MAX195BC/D [MAXIM]

16-Bit, 85ksps ADC with 10レA Shutdown; 16位85ksps ADC,具有10μA停机
MAX195BC/D
型号: MAX195BC/D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

16-Bit, 85ksps ADC with 10レA Shutdown
16位85ksps ADC,具有10μA停机

文件: 总28页 (文件大小:314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0377; Rev 1; 12/97  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
16 Bits, No Missing Codes  
90dB SINAD  
The MAX195 is a 16-bit successive-approximation ana-  
log -to-d ig ita l c onve rte r (ADC) tha t c omb ine s hig h  
speed, high accuracy, low power consumption, and a  
10µA shutdown mode. Internal calibration circuitry cor-  
rects linearity and offset errors to maintain the full rated  
performance over the operating temperature range with-  
out external adjustments. The capacitive-DAC architec-  
ture provides an inherent 85ksps track/hold function.  
9.4µs Conversion Time  
10µA (max) Shutdown Mode  
Built-In Track/Hold  
AC and DC Specified  
Unipolar (0V to V  
) and Bipolar (-V  
to V  
)
REF  
REF  
REF  
The MAX195, with an external reference (up to +5V),  
Input Range  
offers a unipolar (0V to V ) or bipolar (-V  
to V  
)
REF  
REF  
REF  
pin-selectable input range. Separate analog and digital  
supplies minimize digital-noise coupling.  
Three-State Serial-Data Output  
Small 16-Pin DIP, SO, and Ceramic SB Packages  
The chip select (CS) input controls the three-state serial-  
data output. The output can be read either during conver-  
sion as the bits are determined, or following conversion at  
up to 5Mbps using the serial clock (SCLK). The end-of-  
conversion (EOC) output can be used to interrupt a  
processor, or can be connected directly to the convert  
input (CONV) for continuous, full-speed conversions.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
16 Plastic DIP  
16 Wide SO  
MAX195BCPE  
MAX195BCWE  
MAX195ACDE  
MAX195BC/D  
MAX195BEPE  
MAX195BEWE  
MAX195AEDE  
MAX195AMDE  
MAX195BMDE  
0°C to +70°C  
The MAX195 is available in 16-pin DIP, wide SO, and  
ceramic sidebraze packages.  
0°C to +70°C  
16 Ceramic SB  
Dice*  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
-55°C to +125°C  
16 Plastic DIP  
16 Wide SO  
________________________Ap p lic a t io n s  
Portable Instruments  
16 Ceramic SB  
16 Ceramic SB**  
16 Ceramic SB**  
Audio  
Industrial Controls  
Robotics  
* Dice are specified at T = +25°C, DC parameters only.  
A
** Contact factory for availability and processing to MIL-STD-883.  
Multiple Transducer Measurements  
Medical Signal Acquisition  
Vibrations Analysis  
________________Fu n c t io n a l Dia g ra m  
Digital Signal Processing  
13  
__________________P in Co n fig u ra t io n  
4
6
11  
16  
AIN  
REF  
VDDD  
DGND  
MAIN DAC  
12  
Σ
VSSD  
VDDA  
AGND  
VSSA  
TOP VIEW  
14  
15  
BP/UP/SHDN  
CLK  
VDDA  
VSSA  
AGND  
AIN  
1
2
3
4
5
6
7
8
COMPARATOR  
MAX195  
16  
15  
14  
13  
12  
11  
10  
9
CALIBRATION  
DACs  
SCLK  
SAR  
VDDD  
MAX195  
2
CLK  
SCLK  
DOUT  
DGND  
EOC  
REF  
3
9
1
8
5
7
DOUT  
EOC  
VSSD  
RESET  
CONV  
CONV  
THREE-STATE BUFFER  
CONTROL LOGIC  
BP/UP/SHDN  
CS  
CS  
10  
RESET  
DIP/Wide SO/Ceramic SB  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
ABSOLUTE MAXIMUM RATINGS  
VDDD to DGND .....................................................................+7V  
VDDA to AGND......................................................................+7V  
VSSD to DGND.........................................................+0.3V to -6V  
VSSA to AGND .........................................................+0.3V to -6V  
VDDD to VDDA, VSSD to VSSA..........................................±0.3V  
AIN, REF ....................................(VSSA - 0.3V) to (VDDA + 0.3V)  
AGND to DGND..................................................................±0.3V  
Digital Inputs to DGND...............................-0.3V, (VDDA + 0.3V)  
Digital Outputs to DGND............................-0.3V, (VDDA + 0.3V)  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 10.53mW/°C above +70°C) ............842mW  
Wide SO (derate 9.52mW/°C above +70°C)..................762mW  
Ceramic SB (derate 10.53mW/°C above +70°C)...........842mW  
Operating Temperature Ranges  
MAX195_C_E ........................................................0°C to +70°C  
MAX195_E_E .....................................................-40°C to +85°C  
MAX195_MDE..................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
MAX195  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(VDDD = VDDA = +5V, VSSD = VSSA = -5V, f  
= 1.7MHz, V  
= +5V, T = T  
to T , unless otherwise noted. Typical  
MAX  
CLK  
REF  
A
MIN  
values are at T = +25°C.)  
A
PARAMETER  
ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RES  
16  
Bits  
MAX195A  
±1  
±2  
Differential Nonlinearity  
Integral Nonlinearity  
DNL  
LSB  
MAX195B  
MAX195A  
MAX195B  
±0.003  
±0.004  
±3  
INL  
%FSR  
MAX195A, V  
= 4.75V  
= 4.75V  
REF  
Unipolar/Bipolar Offset Error  
LSB  
MAX195B, V  
±4  
REF  
Unipolar/Bipolar Offset Tempco  
Unipolar Full-Scale Error  
Bipolar Full-Scale Error  
Full-Scale Tempco  
0.4  
0.1  
ppm/°C  
V
= 4.75V  
±0.0075 %FSR  
REF  
V
REF  
= 4.75V  
±0.018  
%FSR  
ppm/°C  
VDDA = 4.75V to 5.25V, V  
= 4.75V  
65  
65  
REF  
Power-Supply Rejection  
Ratio (VDDA and VSSA only)  
dB  
VSSA = -5.25V to -4.75V, V  
= 4.75V  
REF  
ANALOG INPUT  
Unipolar  
Bipolar  
Unipolar  
Bipolar  
0
V
REF  
Input Range  
V
-V  
REF  
V
REF  
250  
125  
Input Capacitance  
pF  
DYNAMIC PERFORMANCE (f = 85kHz, bipolar range AIN = -5V to +5V, 1kHz) (Note 1)  
s
Signal-to-Noise plus Distortion  
Ratio (Note 2)  
SINAD  
THD  
T
= +25°C  
87  
90  
dB  
dB  
A
Total Harmonic Distortion (up to  
the 5th harmonic) (Note 2)  
T
A
= +25°C  
= +25°C  
-97  
-90  
-90  
Peak Spurious Noise (Note 2)  
Conversion Time  
T
A
dB  
µs  
t
16 (t  
)
9.4  
CONV  
CLK  
Clock Frequency  
(Notes 3, 4)  
f
1.7  
5
MHz  
MHz  
CLK  
Serial Clock Frequency  
f
SCLK  
2
_______________________________________________________________________________________  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
ELECTRICAL CHARACTERISTICS (continued)  
(VDDD = VDDA = +5V, VSSD = VSSA = -5V, f  
= 1.7MHz, V  
= +5V, T = T  
to T , unless otherwise noted. Typical  
MAX  
CLK  
REF  
A
MIN  
values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (CLK, CS, CONV, RESET, SCLK, BP/UP/SHDN)  
CLK, CS, CONV, RESET, SCLK  
Input High Voltage  
V
VDDD = 5.25V  
VDDD = 4.75V  
2.4  
V
V
IH  
CLK, CS, CONV, RESET, SCLK  
Input Low Voltage  
V
IL  
0.8  
10  
CLK, CS, CONV, RESET, SCLK  
Input Capacitance (Note 3)  
pF  
µA  
V
CLK, CS, CONV, RESET, SCLK  
Input Current  
Digital inputs = 0 or 5V  
±10  
BP/UP/SHDN  
Input High Voltage  
V
IH  
VDDD - 0.5  
BP/UP/SHDN  
Input Low Voltage  
V
0.5  
4.0  
V
IL  
BP/UP/SHDN  
Input Current, High  
I
IH  
µA  
µA  
V
BP/UP/SHDN = VDDD  
BP/UP/SHDN = 0V  
BP/UP/SHDN  
Input Current, Low  
I
IL  
-4.0  
1.5  
BP/UP/SHDN  
Mid Input Voltage  
V
IM  
VDDD - 1.5  
BP/UP/SHDN Voltage,  
Floating  
V
2.75  
V
BP/UP/SHDN = open  
BP/UP/SHDN = open  
FLT  
BP/UP/SHDN Max Allowed  
Leakage, Mid Input  
-100  
+100  
0.4  
nA  
DIGITAL OUTPUTS (DOUT, EOC)  
Output Low Voltage  
Output High Voltage  
DOUT Leakage Current  
Output Capacitance (Note 2)  
POWER REQUIREMENTS  
VDDD  
V
VDDD = 4.75V, I  
VDDD = 4.75V, I  
DOUT = 0 or 5V  
= 1.6mA  
V
V
OL  
SINK  
V
OH  
= 1mA  
VDDD - 0.5  
SOURCE  
I
±10  
10  
µA  
pF  
