MAX1961EEP+T [MAXIM]

Switching Controller, Voltage-mode, 1120kHz Switching Freq-Max, BICMOS, PDSO20, 0.150 INCH, MO-137, QSOP-20;
MAX1961EEP+T
型号: MAX1961EEP+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Controller, Voltage-mode, 1120kHz Switching Freq-Max, BICMOS, PDSO20, 0.150 INCH, MO-137, QSOP-20

控制器
文件: 总29页 (文件大小:453K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2740; Rev 0; 1/03  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
General Description  
Features  
The MAX1960/MAX1961/MAX1962 high-current, high-  
efficiency voltage-mode step-down DC-DC controllers  
operate from a 2.35V to 5.5V input and generate output  
voltages down to 0.8V at up to 20A. An on-chip charge  
pump generates a regulated 5V for MOSFET drive.  
Additionally, adaptive dead-time drivers allow a  
wide variety of MOSFETs to be used without risking  
shoot-through.  
o 0.5% Accurate Output  
o Operates from 2.35V to 5.5V Supply  
o Generates Low Output Voltage Down to 0.8V  
o On-Chip Charge Pump Provides 5V Gate Drive  
o Ceramic or Electrolytic Capacitors  
o 94% Efficiency  
o External Synchronization from 450kHz to 1.2MHz  
o 500kHz/1MHz Fixed-Frequency PWM Operation  
o Fast Transient Response  
Fixed-frequency PWM operation and external synchro-  
nization make these controllers suitable for telecom  
and datacom applications. The operating frequency is  
programmable to either 500kHz or 1MHz, or from  
450kHz to 1.2MHz with an external clock. A clock output  
is provided to synchronize another converter for 180°  
out-of-phase operation. A high closed-loop bandwidth  
provides excellent transient response for applications  
with dynamic loads.  
o Two Converters Can Operate 180° Out-of-Phase  
o
4% Voltage Margining for System Test  
o 10% Accurate Current Sensing (MAX1962)  
o Adaptive Dead Time Prevents Shoot-Through  
Lossless current sensing in the MAX1960 and  
MAX1961 is achieved by monitoring the drain-to-source  
voltage of the low-side external FET. The current limit is  
scalable to accommodate a wide variety of MOSFETs  
and load currents. The MAX1962 has 10% accurate  
sense-resistor-based current limiting.  
Ordering Information  
PART  
MAX1960EEP  
MAX1961EEP  
MAX1962EEP  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
20 QSOP  
20 QSOP  
20 QSOP  
The MAX1960 and MAX1962 have an adjustable output  
voltage from 0.8V to 4.95V. The MAX1961 and  
MAX1962 have four preset output voltages (1.5V, 1.8V,  
2.5V, and 3.3V) and feature 0.5% voltage accuracy  
over temperature, line, and load variations. The  
MAX1960 and MAX1961 also feature voltage-margining  
control inputs that shift the output voltage up or down  
by 4% for system testing.  
Typical Operating Circuit  
C+  
C-  
AV  
INPUT  
2.35V TO 5.5V  
V
DD  
CC  
MAX1960  
V
DD  
CTL1  
VOLTAGE  
MARGINING  
AND ON/OFF  
BST  
DH  
Applications  
ASIC, FPGA, DSP, and CPU Core and I/O Voltages  
CTL2  
COMP  
OUTPUT  
IN  
UP TO 20A  
0.8 TO 0.87 V  
Cellular Base Stations  
LX  
REF  
Telecom and Network Equipment  
Server and Storage Systems  
DL  
GND  
PGND  
ILIM  
FB  
FSET/SYNC  
CLKOUT  
OPTIONAL  
SYNCHRONIZATION  
CLKOUT  
180° OUT-OF-PHASE  
Pin Configurations and Selector Guide appear at the end  
of the data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
, CTL_, CS, FSET/SYNC, SEL, EN,  
Continuous Power Dissipation (T = +70°C)  
A
OUT to GND ..........................................................-0.3V to +6V  
20-Pin QSOP (derate up to +70°C)..............................727mW  
20-Pin QSOP (derate above +70°C)........................9.1mW/°C  
Operating Temperature Range (Extended).........-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
ILIM, COMP, REF, FB, CLKOUT,  
C- to GND ..............................................-0.3V to V  
C+ to GND.............-0.3V to higher of V  
+ 0.3V  
+ 0.3V  
AVDD  
+ 1V or V  
VCC  
VDD  
V
, AV  
to GND..............-0.3V to higher of V  
- 0.3V or 6V  
DD  
DD  
VCC  
DL to PGND ................................................-0.3V to V  
+ 0.3V  
VDD  
BST to GND............................................................-0.3V to +12V  
DH to LX ...................................................................-0.3V to +6V  
LX to BST..................................................................-6V to +0.3V  
PGND to GND, or V  
to AV  
............................-0.3V to +0.3V  
DD  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3.3V, Circuits of Figures 912, T = 0°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.)  
A A  
VCC  
PARAMETER  
Input Voltage Range  
Input Voltage UVLO  
Input Voltage UVLO  
CONDITIONS  
MIN  
2.35  
1.95  
3.9  
TYP  
MAX  
5.5  
UNITS  
V
V
V
V
V
V
V
CC  
CC  
DD  
Rising or falling, hysteresis = 33mV (typ)  
Rising or falling, hysteresis = 44mV (typ)  
2.3  
4.45  
Output Voltage  
0.8  
MAX1960/MAX1962 (measured at FB)  
SEL = GND  
0.796  
1.492  
1.791  
2.487  
3.272  
+3.8  
-3.8  
0.800  
1.500  
1.800  
2.500  
3.300  
+4  
0.804  
1.508  
1.809  
2.514  
3.336  
+4.2  
MAX1961/  
DC Output Accuracy  
SEL = REF  
V
MAX1962 (FB = V ),  
DD  
measured at output  
SEL not connected  
SEL = V  
DD  
Positive Voltage-Margining Shift  
Negative Voltage-Margining Shift  
Load Regulation Error  
MAX1960/MAX1961  
MAX1960/MAX1961  
0V to full load  
%
%
-4  
-4.2  
0.08  
0.1  
%
Line Regulation Error  
V
= 2.7V to 5.5V  
%
VCC  
FB Input Bias Current  
-0.2  
1
+0.2  
3
µA  
mS  
Feedback Transconductance  
COMP Discharge Resistance  
DC-DC Soft-Start Time  
2
In shutdown  
10  
100  
1280  
500  
1000  
cycles  
FSET/SYNC = GND  
450  
880  
450  
80  
550  
1120  
1200  
Switching Frequency  
kHz  
FSET/SYNC = V  
CC  
SYNC Frequency Range  
Maximum Duty Cycle  
kHz  
%
f = 1MHz  
83  
92  
11  
Maximum Duty Cycle  
f = 500kHz  
90  
%
Quiescent Supply Current  
Shutdown Supply Current  
15  
15  
mA  
µA  
2
_______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V, Circuits of Figures 912, T = 0°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.)  
