +25°C  
SINAD  
70  
80  
dB  
A
Total Harmonic Distortion  
(up to the 5th Harmonic)  
1kHz input signal, T = +25°C  
THD  
-80  
dB  
dB  
A
1kHz input signal, T = +25°C  
Spurious-Free Dynamic Range  
SFDR  
A
CONVERSION RATE  
Synchronous CLK (12 to 13 CLKs)  
7.50  
6
8.125  
18  
t
Conversion Time (Note 5)  
µs  
CONV  
Internal CLK, C = 120pF  
12  
L
Track/Hold Acquisition Time  
Aperture Delay  
2
µs  
ns  
ps  
25  
50  
Aperture Jitter  
External Clock Frequency  
Range (Note 6)  
f
0.1  
1.6  
MHz  
CLK  
2
_______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±5%, V = 0V or -5V ±5%, f = 1.6MHz, 50% duty cycle, AIN- = AGND, BIP = 0V, slow-memory mode, internal-reference  
DD  
SS  
CLK  
mode, reference compensation mode—external, synchronous operation, Figure 6, T = T  
to T  
, unless otherwise noted.) (Note 1)  
A
MIN  
MAX  
PARAMETER  
ANALOG INPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Input Voltage Range (Note 7)  
Input Leakage Current  
V
µA  
SS  
DD  
V
= V to V  
±10  
80  
IN  
SS  
DD  
Input Capacitance (Note 6)  
Small-Signal Bandwidth  
INTERNAL REFERENCE  
VREF Output Voltage  
45  
2
pF  
MHz  
T
= +25°C  
4.076  
4.096  
4.116  
50  
60  
80  
2
V
A
MAX191_C  
MAX191_E  
MAX191_M  
VREF Output Tempco (Note 8)  
ppm/°C  
T
= +25°C  
Output Current Capability (Note 9)  
Load Regulation  
mA  
mV  
mA  
µF  
A
T
= +25°C, I  
= 0mA to 2mA  
4
A
OUT  
Output Short-Circuit Current  
Capacitive Load Required  
Power-Supply Rejection  
18  
Reference compensation mode—external  
= ±5%, V = ±5%  
4.7  
V
±300  
µV  
DD  
SS  
REFADJ Input Adjustment Range  
(Note 10)  
-60  
4.5  
30  
60  
mV  
REFADJ Disable Threshold  
REFADJ Output Voltage  
REFADJ Input Current  
REFERENCE INPUT  
Input Voltage Range  
Input Current  
V
V
2.4  
10  
REFADJ = 5V  
µA  
External-reference mode  
External-reference = 5V  
External-reference mode  
2.5  
5
5.0  
1
V
mA  
k  
Input Resistance  
LOGIC INPUTS  
V
Input Low Voltage  
0.8  
V
V
CS, RD, CLK, HBEN, PAR, BIP  
CS, RD, CLK, HBEN, PAR, BIP  
IL  
V
Input High Voltage  
Input Current  
2.4  
IH  
I
V = 0V to V  
IN DD  
±10  
µA  
IN  
±200  
PD = high/float  
PD = low  
I
Input Current CLK  
µA  
IN  
±0.1  
C
Input Capacitance (Note 6)  
PD Input Low Voltage  
PD Input High Voltage  
PD Input Current  
10  
pF  
V
IN  
V
0.5  
IL  
V
4.5  
V
IH  
I
PD = 0V to V (Note 11)  
±20  
µA  
IN  
DD  
PD External Leakage for Float  
State (Note 12)  
Maximum current allowed for floating state”  
Reference compensation mode—external  
±100  
nA  
V
V
2.8  
PD Floating-State Voltage  
FLT  
_______________________________________________________________________________________  
3
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±5%, V = 0V or -5V ±5%, f = 1.6MHz, 50% duty cycle, AIN- = AGND, BIP = 0V, slow-memory mode, internal-reference  
DD  
SS  
CLK  
mode, reference compensation mode—external, synchronous operation, Figure 6, T = T  
to T  
, unless otherwise noted.) (Note 1)  
A
MIN  
MAX  
PARAMETER  
LOGIC OUTPUTS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Low Voltage  
V
I
= 1.6mA  
0.4  
V
V
OL  
OUT  
MAX91  
Output High Voltage  
V
OH  
I
= -200µA  
4.0  
OUT  
Three-State Leakage Current  
I
D0/D8-D7/DOUT  
±10  
15  
µA  
L
Three-State Output  
Capacitance (Note 6)  
C
pF  
OUT  
POWER REQUIREMENTS  
Positive Supply Voltage  
Negative Supply Voltage  
V
4.75  
5.25  
0
V
V
DD  
V
SS  
-5.25  
3
20  
20  
1
5
mA  
µA  
CS = RD = V  
AIN = 5V, D0/D8–D7/  
DOUT = 0V or V  
,
PD = high/float  
DD  
Positive Supply Current  
Negative Supply Current  
I
DD  
50  
PD = low  
,
DD  
100  
20  
PD = high/float  
PD = low  
HBEN = PAR = BIP  
= 0V or V  
I
SS  
µA  
DD  
Positive Supply Rejection (Note 13)  
Negative Supply Rejection (Note 13)  
FS change, V = 5V ±5%  
±1/2  
±1/2  
LSB  
LSB  
DD  
FS change, V = -5V ±5%  
SS  
TIMING CHARACTERISTICS (Figures 6–10)  
(V =5V ±5%, V = 0V or -5V ±5%, T = T  
to T  
, unless otherwise noted.) (Note 14)  
DD  
SS  
A
MIN  
MAX  
T
= +25°C  
MAX191C/E  
MIN TYP MAX  
MAX191M  
MIN TYP MAX  
A
PARAMETER  
SYMBOL CONDITIONS  
UNITS  
MIN TYP MAX  
t
0
0
0
ns  
ns  
ns  
ns  
ns  
CS to RD Setup Time  
RD to BUSY Delay  
1
t
t
t
t
C
C
= 50pF  
120  
120  
150  
0
140  
140  
150  
0
160  
160  
150  
0
2
3
4
5
L
L
Data Access Time (Note 15)  
RD Pulse Width  
= 100pF  
CS to RD Hold Time  
Data Setup Time After  
BUSY (Note 15)  
t
80  
100  
120  
ns  
6
Bus-Relinquish Time (Note 16)  
HBEN to RD Setup Time  
HBEN to RD Hold Time  
t
t
t
100  
110  
120  
ns  
ns  
ns  
7
8
9
80  
0
100  
0
120  
0
Delay Between Read  
Operations (Note 6)  
t
200  
200  
2
200  
2
ns  
10  
Delay Between Conversions  
Aperture Delay  
t
t
t
2
µs  
ns  
ns  
11  
12  
13  
Jitter < 50ps  
25  
200  
230  
130  
260  
150  
CLK to BUSY Delay (Note 6)  
SCLK  
to SSTRB  
OUT  
t
t
100  
100  
ns  
ns  
14  
15  
Rise Delay  
SCLK  
to SSTRB  
OUT  
130  
150  
Fall Delay  
4
_______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
TIMING CHARACTERISTICS (Figures 6–10) (continued)  
(V =5V ±5%, V = 0V or -5V ±5%, T = T  
to T  
, unless otherwise noted.) (Note 14)  
DD  
SS  
A
MIN  
MAX  
T
= +25°C  
MAX191C/E  
MIN TYP MAX  
MAX191M  
MIN TYP MAX  
A
PARAMETER  
SYMBOL CONDITIONS  
UNITS  
MIN TYP MAX  
t
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS or RD Hold Time  
CS or RD Setup Time  
CS to DOUT Three-State  
16  
t
150  
100  
160  
100  
240  
260  
150  
110  
180  
130  
260  
310  
150  
120  
200  
150  
280  
350  
17  
t
19  
SCLK to SCLK  
Delay  
t
t
t
t
OUT  
20  
21  
22  
23  
SCLK  
to DOUT Delay  
OUT  
SCLK to DOUT Delay  
SCLK to SSTRB Delay  
Note 1: Performance at power-supply tolerance limits guaranteed by power-supply rejection test.  
Note 2: = 5V, V = 0V, FS = VREF.  
Note 3: FS = VREF, offset nulled, ideal last-code transition = FS - 3/2 LSB.  
Note 4: Gain-Error Tempco = GE is the gain-error change from T = +25°C to T  
V
DD  
SS  
or T .  
MAX  
A
MIN  
Note 5: Conversion time defined as the number of clock cycles times the clock period; clock has a 50% duty cycle.  
Note 6: Guaranteed by design, not production tested.  
Note 7: AIN+, AIN- must not exceed supplies for specified accuracy.  
Note 8: VREF TC = T, where VREF is reference-voltage change from T = +25°C to T  
or T  
.
A
MIN  
MAX  
Note 9: Output current should not change during conversion. This current is in addition to the current required by the internal DAC.  
Note 10: REFADJ adjustment range is defined as the allowed voltage excursion on REFADJ relative to its unadjusted value of 2.4V.  
This will typically result in a 1.7 times larger change in the REF output (Figure 19a).  