LKG  
4.75  
-5.25  
4.75  
5.25  
-4.75  
5.25  
-4.75  
4
V
V
VSSD  
VDDA  
By supply-rejection test  
By supply-rejection test  
V
VSSA  
-5.25  
V
VDDD Supply Current  
VSSD Supply Current  
VDDA Supply Current  
VSSA Supply Current  
I
VDDD = VDDA = 5.25V, VSSD = VSSA = -5.25V  
VDDD = VDDA = 5.25V, VSSD = VSSA = -5.25V  
VDDD = VDDA = 5.25V, VSSD = VSSA = -5.25V  
VDDD = VDDA = 5.25V, VSSD = VSSA = -5.25V  
2.5  
0.9  
3.8  
3.8  
mA  
mA  
mA  
mA  
DDD  
I
2
SSD  
I
5
DDA  
I
5
SSA  
_______________________________________________________________________________________  
3
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
ELECTRICAL CHARACTERISTICS (continued)  
(VDDD = VDDA = +5V, VSSD = VSSA = -5V, f  
= 1.7MHz, V  
= +5V, T = T  
to T , unless otherwise noted. Typical  
MAX  
CLK  
REF  
A
MIN  
values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
POWER REQUIREMENTS (cont.)  
Power Dissipation  
VDDD = VDDA = 5.25V, VSSD = VSSA = -5.25V  
80  
5
mW  
µA  
VDDD = VDDA = 5.25V, VSSD = VSSA = -5.25V,  
BP/UP/SHDN = 0V  
VDDD Shutdown Supply Current  
(Note 5)  
MAX195  
I
1.6  
0.1  
0.1  
0.1  
DDD  
VDDD = VDDA = 5.25V, VSSD = VSSA = -5.25V,  
BP/UP/SHDN = 0V  
VSSD Shutdown Supply Current  
VDDA Shutdown Supply Current  
VSSA Shutdown Supply Current  
I
5
5
5
µA  
µA  
µA  
SSD  
VDDD = VDDA = 5.25V, VSSD = VSSA = -5.25V,  
BP/UP/SHDN = 0V  
I
DDA  
VDDD = VDDA = 5.25V, VSSD = VSSA = -5.25V,  
BP/UP/SHDN = 0V  
I
SSA  
Note 1: Accuracy and dynamic performance tests performed after calibration.  
Note 2: Guaranteed by design, not tested.  
Note 3: Tested with 50% duty cycle. Duty cycles from 25% to 75% at 1.7MHz are acceptable.  
Note 4: See External Clock section.  
Note 5: Measured in shutdown mode with CLK and SCLK low.  
TIMING CHARACTERISTICS  
(VDDD = VDDA = +5V, VSSD = VSSA = -5V, unless otherwise noted.)  
T
= 0°C to  
+70°C  
T
= -40°C to  
+85°C  
T
A
= -55°C to  
+125°C  
A
A
T
= +25°C  
TYP  
A
PARAMETER  
CONV Pulse Width  
SYMBOL CONDITIONS  
UNITS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
t
20  
30  
35  
ns  
ns  
CW  
CONV to CLK Falling  
Synchronization (Note 2)  
t
10  
40  
10  
40  
10  
40  
CC1  
CC2  
CONV to CLK Rising  
Synchronization (Note 2)  
t
ns  
Data Access Time  
t
C
C
C
C
C
C
= 50pF  
= 10pF  
= 50pF  
= 50pF  
= 50pF  
= 50pF  
80  
80  
90  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
ns  
ns  
DV  
L
L
L
L
L
L
Bus Relinquish Time  
CLK to EOC High  
t
40  
40  
40  
DH  
t
300  
300  
350  
140  
300  
300  
375  
160  
350  
350  
400  
160  
CEH  
t
CLK to EOC Low  
CEL  
CLK to DOUT Valid  
SCLK to DOUT Valid  
CS to SCLK Setup Time  
CS to SCLK Hold Time  
Acquisition Time  
t
100  
20  
100  
20  
100  
20  
CD  
t
SD  
t
t
75  
75  
75  
CSS  
-10  
2.4  
8.2  
-40  
120  
-10  
2.4  
8.2  
-40  
120  
-10  
2.4  
8.2  
-40  
120  
CSH  
t
AQ  
Calibration Time  
t
14,000 x t  
CLK  
CAL  
RCS  
t
t
RESET to CLK Setup Time  
RESET to CLK Hold Time  
RCH  
Exiting  
shutdown  
Start-Up Time (Note 6)  
t
50  
µs  
SU  
Note 6: Settling time required after deasserting shutdown to achieve less than 0.1LSB additional error.  
4
_______________________________________________________________________________________  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Bipolar/Unipolar/Shutdown Input. Three-state input selects bipolar or unipolar input range, or shutdown.  
0V = shutdown, +5V = unipolar, floating = bipolar.  
1
BP/UP/SHDN  
2
3
4
5
6
CLK  
SCLK  
VDDD  
DOUT  
DGND  
Conversion Clock Input  
Serial Clock Input is used to shift data out between conversions. May be asynchronous to CLK.  
+5V Digital Power Supply  
Serial Data Output, MSB first  
Digital Ground  
End-of-Conversion/Calibration Output—normally low. Rises one clock cycle after the beginning of conversion  
or calibration and falls one clock cycle after the end of either. May be used as an output framing signal.  
7
8
9
EOC  
CS  
Chip-Select Input—active low. Enables the serial interface and the three-state data output (DOUT).  
Convert-Start Input—active low. Conversion begins on the falling edge after CONV goes low if the input  
signal has been acquired; otherwise, on the falling clock edge after acquisition.  
CONV  
Reset Input. Pulling RESET low places the ADC in an inactive state. Rising edge resets control logic and  
begins calibration.  
10  
RESET  
11  
12  
13  
14  
15  
16  
VSSD  
REF  
-5V Digital Power Supply  
Reference Input, 0 to 5V  
AIN  
Analog Input, 0 to V  
unipolar or ±V  
bipolar range  
REF  
REF  
AGND  
VSSA  
VDDA  
Analog Ground  
-5V Analog Power Supply  
+5V Analog Power Supply  
disconnected from AIN, trapping a charge proportional  
to the input voltage on the capacitor array.  
_______________De t a ile d De s c rip t io n  
The MAX195 uses a successive-approximation register  
(SAR) to convert an analog input to a 16-bit digital  
code, which outputs as a serial data stream. The data  
bits can be read either during the conversion, at the  
CLK clock rate, or between conversions asynchronous  
with CLK at the SCLK rate (up to 5Mbps).  
The free terminal of the MSB (largest) capacitor is con-  
nected to the reference (REF), which pulls the common  
te rmina l (c onne c te d to the c omp a ra tor) p os itive .  
Simultaneously, the free terminals of all other capaci-  
tors in the array are connected to AGND, which drives  
the comparator input negative. If the analog input is  
The MAX195 includes a capacitive digital-to-analog  
converter (DAC) that provides an inherent track/hold  
input. The interface and control logic are designed for  
easy connection to most microprocessors (µPs), limiting  
the need for external components. In addition to the  
SAR and DAC, the MAX195 includes a serial interface, a  
sampling comparator used by the SAR, ten calibration  
DACs, and control logic for calibration and conversion.  
near V , connecting the MSBs free terminal to REF  
REF  
only p ulls the c omp a ra tor inp ut s lig htly p os itive .  
However, connecting the remaining capacitors free ter-  
mina ls to g round d rive s the c omp a ra tor inp ut we ll  
below ground, so the comparator input is negative, the  
comparator output is low, and the MSB is set high. If  
the analog input is near ground, the comparator output  
is high and the MSB is low.  
The DAC consists of an array of 16 capacitors with  
binary weighted values plus one dummy LSB” capaci-  
tor (Fig ure 1). During inp ut a c q uis ition in unip ola r  
mode, the arrays common terminal is connected to  
AGND and all free terminals are connected to the input  
signal (AIN). After acquisition, the common terminal is  
disconnected from AGND and the free terminals are  
Following this, the next largest capacitor is disconnect-  
ed from AGND and connected to REF, and the com-  
parator determines the next bit. This continues until all  
bits have been determined. For a bipolar input range,  
the MSB capacitor is connected to REF rather than AIN  
during input acquisition, which results in an input range  
of V  
to -V  
.
REF  
REF  
_______________________________________________________________________________________  
5
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MSB  
LSB  
DUMMY  
32,768C  
16,384C  
4C  
2C  
C
C
MAX195  
AIN  
REF  
AGND  
Figure 1. Capacitor DAC Functional Diagram  
t
CAL  
CLK  
t
RCH  
t
RCS  
RESET  
EOC  
CALIBRATION  
BEGINS  
CALIBRATION  
ENDS  
MAX195  
OPERATION HALTS  