A A  
VCC  
PARAMETER  
CONDITIONS  
5.5V, I = 1mA to 50mA  
MIN  
TYP  
MAX  
UNITS  
2.7V V  
4.75  
5.25  
V
VCC  
LOAD  
2.35V V  
= 4.7µF, C6 = 22µF (Note 1)  
2.7V, I  
= 1mA to 35mA, C1  
LOAD  
VCC  
4.45  
5.25  
V
V
V
Output Voltage  
DD  
2.35V V 3.6V with tripler, I  
50mA (circuit of Figure 12) (Note 1)  
= 1 to  
LOAD  
VCC  
4.75  
5.25  
Reference Voltage (No Load)  
Reference Load Regulation  
1.269  
1.280  
3
1.291  
V
-50µA to +50µA  
mV  
V
V
V
= 0.8V  
= 2.0V  
= 3.3V  
44  
45  
38  
53  
62  
55  
58  
OUT  
OUT  
OUT  
Positive Current-Limit Threshold  
MAX1962  
50  
mV  
(V  
PGND  
- V )  
LX  
48  
Negative Current-Limit Threshold  
(V - V  
MAX1962, V  
= 0.8V to 3.3V  
38  
50  
68  
mV  
OUT  
)
PGND  
LX  
CS Bias Current  
MAX1962, V = 3.3V  
CS  
20  
30  
50  
50  
µA  
µA  
OUT Bias Current  
MAX1961/MAX1962, V  
= 3.3V  
OUT  
Current-Limit Threshold (Positive  
MAX1960/MAX1961, ILIM = V  
MAX1960/MAX1961, ILIM = V  
58  
50  
74  
67  
90  
85  
mV  
mV  
mV  
mV  
DD  
Direction, Fixed, V  
- V )  
LX  
PGND  
Current-Limit Threshold (Negative  
Direction, Fixed, V - V  
DD  
)
PGND  
LX  
MAX1960/MAX1961, R  
= 160kΩ  
= 160kΩ  
100  
250  
90  
114  
279  
107  
271  
135  
306  
125  
296  
ILIM  
ILIM  
Current-Limit Threshold (Positive  
Direction, Adjustable, V - V  
)
)
PGND  
LX  
R
= 400kΩ  
ILIM  
MAX1960/MAX1961, R  
= 400kΩ  
Current-Limit Threshold (Negative  
Direction, Adjustable, V - V  
LX  
PGND  
R
245  
ILIM  
Thermal-Shutdown Threshold  
DH Gate-Driver On-Resistance  
DL Gate-Driver On-Resistance (Pullup)  
15°C hysteresis  
- V = 5V, pulling up or down  
DL high state  
+160  
1.8  
1.8  
0.5  
35  
°C  
V
3.5  
3.5  
1.6  
BST  
LX  
DL Gate-Driver On-Resistance (Pulldown) DL low state  
DH falling to DL rising  
Minimum Adaptive Dead Time  
FSET/SYNC Pulse Width  
ns  
DH rising to DL falling  
Minimum high time (Note 1)  
Minimum low time (Note 1)  
(Note 1)  
26  
200  
200  
ns  
FSET/SYNC Rise/Fall Time  
100  
ns  
V
CTL_, FSET/SYNC, EN Input High Voltage  
CTL_, FSET/SYNC, EN Input Low Voltage  
CTL_, FSET/SYNC, EN Input Current  
V
V
= 2.35V to 5.5V  
= 2.35V to 5.5V  
2.0  
-1  
VCC  
VCC  
0.8  
+1  
0.1  
V
µA  
V
CLKOUT V  
Sinking 1mA  
0.01  
OL  
V
0.2V  
-
V
-
VCC  
VCC  
CLKOUT V  
Sourcing 1mA  
V
OH  
0.01V  
CLKOUT Rise/Fall Time  
C
= 100pF (Note 1)  
40  
ns  
LOAD  
_______________________________________________________________________________________  
3
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
ELECTRICAL CHARACTERISTICS  
(V  
= 3.3V, Circuits of Figures 912, T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
A
VCC  
PARAMETER  
Input Voltage Range  
Input Voltage UVLO  
Input Voltage UVLO  
CONDITIONS  
MIN  
2.35  
TYP  
MAX  
5.50  
2.3  
UNITS  
V
V
V
V
V
V
V
CC  
CC  
DD  
Rising or falling  
Rising or falling  
1.95  
3.90  
4.45  
Output Voltage  
0.8  
MAX1960/MAX1962 (measured at FB)  
SEL = GND  
0.795  
1.492  
1.789  
2.482  
3.272  
0.805  
1.508  
1.809  
2.517  
3.339  
4.2  
MAX1961/MAX1962  
DC Output Accuracy  
SEL = REF  
V
(FB = V ),  
DD  
measured at output  
SEL not connected  
SEL = V  
DD  
Positive Voltage-Margining Shift  
Negative Voltage-Margining Shift  
FB Input Bias Current  
MAX1960/MAX1961  
MAX1960/MAX1961  
3.8  
-3.8  
-0.2  
1
%
%
-4.2  
+0.2  
3
µA  
µS  
Feedback Transconductance  
COMP Discharge Resistance  
In shutdown  
100  
FSET/SYNC = GND  
450  
880  
450  
80  
550  
Switching Frequency  
kHz  
FSET/SYNC = V  
1120  
1200  
CC  
SYNC Frequency Range  
Maximum Duty Cycle  
kHz  
%
f = 1MHz  
Maximum Duty Cycle  
f = 500kHz  
90  
%
Quiescent Supply Current  
Shutdown Supply Current  
15  
15  
mA  
µA  
2.7V V  
5.5V, I  
= 1mA to 50mA  
4.75  
4.45  
5.25  
VCC  
LOAD  
2.35V V  
C1 = 4.7µF, C6 = 22µF  
2.7V, I  
= 1mA to 35mA,  
VCC  
LOAD  
5.25  
V
Output Voltage  
V
DD  
2.35V V 3.6V with tripler, I  
to 50mA (circuit of Figure 12)  
= 1mA  
LOAD  
VCC  
4.75  
1.267  
45  
5.25  
1.291  
56  
Reference Voltage (No Load)  
Positive Current-Limit Threshold  
V
MAX1962, V  
MAX1962, V  
= 2V  
= 2V  
mV  
OUT  
(V - V  
)
CS  
OUT  
Negative Current-Limit Threshold  
(V - V  
42  
64  
mV  
OUT  
)
CS  
OUT  
CS Bias Current  
MAX1962, V = 3.3V  
CS  
50  
50  
µA  
µA  
OUT Bias Current  
MAX1961/MAX1962, V  
= 3.3V  
OUT  
Current-Limit Threshold (Positive  
MAX1960/MAX1961, ILIM = V  
MAX1960/MAX1961, ILIM = V  
58  
50  
90  
85  
mV  
mV  
mV  
DD  
Direction, Fixed, V  
- V )  
LX  
PGND  
Current-Limit Threshold (Negative  
Direction, Fixed, V - V  
DD  
)
PGND  
LX  
MAX1960/MAX1961, R  
= 160kΩ  
100  
250  
135  
306  
ILIM  
Current-Limit Threshold (Positive  
Direction, Adjustable, V - V  
)
PGND  
LX  
R
= 400kΩ  
ILIM  
4
_______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V, Circuits of Figures 912, T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
A
VCC  
PARAMETER  
Current-Limit Threshold (Negative  
Direction, Adjustable, V - V  
CONDITIONS  
MAX1960/MAX1961, R = 160kΩ  
MIN  
90  
TYP  
MAX  
125  
296  
3.5  
UNITS  
ILIM  
mV  
)
LX  
PGND  
R
= 400kΩ  
245  
ILIM  
DH Gate-Driver On-Resistance  
DL Gate-Driver On-Resistance (Pullup)  
DL Gate-Driver On-Resistance (Pulldown) DL low state  
V
- V = 5V, pulling up or down  
LX  
BST  
DL high state  
3.5  
1.6  
Minimum high time  
Minimum low time  
200  
200  
FSET/SYNC Pulse Width  
ns  
FSET/SYNC Rise/Fall Time  
100  
ns  
V
CTL_, FSET/SYNC, EN Input High Voltage  
CTL_, FSET/SYNC, EN Input Low Voltage  
CTL_, FSET/SYNC, EN Input Current  
V
V
= 2.35V to 5.5V  
= 2.35V to 5.5V  
2.0  
-1  
VCC  
VCC  
0.8  
+1  
0.1  
V
µA  
V
CLKOUT V  
Sinking 1mA  
OL  
V
0.2V  
-
VCC  
CLKOUT V  
Sourcing 1mA  
V
OH  
CLKOUT Rise/Fall Time  
C
= 100pF  
40  
ns  
LOAD  
Note 1: Guaranteed by design.  
Note 2: Specifications at -40°C are guaranteed by design, and not production tested.  
_______________________________________________________________________________________  
5
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
Typical Operating Characteristics  
(Circuit of Figure 9, T = +25°C, unless otherwise noted.)  
