MAX19542EGK [MAXIM]

12-Bit, 170Msps ADC with CMOS Outputs for Wideband Applications; 12位,170Msps ADC ,CMOS输出,适用于宽带系统
MAX19542EGK
型号: MAX19542EGK
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

12-Bit, 170Msps ADC with CMOS Outputs for Wideband Applications
12位,170Msps ADC ,CMOS输出,适用于宽带系统

文件: 总23页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3464; Rev 1; 10/10  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
MAX19542  
General Description  
Features  
The MAX19542 monolithic 12-bit, 170Msps analog-to-  
digital converter (ADC) is optimized for outstanding  
dynamic performance at high-IF frequencies of  
300MHz and beyond. This device operates with con-  
version rates up to 170Msps while consuming only  
907mW.  
o 170Msps Conversion Rate  
o SNR = 64.3dB, f = 100MHz at 170Msps  
o SFDR = 73dBc, f = 100MHz at 170Msps  
IN  
IN  
o
0.7 LSB INL, 0.25 DNL (typ)  
o 907mW Power Dissipation at 170Msps  
o On-Chip Selectable Divide-by-2 Clock Input  
o Parallel or Demux Parallel Digital CMOS Outputs  
o Reset Option for Synchronizing Multiple ADCs  
o Data Clock Output  
o Offset Binary or Two’s-Complement Output  
o Evaluation Kit Available (MAX19542EVKIT)  
At 170Msps and an input frequency of 240MHz, the  
MAX19542 achieves a spurious-free dynamic range  
(SFDR) of 76.4dBc. The MAX19542 features an excel-  
lent signal-to-noise ratio (SNR) of 65dB at 10MHz that  
remains flat (within 3dB) for input tones up to 250MHz.  
This makes the MAX19542 ideal for wideband applica-  
tions such as power-amplifier predistortion in cellular  
base-station transceiver systems.  
The MAX19542 operates in either parallel mode where  
the data outputs appear on a single parallel port at the  
sampling rate, or in demux parallel mode, where the out-  
puts appear on two separate parallel ports at one-half  
the sampling rate. See the Mode of Operation section.  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
The MAX19542 operates on a single 1.8V supply. The  
analog input is differential and can be AC- or DC-cou-  
pled. The ADC also features a selectable on-chip  
divide-by-2 clock circuit that allows clock frequencies  
as high as 340MHz. This helps to reduce the phase  
noise of the input clock source, allowing for higher  
dynamic performance. For best performance, a differ-  
ential LVPECL sampling clock is recommended. The  
digital outputs are CMOS compatible and the data for-  
mat can be selected to be either two’s complement or  
offset binary.  
MAX19542EGK+  
-40°C to +85°C  
68 QFN-EP*  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Pin Configuration  
TOP VIEW  
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52  
A pin-compatible, 12-bit, 125Msps version of the  
MAX19542 is also available. Refer to the MAX19541  
data sheet for more information.  
+
AVCC  
AGND  
REFIO  
REFADJ  
AGND  
AVCC  
AGND  
INP  
1
2
3
4
5
6
7
8
9
51 DA4  
50 DA3  
49 DA2  
48 DA1  
47 DA0  
46 ORB  
45 OGND  
44 OVCC  
43 DCLKP  
42 DCLKN  
41 OVCC  
40 DB11  
39 DB10  
38 DB9  
37 DB8  
36 DB7  
35 DB6  
The MAX19542 is available in a 68-pin QFN with  
exposed pad (EP) and is specified over the extended  
(-40°C to +85°C) temperature range.  
Applications  
INN  
MAX19542  
AGND 10  
AVCC 11  
AVCC 12  
AVCC 13  
AVCC 14  
RESET 15  
DEMUX 16  
CLKDIV 17  
Base-Station Power Amplifier Linearization  
Cable Head-End Receivers  
Wireless and Wired Broadband Communication  
Communications Test Equipment  
Radar and Satellite Subsystems  
EP  
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
NOTE: EXPOSED PAD CONNECTED TO AGND.  
QFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
ABSOLUTE MAXIMUM RATINGS  
AV  
to AGND ......................................................-0.3V to +2.1V  
to OGND .....................................................-0.3V to +2.1V  
ESD on All Pins (Human Body Model)............................. 2000V  
CC  
OV  
Continuous Power Dissipation (T = +70°C)  
CC  
A
AV  
to OV .......................................................-0.3V to +2.1V  
68-Pin QFN (derate 41.7mW/°C above +70°C) ........ 3333mW  
Operating Temperature Range ..........................-40°C to +85°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range ............................-60°C to +150°C  
Lead Temperature (soldering, 10s) ................................+300°C  
Soldering Temperature (reflow) ......................................+260°C  
CC  
CC  
AGND to OGND ....................................................-0.3V to +0.3V  
Analog Inputs (INP, INN) to AGND..........-0.3V to (AV  
All Digital Inputs to AGND........................-0.3V to (AV  
REFIO, REFADJ to AGND........................-0.3V to (AV  
All Digital Outputs to OGND....................-0.3V to (OV  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
CC  
CC  
Maximum Current into Any Pin ....................................... 50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
MAX19542  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= 1.8V, V  
= V  
= 0V, f  
OGND  
= 170MHz, DEMUX = 0, differential LVPECL clock input drive, 0.1µF capac-  
SAMPLE  
AGND  
AVCC  
OVCC  
itor on REFIO, internal reference, T = T  
guaranteed by design and characterization. Typical values are at T = +25°C.)  
to T  
, unless otherwise noted. T +25°C guaranteed by production test, T < +25°C  
A
MIN  
MAX A A  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
12  
-2.5  
-0.75  
-3  
Bits  
LSB  
Integral Nonlinearity  
INL  
f
f
= 10MHz (Note 1)  
0.7  
+2.5  
+0.75  
+3  
IN  
Differential Nonlinearity  
Transfer Curve Offset  
Offset Temperature Drift  
ANALOG INPUTS (INP, INN)  
Full-Scale Input Voltage Range  
DNL  
= 10MHz, no missing codes (Note 1)  
0.25  
LSB  
IN  
V
(Note 1)  
mV  
OS  
40  
mV/°C  
V
(Note 1)  
1300  
1410  
130  
1510  
mV  
P-P  
FS  
Full-Scale Range Temperature  
Drift  
ppm/°C  
V
1.365  
0.15  
Common-Mode Input Range  
V
CM  
Input Capacitance  
C
3
pF  
k  
IN  
Differential Input Resistance  
Full-Power Analog Bandwidth  
REFERENCE (REFIO, REFADJ)  
Reference Output Voltage  
Reference Temperature Drift  
R
3.00  
1.22  
4.3  
900  
6.25  
1.27  
IN  
FPBW  
MHz  
V
1.245  
90  
V
REFIO  
ppm/°C  
V
AVCC  
- 0.3  
REFADJ Input High Voltage  
V
Used to disable the internal reference  
V
REFADJ  
SAMPLING CHARACTERISTICS  
Maximum Sampling Rate  
Minimum Sampling Rate  
Clock Duty Cycle  
f
f
170  
MHz  
MHz  
%
SAMPLE  
20  
40 to 60  
620  
SAMPLE  
Set by clock-management circuit  
Figure 4  
Aperture Delay  
t
ps  
AD  
Aperture Jitter  
t
AJ  
0.2  
ps  
RMS  
2
_______________________________________________________________________________________  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
MAX19542  