Figure 2. Initiating Calibration  
output and offset the main DACs output according to  
the value on their digital inputs. During calibration, the  
correct digital code to compensate for the error in each  
MSB capacitor is determined and stored. Thereafter,  
the stored code is input to the appropriate calibration  
DAC whenever the corresponding bit in the main DAC  
is hig h, c omp e ns a ting for e rrors in the a s s oc ia te d  
capacitor.  
Ca lib ra t io n  
In an ideal DAC, each of the capacitors associated with  
the data bits would be exactly twice the value of the  
next smaller capacitor. In practice, this results in a  
range of values too wide to be realized in an economi-  
cally feasible size. The capacitor array actually consists  
of two arrays, which are capacitively coupled to reduce  
the LSB arrays effective value. The capacitors in the  
MSB array are production trimmed to reduce errors.  
Sma ll va ria tions in the LSB c a p a c itors c ontrib ute  
insignificant errors to the 16-bit result.  
The MAX195 calibrates automatically on power-up. To  
reduce the effects of noise, each calibration experiment  
is performed many times and the results are averaged.  
Ca lib ra tion re q uire s a b out 14,000 c loc k c yc le s , or  
8.2ms at the highest clock (CLK) speed (1.7MHz). In  
addition to the power-up calibration, bringing RESET  
low halts MAX195 operation, and bringing it high again  
initiates a calibration (Figure 2).  
Unfortunately, trimming alone does not yield 16-bit per-  
formance or compensate for changes in performance  
due to changes in temperature, supply voltage, and  
other parameters. For this reason, the MAX195 includes  
a calibration DAC for each capacitor in the MSB array.  
These DACs are capacitively coupled to the main DAC  
6
_______________________________________________________________________________________  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
t
CC1  
t
CC2  
CLK  
EOC  
t
t
CEH  
CEL  
*
CONV  
t
CW  
TRACK/HOLD  
t
AQ  
CONVERSION  
ENDS  
CONVERSION  
BEGINS  
* THE FALLING EDGE OF CONV MUST OCCUR IN THIS REGION  
Figure 3. Initiating Conversions—At least 3 CLK cycles since end of previous conversion.  
If the power supplies do not settle within the MAX195s  
power-on delay (500ns minimum), power-up calibration  
may begin with supply voltages that differ from the final  
values and the converter may not be properly calibrat-  
ed. If so, recalibrate the converter (pulse RESET low)  
b e fore us e . For b e s t DC a c c ura c y, c a lib ra te the  
MAX195 any time there is a significant change in sup-  
ply voltages, temperature, reference voltage, or clock  
characteristics (see External Clock section) because  
these parameters affect the DC offset. If linearity is the  
only concern, much larger changes in these parame-  
ters can be tolerated.  
input (AIN = 0V to V  
places the MAX195 in its 10µA shutdown mode.  
). Bringing BP/UP/SHDN low  
REF  
A logic low on RESET halts MAX195 operation. The ris-  
ing edge of RESET initiates calibration as described in  
the Calibration section above.  
Begin a conversion by bringing CONV low. After con-  
ve rs ion b e g ins , a d d itiona l c onve rt s ta rt p uls e s a re  
ignored. The convert signal must be synchronized with  
CLK. The falling edge of CONV must occur during the  
period shown in Figures 3 and 4. When CLK is not  
directly controlled by your processor, two methods of  
ensuring synchronization are to drive CONV from EOC  
(continuous conversions) or to gate the conversion-start  
signal with the conversion clock so that CONV can go  
low only while CLK is low (Figure 5). Ensure that the  
maximum propagation delay through the gate is less  
than 40ns.  
Because the calibration data is stored digitally, there is  
no need either to perform frequent conversions to main-  
tain accuracy or to recalibrate if the MAX195 has been  
held in shutdown for long periods. However, recalibra-  
tion is recommended if it is likely that ambient tempera-  
ture or sup ply volta g e s ha ve signific a ntly c ha ng e d  
since the previous calibration.  
The MAX195 automatically ensures four CLK periods  
for track/hold acquisition. If, when CONV is asserted, at  
least three clock (CLK) cycles have passed since the  
end of the previous conversion, a conversion will begin  
on CLK’s next falling edge and EOC will go high on the  
following falling CLK edge (Figure 3). If, when convert  
is asserted, less than three clock cycles have passed,  
a conversion will begin on the fourth falling clock edge  
Dig it a l In t e rfa c e  
The digital interface pins consist of BP/UP/SHDN, CLK,  
SCLK, EOC, CS, CONV, and RESET.  
BP/UP/SHDN is a three-level input. Leave it floating to  
configure the MAX195s analog input in bipolar mode  
(AIN = -V  
to V ) or connect it high for a unipolar  
REF  
REF  
_______________________________________________________________________________________  
7
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
t
CC1  
t
CC2  
CLK  
MAX195  
t
t
CEH  
CEL  
EOC  
*
CONV  
t
CW  
t
TRACK/HOLD  
AQ  
CONVERSION  
ENDS  
CONVERSION  
BEGINS  
* THE FALLING EDGE OF CONV MUST OCCUR IN THIS REGION  
Figure 4. Initiating Conversions—Less than 3 CLK cycles since end of previous conversion.  
Output Data  
after the end of the previous conversion and EOC will  
The conversion result, clocked out MSB first, is avail-  
able on DOUT only when CS is held low. Otherwise,  
DOUT is in a high-impedance state. There are two ways  
to read the data on DOUT. To read the data bits as they  
are determined (at the CLK clock rate), hold CS low  
during the conversion. To read results between conver-  
sions, hold CS low and clock SCLK at up to 5MHz.  
go high on the following CLK falling edge (Figure 4).  
External Clock  
The conversion clock (CLK) should have a duty cycle  
between 25% and 75% at 1.7MHz (the maximum clock  
frequency). For lower frequency clocks, ensure the min-  
imum high and low times exceed 150ns. The minimum  
clock rate for accurate conversion is 125Hz for temper-  
atures up to +70°C or 1kHz at +125°C due to leakage  
of the s a mp ling c a p a c itor a rra y. In a d d ition, CLK  
should not remain high longer than 50ms at tempera-  
tures up to +70°C or 500µs at +125°C. If CLK is held  
high longer than this, RESET must be pulsed low to initi-  
ate a recalibration because it is possible that state  
information stored in internal dynamic memory may be  
lost. The MAX195s clock can be stopped indefinitely if  
it is held low.  
If you read the serial data bits as they are determined,  
EOC frames the data bits (Figure 6). Conversion begins  
with the first falling CLK edge, after CONV goes low  
and the input signal has been acquired. Data bits are  
shifted out of DOUT on subsequent falling CLK edges.  
Clock data in on CLKs rising edge or, if the clock  
speed is greater than 1MHz, on the following falling  
edge of CLK to meet the maximum CLK-to-DOUT tim-  
ing s p e c ific a tion. Se e the Op e ra ting Mod e s a nd  
SPI™/QSPI™ Interfaces section for additional informa-  
tion. Reading the serial data during the conversion  
re s ults in the ma ximum c onve rs ion throug hp ut,  
because a new conversion can begin immediately after  
the input acquisition period following the previous con-  
version.  
If the frequency, duty cycle, or other aspects of the  
clock signal’s shape change, the offset created by cou-  
pling between CLK and the analog inputs (AIN and  