A
EFFICIENCY vs. LOAD CURRENT WITH  
15A 1MHz CIRCUIT, 3.3V INPUT  
EFFICIENCY vs. LOAD CURRENT WITH  
15A 1MHz CIRCUIT, 5V INPUT  
EFFICIENCY vs. LOAD CURRENT WITH  
15A 500kHz CIRCUIT, 3.3V INPUT  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
V
= 2.5V  
V
= 3.3V  
OUT  
OUT  
V
= 2.5V  
OUT  
V
= 1.8V  
OUT  
V
= 1.8V  
V
V
V
= 2.5V  
= 1.8V  
= 1.5V  
OUT  
OUT  
OUT  
OUT  
V
= 1.5V  
OUT  
V
= 1.5V  
OUT  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
EFFICIENCY vs. LOAD CURRENT WITH  
15A 500kHz CIRCUIT, 5V INPUT  
OUTPUT VOLTAGE  
vs. INPUT VOLTAGE, 1MHz  
OUTPUT VOLTAGE  
vs. INPUT VOLTAGE, 500kHz  
100  
90  
80  
70  
60  
50  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.3V  
OUT  
3.3V OUTPUT  
3.3V OUTPUT  
2.5V OUTPUT  
DROPOUT  
2.5V OUTPUT  
DROPOUT  
V
V
= 2.5V  
= 1.8V  
OUT  
OUT  
1.8V OUTPUT  
1.5V OUTPUT  
1.2V OUTPUT  
1.8V OUTPUT  
1.5V OUTPUT  
1.2V OUTPUT  
V
= 1.5V  
OUT  
15A LOAD  
15A LOAD  
0.1  
1
10  
100  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
INPUT VOLTAGE (V)  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
INPUT VOLTAGE (V)  
LOAD CURRENT (A)  
FB REGULATION VOLTAGE  
vs. LOAD CURRENT  
FREQUENCY  
vs. INPUT VOLTAGE  
0.803  
0.802  
0.801  
0.800  
0.799  
0.798  
0.797  
1200  
1100  
1000  
900  
FSET/SYNC = V  
CC  
800  
700  
600  
FSET/SYNC = GND  
500  
400  
0
5
10  
15  
20  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
LOAD CURRENT (A)  
INPUT VOLTAGE (V)  
6
_______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
Typical Operating Characteristics (continued)  
(Circuit of Figure 9, T = +25°C, unless otherwise noted.)  
A
CHARGE-PUMP OUTPUT VOLTAGE  
vs. CHARGE-PUMP LOAD CURRENT, 1MHz  
CHARGE-PUMP OUTPUT VOLTAGE  
vs. CHARGE-PUMP LOAD CURRENT, 500kHz  
FREQUENCY vs. TEMPERATURE  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
5.2  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
C1 = 1µF  
C6 = 4.7µF  
C1 = 0.47µF  
C6 = 2.2µF  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
FSET/SYNC = V  
CC  
V
= 3.3V  
IN  
V
= 2.5V  
IN  
FSET/SYNC = GND  
V
= 2.5V  
IN  
V
= 3.3V  
IN  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
-40  
-15  
10  
35  
60  
85  
CHARGE-PUMP LOAD CURRENT (mA)  
CHARGE-PUMP LOAD CURRENT (mA)  
TEMPERATURE (°C)  
TRIPLER CHARGE-PUMP OUTPUT VOLTAGE  
vs. CHARGE-PUMP LOAD CURRENT, 1MHz  
TRIPLER CHARGE-PUMP OUTPUT VOLTAGE  
vs. CHARGE-PUMP LOAD CURRENT, 500kHz  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
5.2  
C10, C11, C12 = 1µF  
C6 = 4.7µF  
C10, C11, C12 = 0.47µF  
C6 = 2.2µF  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
V
= 2.5V  
V = 2.5V  
IN  
IN  
CIRCUIT OF FIGURE 12  
10 20  
CIRCUIT OF FIGURE 12  
10 20  
0
30  
40  
50  
0
30  
40  
50  
CHARGE-PUMP LOAD CURRENT (mA)  
CHARGE-PUMP LOAD CURRENT (mA)  
MAX1960/MAX1961  
CURRENT-LIMIT THRESHOLD  
VOLTAGE vs. TEMPERATURE  
MAX1962  
CURRENT-LIMIT THRESHOLD  
VOLTAGE vs. TEMPERATURE  
350  
52.0  
51.5  
51.0  
50.5  
50.0  
49.5  
49.0  
48.5  
48.0  
47.5  
47.0  
R
= 390kΩ  
300  
250  
200  
150  
100  
50  
ILIM  
ILIM = V  
DD  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
Typical Operating Characteristics (continued)  
(Circuit of Figure 9, T = +25°C, unless otherwise noted.)  
A
VOLTAGE-MARGINING STEP RESPONSE  
7.5A TO 15A TO 7.5A LOAD TRANSIENT  
MAX1960 toc17  
MAX1960 toc16  
CTL1  
CTL2  
5V/div  
5V/div  
50mV/div  
V
OUT  
I
200mA/div  
200mV/div  
IN  
I
LOAD  
5A/div  
V
OUT  
CIRCUIT OF FIGURE 13  
50µs/div  
20µs/div  
MAX1960/MAX1961  
SHORT-CIRCUIT WAVEFORMS  
STARTUP/SHUTDOWN WAVEFORMS  
MAX1960 toc18  
MAX1960 toc19  
CIRCUIT OF FIGURE 13  
V
OUT  
2V/div  
I
10A/div  
10A/div  
IN  
I
L
I
20A/div  
5A/div  
L
V
OUT  
1V/div  
I
IN  
1ms/div  
50µs/div  
MAX1962  
SHORT-CIRCUIT WAVEFORMS  
SYNC TIMING WAVEFORMS  
MAX1960 toc21  
MAX1960 toc20  
DH  
MASTER  
I
IN  
10A/div  
10A/div  
DL  
MASTER  
CLKOUT  
MASTER/  
SYNC  
I
L
SLAVE  
DH  
SLAVE  
V
OUT  
2V/div  
V
OUT  
= 5V  
IN  
= 3.3V  
DL  
SLAVE  
V
200ns/div  
50µs/div  
8
_______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX1960 MAX1961 MAX1962  
Clock Output. Connect to FSET/SYNC of a second converter to operate 180° out-of-  
1
2
1
2
1
2
CLKOUT  
phase. CLKOUT swings from V to GND. CLKOUT is low in shutdown (see the  
CC  
Operating Frequency and Synchronization section).  
Frequency Set and Synchronization. Connect to GND for 500kHz operation,  
connect to V  
for 1MHz operation, or drive with clock signal to synchronize  
FSET/SYNC  
CC  
(between 450kHz and 1200kHz).  
Current Limit. Connect a resistor from ILIM to GND to set the current-sense  
3
3
ILIM  
EN  
threshold voltage. Connect ILIM to V  
to select the default threshold of 75mV.  
DD  
3
Enable. Drive high for normal operation. Drive low or connect to GND for shutdown mode.  
Preset Output Voltage Select. Allows the output to be set to one of four preset  
voltages (1.5V, 1.8V, 2.5V, and 3.3V). For the MAX1962, FB must be connected to  
4
4
SEL  
V
if SEL is to be used (see the Setting the Output Voltage section).  
DD  
4
N.C.  
OUT  
No Connection. Not internally connected.  
Output. Connect to the output. Used to sense the output voltage for internal  
feedback and current sense.  
8
5
Control Pins. Controls voltage margining and shutdown. Connect both CTL1 and  
CTL2 high for normal operation. Connect both CTL1 and CTL2 low for shutdown.  
Connect CTL1 high and CTL2 low for +4% voltage margining. Connect CTL1 low  
and CTL2 high for -4% voltage margining. If voltage margining is not to be used,  
connect CTL1 and CTL2 together and use to enable/shutdown the device.  
5
6
5
6
CTL1  
CTL2  
CS  
Current-Sense Input. Connect to the junction of the current-sense resistor and the  
inductor. The MAX1962 current-sense threshold is 50mV measured from CS to OUT.  