Note 11: This current is included in the PD supply current specification.  
Note 12: Floating the PD pin guarantees external compensation mode.  
Note 13: V  
= 4.096V, external reference.  
REF  
Note 14: All input control signals are specified with t = t = 5ns (10% to 90% of 5V) and timed from a voltage level of 1.6V.  
r
f
Note 15: t and t are measured with the load circuits of Figure 1 and defined as the time required for an output to cross 0.8V or 2.4V.  
3
6
Note 16: t is defined as the time required for the data lines to change 0.5V when loaded with the circuits of Figure 2.  
7
_______________________________________________________________________________________  
5
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
CLOCK FREQUENCY  
vs. TIMING CAPACITOR  
NEGATIVE SUPPLY CURRENT  
vs. TEMPERATURE  
POWER-DOWN SUPPLY CURRENT  
vs. TEMPERATURE  
25  
20  
25  
20  
10  
SEE FIGURE 5  
T = +25˚C  
A
MAX91  
I
DD  
1
15  
10  
15  
10  
V
= +5V  
= -5V  
DD  
V
SS  
0.1  
PD = 0V  
5
0
5
0
I
SS  
0.01  
-60 -30  
0
30 60  
90  
120 150  
0.1  
1
10  
-60 -30  
0
30 60  
90  
120 150  
TEMPERATURE (°C)  
TIMING CAPACITOR (nF)  
TEMPERATURE (°C)  
POSITIVE SUPPLY CURRENT  
vs. TEMPERATURE  
10kHz FFT PLOT  
1kHz FFT PLOT  
0
-20  
-40  
0
3.5  
3.0  
f
IN  
= 10kHz  
f
IN  
= 1kHz  
-20  
f = 100kHz  
S
f = 100kHz  
S
SNR = 71.2dB  
T = +25˚C  
A
SNR = 72dB  
T = +25˚C  
A
2.5  
2.0  
1.5  
1.0  
-40  
-60  
-60  
-86.0dB -90.8dB  
-80  
-100  
-120  
-80  
-94.3dB -96.1dB-98.0dB -93.8dB  
-100  
-120  
0.5  
0
-140  
-140  
-60  
-30  
0
30  
60 90 120 150  
0
1
2
3
4
5
6
0
5
10 15 20 25 30 35 40  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
P in De s c rip t io n  
FUNCTION  
PIN  
NAME  
Power-Down Input. A logic low at PD deactivates the ADC—only the bandgap reference is active. A logic  
high selects normal operation, internal-reference compensation mode. An open-circuit condition selects  
normal operation, external-reference compensation mode.  
1
PD  
2
3
4
V
Negative Supply, 0V to -5.25V  
SS  
AIN+  
AIN-  
Sampled Analog Input  
Analog Input Return. Pseudo-differential (see Gain and Offset Adjustment section).  
Reference-Buffer Output for Internal Reference. Input for external reference when REFADJ is connected to  
5
VREF  
V
.
DD  
6
7
REFADJ  
AGND  
Reference Adjust. Connect to V to use an extended reference at VREF.  
DD  
Analog Ground  
BIP = low selects unipolar mode  
BIP = high selects bipolar mode (see Gain and Offset Adjustment section)  
8
BIP  
9
BUSY  
D0/D8  
D1/D9  
DGND  
D2/D10  
D3/D11  
D4  
BUSY Output is low during a conversion.  
Three-State Data Outputs: LSB = D0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Three-State Data Outputs  
Digital Ground  
Three-State Data Outputs  
Three-State Data Outputs: MSB = D11  
Three-State Data Output  
D5/SSTRB  
Three-State Data Output/Serial Strobe Output in serial mode  
Three-State Data Output/Serial Clock Output in serial mode  
Three-State Data Output/Data Output in serial mode  
Read Input. In parallel mode, a low signal starts a conversion when CS and HBEN are low (memory  
D6/SCLK  
OUT  
D7/DOUT  
19  
20  
RD  
mode). RD also enables the outputs when CS is low. In serial mode, RD = low enables SCLK  
and  
OUT  
SSTRB when CS is low. RD = high forces SCLK  
and SSTRB into a high-impedance state.  
OUT  
Chip-Select Input must be low for the ADC to recognize RD and HBEN inputs in parallel mode. The falling  
CS  
edge of CS starts a conversion in serial mode. CS = high in serial mode forces SCLK  
, SSTRB, and  
OUT  
DOUT into a high-impedance state.  
High-Byte Enable Input. In parallel mode, HBEN = high multiplexes the 4 MSBs of the conversion result  
into the lower bit outputs. HBEN = high also disables conversion starts. HBEN = low places the 8 LSBs  
21  
HBEN  
onto the data bus. In serial mode, HBEN = low enables SCLK  
to operate during the conversion only,  
OUT  
HBEN = high enables SCLK  
to operate continuously, provided CS is low.  
OUT  
22  
23  
24  
PAR  
Sets the output mode. PAR = high selects parallel output mode. PAR = low selects serial output mode.  
Clock Input/Serial Clock Input in serial mode. An external TTL-/CMOS-compatible clock may be applied to  
this pin, or a capacitor (120pF nominal) may be connected between CLK and DGND to operate the internal  
oscillator.  
CLK/SCLK  
V
DD  
Positive Supply, +5V ±5%  
_______________________________________________________________________________________  
7
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
+5V  
24  
3k  
1
PD  
+5V  
V
DD  
OPEN  
DN  
23 C1  
DN  
CLK/SCLK  
PAR  
22  
3
4
AIN+  
AIN-  
SERIAL/PARALLEL  
INTERFACE MODE  
21  
20  
19  
C
C
L
3k  
L
HBEN  
CS  
MAX91  
5
6
7
µP CONTROL  
INPUTS  
VREF  
MAX191  
4.7µF  
0.1µF  
DGND  
DGND  
a. High-Z to V and V to V  
RD  
REFADJ  
AGND  
BIP  
18  
17  
16  
15  
14  
13  
D7/DOUT  
b. High-Z to V and V to V  
OL  
OH  
OL  
OH  
OL  
OH  
0.1µF  
8
D6/SCLK  
OUT  
9
OUTPUT  
STATUS  
Figure 1. Load Circuits for Access Time  
BUSY  
DO/DB  
D1/D9  
DGND  
D5/SSTRB  
10  
11  
12  
D4  
D3/D11  
D2/D10  
+5V  
3k  
V
SS  
DN  
DN  
2
0V TO -5V  
µP DATA BUS  
10pF  
10pF  
3k  
DGND  
DGND  
a. V to High-Z  
NOTE: C1 120pF GENERATES 1MHz NOMINAL CLOCK.  
b. V to High-Z  
OH  
OL  
Figure 3. Operational Diagram  
Figure 2. Load Circuits for Bus-Relinquish Time  
disconnects from the input during the conversion. In  
unb uffe re d a p p lic a tions , a n inp ut filte r c a p a c itor  
reduces conversion noise, but also may limit input  
bandwidth.  
_______________De t a ile d De s c rip t io n  
The MAX191 uses successive approximation and input  
track/hold (T/H) circuitry to convert an analog input sig-  
nal to a 12-bit digital output. Flexible control logic pro-  
vides easy interface to microprocessors (µPs), so most  
applications require only the addition of passive com-  
ponents. No external hold capacitor is required for the  
T/H. Figure 3 shows the MAX191 in its simplest opera-  
tional configuration.  
When converting a single-ended input signal, AIN-  
should be connected to AGND. If a differential signal is  
connected, consider that the configuration is pseudo  
differential—only the signal side to the input channel is  
held by the T/H. The return side (AIN-) must remain sta-  
b le within ± 0.5LSB (± 0.1LSB for b e s t re s ults ) with  
respect to AGND during a conversion. Accomplish this  
by connecting a 0.1µF capacitor from AIN- to AGND.  
P s e u d o -Diffe re n t ia l In p u t  
The sampling architecture of the ADCs analog com-  
parator is illustrated in the Equivalent Input Circuit  
(Figure 4). A capacitor switching between the AIN+  
