MAX192BCWP+ [MAXIM]

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, ROHS COMPLIANT, SOIC-20;
MAX192BCWP+
型号: MAX192BCWP+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, ROHS COMPLIANT, SOIC-20

光电二极管 转换器
文件: 总28页 (文件大小:304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0247; Rev. 1; 4/97  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
MAX192  
8-Channel Single-Ended or 4-Channel Differential  
________________Ge n e ra l De s c rip t io n  
Inputs  
The MAX192 is a low-cost, 10-bit data-acquisition system  
that combines an 8-channel multiplexer, high-bandwidth  
track/hold, and serial interface with high conversion  
speed and ultra-low power consumption. The device  
operates with a single +5V supply. The analog inputs are  
software configurable for single-ended and differential  
(unipolar/bipolar) operation.  
Single +5V Operation  
Low Power: 1.5mA (operating)  
2µA (power-down)  
Internal Track/Hold, 133kHz Sampling Rate  
Internal 4.096V Reference  
4-Wire Serial Interface is Compatible  
The 4-wire serial interface connects directly to SPI™,  
QSPI™, and Microwire™ devices, without using external  
logic. A serial strobe output allows direct connection to  
TMS320 family digital signal processors. The MAX192  
us e s e ithe r the inte rna l c loc k or a n e xte rna l s e ria l-  
interface clock to perform successive approximation A/D  
conversions. The serial interface can operate beyond  
4MHz when the internal clock is used. The MAX192 has  
an internal 4.096V reference with a drift of ±30ppm typi-  
cal. A reference-buffer amplifier simplifies gain trim and  
two sub-LSBs reduce quantization errors.  
with SPI, QSPI, Microwire, and TMS320  
20-Pin DIP, SO, SSOP Packages  
Pin-Compatible 12-Bit Upgrade (MAX186/MAX188)  
_______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE PIN-PACKAGE INL (LSB)  
MAX192ACPP  
MAX192BCPP  
MAX192ACWP  
MAX192BCWP  
MAX192ACAP  
MAX192BCAP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
20 Plastic DIP ±1/2  
20 Plastic DIP ±1  
The MAX192 provides a hardwired SHDN pin and two  
software-selectable power-down modes. Accessing the  
serial interface automatically powers up the device, and  
the quick turn-on time allows the MAX192 to be shut  
d own b e twe e n c onve rs ions . By p owe ring d own  
between conversions, supply current can be cut to  
under 10µA at reduced sampling rates.  
20 Wide SO  
20 Wide SO  
20 SSOP  
±1/2  
±1  
±1/2  
±1  
20 SSOP  
MAX192AEPP -40°C to +85°C  
MAX192BEPP -40°C to +85°C  
MAX192AEWP -40°C to +85°C  
MAX192BEWP -40°C to +85°C  
MAX192AEAP -40°C to +85°C  
MAX192BEAP -40°C to +85°C  
20 Plastic DIP ±1/2  
20 Plastic DIP ±1  
20 Wide SO  
20 Wide SO  
20 SSOP  
±1/2  
±1  
The MAX192 is available in 20-pin DIP and SO pack-  
ages, and in a shrink-small-outline package (SSOP)  
that occupies 30% less area than an 8-pin DIP. The  
data format provides hardware and software compati-  
bility with the MAX186/MAX188. For anti-aliasing filters,  
consult the data sheets for the MAX291–MAX297.  
±1/2  
±1  
20 SSOP  
MAX192AMJP -55°C to +125°C 20 CERDIP  
MAX192BMJP -55°C to +125°C 20 CERDIP  
±1/2  
±1  
________________________Ap p lic a t io n s  
Automotive  
___________________P in Co n fig u ra t io n  
Pen-Entry Systems  
Consumer Electronics  
Portable Data Logging  
Robotics  
TOP VIEW  
CH0  
CH1  
1
2
V
DD  
20  
19  
18  
17  
SCLK  
CS  
Battery-Powered Instruments, Battery  
Management  
CH2  
3
MAX192  
CH3  
4
DIN  
Medical Instruments  
5
CH4  
16 SSTRB  
15 DOUT  
____________________________Fe a t u re s  
CH5  
6
CH6  
14  
13  
12  
11  
DGND  
AGND  
7
8
CH7  
See last page for Typical Operating Circuit.  
AGND  
SHDN  
9
REFADJ  
VREF  
10  
SPI and QSPI are trademarks of Motorola Corp.  
Microwire is a trademark of National Semiconductor Corp.  
DIP/SO/SSOP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to AGND........................................................... -0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
AGND to DGND.................................................... -0.3V to +0.3V  
CH0–CH7 to AGND, DGND ...................... -0.3V to (V + 0.3V)  
DD  
CH0–CH7 Total Input Current.......................................... ±20mA  
Plastic DIP (derate 11.11mW/°C above +70°C) ......... 889mW  
SO (derate 10.00mW/°C above +70°C)...................... 800mW  
SSOP (derate 8.00mW/°C above +70°C) ................... 640mW  
CERDIP (derate 11.11mW/°C above +70°C).............. 889mW  
Operating Temperature Ranges  
VREF to AGND .......................................... -0.3V to (V + 0.3V)  
DD  
REFADJ to AGND...................................... -0.3V to (V + 0.3V)  
DD  
Digital Inputs to DGND.............................. -0.3V to (V + 0.3V)  
Digital Outputs to DGND........................... -0.3V to (V + 0.3V)  
DD  
Digital Output Sink Current .................................................25mA  
MAX192_C_P ..................................................... 0°C to +70°C  
MAX192_E_P .................................................. -40°C to +85°C  
MAX192_MJP ............................................... -55°C to +125°C  
Storage Temperature Range ............................ -60°C to +150°C  
Lead Temperature (soldering, 10sec) ............................ +300°C  
DD  
MAX192  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 5V ±5%, f  
= 2.0MHz, external clock (50% duty cycle), 15 clocks/conversion cycle (133ksps), 4.7µF capacitor at VREF pin,  
unless otherwise noted. Typical values are at T = +25°C.)  
DD  
CLK  
T
= T  
to T  
A
MIN  
MAX, A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (Note 1)  
Resolution  
10  
Bits  
MAX192A  
MAX192B  
±1/2  
±1  
Relative Accuracy (Note 2)  
LSB  
Differential Nonlinearity  
Offset Error  
DNL  
No missing codes over temperature  
±1  
LSB  
LSB  
±2  
Gain Error  
External reference, 4.096V  
External reference, 4.096V  
±2  
LSB  
Gain Temperature Coefficient  
±0.8  
±0.1  
ppm/°C  
Channel-to-Channel  
Offset Matching  
LSB  
DYNAMIC SPECIFICATIONS (10kHz sine-wave input, 4.096Vp-p, 133ksps, 2.0MHz external clock)  
Signal-to-Noise + Distortion Ratio SINAD  
66  
dB  
dB  
Total Harmonic Distortion  
THD  
-70  
(up to the 5th harmonic)  
Spurious-Free Dynamic Range  
Channel-to-Channel Crosstalk  
Small-Signal Bandwidth  
Full-Power Bandwidth  
SFDR  
70  
-75  
4.5  
800  
dB  
dB  
65kHz, V = 4.096Vp-p (Note 3)  
IN  
-3dB rolloff  
MHz  
kHz  
CONVERSION RATE  
Internal clock  
5.5  
6
10  
Conversion Time (Note 4)  
t
µs  
CONV  
External clock, 2MHz, 12 clocks/conversion  
Track/Hold Acquisition Time  
Aperture Delay  
t
1.5  
µs  
ns  
AZ  
10  
<50  
1.7  
Aperture Jitter  
ps  
Internal Clock Frequency  
MHz  
2
_______________________________________________________________________________________  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
MAX192  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±5%, f  
= 2.0MHz, external clock (50% duty cycle), 15 clocks/conversion cycle (133ksps), 4.7µF capacitor at VREF pin,  
unless otherwise noted. Typical values are at T = +25°C.)  
DD  
CLK  
T
= T  
to T  
A
MIN  
MAX, A  
PARAMETER  
SYMBOL  
CONDITIONS  
External compensation, 4.7µF  
Internal compensation (Note 5)  
Used for data transfer only  
MIN  
0.1  
TYP  
MAX  
2.0  
UNITS  
External Clock Frequency  
0.1  
0.4  
MHz  
10  
ANALOG INPUT  
Common-mode range (any input)  
Single-ended range (unipolar only)  
Unipolar  
0
0
0
V
DD  
V
REF  
Analog Input Voltage  
(Note 6)  
V
REF  
V
Differential range  
Bipolar  
-V  
-2  
+V  
REF  
REF  
2
Multiplexer Leakage Current  
Input Capacitance  
On/off leakage current; V = 0V, 5V  
IN  
±0.01  
16  
±1  
µA  
pF  
(Note 5)  
INTERNAL REFERENCE (reference buffer enabled)  
VREF Output Voltage  