REF) changes. Recalibration corrects for this offset and  
restores DC accuracy.  
SPI/QSPI are trademarks of Motorola Corp.  
8
_______________________________________________________________________________________  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
START  
MAX195  
CONV  
CLK  
START  
CLK  
CONV  
SEE DIGITAL INTERFACE SECTION  
Figure 5. Gating CONV to Synchronize with CLK  
CS  
CONV  
t
CW  
CLK  
(CASE 1)  
CLK  
(CASE 2)  
t
t
CEH  
CEL  
EOC  
t
DV  
t
CD  
B15 FROM PREVIOUS  
CONVERSION  
DOUT  
B15  
MSB  
B14  
B13  
B12  
B2  
B1  
B0  
B15  
t
DH  
LSB  
CONVERSION  
BEGINS  
CONVERSION  
ENDS  
CASE 1: CLK IDLES LOW, DATA LATCHED ON RISING EDGE (CPOL = 0, CPHA = 0)  
CASE 2: CLK IDLES LOW, DATA LATCHED ON FALLING EDGE (CPOL = 0, CPHA = 1)  
NOTE: ARROWS ON CLK TRANSITIONS INDICATE LATCHING EDGE  
Figure 6. Output Data Format, Reading Data During Conversion (Mode 1)  
If you read the data bits between conversions, you can:  
1) count CLK cycles until the end of the conversion, or  
Note that the MSB conversion result appears at DOUT  
after CS goes low, but before the first SCLK pulse.  
Each subsequent SCLK pulse shifts out the next con-  
version bit. The 15th SCLK pulse shifts out the LSB.  
Additional clock pulses shift out zeros.  
2) p oll EOC to d e te rmine whe n the c onve rs ion is  
finished, or  
3) generate an interrupt on EOCs falling edge.  
_______________________________________________________________________________________  
9
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
t
CONV  
EOC  
CS  
t
CSS  
t
CSH  
MAX195  
SCLK  
(CASE 1)  
SCLK  
(CASE 2)  
SCLK  
(CASE 3)  
DOUT  
B15  
MSB  
B14  
B13  
B12  
B11  
B3  
B2  
B1  
B0  
LSB  
t
DV  
t
SD  
t
DH  
CASE 1: SCLK IDLES LOW, DATA LATCHED ON RISING EDGE (CPOL = 0, CPHA = 0)  
CASE 2: SCLK IDLES LOW, DATA LATCHED ON FALLING EDGE (CPOL = 0, CPHA = 1)  
CASE 3: SCLK IDLES HIGH, DATA LATCHED ON FALLING EDGE (CPOL = 1, CPHA = 0)  
NOTE: ARROWS ON SCLK TRANSITIONS INDICATE LATCHING EDGE  
Figure 7. Output Data Format, Reading Data Between Conversions (Mode 2)  
Data is clocked out on SCLK’s falling edge. Clock  
data in on SCLKs rising edge or, for clock speeds  
above 2.5MHz, on the following falling edge to meet  
the ma ximum SCLK-to-DOUT timing s p e c ific a tion  
(Figure 7). The maximum SCLK speed is 5MHz. See  
the Operating Modes and SPI/QSPI Interfaces section  
for additional information. When the conversion clock  
is near its maximum (1.7MHz), reading the data after  
each conversion (during the acquisition time) results  
in lower throughput (about 70ksps max) than reading  
the data during conversions, because it takes longer  
than the minimum input acquisition time (four cycles  
at 1.7MHz) to clock 16 data bits at 5Mbps. After the  
data has been clocked in, leave some time (about  
s) for any coupled noise on AIN to settle before  
beginning the next conversion.  
+5V  
10µF  
-5V  
10µF  
0.1µF  
BP/UP/  
0.1µF  
1
2
3
4
16  
15  
14  
VDDA  
VSSA  
AGND  
AIN  
SHDN  
CLK  
CONVERSION  
CLOCK  
MAX195  
SCLK  
VDDD  
ANALOG  
INPUT  
13  
12  
11  
5
6
DOUT  
DGND  
REF  
VSSD  
RESET  
CONV  
REFERENCE  
(0V TO VDDA)  
10  
9
7
8
EOC  
CS  
Whichever method is chosen for reading the data, con-  
versions can be individually initiated by bringing CONV  
low, or they can occur continuously by connecting EOC  
to CONV. Figure 8 shows the MAX195 in its simplest  
operational configuration.  
Figure 8. MAX195 in the Simplest Operating Configuration  
10 ______________________________________________________________________________________  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
Table 1. Low-ESR Capacitor Suppliers  
COMPANY  
Sprague  
AVX  
CAPACITOR  
FACTORY FAX [COUNTRY CODE]  
1-603-224-1430  
USA TELEPHONE  
603-224-1961  
800-282-4975  
619-661-6835  
708-843-7500  
595D series,  
592D series  
TPS series  
1-207-283-1941  
OS-CON series,  
MVGX series  
Sanyo  
81-7-2070-1174  
Nichicon  
PL series  
1-708-843-2798  
+5V  
BRIDGE  
INSTRUMENTATION  
AMPLIFIER  
VDDA  
MAX195  
AIN  
REF  
47µF  
0.1µF  
LOW ESR  
CERAMIC  
AGND  
Figure 9. Ratiometric Measurement Without an Accurate Reference  
DACs, all of which may be switching between GND and  
REF a t the c onve rs ion c loc k fre q ue nc y. The tota l  
capacitive load presented can exceed 1000pF and,  
unlike the analog input (AIN), REF is sampled continu-  
ously throughout the conversion.  
__________Ap p lic a t io n s In fo rm a t io n  
Re fe re n c e  
The MAX195 reference voltage range is 0V to VDDA.  
When choosing the reference voltage, the MAX195s  
e quiva le nt inp ut noise (40µV  
in unip ola r mod e ,  
RMS  
The firs t s te p in c hoos ing a re fe re nc e c irc uit is to  
decide what kind of performance is required. This often  
suggests compromises made in the interests of cost  
and size. It is possible that a system may not require an  
accurate reference at all. If a system makes a ratiomet-  
ric measurement such as Figure 9s bridge circuit, any  
relatively noise-free voltage that presents a low imped-  
ance at the REF input will serve as a reference. The  
+5V analog supply suffices if you use a large, low-  
impedance bypass capacitor to keep REF stable dur-  
ing switching of the capacitor arrays. Do not place a  
resistance between the +5V supply and the bypass  
capacitor, because it will cause linearity errors due to  
the dynamic REF input current, which typically ranges  
from 300µA to 400µA.  
80µV  
in bipolar mode) should be considered. Also, if  
exceeds VDDA, errors will occur due to the internal  
RMS  
V
REF  
protection diodes that will begin to conduct, so use cau-  
tion when using a reference near VDDA (unless V  
and VDDA are virtually identical). V  
REF  
must never  
REF  
exceed its absolute maximum rating (VDDA + 0.3V).  
The MAX195 needs a good reference to achieve its  
rated performance. The most important requirement is  
that the reference must present a low impedance to the  
REF input. This is often achieved by buffering the refer-  
ence through an op amp and bypassing the REF input  
with a large (1µF to 47µF), low-ESR capacitor in parallel  
with a 0.1µF ceramic capacitor. Low-ESR capacitors  
are available from the manufacturers listed in Table 1.  
The reference must drive the main conversion DAC  
capacitors as well as the capacitors in the calibration  
Figure 10 shows a more typical scheme that provides  
good AC accuracy. The MAX874s initial accuracy can  
______________________________________________________________________________________ 11  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
+15V  
+5V  
0.1µF  
2
0.1µF  
1k  
16  
V
VDDA  
IN  
2k  
1N914  
8
6
COMP  
0.1µF  
10Ω  
MAX195  
2
7
MAX195  
1000pF  
4.096V  
MAX874  
6
12  
REF  
MAX427  
10Ω  
1N914  
3
V
OUT  
47µF  
LOW ESR  
0.1µF  
4
0.1µF  
VSSA AGND  
15 14  
GND  
0.1µF  
4
-15V  
-5V  
Figure 10. Typical Reference Circuit for AC Accuracy  
V
IN  
8V  
2
IN  
MAX195  
MAX6241  
12  
6
OUT  
REF  
2.2µF  
3
5
10k  
0.1µF  
2.2µF  
TRIM  
NR  
AGND  
14  
GND  
4
1µF  
Figure 11. High-Accuracy Reference  
be improved by trimming, but the drift is too great to  
provide good stability over temperature. The MAX427  
buffer provides the necessary drive current to stabilize  
the REF input quickly after capacitance changes.  
of 1ppm/°C (typ). This allows reasonable temperature  
c ha ng e s with le s s tha n 1LSB e rror. While the  