ELECTRICAL CHARACTERISTICS (continued)  
= 170MHz, DEMUX = 0, differential LVPECL clock input drive, 0.1µF capac-  
SAMPLE  
(V  
= V  
= 1.8V, V  
= V  
A
= 0V, f  
OGND  
AGND  
AVCC  
OVCC  
itor on REFIO, internal reference, T = T  
guaranteed by design and characterization. Typical values are at T = +25°C.)  
to T  
, unless otherwise noted. T +25°C guaranteed by production test, T < +25°C  
MIN  
MAX  
A
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CLOCK INPUTS (CLKP, CLKN)  
Differential Clock Input  
Amplitude  
(Note 2)  
200  
500  
mV  
P-P  
Clock Input Common-Mode  
Voltage Range  
1.15  
0.25  
V
Clock Differential Input  
Resistance  
11  
25%  
R
C
kΩ  
CLK  
Clock Differential Input  
Capacitance  
5
pF  
CLK  
DYNAMIC CHARACTERISTICS (at -2dBFS)  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= 10MHz  
62.3  
62.3  
65  
64.3  
63.5  
63.3  
64.8  
63.6  
62.6  
63  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 100MHz  
= 180MHz  
= 240MHz  
= 10MHz  
Signal-to-Noise Ratio  
SNR  
SINAD  
SFDR  
dB  
dB  
61.9  
61.7  
= 100MHz  
= 180MHz  
= 240MHz  
= 10MHz  
Signal-to-Noise and Distortion  
Spurious-Free Dynamic Range  
68.3  
68.3  
82  
= 100MHz  
= 180MHz  
= 240MHz  
= 10MHz  
73  
dBc  
72.4  
76.4  
-85  
-69.1  
-68.7  
= 100MHz  
= 180MHz  
= 240MHz  
-73  
Worst Harmonics  
(HD2 or HD3)  
dBc  
dBc  
-72.4  
-76.4  
Two-Tone Intermodulation  
Distortion  
f
f
= 207.5MHz at -7dBFS,  
= 211.5MHz at -7dBFS, f  
IN1  
IN2  
IMD  
-69  
100  
= 170MHz  
SAMPLE  
CMOS DIGITAL OUTPUTS (DA0–DA11, DB0–DB11, ORA, ORB)  
V
- 0.1  
OVCC  
Logic-High Output Voltage  
V
V
V
OH  
Logic-Low Output Voltage  
V
0.1  
OL  
LVCMOS DIGITAL INPUTS (CLKDIV, T/B, DEMUX, ITL)  
0.2 x  
Digital Input-Voltage Low  
Digital Input-Voltage High  
V
V
V
IL  
V
AVCC  
0.8 x  
V
IH  
V
AVCC  
_______________________________________________________________________________________  
3
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
ELECTRICAL CHARACTERISTICS (continued)  
= 170MHz, DEMUX = 0, differential LVPECL clock input drive, 0.1µF capac-  
SAMPLE  
(V  
= V  
= 1.8V, V  
= V  
A
= 0V, f  
OGND  
AGND  
AVCC  
OVCC  
itor on REFIO, internal reference, T = T  
guaranteed by design and characterization. Typical values are at T = +25°C.)  
to T  
, unless otherwise noted. T +25°C guaranteed by production test, T < +25°C  
MIN  
MAX A A  
A
PARAMETER  
Input Resistance  
SYMBOL  
CONDITIONS  
MIN  
TYP  
46.5  
5
MAX  
UNITS  
kΩ  
R
IN  
C
IN  
Input Capacitance  
pF  
TIMING CHARACTERISTICS  
MAX19542  
CLKP-to DA0–DA11 Propagation  
Delay  
t
Figures 5, 6, and 7  
2.5  
2.1  
ns  
ns  
ns  
PDL  
CLKP-to-DCLKP Propagation  
Delay  
t
Figures 5, 6, and 7  
CPDL  
DCLKP Rising Edge to  
DA0–DA11  
t
t
-
PDL  
Figures 5, 6, and 7 (Note 2)  
180  
400  
710  
CPDL  
CMOS Output Rise Time  
CMOS Output Fall Time  
RESET Hold  
t
20% to 80%, C = 5pF  
1
ns  
ns  
ps  
ps  
RISE  
L
t
20% to 80%, C = 5pF  
L
1
FALL  
t
Figure 4  
Figure 4  
100  
500  
HR  
RESET Setup  
t
SR  
Clock  
cycles  
Output Data Pipeline Delay  
t
Figure 4  
11  
LATENCY  
POWER REQUIREMENTS  
Analog Supply Voltage Range  
Digital Supply Voltage Range  
Analog Supply Current  
AVCC  
OVCC  
1.7  
1.7  
1.8  
1.8  
480  
24  
1.9  
1.9  
520  
31  
V
V
I
f
f
f
= 100MHz  
= 100MHz  
= 100MHz  
mA  
AVCC  
IN  
IN  
IN  
Digital Supply Current  
I
mA  
OVCC  
Analog Power Dissipation  
P
907  
1.8  
1.5  
992  
mW  
mV/V  
%FS/V  
DISS  
Offset (Note 3)  
Gain (Note 3)  
Power-Supply Rejection Ratio  
PSRR  
Note 1: Static linearity and offset parameters are computed from a straight line drawn between the end points of the code transition  
transfer function. The full-scale range (FSR) is defined as 4096 x slope of the line.  
Note 2: Parameter guaranteed by design and characterization; T = T  
to T  
.
A
MIN  
MAX  
Note 3: PSRR is measured with both analog and digital supplies connected to the same potential.  
4
_______________________________________________________________________________________  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
MAX19542  
Typical Operating Characteristics  
(V  
= V  
= 1.8V, V  
= V  
= 0V, f  
OGND  
= 170MHz, A = -1dBFS; see TOCs for detailed information on test condi-  
SAMPLE IN  
AGND  
AVCC  
OVCC  
tions, differential input drive, differential LVPECL clock input drive, 0.1µF capacitor on REFIO, internal reference, digital outputs dif-  
ferential R = 100, T = +25°C.)  
L
A
FFT PLOT  
(16,384-POINT DATA RECORD)  
FFT PLOT  
(16,384-POINT DATA RECORD)  
FFT PLOT  
(16,384-POINT DATA RECORD)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
f
A
= 12.9599243MHz  
f
f
A
= 64.9863939MHz  
f
f
A
= 190.186111MHz  
IN  
IN  
IN  
SAMPLE  
= 170.0043234MHz  
= -1.05dBFS  
= 170.0043234MHz  
= 170.0043234MHz  
= -1.03dBFS  
SAMPLE  
IN  
SAMPLE  
= -1.068dBFS  
IN  
IN  
SNR = 65.923dB  
SINAD = 65.822dB  
SFDR = 88.137dBc  
HD2 = -92.278dBc  
HD3 = -88.96dBc  
SNR = 65.921dB  
SINAD = 65dB  
SFDR = 74.007dBc  
HD2 = -82.197dBc  
HD3 = -79.515dBc  
SNR = 64.664dB  
SINAD = 63.513dB  
SFDR = 71.34dBc  
HD2 = -77.559dBc  
HD3 = -71.34dBc  
7
3
3
7
2
2
6
5
2
4
4
3
5
5
4
6
6
7
0
10 20 30 40 50 60 70 80  
ANALOG INPUT FREQUENCY (MHz)  
0
10 20 30 40 50 60 70 80  
ANALOG INPUT FREQUENCY (MHz)  
0
10 20 30 40 50 60 70 80  
ANALOG INPUT FREQUENCY (MHz)  
SFDR vs. ANALOG INPUT FREQUENCY  
= 170.0043MHz, A = -1dBFS)  
FFT PLOT  
(16,384-POINT DATA RECORD)  
SNR/SINAD vs. ANALOG INPUT FREQUENCY  
(f  
(f  
= 170.0043MHz, A = -1dBFS)  
SAMPLE  
IN  
SAMPLE  
IN  
90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
70  
67  
64  
61  
58  
55  
f
f
A
= 241.008937MHz  
IN  
SAMPLE  
IN  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
= 170.0043234MHz  
SNR  
= -1.035dBFS  
SNR = 64.01dB  
SINAD = 63.521dB  
SFDR = 74.963dBc  
HD2 = -74.963dBc  
HD3 = -82.606dBc  
SINAD  
2
4
3
5
7
6
0
25 50 75 100 125 150 175 200 225 250  
(MHz)  
0
10 20 30 40 50 60 70 80  
ANALOG INPUT FREQUENCY (MHz)  
0
25 50 75 100 125 150 175 200 225 250  
(MHz)  
f
f
IN  
IN  
HD2/HD3 vs. ANALOG INPUT FREQUENCY  
THD vs. ANALOG INPUT FREQUENCY  
= 170.0043MHz, A = -1dBFS)  
SNR/SINAD vs. ANALOG INPUT AMPLITUDE  
(f  
= 170.0043MHz, A = -1dBFS)  
(f  
(f  
= 170.0043MHz, f = 64.9864MHz)  
SAMPLE  
IN  
SAMPLE  
IN  
SAMPLE  
IN  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
-115  
-120  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
68  
SNR  
62  
56  
50  
44  
38  
32  
HD3  
SINAD  
HD2  
0
25 50 75 100 125 150 175 200 225 250  
(MHz)  
0
25 50 75 100 125 150 175 200 225 250  
(MHz)  
-30  
-25  