VREF Short-Circuit Current  
VREF Tempco  
T
= +25°C (Note 7)  
4.066  
4.096  
4.126  
30  
V
mA  
A
±30  
2.5  
ppm/°C  
mV  
Load Regulation (Note 8)  
0mA to 0.5mA output load  
Internal compensation  
External compensation  
Internal compensation  
External compensation  
0
Capacitive Bypass at VREF  
µF  
4.7  
0.01  
0.01  
Capacitive Bypass at REFADJ  
REFADJ Adjustment Range  
µF  
%
±1.5  
EXTERNAL REFERENCE AT VREF (buffer disabled, VREF = 4.096V)  
V
50mV  
+
DD  
2.5  
12  
Input Voltage Range  
V
Input Current  
200  
20  
350  
µA  
k  
µA  
Input Resistance  
Shutdown VREF Input Current  
1.5  
10  
V
50mV  
-
Buffer Disable Threshold  
REFADJ  
DD  
V
EXTERNAL REFERENCE AT REFADJ  
Internal compensation mode  
Capacitive Bypass at VREF  
0
µF  
External compensation mode  
4.7  
Reference-Buffer Gain  
REFADJ Input Current  
1.678  
V/V  
µA  
±50  
_______________________________________________________________________________________  
3
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±5%, f  
= 2.0MHz, external clock (50% duty cycle), 15 clocks/conversion cycle (133ksps), 4.7µF capacitor at VREF pin,  
unless otherwise noted. Typical values are at T = +25°C.)  
DD  
CLK  
T
= T  
to T  
A
MIN  
MAX, A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
–—– –———–  
DIGITALINPUTS(DIN,SCLK,CS,SHDN)  
V
2.4  
V
V
DIN,SCLK, CS Input High Voltage  
DIN,SCLK, CS Input Low Voltage  
DIN, SCLK, CS Input Hysteresis  
DIN, SCLK, CS Input Leakage  
DIN, SCLK, CS Input Capacitance  
SHDN Input High Voltage  
SHDN Input Low Voltage  
INH  
MAX192  
V
INL  
0.8  
V
HYST  
0.15  
V
I
V
= 0V or V  
DD  
±1  
15  
µA  
pF  
V
IN  
IN  
C
(Note 5)  
IN  
V
INH  
V
- 0.5  
DD  
V
INL  
0.5  
4.0  
V
I
µA  
µA  
V
SHDN Input Current, High  
SHDN Input Current, Low  
SHDN Input Mid Voltage  
SHDN = V  
INH  
DD  
I
-4.0  
1.5  
SHDN = 0V  
INL  
V
V
- 1.5  
IM  
DD  
V
2.75  
V
SHDN Voltage, Floating  
SHDN = open  
SHDN = open  
FLT  
SHDN Max Allowed Leakage,  
Mid Input  
-100  
100  
0.4  
nA  
V
DIGITAL OUTPUTS (DOUT, SSTRB)  
I
= 5mA  
SINK  
Output Voltage Low  
V
OL  
I
= 16mA  
0.3  
SINK  
Output Voltage High  
V
OH  
I
= 1mA  
4
V
SOURCE  
Three-State Leakage Current  
Three-State Leakage Capacitance  
POWER REQUIREMENTS  
Positive Supply Voltage  
I
±10  
15  
µA  
pF  
CS = 5V  
L
C
CS = 5V (Note 5)  
OUT  
V
DD  
5 ±5%  
1.5  
30  
V
Operating mode  
Fast power-down  
Full power-down  
2.5  
70  
10  
mA  
Positive Supply Current  
I
DD  
µA  
2
Positive Supply Rejection  
(Note 9)  
V
= 5V ±5%; external reference, 4.096V;  
DD  
PSR  
±0.06  
±0.5  
mV  
full-scale input  
Note 1: Tested at V = 5.0V; single-ended, unipolar.  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 3: Grounded on-channel; sine wave applied to all off channels.  
Note 4: Conversion time defined as the number of clock cycles times the clock period; clock has 50% duty cycle.  
Note 5: Guaranteed by design. Not subject to production testing.  
Note 6: The common-mode range for the analog inputs is from AGND to V  
.
DD  
Note 7: Sample tested to 0.1% AQL.  
Note 8: External load should not change during conversion for specified accuracy.  
Note 9: Measured at V + 5% and V - 5% only.  
SUPPLY  
SUPPLY  
4
_______________________________________________________________________________________  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
MAX192  
TIMING CHARACTERISTICS  
(V = 5V ±5%, T = T  
to T , unless otherwise noted.)  
MAX  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.5  
TYP  
MAX  
UNITS  
µs  
Acquisition Time  
DIN to SCLK Setup  
DIN to SCLK Hold  
t
AZ  
DS  
DH  
DO  
t
100  
ns  
t
0
ns  
SCLK Fall to Output Data Valid  
CS Fall to Output Enable  
CS Rise to Output Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
SCLK Pulse Width High  
SCLK Pulse Width Low  
SCLK Fall to SSTRB  
t
C
C
C
= 100pF  
= 100pF  
= 100pF  
20  
150  
100  
100  
ns  
LOAD  
LOAD  
LOAD  
t
ns  
DV  
t
TR  
ns  
t
t
100  
0
ns  
CSS  
ns  
CSH  
t
200  
200  
ns  
CH  
t
ns  
CL  
t
C
= 100pF  
200  
200  
ns  
SSTRB  
LOAD  
CS Fall to SSTRB Output Enable  
t
External clock mode only, C  
External clock mode only, C  
Internal clock mode only  
= 100pF  
= 100pF  
ns  
ns  
ns  
SDV  
LOAD  
LOAD  
(Note 5)  
CS Rise to SSTRB Output  
Disable (Note 5)  
t
200  
STR  
SSTRB Rise to SCLK Rise  
(Note 5)  
t
0
SCK  
Note 5: Guaranteed by design. Not subject to production testing.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
POWER-SUPPLY REJECTION  
vs. TEMPERATURE  
CHANNEL-TO-CHANNEL OFFSET MATCHING  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
0.16  
0.30  
V
= +5V ±5%  
2.456  
DD  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.25  
0.20  
2.455  
2.454  
2.453  
2.452  
0.15  
0.10  
0.05  
0
0.02  
0
-0.05  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1–8  
CH0–CH7  
Sampling Analog Inputs  
Analog Ground. Also IN- Input for single-enabled conversions. Connect both AGND pins to  
analog ground.  
9, 13  
AGND  
Three-Level Shutdown Input. Pulling SHDN low shuts the MAX192 down to 10µA (max) supply cur-  
rent, otherwise the MAX192 is fully operational. Pulling SHDN high puts the reference-buffer amplifi-  
er in internal compensation mode. Letting SHDN float puts the reference-buffer amplifier in external  
compensation mode.  
MAX192  
10  
SHDN  
Reference Voltage for analog-to-digital conversion. Also, Output of the Reference Buffer Amplifier.  
Add a 4.7µF capacitor to ground when using external compensation mode. Also functions as an  
input when used with a precision external reference.  
11  
VREF  
12  
14  
REFADJ  
DGND  
Reference-Buffer Amplifier Input. To disable the reference-buffer amplifier, tie REFADJ to V  
.
DD  
Digital Ground  
Serial Data Output. Data is clocked out at the falling edge of SCLK. High impedance when CS is  
high.  
15  
DOUT  
Serial Strobe Output. In internal clock mode, SSTRB goes low when the MAX192 begins the A/D  
conversion and goes high when the conversion is done. In external clock mode, SSTRB pulses high  
for one clock period before the MSB decision. SSTRB is high impedance when CS is high  
(external mode).  
16  
SSTRB  
17  
18  
DIN  
Serial Data Input. Data is clocked in at the rising edge of SCLK.  
Active-Low Chip Select. Data will not be clocked into DIN unless CS is low. When CS is high, DOUT  
is high impedance.  
CS  
Serial Clock Input. Clocks data in and out of serial interface. In external clock mode, SCLK also sets  
the conversion speed. (Duty cycle must be 40% to 60% in external clock mode.)  
19  
20  
SCLK  
V
DD  
Positive Supply Voltage, +5V ±5%  
+3V  
+5V  
3k  
C
3k  
C
DOUT  
DOUT  
DOUT  
DOUT  
3k  
3k  
C
LOAD  
LOAD  
C
LOAD  
LOAD  
DGND  
DGND  
DGND  
a) High-Z to V and V to V  
OH  
DGND  
b) High-Z to V and V to V  
OL  
OH  
OL  
OL  
OH  
a) V to High-Z  
b) V to High-Z  
OL  
OH  
Figure 1. Load Circuits for Enable Time  
Figure 2. Load Circuits for Disabled Time  
6
________________________________________________________________________________________________  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
MAX192  
18  
19  
CS  
SCLK  
CAPACITIVE DAC  
VREF  
INPUT  
SHIFT  
REGISTER  
INT  
CLOCK  
17  
10  
DIN  
COMPARATOR  
CONTROL  
LOGIC  
INPUT  
MUX  
C
HOLD  
SHDN  
ZERO  
HOLD  
+
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
AGND  
1
CH0  
15  
16  
16pF  
OUTPUT  
SHIFT  
REGISTER  
DOUT  
2
3
4
CH1  
CH2  
CH3  
10k  
R
S
SSTRB  
C
ANALOG  
INPUT  
MUX  
SWITCH  
T/H  
5
6
CH4  
CH5  
CLOCK  
TRACK  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
IN  
SAR  
ADC  
7
8
CH6  
CH7  
T/H  
SWITCH  
OUT  
20  
14  
REF  
13  
9
V
DD  
AGND  
AGND  
1.65  
A
+2.46V  
REFERENCE  
DGND  
20k  
SINGLE-ENDED MODE: IN+ = CHO-CH7, IN- = AGND.  