MAX6241s initia l-a c c ura c y s p e c ific a tion (0.02%)  
results in an offset error of about ±14LSB, the reference  
voltage can be trimmed or the offset can be corrected  
in software if absolute DC accuracy is essential. Figure  
11s circuit provides outstanding temperature stability  
and also provides excellent DC accuracy if the initial  
error is corrected.  
The reference inaccuracies contribute additional full-  
1
16  
scale error. A reference with less than  
total error  
2
(15 parts per million) over the operating temperature  
range is required to limit the additional error to less  
than 1LSB. The MAX6241 achieves a drift specification  
12 ______________________________________________________________________________________  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
+5V  
+15V  
VDDA  
MAX195  
10Ω  
AIN  
INPUT  
SIGNAL  
1N914  
DIODE  
VSSA  
CLAMPS  
-15V  
-5V  
Figure 12. Analog Input Protection for Overvoltage or Improper Supply Sequence  
Input Acquisition and Settling  
REF a n d AIN In p u t P ro t e c t io n  
Four conversion-clock periods are allocated for acquir-  
ing the input signal. At the highest conversion rate, four  
clock periods is 2.4µs. If more than three clock cycles  
have occurred since the end of the previous conver-  
sion, conversion begins on the next falling clock edge  
after CONV goes low. Otherwise, bringing CONV low  
begins a conversion on the fourth falling clock edge  
after the previous conversion. This scheme ensures the  
minimum input acquisition time is four clock periods.  
The REF a nd AIN s ig na ls s hould not e xc e e d the  
MAX195 supply rails. If this can occur, diode clamp the  
signal to the supply rails. Use silicon diodes and a 10  
current-limiting resistor (Figures 10 and 12) or Schottky  
diodes without the resistor.  
When using the current-limiting resistor, place the resis-  
tor between the appropriate input (AIN or REF) and any  
bypass capacitor. While this results in AC transients at  
the input due to dynamic input currents, the transients  
settle quickly and do not affect conversion results.  
Improperly placing the bypass capacitor directly at the  
input forms an RC lowpass filter with the current-limiting  
resistor, which averages the dynamic input current and  
causes linearity errors.  
Most applications require an input buffer amplifier. If  
the input signal is multiplexed, the input channel should  
be switched near the beginning of a conversion, rather  
than near the end of or after a conversion (Figure 13).  
This allows time for the input buffer amplifier to respond  
to a large step change in input signal. The input amplifi-  
er must have a high enough slew rate to complete the  
required output voltage change before the beginning of  
the acquisition time.  
An a lo g In p u t  
The MAX195 uses a capacitive DAC that provides an  
inherent track/hold function. The input impedance is  
typically 30in series with 250pF in unipolar mode and  
50in series with 125pF in bipolar mode.  
At the beginning of acquisition, the capacitive DAC is  
connected to the amplifier output, causing some output  
disturbance. Ensure that the sampled voltage has set-  
tled to within the required limits before the end of the  
acquisition time. If the frequency of interest is low, AIN  
can be bypassed with a large enough capacitor to  
charge the capacitive DAC with very little change in  
voltage (Figure 14). However, for AC use, AIN must be  
driven by a wideband buffer (at least 10MHz), which  
must be stable with the DACs capacitive load (in paral-  
lel with any AIN bypass capacitor used) and also must  
settle quickly (Figure 15 or 16).  
Input Range  
The analog input range can be either unipolar (0V to  
V
REF  
) or bipolar (-V  
to V  
), depending on the  
REF  
REF  
state of the BP/UP/SHDN pin (see Digital Interface sec-  
tion). The reference range is 0V to VDDA. When choos-  
ing the reference voltage, the equivalent MAX195 input  
noise (40µV  
in unipolar mode, 80µV  
in bipolar  
RMS  
RMS  
mode) should be considered.  
______________________________________________________________________________________ 13  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
A0  
A1  
IN1  
IN2  
4-TO-1  
MUX  
MAX195  
MAX195  
IN3  
IN4  
AIN  
OUT  
EOC  
CLK  
CONVERSION  
ACQUISITION  
EOC  
A0  
A1  
CHANGE MUX INPUT HERE  
Figure 13. Change multiplexer input near beginning of conversion to allow time for slewing and settling.  
1k  
+5V  
+15V  
7
1000pF  
0.1µF  
0.1µF  
1N914  
10Ω  
2
3
6
AIN  
MAX400  
100Ω  
IN  
4
1N914  
1.0µF  
-15V  
-5V  
Figure 14. MAX400 Drives AIN for Low-Frequency Use  
14 ______________________________________________________________________________________  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
Digital Noise  
Digital noise can easily be coupled to AIN and REF. The  
conversion clock (CLK) and other digital signals that are  
active during input acquisition contribute noise to the con-  
version result. If the noise signal is synchronous to the  
sampling interval, an effective input offset is produced.  
Asynchronous signals produce random noise on the input,  
whose high-frequency components may be aliased into  
the frequency band of interest. Minimize noise by present-  
ing a low impedance (at the frequencies contained in the  
noise signal) at the inputs. This requires bypassing AIN to  
AGND, or buffering the input with an amplifier that has a  
small-signal bandwidth of several megahertz, or prefer-  
ably both. AIN has a bandwidth of about 16MHz.  
ing. Also, to reduce linearity errors due to finite amplifier  
gain, use an amplifier circuit with sufficient loop gain at  
the frequencies of interest (Figures 14, 15, 16).  
DC Accuracy  
If DC accuracy is important, choose a buffer with an  
offset much less than the MAX195s maximum offset  
(±3LSB = ±366µV for a ±4V input range), or whose  
offset can be trimmed while maintaining good stability  
over the required temperature range.  
Recommended Circuits  
Figure 14 shows a good circuit for DC and low-frequen-  
cy use. The MAX400 has very low offset (10µV) and  
drift (0.2µV/°C), and low voltage noise (10nV/ Hz) as  
Offsets resulting from synchronous noise (such as the  
conversion clock) are canceled by the MAX195s cali-  
bration scheme. However, because the magnitude of  
the offset produced by a synchronous signal depends  
on the signal’s shape, recalibration may be appropriate  
if the shape or relative timing of the clock or other digi-  
tal signals change, as might occur if more than one  
clock signal or frequency is used.  
well. However, its gain-bandwidth product (GBW) is  
much too low to drive AIN directly, so the analog input  
is bypassed to present a low impedance at high fre-  
quencies. The large bypass capacitor is isolated from  
the amplifier output by a 100resistor, which provides  
a d d itiona l nois e filte ring . Sinc e the ± 15V s up p lie s  
exceed the AIN range, add protection diodes at AIN  
(see REF and AIN Input Protection section).  
Figure 15 shows a wide-bandwidth amplifier (MAX427)  
driving a wideband video buffer, which is capable of  
driving AIN and a small bypass capacitor (for noise  
re d uc tion) d ire c tly. The vid e o b uffe r is ins id e the  
MAX427s feedback loop, providing good DC accura-  
cy, while the buffers low output impedance and high-  
current capability provide good AC performance. AIN is  