and AIN- inputs acquires the signal at the ADCs ana-  
log input. At the end of the conversion, the capacitor  
reconnects to AIN+ and charges to the input signal.  
An external input buffer is usually not needed for low-  
bandwidth input signals (<100Hz) because the ADC  
An a lo g In p u t —Tra c k /Ho ld  
The T/H enters its tracking mode when the ADC is des-  
elected (CS pin is held high and BUSY pin is high).  
Hold mode starts approximately 25ns after a conver-  
sion is initiated. The variation in this delay from one  
conversion to the next (aperture jitter) is about 50ps.  
Figures 6–10 detail the T/H and interface timing for the  
8
_______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
AIN +  
TRACK  
COMPARATOR  
C
HOLD  
MAX191  
+1.6V  
HOLD  
32pF  
R
IN  
C
CLK  
C
SWITCH  
10pF  
PACKAGE  
5pF  
HOLD  
CLOCK  
C
EXT  
AIN -  
DGND  
12-BIT DAC  
NOTE: C = 120pF GENERATES 1MHz NOMINAL CLOCK  
EXT  
Figure 4. Equivalent Input Circuit  
various interface modes.  
Figure 5. Internal Clock Circuit  
tection diodes are even slightly forward biased.  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens and more time must be  
allowed between conversions. Acquisition time is cal-  
culated by: tACQ = 10(RS + RIN)CHOLD (but never less  
than 2µs), where RIN = 2k, RS = source impedance of  
the input signal, and CHOLD = 32pF (see Figure 4).  
Dig it a l In t e rfa c e  
S t a rt in g a Co n ve rs io n  
In parallel mode, the ADC is controlled by the CS, RD,  
a nd HBEN inp uts , a s s hown in Fig ure 6. The T/H  
enters hold mode and a conversion starts at the falling  
edge of CS and RD while HBEN (not shown) is low.  
BUSY goes low as soon as the conversion starts. On  
the falling edge of the 13th input clock pulse after the  
conversion starts, BUSY goes high and the conversion  
result is latched into three-state output buffers. In seri-  
al mode, the falling edge of CS initiates a conversion,  
and the T/H enters hold mode. Data is shifted out seri-  
ally as the conversion proceeds (Figure 10). See the  
Parallel Digital-Interface Mode and Serial-Interface  
Mode sections for details.  
In p u t Ba n d w id t h  
The ADCs input tracking circuitry has a 1MHz typical  
large-signal bandwidth characteristic, and a 30V/µs  
slew rate. It is possible to digitize high-speed transients  
and measure periodic signals with bandwidths exceed-  
ing the ADCs sample rate of 100ksps by using under-  
sampling techniques. Note that if undersampling is  
used to measure high-frequency signals, special care  
must be taken to avoid aliasing errors. Without ade-  
quate input bandpass filtering, out-of-band signals and  
noise may be aliased into the measurement band.  
In t e rn a l/Ex t e rn a l Clo c k  
Figure 5 shows the MAX191 clock circuitry. The ADC  
includes internal circuitry to generate a clock with an  
e xte rna l c a p a c itor. As ind ic a te d in the Typ ic a l  
Operating Characteristics , a 120pF capacitor con-  
nected between the CLK and DGND pins generates  
a 1MHz nominal clock frequency (Figure 5).  
In p u t P ro t e c t io n  
Internal protection diodes, which clamp the analog input  
to VDD and VSS , allow AIN+ to swing from (V - 0.3V) to  
SS  
(VDD + 0.3V) with no ris k of d a ma g e to the ADC.  
However, for accurate conversions near full scale, AIN+  
should not exceed the power supplies by more than  
50mV because ADC accuracy is affected when the pro-  
Alternatively, an external clock (between 100kHz and  
1.6MHz) can be applied to CLK. When using an exter-  
nal clock source, acceptable clock duty cycles are  
_______________________________________________________________________________________  
9
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
CLK  
t
16  
t
17  
CS + RD  
BUSY  
t
13  
t
2
MAX91  
t
CONV  
t
t
2
CONV  
Figure 6. CS, RD, and CLK Synchronous Operation  
between 45% and 55%.  
restarted. BUSY remains low during the entire conver-  
sion cycle.  
Clo c k a n d Co n t ro l S yn c h ro n iza t io n  
The timing diagrams of Figures 7–10 outline two paral-  
lel-interface modes and one serial mode.  
For best analog performance on the MAX191, the clock  
should be synchronized to the conversion start signals  
(CS and RD) as shown in Figure 6. A conversion should  
not be started in the 50ns before a clock edge nor in  
the 100ns after it. This ensures that CLK transitions are  
not coupled to the analog input and sampled by the  
T/H. The magnitude of this feedthrough can be a few  
millivolts. When the clock and conversion start signals  
are synchronized, small end-point errors (offset and  
full-scale) are the most that can be generated by clock  
feedthrough. Even these errors (which can be trimmed  
out) can be avoided by ensuring that the start of a con-  
version (RD or CS falling edge) does not occur close to  
a clock transition (Figure 6), as described above.  
S lo w -Me m o ry Mo d e  
In slow-memory mode, the device appears to the µP as  
a slow peripheral or memory. Conversion is initiated  
with a read instruction (see Figure 7 and Table 2). Set  
the PAR pin high for parallel interface mode. Beginning  
with HBEN low, taking CS and RD low starts the con-  
version. The analog input is sampled on the falling  
edge of RD. BUSY remains low while the conversion is  
in progress. The previous conversion result appears at  
the digital outputs until the end of conversion, when  
BUSY returns high. The output latches are then updat-  
ed with the newest results of the 8 LSBs on D7–D0. A  
second read operation with HBEN high places the 4  
MSBs, with 4 leading 0s, on data outputs D7–D0. The  
second read operation does not start a new conversion  
because HBEN is high.  
P a ra lle l Dig it a l-In t e rfa c e Mo d e  
Output-Data Format  
The data output from the MAX191 is straight binary in  
the unipolar mode. In the bipolar mode, the MSB is  
inverted (see Figure 22). The 12 data bits can be out-  
put either in two 8-bit bytes or as a serial output. Table  
1 shows the data-bus output format.  
ROM Mo d e  
As in slow-memory mode, D7–D0 are used for 2-byte  
reads. A conversion starts with a read instruction with  
HBEN and CS low. The T/H samples the input on the  
falling edge of RD (see Figure 8 and Table 3). PAR is set  
high. At this point the data outputs contain the 8 LSBs  
from the previous conversion. Two more read operations  
are needed to access the conversion result. The first  
occurs with HBEN high, where the 4 MSBs with 4 leading  
0s are accessed. The second read, with HBEN low, out-  
puts the 8 LSBs and also starts a new conversion.  
A 2-byte read uses outputs D7–D0. Byte selection is  
controlled by HBEN. When HBEN is low, the lower 8  