DIFFERENTIAL MODE (BIPOLAR): IN+ AND IN- SELECTED FROM PAIRS OF  
CH0/CH1, CH2/CH3, CH4/CH5, CH6/CH7.  
12  
11  
REFADJ  
VREF  
MAX192  
+4.096V  
Figure 4. Equivalent Input Circuit  
Figure 3. Block Diagram  
respect to AGND during a conversion. Accomplish this  
by connecting a 0.1µF capacitor from AIN- (the select-  
ed analog input, respectively) to AGND.  
De t a ile d De s c rip t io n  
The MAX192 uses a successive-approximation conver-  
sion technique and input track/hold (T/H) circuitry to  
convert an analog signal to a 10-bit digital output. A  
fle xib le s e ria l inte rfa c e p rovid e s e a s y inte rfa c e to  
mic rop roc e s s ors . No e xte rna l hold c a p a c itors a re  
required. Figure 3 shows the block diagram for the  
MAX192.  
During the acquisition interval, the channel selected as  
the positive input (IN+) charges capacitor CHOLD. The  
acquisition interval spans three SCLK cycles and ends  
on the falling SCLK edge after the last bit of the input  
control word has been entered. At the end of the acqui-  
sition interval, the T/H switch opens, retaining charge  
P s e u d o -Diffe re n t ia l In p u t  
The sampling architecture of the ADCs analog com-  
parator is illustrated in the Equivalent Input Circuit  
(Fig ure 4). In single-e nd e d mod e , IN+ is inte rna lly  
switched to CH0–CH7 and IN- is switched to AGND. In  
differential mode, IN+ and IN- are selected from pairs  
of CH0/CH1, CH2/CH3, CH4/CH5, and CH6/CH7. Refer  
to Tables 1 and 2 to configure the channels.  
on C  
as a sample of the signal at IN+.  
HOLD  
The conversion interval begins with the input multiplex-  
er switching C from the positive input (IN+) to the  
HOLD  
ne g a tive inp ut (IN-). In s ing le -e nd e d mod e , IN- is  
simply AGND. This unbalances node ZERO at the input  
of the comparator. The capacitive DAC adjusts during  
the remainder of the conversion cycle to restore its  
node ZERO to 0V within the limits of its resolution. This  
a c tion is e q uiva le nt to tra ns fe rring a c ha rg e of  
In differential mode, IN- and IN+ are internally switched  
to either one of the analog inputs. This configuration is  
pseudo-differential to the effect that only the signal at  
IN+ is sampled. The return side (IN-) must remain sta-  
b le within ± 0.5LSB (± 0.1LSB for b e s t re s ults ) with  
16pF x (V + - V -) from C to the binary-weighted  
IN  
IN  
HOLD  
capacitive DAC, which in turn forms a digital represen-  
tation of the analog input signal.  
_______________________________________________________________________________________  
7
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
band of interest, anti-alias filtering is recommended.  
See the data sheets for the MAX291–MAX297 filters.  
Tra c k /Ho ld  
The T/H enters its tracking mode on the falling clock  
edge after the fifth bit of the 8-bit control word has been  
shifted in. The T/H enters its hold mode on the falling  
clock edge after the eighth bit of the control word has  
been shifted in. If the converter is set up for single-ended  
inputs, IN- is connected to AGND, and the converter  
samples the “+ input. If the converter is set up for differ-  
ential inputs, IN- connects to the -” input, and the differ-  
ence of IN+ - IN- is sampled. At the end of the conver-  
s ion, the p os itive inp ut c onne c ts b a c k to IN+, a nd  
An a lo g In p u t Ra n g e a n d In p u t P ro t e c t io n  
Internal protection diodes, which clamp the analog  
input to V and AGND, allow the channel input pins to  
DD  
swing from AGND - 0.3V to V  
+ 0.3V without dam-  
DD  
age. However, for accurate conversions near full scale,  
MAX192  
the inputs must not exceed V by more than 50mV, or  
DD  
be lower than AGND by 50mV.  
If the analog input exceeds 50mV beyond the sup-  
plies, do not forward bias the protection diodes of  
off channels over 2mA.  
C
charges to the input signal.  
HOLD  
The time required for the T/H to acquire an input signal is  
a function of how quickly its input capacitance is charged.  
If the input signal’s source impedance is high, the acquisi-  
tion time lengthens and more time must be allowed  
between conversions. Acquisition time is calculated by:  
The MAX192 can be configured for differential (unipolar  
or bipolar) or single-ended (unipolar only) inputs, as  
selected by bits 2 and 3 of the control byte (Table 3).  
In the single-ended mode, set the UNI/BIP bit to unipolar.  
In this mode, analog inputs are internally referenced to  
t
= 9 (R + R ) 16pF  
S IN  
AZ  
AGND, with a full-scale input range from 0V to V  
.
REF  
where R = 5k, R = the source impedance of the  
IN  
S
input signal, and tAZ is never less than 1.5µs. Note that  
source impedances below 5kW do not significantly affect  
the AC performance of the ADC. Higher source imped-  
ances can be used if an input capacitor is connected to  
the analog inputs, as shown in Figure 5. Note that the  
input capacitor forms an RC filter with the input source  
impedance, limiting the ADCs signal bandwidth.  
In differential mode, both unipolar and bipolar settings  
can be used. Choosing unipolar mode sets the differen-  
tial input range at 0V to V . The output code is invalid  
REF  
(code zero) when a negative differential input voltage is  
applied. Bipolar mode sets the differential input range to  
±V  
/ 2. Note that in this differential mode, the com-  
REF  
mon-mode input range includes both supply rails. Refer  
to Tables 4a and 4b for input voltage ranges.  
In p u t Ba n d w id t h  
The ADCs inp ut tra c king c irc uitry ha s a 4.5MHz  
small-signal bandwidth, so it is possible to digitize  
high-speed transient events and measure periodic sig-  
nals with bandwidths exceeding the ADCs sampling  
ra te b y us ing und e rs a mp ling te c hniq ue s . To a void  
high-frequency signals being aliased into the frequency  
Qu ic k Lo o k  
To evaluate the analog performance of the MAX192  
quickly, use Figure 5s circuit. The MAX192 requires a  
c ontrol b yte to b e writte n to DIN b e fore e a c h  
conversion. Tying DIN to +5V feeds in control bytes of  
Table 1. Channel Selection in Single-Ended Mode (SGL/DIF = 1)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
AGND  
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
+
+
+
+
+
+
+
+
8
_______________________________________________________________________________________  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
MAX192  
Table 2. Channel Selection in Differential Mode (SGL/DIF = 0)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+
+
+
+
+
+
+
+
Table 3. Control-Byte Format  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(MSB)  
(LSB)  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP  
SGL/DIF  
PD1  
PD0  
Bit  
Name  
Description  
7(MSB)  
START  
The first logic “1bit after CS goes low defines the beginning of the control byte.  
6
5
4
SEL2  
SEL1  
SEL0  
These three bits select which of the eight channels are used for the conversion.  
See Tables 1 and 2.  
3
UNI/BIP  
1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode. In unipolar  
mode, an analog input signal from 0V to VREF can be converted; in differential bipolar  
mode, the differential signal can range from -VREF / 2 to +VREF / 2. Select differential  
operation if bipolar mode is used.  
2
SGL/DIF  
1 = single ended, 0 = differential. Selects single-ended or differential conversions. In  
single-ended mode, input signal voltages are referred to AGND. In differential mode,  
the voltage difference between two channels is measured. Select unipolar operation  
if single-ended mode is used. See Tables 1 and 2.  
1
PD1  
PD0  
Selects clock and power-down modes.  
0(LSB)  
PD1  
0
PD0  
0
Mode  
Full power-down (I = 2µA)  
Q
0
1
Fast power-down (I = 30µA)  