6
7
Filtered Supply from V . Connect a 1µF bypass capacitor. AV  
is forced to V  
CC  
DD  
DD  
7
7
AV  
DD  
in shutdown. Do not apply an external load to AV  
.
DD  
Feedback Input. The feedback threshold is 0.8V. Connect to the center of a resistive  
voltage-divider from the output to GND to set the output voltage to 0.8V or greater. On  
8
8
FB  
the MAX1962, connect FB to V to select preset output voltages (see SEL).  
DD  
9
9
9
COMP  
REF  
Compensation Pin. COMP is forced to GND in shutdown, UVLO, or thermal fault.  
10  
10  
10  
Reference Output. V  
= 1.28V. Bypass with a 0.22µF capacitor to GND.  
REF  
Analog Ground. Connect to the PC board analog ground plane. Connect the PC  
board analog ground plane and power ground planes with a single connection.  
11  
12  
11  
12  
11  
12  
GND  
Charge-Pump Output. Provides regulated 5V to power the IC and gate drivers.  
Bypass with a 4.7µF ceramic capacitor for operating frequencies between 450kHz  
V
DD  
and 950kHz. Bypass with a 2.2µF ceramic capacitor for 1MHz operation. V is  
DD  
internally forced to V  
in shutdown. Do not apply an external load to V  
.
DD  
CC  
Low-Side MOSFET Synchronous Rectifier Gate-Driver Output. DL is high in  
shutdown.  
13  
14  
13  
14  
13  
14  
DL  
PGND  
Power Ground. Connect to the PC board power ground plane.  
_______________________________________________________________________________________  
9
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX1960 MAX1961 MAX1962  
Charge-Pump Flying Capacitor Negative Connection. Use a 0.47µF ceramic  
capacitor at 1MHz, and 1µF between 450kHz and 950kHz.  
15  
16  
15  
16  
15  
16  
C-  
Charge-Pump Flying Capacitor Positive Connection. Use a 0.47µF ceramic  
capacitor at 1MHz and 1µF between 450kHz and 950kHz.  
C+  
17  
18  
19  
20  
17  
18  
19  
20  
17  
18  
19  
20  
V
Input Supply to Charge Pump  
CC  
BST  
DH  
LX  
Boost Capacitor Connection. Connect a 0.1µF ceramic capacitor from BST to LX.  
High-Side MOSFET Gate-Driver Output. DH is low in shutdown.  
Inductor Connection  
where I  
is the current supplied to the IC through  
AVDD  
(typically 2mA), f  
Detailed Description  
AV  
is the PWM switching  
OSC  
DD  
The MAX1960/MAX1961/MAX1962 are high-current,  
high-efficiency voltage-mode step-down DC-DC con-  
trollers that operate from 2.35V to 5.5V input and gener-  
ate adjustable voltages down to 0.8V at up to 20A. An  
on-chip charge pump generates a regulated 5V for dri-  
ving a variety of external N-channel MOSFETs.  
frequency, Q  
MOSFET, and Q  
is the gate charge of the high-side  
G2  
G1  
is the gate charge of the low-side  
MOSFET. The MOSFETs must be chosen such that  
does not exceed 50mA. For example, with 1MHz  
I
TOTAL  
operation, Q + Q should be less than 48nC.  
G1  
G2  
Voltage Margining and Shutdown  
The voltage-margining feature on the MAX1960/  
MAX1961 shifts the output voltage up or down by 4%.  
This is useful for the automatic testing of systems at high  
and low supply conditions to find potential hardware fail-  
ures. CTL1 and CTL2 control voltage margining as out-  
lined in Table 1.  
Constant frequency PWM operation and external syn-  
chronization make these controllers suitable for telecom  
and datacom applications. The operating frequency is  
programmed externally to either 500kHz or 1MHz, or  
from 450kHz to 1.2MHz with an external clock. A clock  
output is provided to synchronize another converter for  
180° out-of-phase operation.  
A shutdown feature is included on all three parts, which  
stops switching the output drivers and the charge  
pump, reducing the supply current to less than 15µA.  
For the MAX1962, drive EN high for normal operation,  
or low for shutdown. For the MAX1960/MAX1961, drive  
both CTL1 and CTL2 high for normal operation, or drive  
CTL1 and CTL2 low for shutdown. For a simple  
enable/shutdown function with no voltage margining,  
connect CTL1 and CTL2 together and drive as one  
input.  
A high closed-loop bandwidth provides excellent tran-  
sient response for applications with dynamic loads.  
Internal Charge Pump  
An on-chip regulated charge pump develops 5V at  
50mA (max) with input voltages as low as 2.35V. The  
output of this charge pump provides power for the  
internal circuitry, bias for the low-side driver (DL), and  
the bias for the boost diode, which supplies the high-  
side MOSFET gate driver (DH). The charge pump is  
synchronized with the DL driver signal and operates at  
1/2 the PWM frequency.  
The external MOSFET gate charge is the dominant load  
for the charge pump and is proportional to the PWM  
switching frequency. The charge pump must supply  
chip-operating current plus adequate gate current for  
both MOSFETs at the selected operating frequency.  
The required charge-pump output current is given by  
the formula:  
Table 1. Voltage Margining Truth Table  
CTL1  
High  
High  
Low  
CTL2  
High  
Low  
FUNCTION  
Normal operation  
+4% output-voltage shift  
-4% output-voltage shift  
Shutdown  
High  
Low  
Low  
I
= I  
+ f  
(Q + Q  
)
TOTAL  
AVDD  
OSC  
G1  
G2  
10 ______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
ILIM  
CS  
(MAX1960/MAX1961)  
(MAX1962)  
CURRENT  
SENSE  
LX  
OUT  
PGND  
BST  
DH  
LX  
CLKOUT  
S
R
OSC  
Q
Q
FSET/SYNC  
UVLO  
OSC  
V
DD  
COMP  
DL  
COMP  
PGND  
OUT  
(MAX1961/MAX1962)  
SOFT-START  
DAC  
REF  
AV  
DD  
ERROR  
AMP  
REF  
FEEDBACK  
SELECT  
FB  
V
DD  
(MAX1960/MAX1962)  
C+  
CHARGE  
PUMP  
VSEL  
OSC  
MAX1960/  
MAX1961/  
MAX1962  
(MAX1961/MAX1962)  
C-  
V
CC  
CTL1  
SHUTDOWN  
AND VOLTAGE  
MARGINING  
(MAX1960/MAX1961)  
CTL2  
(MAX1960/MAX1961)  
GND  
EN  
(MAX1962)  
Figure 1. Functional Diagram  
MOSFET Gate Drivers  
Undervoltage Lockout and Soft-Start  
There are two undervoltage lockout (UVLO) circuits on  
the MAX1960/MAX1961/MAX1962. The first UVLO cir-  
The DH and DL drivers are designed to drive logic-level  
N-channel MOSFETs to optimize system cost and effi-  
ciency. MOSFETs with R  
rated at V  
4.5V are  
GS  
cuit monitors V , which must be above 2.15V (typ) in  
CC  
DSON  
recommended. An adaptive dead-time circuit monitors  
the DL output and prevents the high-side MOSFET from  
turning on until DL is fully off. There must be a low-resis-  
tance, low-inductance path from the DL driver to the  
MOSFET gate for the adaptive dead-time circuit to work  
properly. Otherwise, the internal sense circuitry could  
interpret the MOSFET gate as offwhile there is actually  
still charge left on the gate. Use very short, wide traces  
measuring no more than 20 squares (50mils to 100mils  
wide if the MOSFET is 1in from the IC).  
order for the charge pump to operate. The second  
UVLO circuit monitors the output of the charge pump.  
The charge-pump output, V , must be above 4.2V  
DD  
(typ) in order for the PWM converter to operate. Both  
UVLO circuits inhibit switching and force DL high and DH  
low when either V  
or V  
are below their threshold.  
CC  
DD  
When the monitored voltages are above their thresh-  
olds, an internal soft-start timer ramps up the error-  
amplifier reference voltage. The ramp occurs in eighty  
10mV steps. Full output voltage is reached 1.28ms after  
activation with a 1MHz operating frequency.  