diode-clamped to the ±5V rails to prevent overvoltage.  
The MAX427s 15µV maximum offset voltage, 0.8µV/°C  
Distortion  
Avoid degrading dynamic performance by choosing an  
amplifier with distortion much less than the MAX195s  
THD (-97dB, or 0.0014%) at frequencies of interest. If  
the chosen amplifier has insufficient common-mode  
rejection, which results in degraded THD performance,  
use the inverting configuration (positive input ground-  
ed) to eliminate errors from this source. Low tempera-  
ture-coefficient, gain-setting resistors reduce linearity  
errors caused by resistance changes due to self-heat-  
maximum drift, and less than 5nV/ Hz noise specifica-  
tions make this an excellent choice for AC/DC use.  
1k  
+5V  
+15V  
1
+15V  
100pF  
0.1µF  
0.1µF  
1N914  
2
3
7
10Ω  
2
6
7
ELANTEC  
EL2003  
AIN  
MAX427  
1k  
IN  
4
4
1N914  
0.0033µF  
0.1µF  
0.1µF  
-15V  
-15V  
-5V  
Figure 15. AIN Buffer for AC/DC Use  
______________________________________________________________________________________ 15  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
If ±15V supplies are unavailable, Figure 16s circuit  
works very well with the ±5V analog supplies used by  
the MAX195. The MAX410 has a minimum ±3.5V com-  
mon-mode input range, with a similar output voltage  
swing, which allows use of a reference voltage up to  
3.5V. The offset voltage (250µV) is about 2LSB. The  
drift (1µV/°C), unity-gain bandwidth (28MHz), and low  
voltage noise (2.4nV/Hz) are appropriate for 16-bit  
performance.  
Op e ra t in g Mo d e s a n d S P I/QS P I In t e rfa c e s  
The two basic interface modes are defined according  
to whether serial data is received during the conversion  
(clocked with CLK, SCLK unused) or in bursts between  
conversions (clocked with SCLK). Each mode is pre-  
sented interfaced to a QSPI processor, but is also com-  
patible with SPI.  
MAX195  
Mode 1 (Simultaneous  
Conversion and Data Transfer)  
In this mode, each data bit is read from the MAX195  
during the conversion as it is determined. SCLK is  
grounded and CLK is used as both the conversion  
clock and the serial data clock. Figure 17 shows a  
QSPI processor connected to the MAX195 for use in  
this mode and Figure 18 is the associated timing dia-  
gram.  
510Ω  
+5V  
0.1µF  
2
3
7
4
22Ω  
In addition to the standard QSPI interface signals, gen-  
eral I/O lines are used to monitor EOC and to drive  
BP/UP/SHDN and RESET. The two general output pins  
may not be necessary for a given application and, if I/O  
lines are unavailable, the EOC connection can be omit-  
ted as well.  
6
AIN  
MAX410  
IN  
0.01µF  
0.1µF  
-5V  
The EOC s ig na l is monitore d d uring c a lib ra tion to  
d e te rmine whe n c a lib ra tion is finis he d a nd b e fore  
beginning a conversion to ensure the MAX195 is not in  
mid-conversion, but it is possible for a system to ignore  
EOC completely. On power-up or after pulsing RESET  
low, the µP must provide 14,000 CLK cycles to com-  
plete the calibration sequence (Figure 2). One way to  
do this is to toggle CLK and monitor EOC until it goes  
low, b ut it is p os s ib le to s imp ly c ount 14,000 CLK  
c yc le s to c omp le te the c a lib ra tion. Simila rly, it is  
unnecessary to check the status of EOC before begin-  
ning a conversion if you are sure the last conversion is  
complete. This can be done by ensuring that every  
conversion consists of at least 20 CLK cycles.  
Figure 16. ±5V Buffer for AC/DC Use Has ±3.5V Swing  
QSPI  
PCS0  
CS  
CONV  
MAX195  
SCK  
CLK  
MISO  
DOUT  
SCLK  
Data is clocked out of the MAX195 on CLK’s falling  
edge and can be clocked into the µP on the rising  
edge or the following falling edge. If you clock data in  
on the rising edge (SPI/QSPI with CPOL = 0 and CPHA  
= 0; standard MicroWire: Hitachi H8), the maximum  
CLK rate is given by:  
GPT  
*OC3  
BP/UP/SHDN  
*IC1  
EOC  
1
1
*OC2  
RESET  
f
=
/
2
CLK(max)  
t
+ t  
CD  
SD  
where t  
is the MAX195s CLK-to-DOUT valid delay  
* THE USE OF THESE SIGNALS ADDS FLEXIBILITY AND FUNCTIONALITY  
BUT IS NOT REQUIRED TO IMPLEMENT THE INTERFACE.  
CD  
and t is the data setup time for your µP.  
SD  
Figure 17. MAX195 Connection to QSPI Processor Clocking  
Data Out During Conversions  
MicroWire is a trademark of National Semiconductor Corp.  
16 ______________________________________________________________________________________  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
CS, CONV  
CLK  
EOC  
B15 FROM PREVIOUS  
B15  
t
B14  
B2  
B1  
B0  
B15  
DOUT  
CONVERSION  
t
DH  
t
DV  
CD  
DATA LATCHED:  
Figure 18. Timing Diagram for Circuit of Figure 17 (Mode 1)  
If c loc king d a ta in on the fa lling e d g e (CPOL = 0,  
CPHA = 1), the maximum CLK rate is given by:  
1
f
=
CLK(max)  
t
+ t  
SD  
CD  
QSPI  
Do not exceed the maximum CLK frequency given in  
the Electrical Characteristics table. To clock data in on  
the falling edge, your processor hold time must not  
PCS0  
SCK  
MISO  
OC3  
CS  
MAX195  
SCLK  
DOUT  
exceed t  
minimum (100ns).  
CD  
While QSPI can provide the required 20 CLK cycles as  
two continuous 10-bit transfers, SPI is limited to 8-bit  
transfers. This means that with SPI, a conversion must  
consist of three 8-bit transfers. Ensure that the pauses  
between 8-bit operations at your selected clock rate  
are short enough to maintain a 20ms or shorter conver-  
sion time, or the leakage of the capacitive DAC may  
cause errors.  
BP/UP/SHDN  
GPT  
IC1  
EOC  
OC2  
RESET  
CONV  
CLK  
Complete source code for the Motorola 68HC16 and  
the MAX195 evaluation kit (EV kit) using this mode is  
available with the MAX195 EV kit.  
IC3  
74HC32  
Mode 2 (Asynchronous Data Transfer)  
This mode uses a conversion clock (CLK) and a serial  
clock (SCLK). The serial data is clocked out between  
conversions, which reduces the maximum throughput  
for high CLK rates, but may be more convenient for  
some applications. Figure 19 is a block diagram with a  
QSPI processor (Motorola 68HC16) connected to the  
MAX195. Figure 20 shows the associated timing dia-  
gram. Figure 21 gives an assembly language listing for  
this arrangement.  
1.7MHz  
1.3µs  
START  
Figure 19. MAX195 Connection to QSPI Processor Clocking  
Data Out with SCLK Between Conversions  
______________________________________________________________________________________ 17  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
588ns  
CLK  
START  
MAX195  
EOC  
CS  
239ns  
4.19MHz  
SCLK  
DOUT  
B15 B14 B13  
B3 B2 B1 B0  
CONVERSION TIME  
4µs  
1.3µs  
9.4µs  
17µs*  
5.1µs  
* INTERRUPT LATENCY OF THE PROCESSOR  
Figure 20. Timing Diagram for Circuit of Figure 19 (Mode 2)  
An OR gate is used to synchronize the start” signal to  
the asynchronous CLK, as described in the External  
Clock section. As with Mode 1, the QSPI processor must  
run CLK during calibration and either count CLK cycles  
or, as is done here, monitor EOC to determine when cal-  
ibration is complete. Also, EOC is polled by the µP to  
determine when a conversion result is available. When  
EOC goes low, data is clocked out at the highest QSPI  
data rate (4.19Mbps). After the data is transferred, a  
new conversion can be initiated whenever desired.  
S u p p lie s , La yo u t , Gro u n d in g  
a n d Byp a s s in g  
For b e s t s ys te m p e rforma nc e , us e p rinte d c irc uit  
boards with separate analog and digital ground planes.  
Wire -wra p b oa rd s a re not re c omme nd e d . The two  