Q
1
1
0
1
Internal clock mode  
External clock mode  
_______________________________________________________________________________________  
9
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
Example: Simple Software Interface  
Make sure the CPUs serial interface runs in master  
mode so the CPU generates the serial clock. Choose a  
clock frequency from 100kHz to 2MHz.  
Table 4a. Unipolar Full Scale and Zero  
Scale  
ZERO  
SCALE  
REFERENCE  
Internal Reference  
FULL SCALE  
1) Set up the control byte for external clock mode,  
c a ll it TB1. TB1 s hould b e of the forma t:  
1XXXXX11 binary, where the Xs denote the par-  
ticular channel and conversion-mode selected.  
0V  
+4.096V  
at REFADJ  
at VREF  
0V  
V
(1.678)  
REFADJ  
External  
Reference  
MAX192  
0V  
V
REF  
2) Use a general-purpose I/O line on the CPU to  
pull CS on the MAX192 low.  
Table 4b. Differential Bipolar Full Scale,  
Zero Scale, and Negative Full Scale  
NEGATIVE ZERO  
3) Transmit TB1 and simultaneously receive a byte  
and call it RB1. Ignore RB1.  
REFERENCE  
FULL SCALE  
4) Tra ns mit a b yte of a ll ze ros ($00 HEX) a nd  
simultaneously receive byte RB2.  
FULL SCALE SCALE  
Internal Reference  
at  
-4.096V / 2  
0V  
0V  
0V  
+4.096V / 2  
5) Tra ns mit a b yte of a ll ze ros ($00 HEX) a nd  
simultaneously receive byte RB3.  
-1/2V  
+1/2V  
REFADJ  
REFADJ  
External  
REFADJ  
(1.678)  
(1.678)  
Reference  
0.at VREF  
6) Pull CS on the MAX192 high.  
-1/2V  
+1/2V  
REF  
REF  
Figure 6 shows the timing for this sequence. Bytes RB2  
a nd RB3 will c onta in the re s ult of the c onve rs ion  
padded with one leading zero, two sub-LSB bits, and  
three trailing zeros. The total conversion time is a func-  
tion of the serial clock frequency and the amount of  
dead time between 8-bit transfers. Make sure that the  
total conversion time does not exceed 120µs, to avoid  
excessive T/H droop.  
$FF (HEX), which trigger single-ended conversions on  
CH7 in external clock mode without powering down  
b e twe e n c onve rs ions . In e xte rna l c loc k mod e , the  
SSTRB output pulses high for one clock period before  
the most significant bit of the conversion result comes  
out of DOUT. Varying the analog input to CH7 should  
alter the sequence of bits from DOUT. A total of 15  
clock cycles is required per conversion. All transitions  
of the SSTRB and DOUT outputs occur on the falling  
edge of SCLK.  
Digital Output  
In unipolar input mode, the output is straight binary  
(Figure 15). For bipolar inputs in differential mode, the  
output is twos-complement (Figure 16). Data is clocked  
out at the falling edge of SCLK in MSB-first format.  
Ho w t o S t a rt a Co n ve rs io n  
A conversion is started on the MAX192 by clocking  
a control byte into DIN. Each rising edge on SCLK,  
with CS low, clocks a bit from DIN into the MAX192s  
internal shift register. After CS falls, the first arriving  
logic “1 bit defines the MSB of the control byte. Until  
this first start” bit arrives, any number of logic “0” bits  
can be clocked into DIN with no effect. Table 3 shows  
the control-byte format.  
In t e rn a l a n d Ex t e rn a l Clo c k Mo d e s  
The MAX192 may use either an external serial clock or  
the internal clock to perform the successive-approxima-  
tion conversion. In both clock modes, the external clock  
shifts data in and out of the MAX192. The T/H acquires  
the input signal as the last three bits of the control byte  
are clocked into DIN. Bits PD1 and PD0 of the control  
byte program the clock mode. Figures 7 through 10  
s how the timing c ha ra c te ris tic s c ommon to b oth  
modes.  
The MAX192 is compatible with Microwire, SPI, and  
QSPI devices. For SPI, select the correct clock polarity  
and sampling edge in the SPI control registers: set  
CPOL = 0 a nd CPHA = 0. Mic rowire a nd SPI b oth  
transmit a byte and receive a byte at the same time.  
Using the Typical Operating Circuit, the simplest soft-  
ware interface requires only three 8-bit transfers to per-  
form a conversion (one 8-bit transfer to configure the  
ADC, and two more 8-bit transfers to clock out the  
12-bit conversion result).  
10 ______________________________________________________________________________________  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
MAX192  
V
DD  
+5V  
OSCILLOSCOPE  
0.1µF  
DGND  
AGND  
AGND  
CS  
SCLK  
MAX192  
SSTRB  
DOUT*  
0V TO  
4.096V  
ANALOG  
INPUT  
CH7  
0.01µF  
SCLK  
DIN  
CH4  
2MHz  
OSCILLATOR  
CH3  
CH1  
CH2  
+5V  
DOUT  
SSTRB  
REFADJ  
VREF  
SHDN  
N.C.  
C2  
0.01µF  
C1  
4.7µF  
**  
+2.5V  
+2.5V  
REFERENCE  
* FULL-SCALE ANALOG INPUT, CONVERSION RESULT = $FFF (HEX)  
**OPTIONAL. A POTENTIOMETER MAY BE USED IN PLACE OF THE REFERENCE FOR TEST PURPOSES.  
Figure 5. Quick-Look Circuit  
External Clock  
Internal Clock  
In external clock mode, the external clock not only  
shifts data in and out, it also drives the analog-to-digital  
conversion steps. SSTRB pulses high for one clock  
p e riod a fte r the la s t b it of the c ontrol b yte .  
Successive-approximation bit decisions are made and  
appear at DOUT on each of the next 12 SCLK falling  
edges (see Figure 6). The first 10 bits are the true data  
bits, and the last two are sub-LSB bits.  
In internal clock mode, the MAX192 generates its own  
conversion clock internally. This frees the microproces-  
sor from the burden of running the SAR conversion  
clock, and allows the conversion results to be read  
back at the processors convenience, at any clock rate  
from zero to typically 10MHz. SSTRB goes low at the  
start of the conversion and then goes high when the  
conversion is complete. SSTRB will be low for a maxi-  
mum of 10µs, during which time SCLK should remain  
low for best noise performance. An internal register  
stores data when the conversion is in progress. SCLK  
clocks the data out at this register at any time after the  
conversion is complete. After SSTRB goes high, the  
next falling clock edge will produce the MSB of the  
conversion at DOUT, followed by the remaining bits in  
MSB-first format (Figure 9). CS does not need to be  
held low once a conversion is started.  
SSTRB and DOUT go into a high-impedance state when  
CS goes high; after the next CS falling edge, SSTRB will  
output a logic low. Figure 8 shows the SSTRB timing in  
external clock mode.  
The conversion must complete in some minimum time, or  
else droop on the sample -and-hold capacitors may  
degrade conversion results. Use internal clock mode if the  
clock period exceeds 10µs, or if serial-clock interruptions  
could cause the conversion interval to exceed 120µs.  
______________________________________________________________________________________ 11  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
CS  
t
ACQ  
SCLK  
1
4
8
12  
16  
20  
24  
RB1  
RB2  
RB3  
UNI/ SGL/  
BIP DIF  
DIN  
START SEL2 SEL1 SEL0  
PD1 PD0  
MAX192  
SSTRB  
RB2  
B6  
RB3  
RB1  
FILLED WITH  
ZEROS  
B9  
MSB  
B0  
LSB  
DOUT  
B8  
B7  
B5  
B4  
B3  
B2  
B1  
S1  
SO  
ACQUISITION  
CONVERSION  
IDLE  
IDLE  
A/D STATE  
1.5µs (CLK = 2MHz)  
Figure 6. 24-Bit External Clock Mode Conversion Timing (SPI, QSPI and Microwire Compatible)  
• • •  
CS  
t
t
CH  
t
CSH  
CSS  
t
t
CL  
CSH  
SCLK  
• • •  
t
DS  
t
DH  
DIN  
• • •  
t
DV  
t
DO  
t
TR  
DOUT  
• • •  
Figure 7. Detailed Serial-Interface Timing  
after the eighth bit of the control byte (the PD0 bit) is  
clocked into DIN. The start bit is defined as:  
Pulling CS high prevents data from being clocked into  
the MAX192 and three-states DOUT, but it does not  
adversely affect an internal clock-mode conversion  
a lre a d y in p rog re s s . Whe n inte rna l c loc k mod e is  