-20  
-15  
-10  
-5  
0
f
f
IN  
A
(dBFS)  
IN  
IN  
_______________________________________________________________________________________  
5
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
Typical Operating Characteristics (continued)  
(V  
= V  
= 1.8V, V  
= V  
= 0V, f  
OGND  
= 170MHz, A = -1dBFS; see TOCs for detailed information on test condi-  
SAMPLE IN  
AGND  
AVCC  
OVCC  
tions, differential input drive, differential LVPECL clock input drive, 0.1µF capacitor on REFIO, internal reference, digital outputs dif-  
ferential R = 100, T = +25°C.)  
L
A
HD2/HD3 vs. ANALOG INPUT AMPLITUDE  
SFDR vs. ANALOG INPUT AMPLITUDE  
= 170.0043MHz, f = 64.9864MHz)  
THD vs. ANALOG INPUT AMPLITUDE  
= 170.0043MHz, f = 64.9864MHz)  
(f  
-50  
= 170.0043MHz, f = 64.9864MHz)  
(f  
90  
SAMPLE  
IN  
(f  
-50  
SAMPLE  
IN  
SAMPLE  
IN  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
HD2  
-60  
-70  
-60  
-70  
MAX19542  
-80  
-90  
-80  
HD3  
-100  
-110  
-120  
-90  
-100  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
A
(dBFS)  
A
(dBFS)  
IN  
A
(dBFS)  
IN  
IN  
HD2/HD3 vs. f  
(f = 65.0165MHz, A = -1dBFS)  
SNR/SINAD vs. f  
(f = 65.0165MHz, A = -1dBFS)  
SFDR vs. f  
(f = 65.0165MHz, A = -1dBFS)  
SAMPLE  
IN  
SAMPLE  
IN  
SAMPLE  
IN  
IN  
IN  
IN  
-50  
-55  
68  
67  
66  
65  
64  
63  
62  
61  
60  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SNR  
-60  
HD3  
-65  
-70  
-75  
-80  
-85  
SINAD  
-90  
-95  
HD2  
-100  
-105  
-110  
20 40 60 80 100 120 140 160 180 200  
(MHz)  
20 40 60 80 100 120 140 160 180 200  
20 40 60 80 100 120 140 160 180 200  
(MHz)  
f
f
(MHz)  
f
SAMPLE  
SAMPLE  
SAMPLE  
TWO-TONE IMD  
(16,384-POINT DATA RECORD)  
INL vs. DIGITAL OUTPUT CODE  
(512k-POINT DATA RECORD)  
THD vs. f  
(f = 65.0165MHz, A = -1dBFS)  
SAMPLE  
IN  
IN  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
1.0  
0.8  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
f
f
f
= 207.4936801MHz  
= 211.5611664MHz  
= 170.00432MHz  
IN1  
IN2  
f = 13.008646MHz  
IN  
SAMPLE  
0.6  
A
= A = -7dBFS  
IN2  
IN1  
IMD = -69dBc  
0.4  
f
f
0.2  
IN1  
IN2  
0
2f - f  
IN2 IN1  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2f - f  
IN1 IN2  
20 40 60 80 100 120 140 160 180 200  
(MHz)  
0
10 20 30 40 50 60 70 80  
ANALOG INPUT FREQUENCY (MHz)  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
f
SAMPLE  
6
_______________________________________________________________________________________  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
MAX19542  
Typical Operating Characteristics (continued)  
(V  
= V  
= 1.8V, V  
= V  
= 0V, f  
OGND  
= 170MHz, A = -1dBFS; see TOCs for detailed information on test condi-  
SAMPLE IN  
AGND  
AVCC  
OVCC  
tions, differential input drive, differential LVPECL clock input drive, 0.1µF capacitor on REFIO, internal reference, digital outputs dif-  
ferential R = 100, T = +25°C.)  
L
A
DNL vs. DIGITAL OUTPUT CODE  
(512k-POINT DATA RECORD)  
SNR/SINAD vs. TEMPERATURE  
= 170MHz, A = -2dBFS)  
GAIN BANDWIDTH PLOT  
(f  
(f  
= 170.0043MHz, A = -1dBFS)  
SAMPLE  
IN  
SAMPLE  
IN  
1.0  
0.8  
67  
66  
65  
64  
63  
62  
61  
1
0
f
= 13.008646MHz  
IN  
f
= 100MHz  
IN  
0.6  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
SNR  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
SINAD  
10  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
-40  
-15  
35  
60  
85  
10  
100  
ANALOG INPUT FREQUENCY (MHz)  
1000  
TEMPERATURE (°C)  
FULL-SCALE ADJUSTMENT RANGE  
vs. FULL-SCALE ADJUSTMENT RESISTANCE  
1.34  
SFDR vs. TEMPERATURE  
TOTAL POWER DISSIPATION vs. f  
SAMPLE  
(f  
= 170MHz, A = -2dBFS)  
SAMPLE  
IN  
(f = 65.0165MHz, A = -1dBFS)  
IN  
IN  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
1.000  
0.975  
0.950  
0.925  
0.900  
0.875  
0.850  
0.825  
0.800  
f
= 100MHz  
IN  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
R
BETWEEN REFADJ AND REFIO  
BETWEEN REFADJ AND GND  
ADJ  
R
ADJ  
0
200  
400  
R
600  
(k)  
800  
1000  
-40  
-15  
10  
35  
60  
85  
20 40 60 80 100 120 140 160 180  
(MHz)  
TEMPERATURE (°C)  
ADJ  
f
SAMPLE  
SNR/SINAD vs. SUPPLY VOLTAGE  
(f = 64.9864MHz, A = -1dBFS)  
INTERNAL REFERENCE  
vs. SUPPLY VOLTAGE  
IN  
IN  
68  
66  
64  
62  
60  
58  
1.250  
1.249  
1.248  
1.247  
1.246  
1.245  
1.244  
AVCC = OVCC  
SNR  
SINAD  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
7
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 6, 11–14,  
20, 25, 62,  
63, 65  
Analog Supply Voltage. Bypass each AVCC pin with a 0.1µF capacitor for best decoupling results.  
Additional board decoupling might be required. See the Grounding, Bypassing, and Layout  
Considerations section.  
AVCC  
2, 5, 7, 10,  
18, 19, 21,  
24, 64, 66  
AGND  
REFIO  
Analog Converter Ground. Connect the converter’s exposed pad (EP) to AGND.  
MAX19542  
Reference Input/Output. Drive REFADJ high to allow an external reference source to be connected to  
the MAX19542. Drive REFADJ low to activate the internal 1.23V bandgap reference. Connect a 0.1µF  
capacitor from REFIO to AGND.  
3
4
Reference Adjust Input. REFADJ allows for full-scale range adjustments by placing a resistor or trim  
potentiometer between REFADJ and AGND (decreases FS range) or REFADJ and REFIO (increases  
FS range). If REFADJ is connected to AVCC, the internal reference can be overdriven with an external  
source connected to REFIO. If REFADJ is connected to AGND, the internal reference is used to  
determine the full-scale range of the data converter.  
REFADJ  
8
9
INP  
INN  
Positive Analog Input Terminal  
Negative Analog Input Terminal  
Active-High RESET Input. RESET controls the latency of the MAX19542. RESET has an internal  
pulldown resistor. See the Reset Operation section.  
15  
RESET  
Output-Mode-Select Input. Drive DEMUX low for the parallel output mode (full-rate CMOS outputs on  
A ports only). Drive DEMUX high for the demux parallel or demux interleaved modes (half-rate outputs  
on both ports A and B) depending on the state of the ITL input. See the Modes of Operation section.  
16  
DEMUX  
Clock-Divider Input. CLKDIV is an LVCMOS-compatible input that controls the sampling frequency  
relative to the input clock frequency. CLKDIV has an internal pulldown resistor:  
CLKDIV = 0: sampling frequency is 1/2 the input clock frequency.  
17  
22  
CLKDIV  
CLKN  
CLKDIV = 1: sampling frequency is equal to the input clock frequency.  
Complementary Clock Input. CLKN ideally requires an LVPECL-compatible input level to maintain the  
converter’s excellent performance.  
True Clock Input. CLKP ideally requires an LVPECL-compatible input level to maintain the converter’s  