______________________________________________________________________________________ 11  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
increases until it reaches its maximum value, where the  
part enters dropout. With a switching frequency of  
1MHz, the maximum duty cycle is about 83%. At  
500kHz, the duty cycle can increase to about 92%,  
resulting in a lower dropout voltage. The duty cycle is  
Operating Frequency and Synchronization  
The MAX1960/MAX1961/MAX1962 operating frequency  
is set externally to either 500kHz or 1MHz. For 500kHz  
operation, connect FSET/SYNC to GND, or for 1MHz  
operation, connect FSET/SYNC to V . Alternately, an  
DD  
dependent on the input voltage (V ), the output volt-  
IN  
external clock from 450kHz to 1.2MHz can be applied  
to SYNC.  
age (V  
), and the parasitic voltage drops in the  
OUT  
MOSFETs and the inductor (V  
, V  
,
DROP(N2)  
DROP(N1)  
A clock output (CLKOUT) that is 180° out-of-phase with  
the internal clock is also provided. This allows a second  
converter to be synchronized, and operate 180° out-of-  
phase with the first. To do this, simply connect CLKOUT  
of the first converter to FSET/SYNC of the second con-  
verter. The first converter can be set internally to 500kHz  
or 1MHz for this mode of operation. When the first con-  
verter is synchronized to an external clock, CLKOUT is  
the inverse of external clock. See the SYNC Timing  
Waveform in the Typical Operating Characteristics.  
V
). Note that V  
includes the voltage  
DROP(L)  
DROP(L)  
drop due to the inductors resistance, the drop across  
the current-sense resistor (if used), and any other resis-  
tive voltage drop from the LX switching node to the  
point where the output voltage is sensed. The duty  
cycle is found from:  
VOUT + VDROP(L)  
- VDROP(N1) - VDROP(N2)  
D =  
V
IN  
Lossless Current Limit  
(MAX1960/MAX1961)  
Adaptive Dead Time  
The MAX1960/MAX1961/MAX1962 DL and DH MOSFET  
drivers have an adaptive dead-time circuit to prevent  
shoot-through current caused by high- and low-side  
MOSFET overlap. This allows a wide variety of MOSFETs  
to be used without matching FET dynamic characteris-  
tics. The DL driver will not go high until DH drives the  
high-side MOSFET gate to within 1V of its source (LX).  
The DH output will not go high until DL drives the low-side  
MOSFET gate to within 1V of ground.  
To prevent damage in the case of excessive load cur-  
rent or a short circuit, the MAX1960/MAX1961 use the  
low-side MOSFETs on-resistance (R  
) for current  
DS(ON)  
sensing. The current is monitored during the on-time of  
the low-side MOSFET. If the current-sense voltage  
(V  
- V ) rises above the current-limit threshold for  
LX  
PGND  
more than 128 clock cycles, the controller turns off. The  
controller remains off until the input voltage is removed  
or the device is re-enabled with CTL1 and CTL2 (see  
the Setting the Current Limit section).  
Design Procedure  
Component selection is primarily dictated by the following  
criteria:  
Current-Sense Resistor (MAX1962)  
The MAX1962 uses a standard current-sense resistor in  
series with the inductor for a 10% accurate current-limit  
measurement. The current-sense threshold is 50mV. This  
provides accurate current sensing at all duty cycles with-  
out relying on MOSFET on-resistance. CS connects to  
the high-side (inductor side) of the current-sense resistor  
and OUT connects to the low-side (output side) of the  
current-sense resistor.  
Input voltage range. The maximum value  
(V  
) must accommodate the worst-case high  
IN(MAX)  
input voltage. The minimum value (V  
) must  
IN(MIN)  
account for the lowest input voltage after drops due  
to connectors, fuses, and selector switches are con-  
sidered.  
Maximum load current. There are two values to con-  
The current-sense resistor for the MAX1962 may also be  
replaced with a series RC network across the inductor.  
This method uses the parasitic resistance of the inductor  
for current sensing. This method is less accurate than  
using a current-sense resistor, but is lower cost and pro-  
vides slightly higher efficiency. See the Design  
Procedure section for instructions on using this method.  
sider: The peak load current (I ) determines  
LOAD(MAX)  
the instantaneous component stresses and filtering  
requirements and is key in determining output capac-  
itor requirements. I  
also determines the  
LOAD(MAX)  
inductor saturation rating and the design of the cur-  
rent-limit circuit. The continuous load current (I  
)
LOAD  
determines the thermal stresses and is key in deter-  
mining input capacitor requirements, MOSFET  
requirements, as well as those of other critical heat-  
contributing components.  
Dropout Performance  
The MAX1960/MAX1961/MAX1962 enter dropout when  
the input voltage is not sufficiently high to maintain output  
regulation. As input voltage is lowered, the duty cycle  
12 ______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
Inductor operating point. This choice provides  
Table 2. Preset Voltages—  
MAX1961/MAX1962  
tradeoffs between size, transient response, and effi-  
ciency. Choosing higher inductance values results  
in lower inductor ripple current, lower peak current,  
lower switching losses, and, therefore, higher effi-  
ciency at the cost of slower transient response and  
larger size. Choosing lower inductance values  
results in large ripple currents, smaller size, and  
poorer efficiency, but have faster transient response.  
PRESET OUTPUT VOLTAGE  
SEL  
GND  
1.5V  
1.8V  
2.5V  
3.3V  
REF  
No connection  
V
DD  
Setting the Output Voltage  
The MAX1961 has four output voltage presets selected  
by SEL. Table 2 shows how each of the preset voltages  
are selected. The MAX1962 also has four preset output  
voltages, but also is adjustable down to 0.8V. To use the  
preset voltages on the MAX1962, FB must be connected  
D2  
D3  
D4  
D5  
C11  
C10  
C12  
V
CC  
C-  
to V . SEL then selects the output voltage as shown in  
DD  
Table 2.  
C+  
MAX1960/  
MAX1961/  
MAX1962  
Both the MAX1960/MAX1962 feature an adjustable out-  
put that can be set down to 0.8V. To set voltages greater  
than 0.8V, Connect FB to a resistor-divider from the out-  
put (Figures 9 and 11). Use a resistor up to 10kfor R2  
and select R1 according to the following equation:  
V
DD  
C6  
R5  
10Ω  
AV  
DD  
C4  
1µF  
V
V
OUT  
R1= R2 ×  
- 1  
FB  
500kHz  
1µF  
1MHz  
0.47µF  
2.2µF  
C10, C11, C12  
C6  
where the feedback threshold, V = 0.8V, and V  
FB  
the output voltage.  
is  
OUT  
4.7µF  
Input Voltage Range  
The MAX1960/MAX1961/MAX1962 have an input volt-  
age range of 2.35V to 5.5V but cannot operate at both  
extremes with one application circuit. The standard  
charge-pump doubler application circuit operates with  
an input range of 2.7V to 5.5V (Figures 9, 10, and 11).  
In order to operate down to 2.35V, the charge pump  
must be configured as a tripler. This circuit, however,  
limits the maximum input voltage to 3.6V. The schematic  
for the tripler charge pump is shown in Figure 2. Note  
that the flying capacitor between C+ and C- has been  
removed and C+ is not connected.  