selected, SSTRB does not go into a high-impedance  
state when CS goes high.  
The first high bit clocked into DIN with CS low any-  
time the converter is idle, e.g. after VDD is applied.  
OR  
The first high bit clocked into DIN after bit 3 of a  
conversion in progress is clocked onto the DOUT pin.  
Figure 10 shows the SSTRB timing in internal clock  
mode. In internal clock mode, data can be shifted in  
a nd out of the MAX192 a t c loc k ra te s e xc e e d ing  
4.0MHz, provided that the minimum acquisition time,  
If a falling edge on CS forces a start bit before bit 3  
(B3) becomes available, then the current conversion  
will be terminated and a new one started. Thus, the  
fastest the MAX192 can run is 15 clocks per conver-  
sion. Figure 11a shows the serial-interface timing nec-  
essary to perform a conversion every 15 SCLK cycles  
in external clock mode. If CS is low and SCLK is contin-  
uous, guarantee a start bit by first clocking in 16 zeros.  
t
, is kept above 1.5µs.  
AZ  
Da t a Fra m in g  
The falling edge of CS does not start a conversion on  
the MAX192. The first logic high clocked into DIN is inter-  
preted as a start bit and defines the first bit of the control  
byte. A conversion starts on the falling edge of SCLK,  
12 ______________________________________________________________________________________  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
MAX192  
CS  
• • •  
• • •  
t
t
STR  
SDV  
SSTRB  
• • •  
• • •  
t
t
SSTRB  
SSTRB  
• • •  
• • • •  
SCLK  
PD0 CLOCKED IN  
Figure 8. External Clock Mode SSTRB Detailed Timing  
CS  
SCLK  
DIN  
1
4
8
18  
24  
2
3
5
6
7
9
10  
11  
12  
19  
20  
21  
22  
23  
UNI/ SGL/  
BIP DIF  
START SEL2 SEL1 SEL0  
PD1 PD0  
SSTRB  
t
CONV  
FILLED WITH  
ZEROS  
B9  
MSB  
B0  
LSB  
DOUT  
B8  
B7  
S1  
S0  
ACQUISITION CONVERSION  
10µs MAX  
IDLE  
IDLE  
A/D STATE  
1.5µs (CLK = 2MHz)  
Figure 9. Internal Clock Mode Timing  
Most microcontrollers require that conversions occur in  
multiples of 8 SCLK clocks; 16 clocks per conversion  
will typically be the fastest that a microcontroller can  
drive the MAX192. Figure 11b shows the serial-inter-  
face timing necessary to perform a conversion every 16  
SCLK cycles in external clock mode.  
Re fe re n c e -Bu ffe r Co m p e n s a t io n  
In addition to its shutdown function, the SHDN pin also  
selects internal or external compensation. The compen-  
sation affects both power-up time and maximum conver-  
sion speed. Compensated or not, the minimum clock  
rate is 100kHz due to droop on the sample-and-hold.  
To select external compensation, float SHDN. See the  
Typical Operating Circuit, which uses a 4.7µF capacitor  
at VREF. A value of 4.7µF or greater ensures stability  
and allows operation of the converter at the full clock  
s p e e d of 2MHz. Exte rna l c omp e ns a tion inc re a s e s  
power-up time (see the Choosing Power-Down Mode  
section, and Table 5).  
__________ Ap p lic a t io n s In fo rm a t io n  
P o w e r-On Re s e t  
When power is first applied and if SHDN is not pulled  
low, internal power-on reset circuitry will activate the  
MAX192 in internal clock mode, ready to convert with  
SSTRB = high. After the power supplies have been sta-  
bilized, the internal reset time is 100µs and no conver-  
sions should be performed during this phase. SSTRB is  
high on power-up and, if CS is low, the first logical 1 on  
DIN will be interpreted as a start bit. Until a conversion  
takes place, DOUT will shift out zeros.  
Internal compensation requires no external capacitor at  
VREF, and is selected by pulling SHDN high. Internal  
compensation allows for shortest power-up times, but is  
only available using an external clock and reduces the  
maximum clock rate to 400kHz.  
______________________________________________________________________________________ 13  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
CS  
t
t
CONV  
CSS  
t
t
SCK  
CSH  
MAX192  
SSTRB  
t
SSTRB  
SCLK  
PD0 CLOCK IN  
NOTE: FOR BEST NOISE PERFORMANCE, KEEP SCLK LOW DURING CONVERSION.  
Figure 10. Internal Clock Mode SSTRB Detailed Timing  
CS  
1
8
1
8
1
SCLK  
DIN  
S
CONTROL BYTE 2  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 0  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 1  
DOUT  
SSTRB  
Figure 11a. External Clock Mode, 15 Clocks/Conversion Timing  
CS  
SCLK  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
DIN  
DOUT  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 0  
B9 B8 B7 B6  
CONVERSION RESULT 1  
Figure 11b. External Clock Mode, 16 Clocks/Conversion Timing  
14 ______________________________________________________________________________________  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
MAX192  
CLOCK  
MODE  
INTERNAL  
EXTERNAL  
EXTERNAL  
SHDN  
SETS FAST  
POWER-DOWN  
MODE  
SETS EXTERNAL  
CLOCK MODE  
SETS EXTERNAL  
CLOCK MODE  
DIN  
S X X X X X 1 1  
S X X X X X 0 1  
S X X X X X 1 1  
DOUT  
DATA VALID  
(10 + 2 DATA BITS)  
DATA VALID  
(10 + 2 DATA BITS)  
VALID DATA INVALID  
POWERED  
UP  
FULL  
POWER-  
DOWN  
POWERED UP  
POWERED UP  
MODE  
FAST  
POWER-DOWN  
Figure 12a. Timing Diagram Power-Down Modes, External Clock  
CLOCK  
MODE  
INTERNAL CLOCK MODE  
SETS FULL  
POWER-DOWN  
SETS INTERNAL  
CLOCK MODE  
DIN  
S X X X X X 1 0  
S X X X X X 0 0  
S
DOUT  
DATA VALID  
DATA VALID  
SSTRB  
MODE  
CONVERSION  
CONVERSION  
FULL  
POWER-DOWN  
POWERED UP  
POWERED  
UP  
Figure 12b. Timing Diagram Power-Down Modes, Internal Clock  
Fast power-down mode turns off all circuitry except the  
bandgap reference. With the fast power-down mode, the  
supply current is 30µA. Power-up time can be shortened  
to 5µs in internal compensation mode.  
P o w e r-Do w n  
Choosing Power-Down Mode  
You c a n s a ve p owe r b y p la c ing the c onve rte r in a  
low-c urre nt s hutd own s ta te b e twe e n c onve rs ions .  
Select full power-down or fast power-down mode via  
bits 1 and 0 of the DIN control byte with SHDN either  
high or floating (see Tables 3 and 6). Pull SHDN low at  
any time to shut down the converter completely. SHDN  
overrides bits 1 and 0 of DIN word (see Table 7).  
In both software shutdown modes, the serial interface  
remains operational, however, the ADC will not convert.  
Table 5 illustrates how the choice of reference -buffer  
c omp e ns a tion a nd p owe r-d own mod e a ffe c ts b oth  
power-up delay and maximum sample rate.  
Full power-down mode turns off all chip functions that  
draw quiescent current, typically reducing IDD to 2µA.  
In external compensation mode, the power-up time is  
20ms with a 4.7µF compensation capacitor when the  
capacitor is fully discharged. In fast power-down, you  
can eliminate start-up time by using low-leakage capaci-  
______________________________________________________________________________________ 15  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
Table 5. Worst-Case Power-Up Delay Times  
Reference  
Buffer  
Reference-  
Buffer  
Compensation  
Mode  
VREF  
Capacitor  
(µF)  
Power-  
Down  
Mode  
Power-Up  
Delay  
(sec)  
Maximum  
Sampling  
Rate (ksps)  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Internal  
Internal  
External  
External  
Fast  
Full  
Fast  
Full  
Fast  
Full  
5µ  
26  
MAX192  
300µ  
26  
4.7  
4.7  
See Figure 14c  
133  
133  
133  
133  
See Figure 14c  
2µ  
2µ  
Table 6. Software Shutdown and Clock  
Mode  
Table 7. Hard-Wired Shutdown and  
Compensation Mode  
PD1 PD0  
Device Mode  
SHDN  
State  
Device  
Mode  
Reference-Buffer  
Compensation  
1
1
0
0
1
0
1
0
External Clock Mode  
Internal Clock Mode  
Fast Power-Down Mode  
Full Power-Down Mode  
1
Floating  
0
Enabled  
Enabled  
Internal Compensation  
External Compensation  
Full Power-Down N/A  