excellent performance.  
23  
CLKP  
OGND  
OVCC  
26, 45, 61  
Digital Converter Ground. Ground connection for digital circuitry and output drivers.  
27, 28, 41,  
44, 60  
Digital Supply Voltage. Bypass OVCC with a 0.1µF capacitor for best decoupling results. Additional board  
decoupling might be required. See the Grounding, Bypassing, and Layout Considerations section.  
29  
30  
31  
32  
33  
34  
35  
36  
37  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
Port B CMOS Digital Output Bit 0 (LSB)  
Port B CMOS Digital Output Bit 1  
Port B CMOS Digital Output Bit 2  
Port B CMOS Digital Output Bit 3  
Port B CMOS Digital Output Bit 4  
Port B CMOS Digital Output Bit 5  
Port B CMOS Digital Output Bit 6  
Port B CMOS Digital Output Bit 7  
Port B CMOS Digital Output Bit 8  
8
_______________________________________________________________________________________  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
MAX19542  
Pin Description (continued)  
PIN  
38  
NAME  
DB9  
FUNCTION  
Port B CMOS Digital Output Bit 9  
39  
DB10  
DB11  
Port B CMOS Digital Output Bit 10  
40  
Port B CMOS Digital Output Bit 11 (MSB)  
Inverted CMOS Digital Clock Output. DCLKN provides a CMOS-compatible output level and can be  
used to synchronize external devices to the converter clock. When DEMUX is high, the frequency at  
DCLKN is half the sampling clock’s frequency.  
42  
43  
DCLKN  
DCLKP  
True CMOS Digital Clock Output. DCLKP provides a CMOS-compatible output level and can be used  
to synchronize external devices to the converter clock. When DEMUX is high, the frequency at DCLKP is  
half the sampling clock’s frequency.  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
ORB  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DA8  
DA9  
DA10  
DA11  
ORA  
Port B CMOS Digital Output Overrange  
Port A CMOS Digital Output Bit 0 (LSB)  
Port A CMOS Digital Output Bit 1  
Port A CMOS Digital Output Bit 2  
Port A CMOS Digital Output Bit 3  
Port A CMOS Digital Output Bit 4  
Port A CMOS Digital Output Bit 5  
Port A CMOS Digital Output Bit 6  
Port A CMOS Digital Output Bit 7  
Port A CMOS Digital Output Bit 8  
Port A CMOS Digital Output Bit 9  
Port A CMOS Digital Output Bit 10  
Port A CMOS Digital Output Bit 11 (MSB)  
Port A CMOS Digital Output Overrange  
Interleaved/Parallel-Select Input. Drive ITL low for the demux parallel mode. Drive ITL high for the demux  
interleaved mode.  
67  
68  
ITL  
T/B  
EP  
Output-Format-Select Input. T/B is an LVCMOS-compatible input that controls the digital output format  
of the MAX19542. T/B has an internal pulldown resistor:  
T/B = 1: binary output format.  
T/B = 0: two’s-complement output format.  
Exposed Pad. Connect EP to analog ground (AGND) for optimum performance. The exposed pad is  
located on the backside of the chip. EP is internally connected to the die substrate.  
_______________________________________________________________________________________  
9
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
ADC following the first T/H stage then digitizes the sig-  
Detailed Description—  
Theory of Operation  
The MAX19542 uses a fully differential, pipelined archi-  
tecture that allows for high-speed conversion, opti-  
mized accuracy and linearity, while minimizing power  
consumption. Both positive (INP) and negative/comple-  
mentary analog input terminals (INN) are centered  
around a 1.365V common-mode voltage, and accept a  
350mV differential analog input voltage swing each,  
nal, and controls a digital-to-analog converter (DAC).  
Digitized and reference signals are then subtracted,  
resulting in a fractional residue signal that is amplified  
before it is passed on to the next stage through another  
T/H amplifier. This process is repeated until the applied  
input signal has successfully passed through all stages  
of the 12-bit quantizer. Finally, the digital outputs of all  
stages are combined and corrected for in the digital  
correction logic to generate the final output code. The  
result is a 12-bit parallel digital output word in user-  
selectable two’s complement or binary output formats  
with CMOS-compatible output levels. See the functional  
diagram (Figure 1) for a more detailed view of the  
MAX19542’s architecture.  
MAX19542  
resulting in a 1.41V  
signal swing.  
typical differential full-scale  
P-P  
Inputs INP and INN are buffered prior to entering each  
track-and-hold (T/H) stage and are sampled when the  
differential sampling clock signal transitions high. The  
CLKDIV  
RESET  
CLKP  
CLOCK-  
DIVIDER  
CONTROL  
CLOCK  
MANAGEMENT  
DEMUX  
ITL  
CLKN  
INP  
12 BITS  
BUFFER  
CMOS  
DATA  
PORTS  
12-BIT PIPELINE  
QUANTIZER  
CORE  
DA0–DA11, ORA  
DB0–DB11, ORB  
T/H  
INN  
12 BITS  
2.15k  
2.15kΩ  
CM  
BUFFER  
DCLKP  
DCLKN  
CLK  
GENERATOR  
REFERENCE  
MAX19542  
REFIO REFADJ  
Figure 1. MAX19542 Functional Diagram  
10 ______________________________________________________________________________________  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
MAX19542  
ADC FULL SCALE = REFT - REFB  
REFERENCE-  
SCALING  
AMPLIFIER  
REFT  
REFB  
G
AVCC  
REFERENCE  
BUFFER  
REFIO  
1V  
INP  
INN  
0.1µF  
MAX19542  
2.15kΩ  
2.15kΩ  
REFADJ*  
CONTROL LINE  
TO DISABLE  
REFERENCE BUFFER  
TO COMMON-MODE  
INPUT  
TO COMMON-MODE  
INPUT  
AGND  
AVCC  
AVCC/2  
*REFADJ CAN BE SHORTED TO AGND THROUGH A 1kΩ  
RESISTOR OR POTENTIOMETER.  
Figure 2. Simplified Analog Input Architecture  
Figure 3. Simplified Reference Architecture  
Analog Inputs (INP, INN)  
INP and INN are the fully differential inputs of the  
MAX19542. Differential inputs usually feature good  
rejection of even-order harmonics, which allows for  
enhanced AC performance as the signals are pro-  
gressing through the analog stages. The MAX19542  
analog inputs are self-biased at a 1.365V common-  
Clock Inputs (CLKP, CLKN)  
Drive the clock inputs of the MAX19542 differentially  
with an LVPECL-compatible clock to achieve the best  
dynamic performance. The clock signal source must be  
high-quality, low phase noise to avoid any degradation  
in the noise performance of the ADC. The clock inputs  
(CLKP, CLKN) are internally biased to typically 1.15V,  
mode voltage and allow a 1.41V  
differential input  
accept a typical 0.5V  
differential signal swing, and  
P-P  
P-P  
voltage swing. Both inputs are self-biased through  
2.15kresistors, resulting in a typical differential input  
resistance of 4.3k(Figure 2). It is recommended dri-  
ving the analog inputs of the MAX19542 in an AC-cou-  
pled configuration to achieve the best dynamic  
performance. See the Transformer-Coupled, Differential  