bits appear at the data outputs. When HBEN is high,  
the upper 4 bits appear at D0-D3 with the leading 4 bits  
low in locations D4–D7.  
Timing and Control  
Conversion-start and data-read operations are con-  
trolled by the HBEN, CS, and RD digital inputs. A logic  
low is required on all three inputs to start a conversion,  
and once the conversion is in progress it cannot be  
Figure 9 and Table 4 show how to read output data  
within one conversion cycle without starting another  
conversion. Trigger the falling edge of a read on the ris-  
10 ______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
HBEN  
CS  
t
8
t
9
t
8
t
9
t
1
t
5
t
1
t
4
t
5
RD  
t
t
10  
t
10  
t
2
CONV  
BUSY  
t
11  
t
3
t
6
t
7
t
3
t
7
OLD DATA  
D7D0  
NEW DATA  
D7D0  
NEW DATA  
D11–D8  
DATA  
t
12  
t
12  
HOLD*  
TRACK  
*INTERNAL SIGNAL. TRACKING INPUT SIGNAL WHEN HOLD = Low, HOLDING WHEN HOLD = High.  
Figure 7. Slow-Memory Mode Timing  
HBEN  
t
8
t
9
t
8
t
9
t
8
t
9
CS  
RD  
t
1
t
4
t
5
t
1
t
4
t
5
t
1
t
4
t
5
t
2
t
t
10  
t
2
CONV  
BUSY  
DATA  
t
11  
t
3
t
7
t
3
t
7
t
3
t
7
OLD DATA  
D7D0  
NEW DATA  
D11–D8  
NEW DATA  
D7D0  
t
12  
t
12  
HOLD*  
TRACK  
*INTERNAL SIGNAL. TRACKING INPUT SIGNAL WHEN HOLD = Low, HOLDING WHEN HOLD = High.  
Figure 8. ROM Mode Timing  
______________________________________________________________________________________ 11  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
HBEN  
t
8
t
9
t
8
CLK  
CS  
MAX91  
t
1
t
4
t
5
RD  
t
10  
t
2
t
CONV  
BUSY  
DATA  
t
7
t
3
t
7
t
3
t
7
t
3
OLD DATA  
D7D0  
NEW DATA  
D7D0  
NEW DATA  
D11–D8  
t
12  
HOLD*  
TRACK  
*INTERNAL SIGNAL. TRACKING INPUT SIGNAL WHEN HOLD = Low, HOLDING WHEN HOLD = High  
Figure 9. ROM Mode Timing, Reading Data without Starting a Conversion  
SCLK  
t
22  
t
20  
t
20  
THREE STATE  
THREE STATE  
SCLK  
OUT  
t
17  
t
16  
CS  
t
23  
t
23  
THREE STATE  
THREE STATE  
SSTRB  
DOUT  
t
15  
t
14  
t
21  
t
12  
t
22  
t
19  
HOLD  
TRACK  
12 SCLK CYCLES  
Figure 10. Serial-Interface Mode Timing Diagram (RD = low)  
12 ______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
Table 1. Data-Bus Output, CS = RD = Low  
PIN NAME  
D7/DOUT D6/SCLK  
D5/SSTRB  
D4  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
OUT  
HBEN = 0, PAR = 1,  
PARALLEL MODE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HBEN = 1, PAR = 1,  
PARALLEL MODE  
Low  
Low  
Low  
Low  
Low  
Low  
D11  
Low  
Low  
D10  
Low  
Low  
D9  
D8  
HBEN = X, PAR = 0,  
SERIAL MODE, RD = 0  
HBEN = X, PAR = 0,  
SERIAL MODE, RD = 1  
DOUT  
DOUT  
SCLK  
SSTRB  
Low  
Low  
Low  
Low  
OUT  
Three-  
Stated  
Three-  
Stated  
Note: D7/DOUT–D0/D8 are the ADC data output pins.  
D11–D0 are the 12-bit conversion results. D11 is the MSB.  
DOUT = Three-state data output. Data output in serial mode.  
SCLK  
= Three-state data output. Clock output in serial mode.  
OUT  
SSTRB = Three-state data output. Strobe output in serial mode.  
Table 2. Slow-Memory Mode, 2-Byte Read Data-Bus Status  
PIN NAME  
D7/DOUT D6/SCLK  
D5/SSTRB  
D4  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
OUT  
FIRST READ (New Data)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SECOND READ (New Data)  
Low  
Low  
Low  
Low  
D11  
D10  
D9  
D8  
Table 3. ROM Mode, 2-Byte Read Data-Bus Status  
PIN NAME  
D7/DOUT D6/SCLK  
D5/SSTRB  
D4  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
OUT  
FIRST READ (Old Data)  
D7  
Low  
D7  
D6  
Low  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SECOND READ (New Data)  
THIRD READ (New Data)  
Low  
D5  
Low  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
D0  
Table 4. ROM Mode, 2-Byte Read Data-Bus Status without Starting a Conversion Cycle  
PIN NAME  
D7/DOUT D6/SCLK  
D5/SSTRB  
D4  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
OUT  
FIRST READ (Old Data)  
D7  
D7  
D6  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SECOND READ (New Data)  
THIRD READ (New Data)  
D5  
D4  
D3  
D2  
D1  
D9  
D0  
D8  
Low  
Low  
Low  
Low  
D11  
D10  
______________________________________________________________________________________ 13  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
+5V  
+5V  
3
4
23  
20  
19  
Q
A
SCLK  
CS  
1
2
8
Q
B
A
18  
17  
5
Q
C
DOUT  
B
RD  
74HC164  
6
Q
D
SCLK  
MAX191  
CLOCK  
OUT  
MAX91  
10  
11  
12  
13  
21  
Q
E
HBEN  
Q
F
Q
G
16  
9
Q
H
SSTRB  
CLEAR  
3
4
Q
A
1
2
8
+5V  
Q
B
A
5
6
Q
C
B
74HC164  
Q
D
CLOCK  
10  
11  
Q
E
Q
F
12  
13  
Q
G
9
Q
H
CLEAR  
LOGIC INPUT  
CS  
SCLK  
SCLK  
OUT  
t
19  
DOUT  
DO  
D11  
SSTRB  
NOTE: USE SSTRB TO GATE PARALLEL DATA TRANSFER FROM SHIFT REGISTER, OR TO CLEAR SHIFT REGISTERS IF DESIRED.  
Figure 11. Simple Serial-to-Parallel Interface  
14 ______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
ing edge of the first clock cycle after conversion end  
c ontinuous s e ria l c loc k. If CS a nd HBEN a re low,  
SCLK is output only during the conversion cycle,  
while the converter internal clock runs continuously.  
This is useful for creating a simple serial-to-parallel  
interface without shift-register overflow (Figure 11).  
(when BUSY goes high). As mentioned previously, two  
more re a d op e ra tions (a fte r BUSY g oe s hig h) a re  
needed to access the conversion results. The only dif-  
ference is that now the low byte can be read first. This  
happens by allowing the first read operation to occur  
with HBEN low, where the 8 LSBs are accessed. The  
second read, with HBEN high, accesses the 4 MSBs  
with 4 leading 0s.  
OUT  
Maximum Clock Rate in Serial Mode  
The maximum SCLK rate depends on the minimum  
setup time required at the serial data input to the µP  
and the ADCs DOUT to SCLK delay (t22) (see Figure  
S e ria l-In t e rfa c e Mo d e  
12). The maximum f  
is as follows:  
SCLK  
The serial mode is compatible with Microwire, SPI and  
QSPI serial interfaces. In addition, a framing signal  
(SSTRB) is provided that allows the devices to interface  
with the TMS320 family of DSPs. Set PAR low for serial  
mode. A falling edge on CS causes the T/H to sample  
the input (Figure 10). Conversion always begins on the  
next falling edge of SCLK, regardless of where CS  
occurs. The DOUT line remains high-impedance until a  
conversion begins. During the MSB decision, DOUT  
remains low (leading 0), while SSTRB goes high to indi-  
cate that a data frame is beginning. The data is avail-  
able at DOUT on the rising edge of SCLK (SCLKOUT  
when using an internal clock) and transitions on the  
falling edge. DOUT remains low after all data bits have  
been shifted out, inserting trailing 0s in the data stream  
until CS returns high. The SCLKOUT signal is synchro-  