tors that will not discharge more than 1/2LSB while shut  
down. In shutdown, the capacitor has to supply the cur-  
rent into the reference (1.5µA typ) and the transient cur-  
rents at power-up.  
Hardware Power-Down  
The SHDN p in p la c e s the c onve rte r into the full  
power-down mode. Unlike with the software shutdown  
modes, conversion is not completed. It stops coinci-  
dentally with SHDN being brought low. There is no  
power-up delay if an external reference is used and is  
not shut down. The SHDN pin also selects internal or  
external reference compensation (see Table 7).  
Figures 12a and 12b illustrate the various power-down  
sequences in both external and internal clock modes.  
Software Power-Down  
Software power-down is activated using bits PD1 and  
PD0 of the control byte. As shown in Table 6, PD1 and  
PD0 also specify the clock mode. When software shut-  
down is asserted, the ADC will continue to operate in  
the last specified clock mode until the conversion is  
complete. Then the ADC powers down into a low quies-  
cent-current state. In internal clock mode, the interface  
remains active and conversion results may be clocked  
out while the MAX192 has already entered a software  
power-down.  
P o w e r-Do w n S e q u e n c in g  
The MAX192 auto power-down modes can save con-  
siderable power when operating at less than maximum  
sample rates. The following discussion illustrates the  
various power-down sequences.  
Lowest Power at up to 500  
Conversions/Channel/Second  
The following e xa mp le s illus tra te two d iffe re nt  
power-down sequences. Other combinations of clock  
rates, compensation modes, and power-down modes  
may give lowest power consumption in other applica-  
tions.  
The first logical 1 on DIN will be interpreted as a start  
bit, and powers up the MAX192. Following the start bit,  
the data input word or control byte also determines  
clock and power-down modes. For example, if the DIN  
word contains PD1 = 1, then the chip will remain pow-  
ered up. If PD1 = 0, a power-down will resume after  
one conversion.  
Figure 14a depicts the MAX192 power consumption for  
one or e ig ht c ha nne l c onve rs ions utilizing full  
power-down mode and internal reference compensa-  
tion. A 0.01µF bypass capacitor at REFADJ forms an  
16 ______________________________________________________________________________________  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
MAX192  
COMPLETE CONVERSION SEQUENCE  
2ms WAIT  
0 1  
(ZEROS)  
CH1  
CH7  
(ZEROS)  
DIN  
1
0 0  
1
1
1 1  
1
0 0  
FULLPD  
1
0 1  
FASTPD  
FULLPD  
2.5V  
FASTPD  
NOPD  
REFADJ  
VREF  
0V  
4V  
0V  
τ = RC = 20kx C  
REFADJ  
t
15µs  
BUFFEN  
Figure 13. FULLPD/FASTPD Power-Up Sequence  
FULL POWER-DOWN  
FAST POWER-DOWN  
1000  
10,000  
1 CHANNEL  
8 CHANNELS  
8 CHANNELS  
100  
1000  
100  
1 CHANNEL  
10  
2ms FASTPD WAIT  
2MHz EXTERNAL CLOCK  
400kHz EXTERNAL CLOCK  
INTERNAL COMPENSATION  
EXTERNAL COMPENSATION  
50µs WAIT  
1
10  
0
100  
200  
300  
400  
500  
0
4k  
8k  
12k  
16k  
CONVERSIONS PER CHANNEL PER SECOND  
CONVERSIONS PER CHANNEL PER SECOND  
Figure 14a. Supply Current vs. Sample Rate/Second, FULLPD,  
400kHz Clock  
Figure 14b. Supply Current vs. Sample Rate/Second, FASTPD,  
2MHz Clock  
RC filter with the internal 20kreference resistor with a  
0.2ms time constant. To achieve full 10-bit accuracy,  
10 time constants or 2ms are required after power-up.  
Waiting 2ms in FASTPD mode instead of full power-up  
will reduce the power consumption by a factor of 10 or  
more. This is achieved by using the sequence shown in  
Figure 13.  
3.0  
2.5  
2.0  
1.5  
1.0  
Lowest Power at Higher Throughputs  
Fig ure 14b s hows the p owe r c ons ump tion with  
external-reference compensation in fast power-down,  
with one and eight channels converted. The external  
4.7µF c omp e ns a tion re q uire s a 50µs wa it a fte r  
p owe r-up , a c c omp lis he d b y 75 id le c loc ks a fte r a  
d ummy c onve rs ion. This c irc uit c omb ine s fa s t  
multi-channel conversion with lowest power consump-  
tion p os s ib le . Full p owe r-d own mod e ma y p rovid e  
increased power savings in applications where the  
0.5  
0
0.0001 0.001  
0.01  
0.1  
1
10  
TIME IN SHUTDOWN (sec)  
Figure 14c. Typical Power-Up Delay vs. Time in Shutdown  
______________________________________________________________________________________ 17  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
OUTPUT CODE  
FULL-SCALE  
OUTPUT CODE  
TRANSITION  
11 . . . 111  
011 . . . 111  
11 . . . 110  
11 . . . 101  
011 . . . 110  
FS = +4.096  
2
1LSB = +4.096  
1024  
MAX192  
000 . . . 010  
000 . . . 001  
000 . . . 000  
FS = +4.096V  
1LSB = FS  
1024  
111 . . . 111  
111 . . . 110  
111 . . . 101  
00 . . . 011  
00 . . . 010  
100 . . . 001  
100 . . . 000  
00 . . . 001  
00 . . . 000  
0V  
0
1
2
3
FS  
-FS  
+FS - 1LSB  
FS - 3/2LSB  
INPUT VOLTAGE (LSBs)  
DIFFERENTIAL INPUT VOLTAGE (LSBs)  
Figure 15. Unipolar Transfer Function, 4.096V = Full Scale  
Figure 16. Differential Bipolar Transfer Function,  
±4.096V / 2 = Full Scale  
MAX192 is inactive for long periods of time, but where  
inte rmitte nt b urs ts of hig h-s p e e d c onve rs ions a re  
required.  
typ ic a lly 20k. At VREF, the inp ut imp e d a nc e is a  
minimum of 12kfor DC currents. During conversion,  
an external reference at VREF must be able to deliver  
up to 350µA DC loa d c urre nt a nd ha ve a n outp ut  
impedance of 10or less. If the reference has higher  
output impedance or is noisy, bypass it close to the  
VREF pin with a 4.7µF capacitor.  
Ex t e rn a l a n d In t e rn a l Re fe re n c e s  
The MAX192 can be used with an internal or external  
reference. Diode D1 shown in the Typical Operating  
Circuit ensures correct start-up. Any standard signal  
diode can be used. An external reference can either be  
c onne c te d d ire c tly a t the VREF te rmina l or a t the  
REFADJ pin.  
Us ing the b uffe re d REFADJ inp ut a void s e xte rna l  
buffering of the reference. To use the direct VREF input,  
disable the internal buffer by tying REFADJ to VDD  
.
The MAX192s internally trimmed 2.46V reference is  
buffered with a gain of 1.678 to scale an external 2.5V  
reference at REFADJ to 4.096V at VREF.  
Tra n s fe r Fu n c t io n a n d Ga in Ad ju s t  
Figure 15 depicts the nominal, unipolar input/output  
(I/O) transfer function, and Figure 16 shows the differ-  
e ntia l b ip ola r inp ut/outp ut tra ns fe r func tion. Cod e  
transitions occur halfway between successive integer  
LS B va lu e s . O u tp u t c o d in g is b in a ry with  
1LSB = 4.00mV (4.096V / 1024) for unipolar operation  
and 1LSB = 4.00mV [(4.096V / 2 - -4.096V / 2)/1024]  
for bipolar operation.  
Internal Reference  
The full-scale range of the MAX192 with internal reference  
is 4.096V with unipolar inputs, and ±2.048V with differen-  
tial bipolar inputs. The internal reference voltage is  
adjustable to ±1.5% with the Reference-Adjust Circuit of  
Figure 17.  
Figure 17, the Reference-Adjust Circuit, shows how to  
adjust the ADC gain in applications that use the internal  
reference. The circuit provides ±1.5% (±15LSBs) of  
gain adjustment range.  
External Reference  
An e xte rna l re fe re nc e c a n b e p la c e d a t e ithe r the  
input (REFADJ) or the output (VREF) of the internal  
b uffe r a mp lifie r. The REFADJ inp ut imp e d a nc e is  
18 ______________________________________________________________________________________  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
MAX192  
+5V  
SUPPLIES  
MAX192  
REFADJ  
+5V  
GND  
510k  
100k  
12  
R* = 10Ω  
0.01µF  
24k  
V
DD  
AGND  
DGND  
+5V DGND  
DIGITAL  
CIRCUITRY  
MAX192  
* OPTIONAL  
Figure 17. Reference-Adjust Circuit  