Analog Input Drive section for a detailed discussion of  
this configuration.  
are usually driven in an AC-coupled configuration. See  
the Differential, AC-Coupled Clock Input section for  
more circuit details on how to drive CLKP and CLKN  
appropriately.  
The MAX19542 features an internal clock-management  
circuit (duty-cycle equalizer). The clock-management  
circuit ensures that the clock signal applied to inputs  
CLKP and CLKN is processed to provide a near 50%  
duty-cycle clock signal. This desensitizes the perfor-  
mance of the converter to variations in the duty cycle of  
the input clock source. Note that the clock duty-cycle  
equalizer cannot be turned off externally.  
On-Chip Reference Circuit  
The MAX19542 features an internal 1.24V bandgap ref-  
erence circuit (Figure 3), which, in combination with an  
internal reference-scaling amplifier, determine the full-  
scale range of the MAX19542. Bypass REFIO with a  
0.1µF capacitor to AGND. To compensate for gain errors  
or increase the ADC’s full-scale range, the voltage of this  
bandgap reference can be indirectly adjusted by adding  
an external resistor (e.g., 100ktrim potentiometer)  
between REFADJ and AGND or REFADJ and REFIO.  
See Figure 7 and the Applications Information section for  
a detailed description of this process.  
Clock Outputs (DCLKP, DCLKN)  
The MAX19542 features CMOS-complementary clock  
outputs (DCLKP, DCLKN) to latch the digital output  
data with an external latch or receiver. Additionally, the  
clock outputs can be used to synchronize external  
devices (e.g., FPGAs) to the ADC. There is a 2.1ns  
delay time between the rising (falling) edge of CLKP  
(CLKN) and the rising (falling) edge of DCLKP  
(DCLKN). See Figure 4 for timing details.  
______________________________________________________________________________________ 11  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
Divide-by-Two Clock Control (CLKDIV)  
RESET Operation  
The MAX19542 offers a clock control line (CLKDIV) that  
allows the reduction of clock jitter and phase noise in a  
system as higher frequency oscillators usually exhibit  
better phase noise and jitter characteristics. Connect  
CLKDIV to OGND to enable the ADC’s internal divide-  
by-2 clock divider, which allows the user to use an  
oscillator of twice the maximum sampling frequency.  
The sampling frequency now becomes 1/2 of the input  
clock frequency. CLKDIV has an internal pulldown  
resistor and can be left open for applications that  
require this divide-by-2 mode. Connecting CLKDIV to  
The RESET input defines the pipeline latency of the  
MAX19542. Drive RESET high to place the MAX19542  
in reset mode with the CMOS outputs tri-stated. During  
the time when RESET is high, no sample information is  
available at the outputs. For pipeline latency, the first  
sample is defined at the first rising edge of CLKP after  
RESET goes low. The conversion information is avail-  
able at the outputs after 11 clock cycles. Synchronize  
RESET with the input clock of the device by observing  
MAX19542  
the minimum RESET hold (t ) and RESET setup (t  
)
HR  
SR  
times (Figure 4). RESET is only used to control the  
latency of the device and, in applications where this is  
not critical, drive RESET low or leave unconnected.  
RESET has an internal pulldown resistor.  
OV  
disables the divide-by-2 mode.  
CC  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
INN  
INP  
t
AD  
CLKN  
N
N + 1  
N + 11  
N + 12  
CLKP  
t
t
CL  
CH  
t
SR  
RESET  
t
HR  
Figure 4. RESET Timing Diagram  
12 ______________________________________________________________________________________  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
MAX19542  
Parallel Mode  
Drive DEMUX low to place the MAX19542 in the parallel  
mode. In this mode, the output clock has the same fre-  
quency as the sampling frequency and conversion  
data is output at full rate on parallel ports DA0–DA11.  
Note that the sampling frequency may not be the same  
as the input clock frequency. See the Divide-by-Two  
Clock Control (CLKDIV) section. In parallel mode, sam-  
ples are taken on the rising edge of CLKP. Conversion  
data appears at the outputs on the rising edge of  
DCLKP after the latency period of 11 clock cycles and  
is stable for one clock period (Figure 5). If an overrange  
condition occurs, it is reflected on the ORA port.  
System Timing Requirements  
Figures 5, 6, and 7 depict the relationship between the  
clock input and output, analog input, sampling event,  
and data output. The MAX19542 samples on the rising  
(falling) edge of CLKP (CLKN). In all these figures,  
CLKDIV is assumed to be high; otherwise, the sampling  
events would occur at every other rising edge of CLKP.  
Output data is latched on the next rising (falling) edge  
of the DCLKP (DCLKN) clock, but has an internal laten-  
cy of 11 input clock cycles.  
Modes of Operation  
The MAX19542 features three modes of operation. In  
each mode of operation, the conversion data is output  
in a different format.  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
INN  
INP  
t
AD  
CLKN  
N
N + 1  
N + 11  
N + 12  
CLKP  
t
t
CL  
CH  
RESET  
t
CPDL  
DCLKN  
DCLKP  
N - 11  
N - 10  
N
N + 1  
t
LATENCY  
t
PDL  
N - 11  
N - 10  
N - 1  
N
N + 1  
DA0–DA11, ORA  
Figure 5. Parallel Mode Timing Diagram  
______________________________________________________________________________________ 13  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
Demux Parallel Mode  
Drive DEMUX high and ITL low to place the MAX19542  
in the demux parallel mode. In this mode, the output  
clock’s frequency is 1/2 the sampling frequency. The  
sampling frequency may not be the same as the input  
clock frequency. See the Divide-by-Two Clock Control  
(CLKDIV) section. Each conversion starts with a sam-  
pling event on the rising edge of CLKP. Conversion  
data now appears on both DA0–DA11 and DB0–DB11.  
The first conversion result is output on the A ports on  
the rising edge of DCLKP after 12 input clock cycles  
from the initial sampling event. The second conversion  
result is output on the B ports on the rising edge of  
DCLKP after 11 input clock cycles from the initial sam-  
pling event. Both conversion results are output simulta-  
neously (Figure 6). The conversion results on ports A  
and B remain stable for one period of DCLKP after they  
become valid. Thus, the overall throughput rate is the  
same as in parallel mode; however, now each data line  
is allowed to be valid for a longer time (two sampling  
periods, one digital clock period). Overrange condi-  