Figure 2. Tripler Charge-Pump Configuration.  
vides a good compromise between efficiency and  
economy. Choose a low-loss inductor having the lowest  
possible DC resistance. Ferrite core type inductors are  
often the best choice for performance. The inductor  
saturation current rating must exceed I  
:
PEAK  
LIR  
2
I
= I  
+
× I  
LOAD(MAX)  
PEAK  
LOAD(MAX)  
Inductor Selection  
Determine an appropriate inductor value with the fol-  
lowing equation:  
Setting the Current Limit  
Lossless Current Limit (MAX1960/MAX1961)  
The MAX1960/MAX1961 use the low-side MOSFETs on-  
resistance (R ) for current sensing. This method of  
current limit sets the maximum value of the inductors  
valleycurrent (Figure 3). If the inductor current is higher  
than the valley current-limit setting at the end of the  
clock period, the controller skips the DH pulse. When  
the first current-limit event is detected, the controller initi-  
V
- V  
OUT  
× LIR × I  
IN  
L = V  
×
DS(ON)  
OUT  
V
× f  
IN  
OSC LOAD(MAX)  
The inductor current ripple, LIR, is the ratio of peak-to-  
peak inductor ripple current to the average continuous  
inductor current. An LIR between 20% and 40% pro-  
______________________________________________________________________________________ 13  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
0.22µH, 2.8mW,  
I
= 18A  
DH  
LX  
DL  
LIMIT  
R
I
I
I
L
L
PEAK  
LOAD  
R
C
MAX1962  
R = 33Ω  
C = 4.7µF  
VALLEY  
CS  
OUT  
TIME  
Figure 3. Inductor Current Waveform  
Figure 4. Using the Inductor Resistance as a Current-Sense  
Resistor with the MAX1962  
ates a 128 clock cycle counter. If the current limit is pre-  
sent at the end of this count, the controller remains off  
until the input voltage is removed and re-applied, or the  
device is re-enabled with CTL1 and CTL2. The 128-cycle  
counter is reset when four successive DH pulses are  
observed, without activating the current limit.  
accuracy is needed, use the MAX1962 with a current-  
sense resistor.  
Current-Sense Resistor (MAX1962)  
The MAX1962 uses a current-sense resistor connected  
from the inductor to the output with Kelvin sense connec-  
tions. The current-sense voltage is measured from CS to  
OUT, and has a fixed threshold of 50mV. The MAX1962  
current limit is triggered when the peak voltage across  
At maximum load, the low excursion of inductor current,  
I
, is:  
VALLEY(MAX)  
the current-sense resistor, I  
× R  
, exceeds  
SENSE  
PEAK  
LIR  
2
I
= I  
-
× I  
LOAD(MAX)  
50mV. Once current sense is triggered, the controller  
does not turn off, but continues to operate at the current  
limit. This method of current sensing is more precise due  
to the accuracy of the current-sense resistor. The cost of  
this precision is that it requires an extra component and  
is slightly less efficient due to the loss in the current-  
sense resistance.  
VALLEY(MAX)  
LOAD(MAX)  
The current-limit threshold (V  
) is set by connecting a  
CLT  
resistor (R  
) from ILIM to GND. The range for this  
ILIM  
resistor is 100kto 400k. Set current-limit threshold as  
follows:  
V
= R  
× 0.714µA  
ILIM  
sets the threshold to a default  
CLT  
Inductor Resistance Current Sense (MAX1962)  
Alternately, the inductor resistance can be used to  
sense current in place of a current-sense resistor. To  
do this, connect a series RC network in parallel with the  
inductor (Figure 4). Choose a resistor value less than  
40to avoid offsets due to CS input current. Calculate  
Connecting ILIM to V  
value of 75mV.  
DD  
To prevent the current limit from falsely triggering, V  
divided by the low-side MOSFET R  
the maximum value of I  
low-side MOSFET R  
CLT  
must exceed  
DS(ON)  
. The maximum value of  
should be used:  
VALLEY  
DS(ON)  
the capacitor value from the formula C = 2L / (R × R).  
L
The effective current-sense resistance (R  
L
) equals  
SENSE  
V
CLT  
> R  
x I  
DS(ON)MAX VALLEY(MAX)  
R . Current-sense accuracy then depends on the accu-  
A limitation of sensing current across MOSFET on-resis-  
tance is that the MOSFET on-resistance varies signifi-  
cantly from MOSFET to MOSFET and over temperature.  
Consequently, this current-sensing method may not be  
suitable if a precise current limit is required. If better  
racy of the inductor resistance. Note that the current-  
sense signal is delayed due to the RC filter time  
constant. Consequently, inductor current may over-  
shoot (by as much as 2x) when a fast short occurs.  
14 ______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
The RMS input ripple current is given by:  
Output Capacitor Selection  
The output filter capacitor must have low enough effective  
series resistance (ESR) to meet output ripple and load  
transient requirements. In addition, the capacitance value  
must be high enough to absorb the inductor energy  
during load steps.  
VOUT × (V - VOUT  
)
IN  
IRMS = ILOAD  
×
V
IN  
For optimal circuit reliability, choose a capacitor that  
has less than 10°C temperature rise at the peak ripple  
current.  
In applications where the output is subject to large load  
transients, low ESR is needed to prevent the output  
from dipping too low (V ) during a load step:  
DIP  
Compensation and Stability  
V
DIP  
LOADSTEP(MAX)  
Compensation with Ceramic Output Capacitors  
The high switching frequency range of the  
MAX1960/MAX1961/MAX1962 allows the use of ceramic  
output capacitors. Since the ESR of ceramic capacitors  
is very low typically, the frequency of the associated  
transfer function zero is higher than the unity-gain  
crossover frequency and the zero cannot be used to  
compensate for the double pole created by the output  
inductor and capacitor. The solution is Type 3 compen-  
sation (Figure 5), which takes advantage of local feed-  
back to create two zeros and three poles (Figure 6). The  
frequency of the poles and zeros are described below:  
R
ESR  
I
In applications with less severe load steps, maximum  
ESR may be governed by what is needed to maintain  
acceptable output voltage ripple:  
V
RIPPLE PP  
(
)
R
ESR  
LIR × I  
LOAD(MAX)  
To satisfy both load step and ripple requirements,  
select the lowest value from the above two equations.  
The capacitor is usually selected by physical size, ESR,  
and voltage rating, rather than by capacitance value.  
With current tantalum, electrolytic, and polymer capaci-  
tor technology, the bulk capacitance will also be suffi-  
cient once the ESR requirement is satisfied.  
f
= 0  
P1  
1
f
=
P2  
2π × R2 × C3  
When using low-capacity filter capacitors such as  
ceramic, capacitor size is usually determined by the  
capacitance needed to prevent voltage undershoot  
and overshoot during load transients. The overshoot  
1
f
=
P3  
C1 × C2  
C1 + C2  
2π × R1 ×  
voltage (V  
) is given by:  
SOAR  
1
f
=
LC  
2
2π L × C  
L × I  
(
)
0
0
PEAK  
V
=
SOAR  
2 × V  
× C  
OUT  
OUT  
1
f
=
Z1  
2π × R1 × C1  
Generally, once enough capacitance is in place to meet  
the overshoot requirement, undershoot at the rising load  
edge is no longer a problem.  
1
f
=
Z2  
2π × (R2+R3) × C3  
Input Capacitor Selection  
The input capacitor (C ) reduces the current peaks  
IN  
drawn from the input supply and reduces noise injec-  
tion. The source impedance to the input supply largely  
1
f
=
ZESR  
2π × R  
× C  
0
ESR  
determines the value of C . High source impedance  
IN  
requires high input capacitance. The input capacitor  
Unity-gain crossover frequency:  
must meet the ripple current requirement (I  
imposed by the switching currents.  
)
RMS  
V
1
IN(MAX)  
f =R1 × C3 ×  
×
0
V
2π × L × C  
0 0  
RAMP  
______________________________________________________________________________________ 15  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
V
IN  
GAIN (dB)  
DH  
LX  
DL  
L
O
V
OUT  
C
0
MAX1960  
R3  
R2  
FB  
C3  
R4  
R1  
COMP  
FREQUENCY  
fp3  
fz1  
fz2  
fp2  
fp1  
C2  
C1  
Figure 5. Type 3 Compensation Network  
Figure 6. Transfer Function for Type 3 Compensation  
where:  
If C2 < 10pF, it can be omitted.  