Figure 18. Power-Supply Grounding Connection  
La yo u t , Gro u n d in g , Byp a s s in g  
For b e s t p e rforma nc e , us e p rinte d c irc uit b oa rd s .  
Wire-wrap boards are not recommended. Board layout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package.  
Hig h -S p e e d Dig it a l In t e rfa c in g  
The MAX192 can interface with QSPI at high through-  
put rates using the circuit in Figure 19. This QSPI circuit  
can be programmed to do a conversion on each of the  
eight channels. The result is stored in memory without  
ta xing the CPU s inc e QSPI inc orp ora te s its own  
micro-sequencer.  
Figure 18 shows the recommended system ground  
c onne c tions . A s ing le -p oint a na log g round (“s ta r”  
ground point) should be established at AGND, sepa -  
rate from the logic ground. All other analog grounds  
and DGND should be connected to this ground. No  
other digital system ground should be connected to  
this single-point analog ground. The ground return to  
the power supply for this ground should be low imped-  
ance and as short as possible for noise-free operation.  
Fig ure 20 d e ta ils the c od e tha t s e ts up QSPI for  
autonomous operation. In external clock mode, the  
MAX192 performs a single-ended, unipolar conversion  
on each of the eight analog input channels. Figure 21  
shows the timing associated with the assembly code of  
Figure 20. The first byte clocked into the MAX192 is the  
control byte, which triggers the first conversion on CH0.  
The last two bytes clocked into the MAX192 are all  
zero, and clock out the results of the CH7 conversion.  
High-frequency noise in the VDD power supply may  
affect the high-speed comparator in the ADC. Bypass  
these supplies to the single-point analog ground with  
0.1µF a nd 4.7µF b yp a s s c a p a c itors c los e to the  
MAX192. Minimize capacitor lead lengths for best sup-  
ply-noise rejection. If the +5V power supply is very  
noisy, a 10resistor can be connected as a lowpass  
filter, as shown in Figure 18.  
______________________________________________________________________________________ 19  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
+5V  
V
, V , V  
, V  
DDI DDE DDSYN STBY  
1
2
20  
19  
18  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
AGND  
SHDN  
V
DD  
0.1µF  
4.7µF  
SCLK  
CS  
SCK  
3
4
PCS0  
MOSI  
MAX192  
MC68HC16  
ANALOG  
INPUTS  
DIN 17  
16  
MAX192  
5
6
SSTRB  
15  
MISO  
DOUT  
7
DGND 14  
13  
8
AGND  
9
12  
11  
REFADJ  
VREF  
0.01µF  
10  
+
4.7µF  
0.1µF  
V
SSI  
V
SSE  
* CLOCK CONNECTIONS NOT SHOWN  
Figure 19. MAX192 QSPI Connection  
TMS320 to MAX192 Interface  
Figure 22 shows an application circuit to interface the  
MAX192 to the TMS320 in external clock mode. The  
timing diagram for this interface circuit is shown in  
Figure 23.  
4) The SSTRB output of the MAX192 is monitored via  
the FSR input of the TMS320. A falling edge on the  
SSTRB output indicates that the conversion is in  
progress and data is ready to be received from  
the MAX192.  
Use the following steps to initiate a conversion in the  
MAX192 and to read the results:  
5) The TMS320 reads in one data bit on each of the  
next 16 rising edges of SCLK. These data bits rep-  
resent the 10-bit conversion result and two sub-  
LSBs, followed by four trailing bits, which should  
be ignored.  
1) The TMS320 s hould b e c onfig ure d with CLKX  
(transmit clock) as an active-high output clock and  
CLKR (TMS320 receive clock) as an active-high  
input clock. CLKX and CLKR of the TMS320 are  
tied together with the SCLK input of the MAX192.  
6) Pull CS high to disable the MAX192 until the next  
conversion is initiated.  
2) The MAX192 CS is driven low by the XF_ I/O port  
of the TMS320 to enable data to be clocked into  
DIN of the MAX192.  
3) An 8-bit word (1XXXXX11) should be written to the  
MAX192 to initiate a conversion and place the  
device into external clock mode. Refer to Table 3  
to select the proper XXXXX bit values for your spe-  
cific application.  
20 ______________________________________________________________________________________  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
MAX192  
* Description :  
*
*
*
*
This is a shell program for using a stand-alone 68HC16 without any external memory. The internal 1K RAM  
is put into bank $0F to maintain 68HC11 code compatibility. This program was written with software  
provided in the Motorola 68HC16 Evaluation Kit.  
* Roger J.A. Chen, Applications Engineer  
* MAXIM Integrated Products  
* November 20, 1992  
*
******************************************************************************************************************************************************  
INCLUDE  
INCLUDE  
INCLUDE  
ORG $0200  
EQUATES.ASM’ ;Equates for common reg addrs  
ORG00000.ASM’ ;initialize reset vector  
ORG00008.ASM’ ;initialize interrupt vectors  
;start program after interrupt vectors  
INCLUDE INITSYS.ASM’  
;set EK=F,XK=0,YK=0,ZK=0  
;set sys clock at 16.78 MHz, COP off  
INCLUDE INITRAM.ASM ;turn on internal SRAM at $10000  
;set stack (SK=1, SP=03FE)  
MAIN:  
JSR INITQSPI  
MAINLOOP:  
JSR READ192  
WAIT:  
LDAA SPSR  
ANDA #$80  
BEQ WAIT  
BRA MAINLOOP  
;wait for QSPI to finish  
ENDPROGRAM:  
INITQSPI:  
;This routine sets up the QSPI microsequencer to operate on its own.  
;The sequencer will read all eight channels of a MAX192 each time  
;it is triggered. The A/D converter results will be left in the  
;receive data RAM. Each 16 bit receive data RAM location will  
;have a leading zero, 10 + 2 bits of conversion result and three zeros.  
;
;Receive RAM Bits 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00  
;A/D Result  
0
MSB  
LSB 0 0 0  
***** Initialize the QSPI Registers ******  
PSHA  
PSHB  
LDAA #%01111000  
STAA QPDR  
;idle state for PCS0-3 = high  
LDAA #%01111011  
STAA QPAR  
LDAA #%01111110  
STAA QDDR  
;assign port D to be QSPI  
;only MISO is an input  
LDD #$8008  
STD SPCR0  
;master mode,16 bits/transfer,  
;CPOL=CPHA=0,1MHz Ser Clock  
LDD #$0000  
STD SPCR1  
;set delay between PCS0 and SCK,  
;set delay between transfers  
Figure 20. MAX192 Assembly-Code Listing  
______________________________________________________________________________________ 21  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
LDD #$0800  
STD SPCR2  
;set ENDQP to $8 for 9 transfers  
***** Initialize QSPI Command RAM *****  
LDAA #$80  
STAA $FD40  
LDAA #$C0  
STAA $FD41  
STAA $FD42  
STAA $FD43  
STAA $FD44  
STAA $FD45  
STAA $FD46  
STAA $FD47  
LDAA #$40  
STAA $FD48  
;CONT=1,BITSE=0,DT=0,DSCK=0,PCS0=ACTIVE  
;store first byte in COMMAND RAM  
;CONT=1,BITSE=1,DT=0,DSCK=0,PCS0=ACTIVE  
MAX192  
;CONT=0,BITSE=1,DT=0,DSCK=0,PCS0=ACTIVE  
***** Initialize QSPI Transmit RAM *****  
LDD #$008F  
STD $FD20  
LDD #$00CF  
LDD #$009F  
LDD #$00DF  
LDD #$00AF  
LDD #$00EF  
LDD #$00BF  
LDD #$00FF  
LDD #$0000  
STD $FD22  
STD $FD24  
STD $FD26  
STD $FD28  
STD $FD2A  
STD $FD2C  
STD $FD2E  
STD $FD30  
PULB  
PULA  
RTS  
READ192:  
;This routine triggers the QSPI microsequencer to autonomously  
;trigger conversions on all 8 channels of the MAX192. Each  
;conversion result is stored in the receive data RAM.  
PSHA  
LDAA #$80  
ORAA SPCR1  
STAA SPCR1  
PULA  
;just set SPE  
RTS  
***** Interrupts/Exceptions *****  
BDM: BGND  
;exception vectors point here  
;and put the user in background debug mode  
Figure 20. MAX192 Assembly-Code Listing (continued)  
22 ______________________________________________________________________________________  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
MAX192  
CS  
• • • •  
• • • •  
SCLK  
SSTRB  
DIN  
• • • •  
• • • •  
Figure 21. QSPI Assembly-Code Timing  
XF  
CLKX  
CLKR  
DX  
CS  
SCLK  
TMS320  
MAX192  
DIN  
DR  