tions are reflected on the appropriate output port, ORA  
or ORB, depending on which conversion they occur.  
The demux interleaved mode is the recommended  
demux mode of operation due to the fact that output  
bus switching is more evenly distributed over sample  
clock edges.  
MAX19542  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
INN  
INP  
t
AD  
CLKN  
N
N + 12  
t
CLKP  
t
t
CL  
CPDL  
CH  
RESET  
DCLKP  
DCLKN  
N
N + 2  
t
LATENCY  
t
PDL  
DA0–DA11, ORA  
DB0–DB11, ORB  
N
N + 2  
N + 3  
N + 1  
DEMUX PARALLEL MODE  
Figure 6. Demux Parallel Mode Timing Diagram  
14 ______________________________________________________________________________________  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
MAX19542  
Demux Interleaved Mode  
Drive DEMUX high and ITL high to place the  
MAX19542 in the demux interleaved mode of operation.  
In this mode, the output clock’s frequency is 1/2 the  
sampling frequency. The sampling frequency may not  
be the same as the input clock frequency. See the  
Divide-by-Two Clock Control (CLKDIV) section. Each  
conversion starts with a sampling event on the rising  
edge of CLKP. Conversion data now appears on both  
DA0–DA11 and DB0–DB11. The first conversion result  
is output on the A ports on the rising edge of DCLKP  
after 12 input clock cycles from the initial sampling  
event. The second conversion result is output on the B  
ports on the rising edge of DCLKN after 12 input clock  
cycles from the initial sampling event. In this way, the two  
conversion results are interleaved with respect to each  
other (Figure 7). The conversion results on ports A and B  
remain stable for one period of DCLKP and DCLKN,  
respectively, after they become valid. Overrange condi-  
tions are reflected on the appropriate output port, ORA  
or ORB, depending on which conversion they occur.  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
INN  
INP  
t
AD  
CLKN  
N
N + 12  
t
CLKP  
t
t
CL  
CPDL  
CH  
RESET  
DCLKP  
DCLKN  
N
N + 2  
t
LATENCY  
t
PDL  
DA0–DA11, ORA  
DB0–DB11, ORB  
N
N + 2  
N + 1  
N + 3  
DEMUX INTERLEAVED MODE  
Figure 7. Demux Interleaved Mode Timing Diagram  
______________________________________________________________________________________ 15  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
The MAX19542 offers an additional differential output  
Digital Outputs  
(DA0–DA11, DCLKP, DCLKN, ORA,  
pair (ORA, ORB) to flag overrange conditions, where  
overrange is above positive or below negative full scale.  
An overrange condition is identified with ORA/ORB tran-  
sitioning high.  
DB0–DB11, ORB) and Control Input T/B  
Digital outputs DA0/DB0–DA11/DB11, DCLKP, DCLKN,  
ORA/ORB are CMOS compatible, and data on DA0/DB  
DA11/DB11 are presented in either binary or two’s-  
complement format (Table 1). The T/B control line is an  
LVCMOS-compatible input that allows the user to select  
the desired output format. Drive T/B high to select data  
to be output in offset binary format and drive it low to  
select data to be output in two’s complement format on  
the 12-bit parallel bus. T/B has an internal pulldown  
resistor and can be left unconnected in applications  
using only two’s-complement output format. The CMOS  
outputs are powered from a separate power supply that  
can be operated between 1.7V and 1.9V.  
Note: Keep the capacitive load on the digital outputs as  
low as possible. Use digital buffers on the digital out-  
puts of the ADC when driving larger loads to improve  
overall performance and reduce system timing con-  
straints. Further improvements in dynamic performance  
can be achieved by adding small series resistors  
(100) to the digital output paths, close to the ADC.  
MAX19542  
Table 1. MAX19542 Digital Output Coding  
BINARY  
DIGITAL OUTPUT CODE  
(D_11–D_0)  
TWO’S-COMPLEMENT  
DIGITAL OUTPUT CODE  
(D_11–D_0)  
INP ANALOG INPUT  
VOLTAGE LEVEL  
INN ANALOG INPUT  
VOLTAGE LEVEL  
OVERRANGE  
ORA/ORB  
1111 1111 1111  
(exceeds +FS, OR set)  
0111 1111 1111  
(exceeds +FS, OR set)  
> V  
+ 0.35V  
< V  
- 0.35V  
REF  
1
0
REF  
1111 1111 1111  
(+FS)  
0111 1111 1111  
(+FS)  
V
+ 0.35V  
V
- 0.35V  
REF  
REF  
V
1000 0000 0000 or  
0111 1111 1111  
(FS/2)  
0000 0000 0000 or  
1111 1111 1111  
(FS/2)  
V
0
REF  
REF  
0000 0000 0000  
(-FS)  
1000 0000 0000  
(-FS)  
V
- 0.35V  
V
+ 0.35V  
0
1
REF  
REF  
00 0000 0000  
(exceeds -FS, OR set)  
10 0000 0000  
(exceeds -FS, OR set)  
< V  
+ 0.35V  
> V  
- 0.35V  
REF  
REF  
16 ______________________________________________________________________________________  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
MAX19542  
overall full-scale range adjustment of the MAX19542.  
Applications Information  
Full-Scale Range Adjustments Using the  
Internal Bandgap Reference  
Do not use resistor values of less than 13kto avoid  
instability of the internal gain regulation loop for the  
bandgap reference. Use the following formula to calcu-  
late the percentage change of the reference voltage:  
The MAX19542 supports a full-scale adjustment range  
of 10%. To decrease the full-scale range, an external  
resistor value ranging from 13kto 1Mcan be added  
between REFADJ and AGND. A similar approach can  
be taken to increase the ADCs full-scale range. Add a  
variable resistor, potentiometer, or predetermined resis-  
tor value between REFADJ and REFIO to increase the  
full-scale range of the data converter. Figure 8 shows  
the two possible configurations and their impact on the  
100kΩ  
V
REF  
(%) = 1.25% x  
R
ADJ  
The percentage change is positive when R  
is  
ADJ  
added between REFADJ and REFIO, and is negative  
when R is added between REFADJ and GND.  
ADJ  
ADC FULL SCALE = REFT - REFB  
ADC FULL SCALE = REFT-REFB  
REFERENCE-  
SCALING  
AMPLIFIER  
REFERENCE-  
SCALING  
AMPLIFIER  
REFT  
REFB  
REFT  
REFB  
G
G
REFERENCE  
BUFFER  
REFERENCE  
BUFFER  
1V  
REFIO  
1V  
REFIO  
0.1µF  
0.1µF  
13kTO  
100kΩ  
MAX19542  
MAX19542  
REFADJ  
REFADJ  
CONTROL LINE  
TO DISABLE  
REFERENCE BUFFER  
CONTROL LINE  
TO DISABLE  
REFERENCE BUFFER  
13kTO 100kΩ  
AVCC  
AVCC/2  
AVCC  
AVCC/2  
Figure 8. Circuit Suggestions to Adjust the ADC’s Full-Scale Range (Simplified Schematic)  
______________________________________________________________________________________ 17  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
tion to convert a single-ended source signal to a fully  
differential signal, required by the MAX19542 for opti-  
mum dynamic performance.  
Differential, AC-Coupled, LVPECL-  
Compatible Clock Input  
The MAX19542 dynamic performance depends on a  
very clean clock source. The phase noise floor of the  