V
= Maximum input voltage  
IN(MAX)  
2π × f × L × C × V  
6
0
0
0
RAMP  
V
= Oscillator ramp voltage = 0.85 x 10 /f ,  
RAMP  
C3≤  
S
R1 × V  
where f = switching frequency  
IN  
S
L
= Output inductance  
= Output capacitance  
O
Place the second pole after the ESR zero:  
C
O
1
The goal is to place the two zeros below crossover and  
the two poles above crossover so that crossover  
occurs with a single-pole slope. The compensation pro-  
cedure is as follows:  
R2≤  
2π × f  
× C3  
ZESR  
If:  
Select the crossover frequency such that:  
1
f < f  
0
and f <1/5 f  
R2 <  
(= 550),  
ZESR  
0
S
g
M
Select R1 such that:  
increase R1 and recalculate C1, C2, and C3.  
2
gmEA  
Place the second zero at the double-pole frequency:  
R1>>  
1
where g  
= 2mS.  
R3≥  
- R2  
mEA  
2π × f  
× C3  
LC  
Place the first zero before the double pole:  
Set the output voltage:  
1
C1≥  
2π × 0.75 × f  
× R1  
V
FB  
LC  
R4 =  
× R3, V = 0.8V  
FB  
V
- V  
OUT  
FB  
Place the third pole at half the switching frequency:  
1
C2≥  
2π × 0.5 × f × R1  
S
16 ______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
Compensation with Electrolytic Output Capacitors  
The MAX1960/MAX1961/MAX1962 use a voltage-mode  
control scheme that regulates the output voltage by  
comparing the error-amplifier output (COMP) with a  
fixed internal ramp to produce the required duty cycle.  
The inductor and output capacitor create a double pole  
at the resonant frequency, which has gain drop of 40dB  
per decade, and phase shift of 180°. The error amplifier  
must compensate for this gain drop and phase shift in  
order to achieve a stable high-bandwidth, closed-loop  
system.  
The transconductance error amplifier has DC gain  
GEA(dc) of 80dB. A dominant pole is set by the com-  
pensation capacitor (C ), the amplifier output resis-  
C
tance (R ), and the compensation resistor (R ):  
O
C
1
f
=
PEA  
2π × C × (R + R )  
C
0
C
A zero is set by the compensation resistor and the  
compensation capacitor:  
1
The basic regulator loop consists of a power modulator,  
an output feedback divider and an error amplifier. The  
f
=
ZEA  
2π × C × R  
C
C
power modulator has DC gain set by V /V  
, with a  
IN RAMP  
double pole set by the inductor and output capacitor,  
and a single zero set by the output capacitor (C ) and  
O
its equivalent series resistance (ESR). Below are equa-  
tions that define the power modulator:  
The total closed-loop gain must equal to unity at the  
crossover frequency, where the crossover frequency  
should be higher than f  
, so that the -1 slope is  
ZESR  
used to cross over at unity gain. Also, the crossover  
frequency should be less than or equal to 1/5 the  
switching frequency.  
The DC gain of the power modulator is:  
V
IN  
G
=
f
5
MOD(DC)  
S
f
< f  
V
ZESR  
C
RAMP  
where V  
= 0.85 × 106 / f . The pole frequency due  
S
RAMP  
The loop-gain equation at the crossover frequency is:  
to the inductor and output capacitor is:  
V
FB  
1
× G  
× G  
=1  
MOD(f )  
C
EA(f )  
C
fPMOD  
=
V
OUT  
2π LOCO  
where:  
and:  
The zero frequency due to the output capacitors ESR  
is:  
G
= g  
× R  
C
EA(f )  
mEA  
C
1
f
=
ZESR  
2π × R  
× C  
O
ESR  
(f  
)2  
× f  
C
PMOD  
G
= G  
×
MOD(f )  
MOD(DC)  
C
The output capacitor is usually comprised of several  
same value capacitors connected in parallel. With n  
capacitors in parallel, the output capacitance is:  
f
ESR  
The compensation resistor, R , is calculated from:  
C
C
= n × C  
EACH  
O
V
OUT  
R
=
C
g
× V × G  
FB MOD(f )  
mEA  
C
The total ESR is:  
where g  
= 2mS.  
mEA  
R
ESR(EACH)  
n
R
=
Due to the under-damped (Q > 1) nature of the output  
LC double pole, the error-amplifier compensation zero  
should be approximately 0.2f  
phase boost. C is calculated from:  
ESR  
to provide good  
PMOD  
The ESR zero (f  
) for a parallel combination of  
capacitors is the same as for an individual capacitor.  
ZESR  
C
The feedback divider has a gain of G = V /V  
,
FB OUT  
FB  
5
C
=
C
where V is 0.8V.  
FB  
2π × R × f  
C
PMOD  
______________________________________________________________________________________ 17  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
A small capacitor C , can also be added from COMP to  
The power modulator gain at f is:  
C
F
GND to provide high-frequency decoupling. C will add  
F
2
another high-frequency pole (f  
) to the error-amplifier  
V
(f  
)
PHF  
IN  
PMOD  
G
=
×
MOD(fc)  
response. This pole should be greater than 100 times  
the error-amplifier zero frequency to have negligible  
impact on the phase margin. This pole should also be  
less than half the switching frequency for effective  
decoupling:  
V
f
× f  
RAMP  
ZESR C  
2
3
0.85  
(9201)  
29.3kΩ × 100kΩ  
=
×
= 0.102  
Choose R = 8.06k, then R = 10k(see the Setting  
1
2
100f  
< f  
< 0.5f  
ZEA  
PHF S  
the Output Voltage section):  
Select a value for f  
in the range given above, then  
PHF  
V
1.8  
OUT  
solve for C using the following equation:  
F
=
=
C
g
× V × G  
0.002 × 0.8 × 0.102  
mEA  
FB  
MOD(f )  
C
1
=11kΩ  
C =  
F
2π × R × f  
C
PHF  
5
5
C
=
=
= 7863pF  
C
2π × R × f  
2π × 11kΩ × 9201  
Below is a numerical example to calculate compensa-  
tion values:  
C
PMOD  
V
V
V
V
= 3.3V  
Select C = 8200pF (nearest standard capacitor  
C
IN  
value).  
= 0.85V  
= 1.8V  
RAMP  
Select f  
in the range 100f  
< f < 0.5f .  
PHF S  
PHF  
PHF  
ZEA  
OUT  
184kHz < f  
< 500kHz  
PHF  
= 0.8V  
FB  
Select f  
= 250kHz, then solve for C :  
F
I
= 15A  
OUT(max)  
C
= 2 x 680µF = 1360µF  
O
1
1
C =  
=
= 58pF  
F
ESR = 0.008/ 2 = 0.004Ω  
= 0.22µH  
2π × R × f  
2π × 11kΩ × 250kHz  
C
PHF  
L
O
Select the nearest standard capacitor value C = 56pF.  
F
g
mEA  
= 2mS  
Summary of feedback divider and compensation com-  
ponents:  
f = 1MHz  
S
1
R = 8.06kΩ  
1
f
=
=
PMOD  
2π ×  
L
× C  
O O  
R = 10kΩ  
2
1
R
C
= 11kΩ  
6  
6  
C
C
= 8200pF  
2π × 0.22 × 10  
= 9.201kHz  
× 1360 × 10  
C = 56pF  
F
Power MOSFET Selection  
When selecting a MOSFET, essential parameters  
include:  
1
f
=
ZESR  
2π × C × R  
O
ESR  
1
(1) Total gate charge (Q )  
G
=
(2) Reverse transfer capacitance (C  
)
6  
RSS  
2π × 1360 × 10  
= 29.3kHz  
× 0.004  
(3) On-resistance (R  
)
DS(ON)  
(4) Gate threshold voltage (V  
(5) Turn-on/turn-off times  
(6) Turn-on/turn-off delays  
)
TH(MIN)  
Choose the crossover frequency (f ) in the range f  
C
ZESR  
< f < f /5:  
C
S
29.3kHz < f < 200kHz  
C
Select f = 100kHz, this meets the criteria above, and the  
C
bandwidth is high enough for good transient response.  