g round p la ne s s hould b e tie d tog e the r a t the low-  
impedance power-supply source and at the MAX195  
(Figure 22.) If the analog and digital supplies come  
from the same source, isolate the digital supply from  
the analog supply with a low-value resistor (10).  
The timing specification for SCLK-to-DOUT valid (t  
)
SD  
Constraints on sequencing the four power supplies are  
as follows.  
imposes some constraints on the serial interface. At  
SCLK rates up to 2.5Mbps, data is clocked out of the  
MAX195 b y a fa lling e d g e of SCLK a nd ma y b e  
clocked into the µP by the next rising edge (CPOL = 0,  
CPHA = 0). For data rates greater than 2.5Mbps (or for  
lower rates, if desired) it is necessary to clock data out  
of the MAX195 on SCLK’s falling edge and to clock it  
into the µP on SCLKs next falling edge (CPOL = 0,  
CPHA = 1). Also, your processor hold time must not  
Apply VDDA before VDDD.  
Apply VSSA before VSSD.  
Apply AIN and REF after VDDA and VSSA are present.  
The p owe r s up p lie s s hould s e ttle within the  
MAX195s power-on delay (minimum 500ns) or you  
should recalibrate the converter (pulse RESET low)  
before use.  
exceed t  
minimum (20ns). As with CLK in mode 1,  
SD  
maximum SCLK rates may not be possible with some  
interface specifications that are subsets of SPI.  
18 ______________________________________________________________________________________  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
Figure 21. MAX195 Code Listing for 68HC16 Module and Circuit of Figure 19  
______________________________________________________________________________________ 19  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
Figure 21. MAX195 Code Listing for 68HC16 Module and Circuit of Figure 19 (continued)  
20 ______________________________________________________________________________________  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
Figure 21. MAX195 Code Listing for 68HC16 Module and Circuit of Figure 19 (continued)  
Be sure that digital return currents do not pass through  
the analog ground and that return-current paths are low  
impedance. A 5mA current flowing through a PC board  
ground trace impedance of only 0.05creates an error  
voltage of about 250µV, or about 2LSBs error with a  
±4V full-scale system.  
is long enough that the supply voltages or ambient tem-  
perature may have changed.  
The time required for the converter to wake up” and  
settle depends heavily on the amount of additional error  
acceptable. For 0.5LSB additional error, 3.2µs is suffi-  
cient settling time and also allows enough time for reac-  
quisition of the analog input signal. 50µs settling is  
re q uire d for le s s tha n 0.1LSB e rror. Fig ure 23 is a  
graph of theoretical power consumption vs. conver-  
sions per second for the MAX195 that assumes the  
conversion clock is 1.7MHz and the converter is shut  
down as much as possible between conversions.  
The board layout should ensure as much as possible  
that digital and analog signal lines are kept separate.  
Do not run analog and digital (especially clock) lines  
parallel to one another. If you must cross one with the  
other, do so at right angles.  
The ADCs high-speed comparator is sensitive to high-  
frequency noise on the VDDA and VSSA power sup -  
plie s. Byp a ss the se supp lie s to the a na log g round  
plane with 0.1µF in parallel with 1µF or 10µF low-ESR  
capacitors. Keep capacitor leads short for best supply-  
noise rejection.  
Stop CLK before shutting down the MAX195. CLK must  
be stopped without generating short clock pulses. Short  
CLK pulses (less than 150ns), or shutting down the  
MAX195 without stopping CLK, may adversely affect the  
MAX195s inte rna l c a lib ra tion d a ta . In a p p lic a tions  
where CLK is free-running and asynchronous, use the  
circuit of Figure 24 to stop CLK cleanly.  
S h u t d o w n  
The MAX195 ma y b e s hut d own b y p ulling BP/UP/  
SHDN low. In addition to lowering power dissipation to  
10µW (100µW max) when the device is not in use, you  
can save considerable power by shutting the converter  
down for short periods between conversions. There is  
no need to perform a reset (calibration) after the con-  
verter has been shut down unless the time in shutdown  
To minimize the time required to settle and perform a  
conversion, shut the converter down only after a con-  
version is finished and the desired mode (unipolar or  
bipolar) has been set. This ensures that the sampling  
capacitor array is properly connected to the input sig-  
nal. If shut down in mid-conversion, when awakened,  
______________________________________________________________________________________ 21  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
10Ω  
VDDD  
100  
50µs WAKE-UP DELAY  
0.01LSB ERROR  
VDDA  
10µF  
5V  
10  
0.1µF  
MAX195  
20µs WAKE-UP DELAY  
0.25LSB ERROR  
0.1µF  
10µF  
MAX195  
DGND  
AGND  
1
10µF  
0.1  
5V  
0.1µF  
3.2µs WAKE-UP DELAY  
0.5LSB ERROR  
0.1µF  
10µF  
VSSA  
VSSD  
0.01  
1
10  
100  
1000 10,000 100,000  
CONVERSIONS PER SECOND  
10Ω  
Figure 23. Power Dissipation vs. Conversions/sec When  
Shutting the MAX195 Down Between Conversions  
Figure 22. Supply Bypassing and Grounding  
the MAX195 finishes the old conversion, allows four  
clock (CLK) cycles for input acquisition, then begins  
the new conversion.  
The theoretical minimum ADC noise is caused by quan-  
tization error and is a direct result of the ADCs resolu-  
tion: SNR = (6.02N + 1.76)dB, where N is the number  
of bits of resolution. A perfect 16-bit ADC can, there-  
fore, do no better than 98dB. An FFT plot of the output  
shows the output level in various spectral bands. Figure  
25 shows the result of sampling a pure 1kHz sinusoid at  
85ksps with the MAX195.  
_____________Dyn a m ic P e rfo rm a n c e  
High-speed sampling capability, 85ksps throughput,  
and wide dynamic range make the MAX195 ideal for  
AC applications and signal processing. To support  
the s e a nd othe r re la te d a p p lic a tions , Fa s t Fourie r  
Transform (FFT) test techniques are used to guarantee  
the ADCs dynamic frequency response, distortion, and  
noise at the rated throughput. Specifically, this involves  
applying a low-distortion sine wave to the ADC input  
a nd re c ord ing the d ig ita l c onve rs ion re s ults for a  
specified time. The data is then analyzed using an FFT  
a lg orithm, whic h d e te rmine s its s p e c tra l c onte nt.  
Conversion errors are then seen as spectral elements  
other than the fundamental input frequency.  
By transposing the equation that converts resolution to  
SNR, we can, from the measured SNR, determine the  
effective resolution or the “effective number of bitsthe  
ADC provides: N = (SNR - 1.76) / 6.02. Substituting  
SINAD for SNR in this formula results in a better mea-  
sure of the ADCs usefulness. Figure 26 shows the  
effective number of bits as a function of the MAX195s  
input frequency calculated from the SINAD.  
If your intended sample rate is much lower than the  
MAX195s maximum of 85ksps, you can improve your  
noise performance by taking more samples than neces-  
sary (oversampling) and averaging them in software.  
Figure 27 is a histogram showing 16,384 samples for  
the MAX195 without averaging, with an ideal noiseless  
conversion,” and with a running average of five sam-  
ples. The standard deviation is 0.621LSB without aver-  