clock source has a negative impact on the SNR perfor-  
mance. Spurious signals on the clock signal source  
also affect the ADC’s dynamic range. The preferred  
method of clocking the MAX19542 is differentially with  
LVPECL-compatible input levels. The fast data transition  
rates of these logic families minimize the clock-input cir-  
cuitry’s transition uncertainty, thereby improving the SNR  
performance. Apply a 50reverse-terminated clock  
signal source with low phase noise AC-coupled into a  
fast differential receiver such as the MC100LVEL16  
(Figure 9). The receiver produces the necessary  
LVPECL output levels to drive the clock inputs of the  
data converter.  
A secondary-side termination of a 1:1 transformer (e.g.,  
Mini-Circuit’s ADT1-1WT) into two separate 24.9Ω  
0.1% resistors (use tight resistor tolerances to mini-  
mize effects of imbalance; 0.1% would be an ideal  
choice) placed between top/bottom and center tap of  
the transformer is recommended to maximize the  
ADC’s dynamic range. This configuration optimizes  
THD and SFDR performance of the ADC by reducing  
the effects of transformer parasitics. However, the  
source impedance combined with the shunt capaci-  
tance provided by a PC board and the ADC’s parasitic  
capacitance limit the ADC’s full-power input bandwidth  
to approximately 600MHz.  
MAX19542  
To further enhance THD and SFDR performance at high  
input frequencies (>100MHz), a second transformer  
(Figure 10) should be placed in series with the single-  
ended-to-differential conversion transformer. This trans-  
former reduces the increase of even-order harmonics  
at high frequencies.  
Transformer-Coupled,  
Differential Analog Input Drive  
The MAX19542 provides the best SFDR and THD with  
fully differential input signals and it is not recommend-  
ed driving the ADC inputs in single-ended configura-  
tion. In differential input mode, even-order harmonics  
are usually lower since INP and INN are balanced, and  
each of the ADC inputs requires only half the signal  
swing compared to a single-ended configuration.  
Wideband RF transformers provide an excellent solu-  
For more detailed information on transformer termina-  
tion methods, refer to the Application Note: Secondary-  
Side Transformer Termination Improves Gain Flatness  
in High-Speed ADCs from the Maxim website:  
www.maxim-ic.com.  
V
CLK  
0.1µF  
SINGLE-ENDED  
INPUT TERMINAL  
8
0.1µF  
0.1µF  
2
3
7
6
150Ω  
0.1µF  
MC100LVEL16  
AVCC OVCC  
50Ω  
510Ω  
150Ω  
510Ω  
CLKN CLKP  
INP  
INN  
D_0–D_11, OR_  
12  
4
5
0.01µF  
MAX19542  
V
GND  
AGND  
OGND  
Figure 9. Differential, AC-Coupled, LVPECL-Compatible Clock Input Configuration  
18 ______________________________________________________________________________________  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
MAX19542  
AVCC  
OVCC  
10Ω  
SINGLE-ENDED  
INP  
INPUT TERMINAL  
0.1µF  
ADT1-1WT  
ADT1-1WT  
D_0–D_11, OR_  
25Ω  
MAX19542  
25Ω  
12  
INN  
10Ω  
0.1µF  
AGND  
OGND  
Figure 10. Analog Input Configuration with Back-to-Back Transformers and Secondary-Side Termination  
ranges. Although both supply types can be combined  
and supplied from one source, it is recommended  
using separate sources to cut down on performance  
degradation caused by digital switching currents that  
can couple into the analog supply network. Isolate ana-  
log and digital supplies (AVCC and OVCC) where they  
enter the PC board with separate networks of ferrite  
beads and capacitors to their corresponding grounds  
(AGND, OGND).  
AVCC  
OVCC  
SINGLE-ENDED  
INPUT TERMINAL  
0.1µF  
0.1µF  
INP  
INN  
D_0–D_11, OR_  
50Ω  
MAX19542  
12  
To achieve optimum performance, provide each supply  
with a separate network of a 47µF tantalum capacitor in  
parallel with 10µF and 1µF ceramic capacitors.  
Additionally, the ADC requires each supply pin to be  
bypassed with separate 0.1µF ceramic capacitors  
(Figure 12). Locate these capacitors directly at the  
ADC supply pins or as close as possible to the  
MAX19542. Choose surface-mount capacitors, whose  
preferred location should be on the same side as the  
converter, to save space and minimize the inductance.  
If close placement on the same side is not possible,  
these bypassing capacitors may be routed through  
vias to the bottom side of the PC board.  
25Ω  
AGND  
OGND  
Figure 11. Single-Ended AC-Coupled Analog Input Configuration  
Single-Ended, AC-Coupled Analog Input  
Although not recommended, the MAX19542 can be  
used in single-ended mode (Figure 11). Analog signals  
can be AC-coupled to the positive input INP through a  
0.1µF capacitor and terminated with a 49.9resistor to  
AGND. Terminate the negative input with a 24.9resis-  
tor and AC ground it with a 0.1µF capacitor.  
Multilayer boards with separated ground and power  
planes produce the highest level of signal integrity.  
Consider the use of a split ground plane arranged to  
match the physical location of analog and digital  
ground on the ADC’s package. The two ground planes  
should be joined at a single point so the noisy digital  
ground currents do not interfere with the analog ground  
plane. A major concern with this approach are the  
dynamic currents that may need to travel long dis-  
tances before they are recombined at a common  
source ground, resulting in large and undesirable  
Grounding, Bypassing, and Board  
Layout Considerations  
The MAX19542 requires board layout design tech-  
niques suitable for high-speed data converters. This  
ADC provides separate analog and digital power sup-  
plies. The analog and digital supply voltage inputs  
AVCC and OVCC accept 1.7V to 1.9V input voltage  
______________________________________________________________________________________ 19  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
ground loops. Ground loops can add to digital noise by  
coupling back to the analog front end of the converter,  
resulting in increased spur activity and a decreased  
noise performance.  
Take considerable care when routing the digital output  
traces for a high-speed, high-resolution data converter.  
It is essential to keep trace lengths at a minimum and  
place minimal capacitive loading—less than 5pF—on  
any digital trace to prevent coupling to sensitive analog  
sections of the ADC. Route high-speed digital signal  
traces away from sensitive analog traces, and remove  
digital ground and power planes from underneath digital  
outputs. Keep all signal lines short and free of 90° turns.  
Alternatively, all ground pins could share the same  
ground plane if the ground plane is sufficiently isolated  