nous with the internal or external clock.  
CS  
I/O  
SCLK  
DOUT  
SCK  
MISO  
+5V  
MAX191  
SS  
a. SPI  
CS  
CS  
SCK  
SCLK  
DOUT  
MISO  
+5V  
MAX191  
For interface flexibility, DOUT, SCLKOUT and SSTRB  
signals enter a high-impedance state when CS is high.  
When CS is low, RD controls the status of SCLKOUT and  
SSTRB outputs. A logic low RD enables SCLKOUT and  
SSTRB, while a logic high forces both outputs into a  
high-impedance state. Also, with CS low and HBEN  
high, SCLKOUT drives continuously, regardless of con-  
version status. This is useful with µPs that require a  
SS  
b. QSPI  
I/O  
CS  
SK  
SI  
SCLK  
DOUT  
MAX191  
SCLK  
c. MICROWIRE  
t
22  
I/O  
CS  
DOUT  
1
CLKX  
SCLK  
MAX191  
t
(MIN)  
SETUP  
1
CLKR  
f
(MAX) =  –––––––––  
SCLK  
)
(
t (M) + t  
SU 22  
2
DOUT  
DR  
t
(M) IS THE SETUP TIME REQUIRED AT THE SERIAL DATA INPUT TO THE µP.  
IS THE MAXIMUM SCLK TO DOUT DELAY.  
SU  
SSTRB  
FSR  
t
22  
d. TMS320 SERIAL INTERFACE  
Figure 12. f  
the serial data input to the µP.  
(MAX) is limited by the setup time required by  
SCLK  
Figure 13. Common Serial-Interface Connections to the MAX191  
______________________________________________________________________________________ 15  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
fSCLK(MAX) = (1/2) x 1/ (t (M) + t  
)
SPI (CPOL=1, CPHA=1)  
su  
22  
whe re ts u(M) is the minimum d a ta -s e tup time re -  
quired at the serial data input to the µP. For example,  
Motorolas MC68HC11A8 data book specifies a 100ns  
minimum data-setup time. Using the worst case for a  
milita ry g ra d e p a rt of t22 = 280ns (s e e Timing  
Characteristics) and substituting in the above equation  
indicates a maximum SCLK frequency of 1.3MHz.  
Setting CPOL = 1 and CPHA = 1 starts the clock high  
during a read instruction. The MAX191 will shift out a  
leading 0 followed by the 12 data bits and three trailing  
0s (Figure 14b).  
QSPI  
Unlike SPI, which requires two 1-byte reads to acquire  
the 12 bits of data from the ADC, QSPI allows the mini-  
mum number of clock cycles required to clock in the  
data (Figure 15).  
MAX91  
Us in g t h e MAX1 9 1 w it h S P I, QS P I a n d  
MICROWIRE S e ria l In t e rfa c e s  
Figure 13 shows interface connections to the MAX191  
for common serial-interface standards.  
TMS320 Serial Interface  
Figure 13d shows the pin connections to interface the  
MAX191 to the TMS320. Since the MAX191 makes data  
available on the rising edge of SCLK and the TMS320  
shifts data in on the falling edge of CLKR, use CLKX of the  
DSP to drive SCLK, and CLKX to drive the DSPs CLKR  
input. The inverters propagation delay also provides more  
data-setup time at the DSP. For example, with no inverter  
delay, and using t22 = 280ns and fSCLK = 1.6MHz, the  
available setup time before the SCLK transition is:  
SPI and MICROWIRE (CPOL=0, CPHA=0)  
The MAX191 is c omp a tib le with SPI, QSPI a nd  
MICROWIRE serial-interface standards. When using SPI  
or QSPI, two modes are available to interface with the  
MAX191. You can set CPOL = 0 and CPHA = 0 (Figure  
14a), or set CPOL = 1 and CPHA = 1 (Figure 14b). When  
using CPOL = 0 and CPHA = 0, the conversion begins  
on the first falling edge of SCLK following CS going low.  
Data is available from DOUT on the rising edge of SCLK,  
and transitions on the falling edge. Two consecutive  
1-byte reads are required to get the full 12 bits from the  
ADC. The first byte contains the following, in this order: a  
leading unknown bit (DOUT will still be high-impedance  
on the first bit), a 0, and the six MSBs. The second byte  
contains the remaining six LSBs and two trailing 0s.  
setup time = 1/ (2 x fSCLK) - t22 = 1/ (2 x 1.6E6) - 280ns = 32ns  
This still exceeds the 13ns minimum DR setup time before  
the CLKR goes low (tsu(DR)), however, a generic 74HC04  
provides an additional 20ns setup time (see Figure 13d).  
Figure 16 shows the DSP interface timing characteris-  
tics. The DSP begins clocking data in on the falling  
e d g e of CLKR a fte r the fa lling e d g e of SSTRB.  
2ND BYTE READ  
1ST BYTE READ  
SCLK  
CS  
HIGH-Z  
HIGH-Z  
DOUT  
LEADING MSB  
ZERO  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
a. CPOL = 0, CPHA = 0  
SCLK  
CS  
HIGH-Z  
DOUT  
HIGH-Z  
LEADING MSB  
ZERO  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
b. CPOL = 1, CPHA = 1  
Figure 14. SPI/MICROWIRE Serial-Interface Timing  
16 ______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
SCLK  
CS  
HIGH-Z  
HIGH-Z  
DOUT  
MSB  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
a. CPOL = 0, CPHA = 0  
SCLK  
CS  
HIGH-Z  
HIGH-Z  
DOUT  
MSB  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
b. CPOL = 1, CPHA = 1  
Figure 15. QSPI Serial-Interface Timing  
SCLK  
CLKR  
CS  
HIGH-Z  
SSTRB  
HIGH-Z  
HIGH-Z  
HIGH-Z  
DOUT  
MSB  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
Figure 16. TMS320 Interface Timing  
______________________________________________________________________________________ 17  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
Following the data transfer, the DSP receive shift regis-  
ter (RSR) contains a 16-bit word consisting of the 12  
data bits, MSB first, followed by four trailing 0s.  
nal reference compensation, drive PD between V  
DD  
a nd DGND with a µP I/O p in or othe r log ic d e vic e  
(Fig ure 17a ). For e xte rna l-re fe re nc e c omp e ns a tion  
mode, use the circuit in Figure 17b to drive PD between  
DGND and the floating voltage of PD. An alternative is  
to drive PD with three-state logic or a switch, provided  
the off leakage does not exceed 100nA.  
Ap p lic a t io n s In fo rm a t io n  
P o w e r-On In it ia liza t io n  
Whe n the +5V p owe r s up p ly is firs t a p p lie d to the  
MAX191, perform a single conversion to initialize the  
ADC (the BUSY signal status is undefined at power-on).  
Disregard the data outputs.  
MAX91  
In t e rn a l Re fe re n c e  
The internal 4.096V reference is available at VREF and  
mus t b e b yp a s s e d to AGND with a 4.7µF low-ESR  
capacitor (less than 1/2) in parallel with a 0.1µF capaci-  
tor, unless internal-reference compensation mode is  
used (see the Internal Reference Compensation section).  
This minimizes noise and maintains a low reference  
impedance at high frequencies. The reference output  
P o w e r-Do w n Mo d e  
In some battery-powered systems, it is desirable to  
power down or remove power from the ADC during  
inactive periods. To power down the MAX191, drive PD  
low. In this mode, all internal ADC circuitry is off except  
the reference, and the ADC consumes less than 50µA  