DOUT  
SSTRB  
FSR  
Figure 22. MAX192 to TMS320 Serial Interface  
CS  
SCLK  
DIN  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP SGL/DIF  
PD1  
PD0  
HIGH  
IMPEDANCE  
SSTRB  
HIGH  
IMPEDANCE  
DOUT  
MSB  
B10  
S1  
S0  
Figure 23. TMS320 Serial-Interface Timing Diagram  
______________________________________________________________________________________ 23  
Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADC  
Typ ic a l Op e ra t in g Circ u it  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 2278  
+5V  
V
DD  
V
CH0  
CH7  
DD  
C3  
0.1µF  
0V to  
4.096V  
DGND  
C4  
0.1µF  
ANALOG  
INPUTS  
1
AGND  
AGND  
CPU  
MAX192  
I/O  
CS  
SCLK  
SCK (SK)*  
MOSI (SO)  
MISO (SI)  
VREF  
DIN  
C1  
4.7µF  
DOUT  
SSTRB  
SHDN  
REFADJ  
V
SS  
C2  
0.01µF  
P a c k a g e In fo rm a t io n  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  
ENGL ISH ? ? ? ? ? ? ? ? ? ?  
WH AT 'S NEW  
PR OD UC TS  
SO LUTI ONS  
D ES IG N  
A PPNOTES  
SU PPORT  
B U Y  
COM PA N Y  
M EMB ERS  
M A X 1 9 2  
Pa rt Nu m ber T abl e  
N o t e s :  
1 . S e e t h e M A X 1 9 2 Q u i c k V i e w D a t a S h e e t f o r f u r t h e r i n f o r m a t i o n o n t h i s p r o d u c t f a m i l y o r d o w n l o a d t h e M A X 1 9 2  
f u l l d a t a s h e e t ( P D F , 2 1 6 k B ) .  
2 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
3 . D i d n ' t F i n d W h a t Y o u N e e d ? A s k o u r a p p l i c a t i o n s e n g i n e e r s . E x p e r t a s s i s t a n c e i n f i n d i n g p a r t s , u s u a l l y w i t h i n o n e  
b u s i n e s s d a y .  
4 . P a r t n u m b e r s u f f i x e s : T o r T & R = t a p e a n d r e e l ; + = R o H S / l e a d - f r e e ; # = R o H S / l e a d - e x e m p t . M o r e : S e e f u l l  
d a t a s h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
5 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e p r o d u c t  
u s e s .  
P a r t N u m b e r  
F r e e  
S a m p l e  
B u y  
D i r e c t  
T e m p  
R o H S / L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : T Y P E P I N S S I Z E  
D R A W I N G C O D E / V A R *  
M A X 1 9 2 B C P P +  
P D I P ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 3 D ( P D F )  
U s e p k g c o d e / v a r i a t i o n : P 2 0 + 3 *  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
M A X 1 9 2 A C P P +  
M A X 1 9 2 B C P P  
M A X 1 9 2 A C P P  
M A X 1 9 2 B E P P +  
M A X 1 9 2 A E P P  
M A X 1 9 2 B E P P  
P D I P ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 3 D ( P D F )  
U s e p k g c o d e / v a r i a t i o n : P 2 0 + 3 *  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
P D I P ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 3 D ( P D F )  
U s e p k g c o d e / v a r i a t i o n : P 2 0 - 3 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
P D I P ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 3 D ( P D F )  
U s e p k g c o d e / v a r i a t i o n : P 2 0 - 3 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
P D I P ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 3 D ( P D F )  
U s e p k g c o d e / v a r i a t i o n : P 2 0 + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
P D I P ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 3 D ( P D F )  
U s e p k g c o d e / v a r i a t i o n : P 2 0 - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
P D I P ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 3 D ( P D F )  
U s e p k g c o d e / v a r i a t i o n : P 2 0 - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 1 9 2 A E P P +  
M A X 1 9 2 A C W P +  
M A X 1 9 2 B C W P  
P D I P ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 3 D ( P D F )  
U s e p k g c o d e / v a r i a t i o n : P 2 0 + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 + 3 *  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 - 3 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 1 9 2 B C W P - T  
M A X 1 9 2 A C W P + T  
M A X 1 9 2 B C W P + T  
M A X 1 9 2 A C W P - T  
M A X 1 9 2 A C W P  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 - 3 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 + 3 *  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 + 3 *  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 - 3 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 - 3 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 1 9 2 B C W P +  
M A X 1 9 2 B E W P +  
M A X 1 9 2 B E W P + T  
M A X 1 9 2 B E W P - T  
M A X 1 9 2 B E W P  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 + 3 *  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 1 9 2 A E W P +  
M A X 1 9 2 A E W P + T  
M A X 1 9 2 A E W P - T  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 + 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 1 9 2 A E W P  
S O I C ; 2 0 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 2 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : W 2 0 - 3 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 1 9 2 A C A P - G 0 0 2  
M A X 1 9 2 A C A P - T G 0 0 2  
M A X 1 9 2 B C A P  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 - 1 *  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 1 9 2 B C A P + T  
M A X 1 9 2 B C A P +  
M A X 1 9 2 A C A P  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 + 1 *  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 + 1 *  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 1 9 2 A C A P - T  
M A X 1 9 2 B C A P - T  
M A X 1 9 2 A C A P +  
M A X 1 9 2 A C A P + T  
M A X 1 9 2 B E A P + T  
M A X 1 9 2 B E A P +  
M A X 1 9 2 B E A P  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 + 1 *  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 + 1 *  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 + 1 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 + 1 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 - 1 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 1 9 2 A E A P +  
M A X 1 9 2 A E A P  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 + 1 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 - 1 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 1 9 2 A E A P - T  
M A X 1 9 2 A E A P + T  
M A X 1 9 2 B E A P - T  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 - 1 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 + 1 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S S O P ; 2 0 p i n ; . 2 0 9 "  
D w g : 2 1 - 0 0 5 6 C ( P D F )  
U s e p k g c o d e / v a r i a t i o n : A 2 0 - 1 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
D i d n ' t F i n d W h a t Y o u N e e d ?  
C O N T A C T U S : S E N D U S A N E M A I L  
C o p y r i g h t 2 0 0 7 b y M a x i m I n t e g r a t e d P r o d u c t s , D a l l a s S e m i c o n d u c t o r L e g a l N o t i c e s P r i v a c y P o l i c y  

相关型号:

MAX192BCWP+T

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, ROHS COMPLIANT, SOIC-20
MAXIM

MAX192BCWP-T

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SO-20
MAXIM

MAX192BEAP

Low-Power, 8-Channel, Serial 10-Bit ADC
MAXIM

MAX192BEAP-T

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, 5.30 MM, 0.65 MM PITCH, SSOP-20
MAXIM

MAX192BEPP

Low-Power, 8-Channel, Serial 10-Bit ADC
MAXIM

MAX192BEPP+

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDIP20, ROHS COMPLIANT, PLASTIC, DIP-20
MAXIM

MAX192BEWP

Low-Power, 8-Channel, Serial 10-Bit ADC
MAXIM

MAX192BEWP+

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, ROHS COMPLIANT, SOIC-20
MAXIM

MAX192BEWP+T

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, ROHS COMPLIANT, SOIC-20
MAXIM

MAX192BEWP-T

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SO-20
MAXIM

MAX192BMJP

Low-Power, 8-Channel, Serial 10-Bit ADC
MAXIM

MAX1930

Current-Limited Switch for Two USB Ports
MAXIM