from any noisy, digital systems ground. To minimize the  
effects of digital noise coupling, ground return vias can  
be positioned throughout the layout to divert digital  
switching currents away from the sensitive analog sec-  
tions of the ADC. This does not require additional  
ground splitting, but can be accomplished by placing  
substantial ground connections between the analog  
front end and the digital outputs.  
Static Parameter Definitions  
MAX19542  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. This straight  
line can be either a best straight-line fit or a line drawn  
between the end points of the transfer function, once  
offset and gain errors have been nullified. However, the  
static linearity parameters for the MAX19542 are mea-  
sured using the histogram method with a 10MHz input  
frequency.  
The MAX19542 is packaged in a 68-pin QFN-EP pack-  
age (package code: G6800-4), providing greater  
design flexibility, increased thermal dissipation, and  
optimized AC performance of the ADC. The EP must be  
soldered down to AGND.  
In this package, the data converter die is attached to  
an EP lead frame with the back of this frame exposed  
at the package bottom surface, facing the PC board  
side of the package. This allows a solid attachment of  
the package to the board with standard infrared (IR)  
flow-soldering techniques.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1 LSB. A DNL  
error specification of less than 1 LSB guarantees no  
missing codes and a monotonic transfer function. The  
MAX19542’s DNL specification is measured with the  
histogram method based on a 10MHz input tone.  
Thermal efficiency is one of the factors for the selection  
of a package with an exposed pad for the MAX19542.  
The exposed pad improves thermal dissipation and  
ensures a solid ground connection between the ADC  
and the PC board’s analog ground layer.  
BYPASSING-ADC LEVEL  
BYPASSING-BOARD LEVEL  
AVCC  
OVCC  
AVCC  
0.1µF  
0.1µF  
ANALOG POWER-  
SUPPLY SOURCE  
10µF  
47µF  
1µF  
D_0–D_11, OR_  
OVCC  
MAX19542  
12  
DIGITAL/OUTPUT  
DRIVER POWER-  
SUPPLY SOURCE  
10µF  
47µF  
1µF  
NOTE: EACH POWER-SUPPLY PIN (ANALOG  
AND DIGITAL) SHOULD BE DECOUPLED WITH  
AN INDIVIDUAL 0.1µF CAPACITOR AS CLOSE  
AS POSSIBLE TO THE ADC.  
AGND  
OGND  
Figure 12. Grounding, Bypassing, and Decoupling Recommendations for the MAX19542  
20 ______________________________________________________________________________________  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
MAX19542  
Spurious-Free Dynamic Range (SFDR)  
Dynamic Parameter Definitions  
SFDR is the ratio of RMS amplitude of the carrier fre-  
quency (maximum signal component) to the RMS value  
of the next-largest noise or harmonic distortion compo-  
nent. SFDR is usually measured in dBc with respect to  
the carrier frequency amplitude or in dBFS with respect  
to the ADC’s full-scale range.  
Aperture Jitter  
Figure 13 depicts the aperture jitter (t ), which defines  
AJ  
the sample-to-sample variation in the aperture delay.  
Aperture jitter is measured in ps  
.
RMS  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
620ps rising edge of the sampling clock and the instant  
when an actual sample is taken (Figure 13).  
Two-Tone Intermodulation Distortion (IMD)  
The two-tone IMD is the ratio expressed in decibels of  
either input tone to the worst 2nd-order (or higher) inter-  
modulation products. The individual input tone levels  
are usually set to 7dB below full scale and intermodula-  
tion products IM2 through IM5 are considered for the  
IMD calculation. The various intermodulation products  
are defined as follows:  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADC’s reso-  
lution (N bits):  
2nd-order intermodulation distortion (IM2):  
+ f , f - f  
f
IN1  
IN2 IN2 IN1  
3rd-order intermodulation distortion (IM3):  
2f + f , 2f - f , 2f + f , 2f - f  
IN2 IN1  
IN1  
IN2  
IN1 IN2  
IN2  
IN1  
SNR  
= 6.02 x N + 1.76  
dB dB  
dB[max]  
4th-order intermodulation distortion (IM4):  
3f + f , 3f - f , 3f + f , 3f - f  
IN2 IN1  
In reality, other noise sources such as thermal noise,  
clock jitter, signal phase noise, and transfer function  
nonlinearities are also contributing to the SNR calcula-  
tion and should be considered when determining the  
SNR of an ADC.  
IN1  
IN2  
IN1 IN2  
IN2  
IN1  
5th-order intermodulation distortion (IM5):  
4f + f , 4f - f , 4f + f , 4f - f  
IN2 IN1  
IN1  
IN2  
IN1 IN2  
IN2  
IN1  
Full-Power Bandwidth  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to all spectral components excluding the fundamen-  
tal and the DC offset. In the case of the MAX19542,  
SINAD is computed from a curve fit.  
A large -1dBFS analog input signal is applied to an  
ADC and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by 3dB. The -3dB point is defined as  
the full-power input bandwidth frequency of the ADC.  
CLKN  
CLKP  
ANALOG  
INPUT  
t
AD  
t
AJ  
SAMPLED  
DATA (T/H)  
HOLD  
TRACK  
TRACK  
T/H  
Figure 13. Aperture Jitter/Delay Specifications  
______________________________________________________________________________________ 21  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
LAND  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0122  
PATTERN NO.  
90-0245  
68 QFN-EP  
G6800+4  
MAX19542  
22 ______________________________________________________________________________________  
12-Bit, 170Msps ADC with CMOS  
Outputs for Wideband Applications  
MAX19542  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
1
11/04  
10/10  
Initial release  
Updated Ordering Information and Electrical Characteristics  
1, 3  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX19542EGK+D

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.9 MM HEIGHT, LEAD FREE, MO-220, QFN-68
MAXIM

MAX19542EGK-D

暂无描述
MAXIM

MAX19542EGK-TD

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.9 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX19542EVKIT+

Low-Voltage and Low-Power Operation
MAXIM

MAX1954A

Low-Cost. Current-Mode PWM Buck Controller with Foldback Current Limit
MAXIM

MAX1954AEUB

Switching Controller, Current-mode, 25A, 360kHz Switching Freq-Max, BICMOS, PDSO10, MO-187C-BA, MICRO, SOP-10
MAXIM

MAX1954AEUB

SWITCHING CONTROLLER, 360kHz SWITCHING FREQ-MAX, PDSO10, MO-187C-BA, MICRO, SOP-10
ROCHESTER

MAX1954AEUB-G05

Switching Controller
MAXIM

MAX1954AEUB-T

Switching Controller, Current-mode, 25A, 360kHz Switching Freq-Max, BICMOS, PDSO10, MO-187C-BA, MICRO, SOP-10
MAXIM

MAX1954AEUB-TG05

Switching Controller
MAXIM

MAX1954AEUB-TG077

Switching Controller
MAXIM

MAX1954AEVKIT

MAX1954A Evaluation Kit
MAXIM