aging and 0.382LSB with the running average. If fewer  
data points are needed, normal averaging (e.g., five  
data points averaged to produce one data point) can be  
used instead of a running average, with similar results.  
S ig n a l-t o -No is e Ra t io a n d  
Effe c t ive Nu m b e r o f Bit s  
Signal-to-Noise Ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency to  
the RMS amplitude of all other ADC output signals. The  
output band is limited to frequencies above DC and  
below one-half the ADC sample rate. This usually (but  
not always) includes distortion as well as noise compo-  
nents. For this reason, the ratio is sometimes referred to  
as Signal-to-Noise + Distortion (SINAD).  
22 ______________________________________________________________________________________  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
1
/
74HC73  
2
MAX195  
J
CLOCK SHUTDOWN  
+5V  
CLK  
Q
K
BP/UP/SHDN  
CK  
2 x CLK  
CK  
(2 x CLK)  
Q
(CLK)  
J
(CLOCK SHUTDOWN)  
Figure 24. Circuit to Stop Free-Running Asynchronous CLK  
Even better than oversampling and averaging is over-  
sampling and digital filtering. Averaging is just a rough  
(but computationally simple) type of digital filter. Finite  
impulse response (and other) digital filter algorithms are  
readily available, and are useful even with slow proces-  
sors if the data rate is low or the data does not need to  
be processed in real-time. When using averaging, be  
sure to average an odd number of samples to avoid  
small offset errors caused by asymmetrical rounding.  
-10  
f
= 1kHz  
IN  
f = 85kHz  
-30  
-50  
S
T = +25°C  
A
-70  
Whether simple averaging or more complex digital fil-  
tering is used, the effect of oversampling is to spread  
the noise across a wider bandwidth. Digital filtering or  
averaging then eliminates the portion of this noise that  
lies above the filters passband, leaving less noise in  
the passband than if oversampling was not used. An  
additional benefit of oversampling is that it simplifies  
the design or choice of an anti-aliasing pre-filter for the  
input. You can use a filter with a more gradual rolloff,  
because the sample rate is much higher than the fre-  
quency of interest.  
-90  
-110  
-130  
-150  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (kHz)  
Figure 25. MAX195 FFT Plot  
______________________________________________________________________________________ 23  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
16  
15  
14  
100  
95  
90  
85  
80  
f = 85kHz  
S
T = +25°C  
A
f = 85kHz  
S
T = +25°C  
A
13  
12  
11  
10  
MAX195  
75  
70  
65  
60  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 28. Signal-to-Noise + Distortion vs. Frequency  
Figure 26. Effective Bits vs. Input Frequency  
This is expressed as follows:  
18  
2
N
2
2
2
V
= +4.5V  
= +2.25V  
IDEAL  
CONVERSION  
REF  
V2 + V3 + V4 + ...+ V  
16  
14  
12  
V
AIN  
THD = 20log  
UNIPOLAR MODE  
85ksps  
V1  
where V is the fundamental RMS amplitude, and V  
NO AVERAGING  
1
2
10  
8
through V are the amplitudes of the 2nd through Nth  
N
RUNNING  
AVERAGE OF  
5 SAMPLES  
ha rmonic s . The THD s p e c ific a tion in the Ele c tric a l  
Characteristics includes the 2nd through 5th harmon-  
ics. In the MAX195, this distortion is caused primarily  
by the changes in on-resistance of the AIN sampling  
switches with changing input voltage. These resis-  
tance changes, together with the DACs capacitance  
(whic h c a n a ls o va ry with inp ut volta g e ), c a us e a  
varying time delay for AC signals, which causes sig -  
nific a nt d is tortion a t mod e ra te ly hig h fre q ue nc ie s  
(Figure 28).  
6
4
2
0
8021 8022 8023 8024 8025 8026 8027  
OUTPUT CODE (HEXADECIMAL)  
Figure 27. Histogram of 16,384 Conversions Shows Effects of  
Noise and Averaging  
S p u rio u s -Fre e Dyn a m ic Ra n g e  
Spurious-free dynamic range is the ratio of the funda-  
mental RMS amplitude to the amplitude of the next  
largest spectral component (in the frequency band  
a b ove DC a nd b e low one -ha lf the s a mp le ra te ).  
Usually, this peak occurs at some harmonic of the input  
frequency. However, if the ADC is exceptionally linear,  
it may occur only at a random peak in the ADCs noise  
floor.  
To t a l Ha rm o n ic Dis t o rt io n  
If a pure sine wave is input to an ADC, AC integral non-  
linearity (INL) of an ADCs transfer function results in  
harmonics of the input frequency being present in the  
sampled output data.  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sum of all the harmonics (in the frequency band above  
DC and below one-half the sample rate, but not includ-  
ing the DC component) to the RMS amplitude of the  
fundamental frequency.  
Tra n s fe r Fu n c t io n  
Figures 29 and 30 show the MAX195s transfer func-  
tions. In unipolar mode, the output data is in binary for-  
mat and in bipolar mode it is offset binary.  
24 ______________________________________________________________________________________  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
___________________Ch ip To p o g ra p h y  
11 . . . 111  
11 . . . 110  
11 . . . 101  
11 . . . 100  
11 . . . 011  
11 . . . 010  
BP/UP/SHDN  
CLK  
VSSA  
VDDA  
SCLK  
AGND  
00 . . . 110  
00 . . . 101  
00 . . . 100  
00 . . . 011  
00 . . . 010  
00 . . . 001  
00 . . . 000  
AIN  
REF  
0. 273"  
(6. 93mm)  
VDDD  
0V  
V
REF  
- (1LSB)  
Figure 29. MAX195 Unipolar Transfer Function  
DOUT  
DGND  
11 . . . 111  
11 . . . 110  
11 . . . 101  
VSSD  
EOC  
CS  
CONV  
RESET  
10 . . . 010  
10 . . . 001  
10 . . . 000  
01 . . . 111  
01 . . . 110  
0. 144"  
(3. 66mm)  
TRANSISTOR COUNT: 7966  
SUBSTRATE CONNECTED TO VDDA  
00 . . . 010  
00 . . . 001  
00 . . . 000  
-V  
REF  
0V  
V
REF  
- (1LSB)  
Figure 30. MAX195 Bipolar Transfer Function  
______________________________________________________________________________________ 25  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
________________________________________________________P a c k a g e In fo rm a t io n  
MAX195  
26 ______________________________________________________________________________________  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
MAX195  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
______________________________________________________________________________________ 27  
1 6 -Bit , 8 5 k s p s ADC w it h 1 0 µA S h u t d o w n  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
MAX195  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
28 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX195BCPE

16-Bit, 85ksps ADC with 10レA Shutdown
MAXIM

MAX195BCPE+

暂无描述
MAXIM

MAX195BCWE

16-Bit, 85ksps ADC with 10レA Shutdown
MAXIM

MAX195BCWE+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO16, 0.300 INCH, PLASTIC, ROHS COMPLIANT, SOIC-16
MAXIM

MAX195BCWE+T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO16, 0.300 INCH, PLASTIC, ROHS COMPLIANT, SOIC-16
MAXIM

MAX195BEPE

16-Bit, 85ksps ADC with 10レA Shutdown
MAXIM

MAX195BEWE

16-Bit, 85ksps ADC with 10レA Shutdown
MAXIM

MAX195BEWE+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO16, 0.300 INCH, PLASTIC, ROHS COMPLIANT, SOIC-16
MAXIM

MAX195BEWE+T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO16, 0.300 INCH, PLASTIC, ROHS COMPLIANT, SOIC-16
MAXIM

MAX195BEWE-T

暂无描述
MAXIM

MAX195BMDE

16-Bit, 85ksps ADC with 10レA Shutdown
MAXIM

MAX195EVKIT

Evaluation-System Evaluation Kit for the MAX194/MAX195
ETC