max (assuming all signals CS, RD, CLK, and HBEN are  
static and within 200mV of the supplies). Figure 17  
shows a practical way to drive the PD pin. If using inter-  
can be disabled by connecting REFADJ to V  
when  
DD  
using an external reference.  
Re fe re n c e -Co m p e n s a t io n Mo d e s  
Power-down performance can be optimized for a given  
conversion rate by selecting either internal or external  
reference compensation.  
Internal Compensation  
The connection for internal compensation is shown in  
Figure 18a. In this mode, the reference stabilizes quick-  
ly enough so that a conversion typically starts within  
35µs after the ADC is reactivated (PD pulled high). In  
this compensation mode, the reference buffer requires  
longer recovery time from SAR transients, therefore  
requiring a slower clock (and conversion time). With  
internal reference compensation, the typical conversion  
time rises to 25µs (Figure 18b). Figure 18c illustrates  
the typical average supply current vs. conversion rate,  
MAX191  
1
PD  
a. INTERNAL-REFERENCE COMPENSATION MODE  
+5V  
1
PD  
MAX191  
MAX191  
5
VREF  
6
REFADJ  
1
PD  
0.1µF  
OPEN-DRAIN  
BUFFER  
b. EXTERNAL-REFERENCE COMPENSATION MODE  
Figure 17. Drive Circuits for PD Pin  
Figure 18a. Internal-Compensation Mode Circuit  
18 ______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
10,000  
1
0
PD  
1000  
100  
VREF  
RD  
15µs  
20µs  
25µs  
10  
10  
50  
200  
1k  
5k  
20k 100k  
CONVERSIONS PER SECOND  
Figure 18c. Average Supply Current vs. Conversion Rate,  
Powering Down Between Conversions  
Figure 18b. Low Average-Power Mode Operation (Internal  
Compensation)  
which can be achieved using power-down between  
conversions.  
1
PD  
External Compensation  
Figure 19a shows the connection for external compensa-  
tion with reference adjustment. In this mode, an external  
4.7µF c a p a c itor c ompe nsa te s the re fe re nc e output  
amplifier, allowing for maximum conversion speed and  
lowest conversion noise. However, when reactivating the  
ADC after power-down, the reference takes typically 2ms  
to fully charge the 4.7µF capacitor, so more time is  
required before a conversion can start (Figure 19b).  
Thus, the average current consumed in power-up/power-  
down operations is higher in external compensation  
mode than in internal compensation mode.  
5
VREF  
11k  
MAX191  
100k  
4.7µF  
0.1µF  
6
REFADJ  
5k  
0.01µF  
15k  
Ga in a n d Offs e t Ad ju s t m e n t  
Figure 19a. External-Compensation Mode with Internal  
Reference Adjustment Circuit  
Figure 20 depicts the nominal, unipolar input/output (I/O)  
transfer function, and Figure 22 shows the bipolar I/O  
transfer function. Code transitions occur halfway between  
successive integer LSB values. Note that 1LSB = 1.00mV  
(4.096V/4096) for unipolar operation and 1LSB = 1.00mV  
((4.096V/2 - -4.096V/2)/4096) for bipolar operation.  
ADCs, it is virtually impossible to null system negative  
offset errors. However, the MAX191 input configuration  
is pseudo-differential—only the difference in voltage  
between AIN+ and AIN- will be converted into its digital  
representation. By applying a small positive voltage to  
AIN-, the 0 input voltage at AIN+ can be adjusted to  
above or below AIN- voltage, thus nulling positive or  
ne g a tive s ys te m offs e t e rrors . R9 a nd R10 c a n b e  
removed for applications that require only positive sys-  
tem errors to be nulled. To trim the offset error of the  
MAX191, apply 1/2LSB to the analog input and adjust  
R6 so the digital output code changes between 000  
(hex) and 001 (hex). To adjust full scale, apply FS - 1  
1/2LSBs and adjust R2 until the output code changes  
Figures 19a and 21a show how to adjust the ADC gain  
in applications that require full-scale range adjustment.  
The connection shown in Figure 21a provides ±0.5%  
for ±20LSBs of adjustment range and is recommended  
for applications that use an external reference. On the  
other hand, Figure 19a is recommended for applica-  
tions that use the internal reference, because it uses  
fewer external components.  
If both offset and full scale need adjustment, the circuit  
in Fig ure 21b is re c omme nd e d . For s ing le -s up p ly  
______________________________________________________________________________________ 19  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
OUTPUT  
CODE  
FULL-SCALE  
TRANSITION  
OPEN CIRCUIT (FLOAT)  
PD  
0
11 . . . 111  
11 . . . 110  
11 . . . 101  
MAX91  
VREF  
RD  
2ms  
200ms  
12.5µs  
FS = VREF  
FS  
1LSB =  
4096  
00 . . . 011  
00 . . . 010  
Figure 19b. Low Average-Power Mode Operation (External  
Compensation)  
00 . . . 001  
00 . . . 000  
0
1
2
3
between FFE (hex) and FFF (hex). Because interaction  
occurs between adjustments, offset should be adjusted  
before gain. For an input gain of two, remove R7 and R8.  
FS  
FS–1LSB  
AIN INPUT VOLTAGE (LSB)  
The MAX191 accepts input voltages from AGND to V  
DD  
Figure 20. Unipolar Transfer Function  
while operating from a single supply, and V to V  
SS  
DD  
when operating from dual supplies. Figure 22 shows  
the bipolar input transfer function with AIN- connected  
to midscale for single-supply operation and connected  
to GND operating from dual supplies. When operating  
from a single supply, the MAX191 can be configured  
for bipolar operation on its pseudo-differential input.  
Instead of using AIN- as an analog input return, AIN-  
c a n b e s e t to a d iffe re nt p os itive p ote ntia l volta g e  
above ground (BIP pin is set high). The sampled ana-  
log input (AIN+) can swing to any positive voltage  
above and below AIN-, and the ADC performs bipolar  
conversions with respect to AIN-. When operating from  
dual supplies, the MAX191 full-scale range is from  
V
IN  
MAX480  
R2  
49.9Ω  
R1  
100Ω  
TO AIN+  
R3  
10k  
R4  
10k  
-V  
/2 to +V  
/2.  
REF  
REF  
Dig it a l Bu s No is e  
If the data bus connected to the ADC is active during a  
conversion, crosstalk from the data pins to the ADC  
comparator may generate errors. Slow-memory mode  
avoids this problem by placing the µP in a wait state  
during the conversion. In ROM mode, if the data bus is  
active during the conversion, it should be isolated from  
the ADC using three-state drivers.  
Figure 21a. Trim Circuit for Gain (±0.5%)  
RD and CS should be active for less than one clock  
cycle. If this is not possible, RD or CS should go high at  
the rising edge of CLK, since the comparator output is  
always latched on falling edges of CLK.  
The ADC generates considerable digital noise in ROM  
mode when RD or CS go high and the output data dri-  
vers are disabled after a conversion has started. This  
noise can cause large errors if it occurs when the SAR  
latches a comparator decision. To avoid this problem,  
La yo u t , Gro u n d in g , Byp a s s in g  
Use printed circuit boards for best system performance.  
20 ______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
R7  
10k  
MAX480  
V
IN  
AIN +  
R8  
10k  
01 . . . 111  
R1  
01 . . . 110  
10k  
00 . . . 010  
R2  
100Ω  
MAX191  
D0D11  
00 . . . 001  
00 . . . 000  
11 . . . 111  
11 . . . 110  
11 . . . 101  
VREF  
R3  
10k  
R5  
10k  
R6  
10k  
R4  
49.9Ω  
VREF  
10 . . . 001  
10 . . . 000  
R9*  
20k  
VREF  
––––  
0V  
SINGLE SUPPLY  
AIN -  
VREF - 1LSB  
VREF  
2
AIN- = –––  
(
R10*  
49.9Ω  
)
0.1µF*  
2
-VREF  
––––  
0V  
DUAL SUPPLY  
AIN- = 0V  
VREF  
–––– - 1LSB  
2
2
* CONNECT AIN- TO AGND WHEN USING DUAL SUPPLIES  
Figure 21b. Offset (±10mV) and Gain (±1%) Trim Circuit  
Figure 22. Bipolar Transfer Function  
Wire-wrap boards are not recommended. Board layout  
should ensure that digital- and analog-signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package.  
SUPPLIES  
+5V  
GND  
-5V  
Figure 23 shows the recommended system ground  
connections. Establish a single-point ground (star”  
g round p oint) a t AGND, s e p a ra te from the log ic  
ground. Connect all other analog grounds and DGND  
to it. No other digital-system ground should be con-  
nected to this single-point analog ground. The ground  
return to the power supply for this star ground should  
be low impedance and as short as possible for noise-  
free operation.  
R* = 10Ω  
+5V  
DGND  
DGND  
V
DD  
AGND  
V
SS  
High-frequency noise in the V  
power supply may  
DD  
affect the high-speed comparator in the ADC. Bypass  
these supplies to the single-point analog ground with  
DIGITAL  
CIRCUITRY  
MAX191  
*OPTIONAL  
Figure 23. Power-Supply Grounding Connection  
______________________________________________________________________________________ 21  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
0.01µF and 10µF bypass capacitors. Minimize capaci-  
tor lead lengths for best supply-noise rejection. If the  
+5V power supply is very noisy, a 10resistor can be  
connected as a lowpass filter to filter out supply noise  
(Figure 23).  
The theoretical minimum A/D noise is caused by quan-  
tization error and is a direct result of the ADCs resolu-  
tion: SNR = (6.02n + 1.76) dB, where n is the number of  
bits of resolution. 74dB is the SNR of a perfect 12-bit  
ADC.  
By transposing the equation that converts resolution to  
SNR we can compute the effective resolution or the  
effective number of bitsthe ADC provides from the  
measured SNR:  
_____________Dyn a m ic P e rfo rm a n c e  
High-speed sampling capability and throughput make  
the MAX191 ideal for wideband signal processing. To  
s up p ort the s e a nd othe r re la te d a p p lic a tions , Fa s t  
Fourier Transform (FFT) test techniques guarantee the  
ADC's dynamic frequency response, distortion, and  
noise at the rated throughput. Specifically, this involves  
applying a low-distortion sine wave to the ADC input  
and recording the digital conversion results for a speci-  
fied time. The data is then analyzed using an FFT algo-  
rithm, whic h d e te rmine s its s p e c tra l c onte nt.  
Conversion errors are then seen as spectral elements  
outside the fundamental input frequency. FFT plots are  
shown in the Typical Operating Characteristics.  
MAX91  
n = (SNR – 1.76)/6.02  
To t a l Ha rm o n ic Dis t o rt io n  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sum of all harmonics of the input signal (in the frequen-  
cy band above DC and below one-half the sample rate)  
to the fundamental itself. This expressed as:  
THD = 20log [ (V 2 + V 2 + V 2 + V 2 + . . . + V 2) /V ]  
2
3
4
5
n
1
where V is the fundamental RMS amplitude and V to  
1
2
V are the amplitudes of the 2nd through nth harmonics.  
n
ADCs have traditionally been evaluated by specifica-  
tions such as zero and full-scale error, integral nonlin-  
earity (INL), and differential nonlinearity (DNL). Such  
parameters are widely accepted for specifying perfor-  
mance with DC and slowly varying signals, but are less  
us e ful in s ig na l-p roc e s s ing a p p lic a tions whe re the  
ADCs impact on the system transfer function is the  
main concern. The significance of various DC errors  
does not translate well to the dynamic case, so different  
tests are required.  
S p u rio u s -Fre e Dyn a m ic Ra n g e  
Spurious-free dynamic range is the ratio of the funda-  
mental RMS amplitude to the amplitude of the next  
largest spectral component (in the frequency band  
above DC and below one-half the sample rate). Usually  
this peak occurs at some harmonic of the input fre-  
quency. But if the ADC is exceptionally linear, it can  
occur at a random peak in the ADCs noise floor.  
Signal-to-Noise Ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency to  
the RMS a mp litud e of a ll othe r A/D outp ut signa ls,  
except signal harmonics. Signal-to-Noise + Distortion  
ratio (SINAD) is the same as the SNR, but includes sig-  
nal harmonics.  
Op t o -Is o la t e d A/D In t e rfa c e  
Many industrial applications require isolation to prevent  
excessive current flow where ground disparities exist  
between the ADC and the rest of the system. In Figure  
24, a MAX250 and four 6N136 opto-couplers create an  
22 ______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
5V  
T
1
602117970  
(SCHOTT)  
2
D1  
IN  
100µF  
16V  
5V  
100µF  
IC  
74L05  
14  
13  
4
V
OUT  
CC  
6V  
GND  
D2  
IC  
2-3  
HCPL2630 (QUALITY TECHNOLOGIES)  
1k  
8
1
Q
2N3906  
1
24  
1k  
2
0.1µF  
V
DD  
7
9
10  
18  
DOUT  
IC  
2
1k  
TTL/CMOS  
OUTPUTS  
IC  
MAX250  
1
1k  
4
3
3
AIN+  
V
IN  
1k  
Q
2
6
12  
11  
2N3906  
16  
4
AIN-  
SSTRB  
1k  
IC  
MAX191  
5
5
1
4
SHDN  
1k  
1k  
8
7
1
2
21  
19  
22  
8
HBEN  
1k  
1k  
3
6
20  
RD  
PAR  
BIP  
CS  
IC  
3
TTL/CMOS  
INPUTS  
4
3
6
23  
5
5
CLK  
VREF  
7
AGND  
4.7µF  
0.1µF  
EN  
GND  
5
8
7
6
REFADJ  
ISOLATION  
BARRIER  
DGND  
12  
V
SS  
0.1µF  
2
Figure 24. Isolated Data-Acquisition Circuit  
______________________________________________________________________________________ 23  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
___________________Ch ip To p o g ra p h y  
HBEN  
CS  
RD  
MAX91  
VREF  
REFADJ  
0. 198"  
(5. 0292mm)  
AGND  
D7/DOUT  
D6/SCLK  
OUT  
BIP  
0. 142"  
(3. 6065mm)  
SUBSTRATE CONNECTED TO V  
DD  
________________________________________________________P a c k a g e In fo rm a t io n  
24 ______________________________________________________________________________________  

相关型号:

MAX191BEWG-T

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial, Parallel, 8 Bits Access, CMOS, PDSO24, SOIC-24
MAXIM

MAX191BMRG

Low-Power, 12-Bit Sampling ADCs with Internal Reference and Power-Down
MAXIM

MAX191EVKIT

Nonvolatile Real-Time Clocks RAM[DS1644/DS1644P]
MAXIM

MAX192

Nonvolatile Real-Time Clocks RAM[DS1646/DS1646P]
MAXIM

MAX1920

Low-Voltage, 400mA Step-Down DC-DC Converters in SOT23
MAXIM

MAX1920ETT

Low-Voltage, 400mA Step-Down DC-DC Converters in SOT23
MAXIM

MAX1920ETT+T

0.95A SWITCHING REGULATOR, 1200kHz SWITCHING FREQ-MAX, DSO6, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229-WEEA, TDFN-6
ROCHESTER

MAX1920ETT+T

Switching Regulator, Current-mode, 0.95A, 1200kHz Switching Freq-Max, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229-WEEA, TDFN-6
MAXIM

MAX1920ETT-T

0.95A SWITCHING REGULATOR, 1200kHz SWITCHING FREQ-MAX, DSO6, 3 X 3 MM, 0.80 MM HEIGHT, MO-229-WEEA, TDFN-6
ROCHESTER

MAX1920EUT

SMPS Controller
MAXIM

MAX1920EUT+

Switching Regulator, Voltage-mode, 0.95A, 1200kHz Switching Freq-Max, PDSO6, LEAD FREE, MO-178AB, SOT-23, 6 PIN
MAXIM

MAX1920EUT+T

Switching Regulator, Current-mode, 0.95A, 1200kHz Switching Freq-Max, PDSO6, LEAD FREE, MO-178AB, SOT-23, 6 PIN
MAXIM