18 ______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
FEEDBACK DIVIDER  
ERROR AMPLIFIER  
MODULATOR  
OUTPUT FILTER  
V
1
0.8V  
R1  
R2  
V
/V  
Gm  
IN RAMP  
R
S
R3  
L1  
C9  
V
2
R
ESR  
R
LOAD  
C
OUT  
Figure 7. Open-Loop Transfer Model  
At high switching rates, dynamic characteristics (para-  
meters 1, 2, 5, and 6) that predict switching losses may  
MOSFET RC Snubber Circuit  
Fast-switching transitions can cause ringing due to res-  
onating circuit parasitic inductance and capacitance at  
the switching nodes. This high-frequency ringing  
occurs at LX rising and falling transitions, and may  
introduce current-sensing errors and generate EMI. To  
dampen this ringing, a series RC snubber circuit can  
be added across each MOSFET switch (Figure 8).  
have more impact on efficiency than R  
, which pre-  
DS(ON)  
dicts DC losses. Q includes all capacitance associated  
G
with charging the gate, and best performance is  
achieved with a low total gate charge. Q also helps  
G
predict the current needed to drive the gate at the  
selected operating frequency. This is very important  
because the output current from the charge pump is  
finite (50mA, max) and is used to drive the gates of the  
Typical values for the snubber components are C  
SNUB  
= 4700pF and R  
= 1, however, the ideal values  
SNUB  
MOSFETs as well as provide bias for the IC. R  
is  
for snubber components will depend on circuit para-  
sitics. Below is the procedure for selecting the compo-  
nent values of the series RC snubber circuit:  
DS(ON)  
important as well, as it is used for current sensing in the  
MAX1960/MAX1961. R also causes power dissi-  
DS(ON)  
pation during the on-time of the MOSFET.  
1) Connect a scope probe to measure V to GND,  
LX  
Choose Q to be as low as possible. Ensure that:  
G
and observe the ringing frequency, f .  
R
2) Find the capacitor value (connected from LX to  
GND) that reduces the ringing frequency by half.  
50mA  
fS  
QG1 +QG2  
3) The circuit parasitic capacitance, C , at LX is then  
PAR  
equal to 1/3 of the value of the added capacitance  
above.  
Choose R  
to provide the desired I  
at  
LOAD(MAX)  
DS(ON)  
the desired current-limit threshold voltage (see the  
Setting the Current Limit section).  
______________________________________________________________________________________ 19  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
where V  
FALL  
MOSFET, I  
is the maximum value of the input volt-  
IN(MAX)  
INPUT  
age, t  
and t  
are the fall and rise time of the  
RISE  
and I  
are the maximum  
L(VALLEY)  
L(PEAK)  
peak and valley inductor current, and f is the PWM  
switching frequency:  
S
R
SNUB  
DH  
N1  
I
= I  
× (1 + 0.5 × LIR) and I  
=
L(VALLEY)  
L(PEAK)  
OUT(MAX)  
C
SNUB  
L1  
MAX1960  
I
× (1 - 0.5 × LIR)  
OUT(MAX)  
LX  
DL  
where LIR is the peak-to-peak inductor ripple current  
divided by the load current.  
R
SNUB  
N2  
The total power dissipation in the high-side MOSFET is  
the sum of these two power losses:  
C
SNUB  
PGND  
P
D(N1)  
= P  
+ P  
D(N1RESISTIVE) D(N1SWITCHING)  
For the low-side MOSFET, the worst-case power dissi-  
pation occurs at maximum input voltage:  
Figure 8. RC Snubber Circuit  
V
4) The circuit parasitic inductance, L , is calculated  
PAR  
by:  
OUT  
2
P
= 1 -  
× I  
× R  
DS(ON)  
D(N2RESISTIVE)  
LOAD  
V
IN(MAX)  
1
2
L
=
PAR  
Applications Information  
(2π × f ) × C  
R
PAR  
PC Board Layout Guidelines  
5) The resistor for critical dampening, R  
= 2π x  
SNUB  
A properly designed PC board layout is important in  
any switching DC-DC converter circuit. If possible,  
mount the MOSFETs, inductor, input/output capacitors,  
and current-sense resistor on the top side. Connect the  
ground for these devices close together on a power-  
ground trace. Make all other ground connections to a  
separate analog ground plane. Connect the analog  
ground plane to power ground at a single point.  
f
x L  
. The resistor value can be adjusted up  
R
PAR  
or down to tailor the desired damping and the  
peak voltage excursion.  
6) The capacitor, C  
, should be at least 2 to 4  
PAR  
SNUB  
times the value of the C  
to be effective.  
7) The snubber circuit power loss is dissipated in the  
resistor, P  
, and can be calculated as:  
RSNUB  
To help dissipate heat, place high-power components  
(MOSFETs, inductor, and current-sense resistor) on a  
large PC board area. Keep high-current traces short and  
wide to reduce the resistance in these traces. Also make  
the gate drive connections (DH and DL) short and wide,  
measuring 10 to 20 squares (50mils to 100mils wide if the  
MOSFET is 1in from the controller IC).  
2
P
= C  
× (V ) × f  
SNUB IN S  
RSNUB  
where V is the input voltage, and f is the  
IN  
S
switching frequency. Choose R  
power rating  
SNUB  
that exceeds the calculated power dissipation.  
MOSFET Power Dissipation  
Worst-case power dissipation occurs at duty factor  
extremes. For the high-side MOSFET, the worst-case  
power dissipation due to resistance occurs at minimum  
For the MAX1960/MAX1961, connect LX and PGND to  
the low-side MOSFET using Kelvin sense connections.  
For the MAX1962, connect CS and OUT to the current-  
sense resistor using Kelvin sense connections.  
input voltage (V  
):  
IN(MIN)  
V
Place the REF capacitor, the BST diode and capacitor,  
and the charge-pump components as close as possible  
to the IC. If the IC is far from the input capacitors, bypass  
OUT  
2
PD  
=
× I  
× R  
DS(ON)  
(N1RESISTIVE)  
LOAD  
V
IN(MIN)  
V
to GND with a 0.1µF or greater ceramic capacitor  
CC  
The following formula calculates switching losses for  
the high-side MOSFET, but is only an approximation  
and not a substitute for evaluation:  
close to the V pin.  
CC  
For an example PC board layout, see the MAX1960  
evaluation kit.  
P
=
D(N1SWITCHING)  
V
IN(MAX)  
I
(
× t  
+ I  
× t  
×
× f  
S
)
L(PEAK)  
FALL  
L(VALLEY)  
RISE  
2
20 ______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
Table 3. Component List for Application Circuits  
PART  
APP. CIRCUIT  
1, 2, 3  
15A OUTPUT 1MHz  
0.47µF ceramic capacitor  
15A OUTPUT 500kHz  
1µF ceramic capacitor  
C1  
C2  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
4
5 × 10µF ceramic capacitors  
2 x 680µF POSCAPs Sanyo 2R5TPD680M8  
1µF ceramic capacitor  
5 × 10µF ceramic capacitors  
2 x 680µF POSCAPs Sanyo 2R5TPD680M8  
1µF ceramic capacitor  
C3  
C4  
C5  
C6  
0.1µF ceramic capacitor  
2.2µF ceramic capacitor  
0.22µF ceramic capacitor  
(Table 4)  
0.1µF ceramic capacitor  
4.7µF ceramic capacitor  
0.22µF ceramic capacitor  
(Table 5)  
C8  
C9  
C10, C11, C12  
C13, C14  
0.47µF ceramic capacitors  
4700pF ceramic capacitors  
1µF ceramic capacitors  
4700pF ceramic capacitors  
1, 2, 3, 4  
Schottky diode  
Central CMSSH-3  
Schottky diode  
Central CMSSH-3  
D1  
D2D5  
L1  
1, 2, 3, 4  
4
Schottky diodes  
Central CMHSH5-2L  
Schottky diodes  
Central CMHSH5-2L  
0.22µH, 1.7minductor  
Sumida CDEP1040R2NC-50  
0.45µH inductor  
Sumida CDEP1040R4MC-50  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
N-channel MOSFET  
International Rectifier IRLR7821  
N-channel MOSFET  
International Rectifier IRLR7821  
N1  
N-channel MOSFET  
International Rectifier IRLR7833  
N-channel MOSFET  
International Rectifier IRLR7833  
N2  
R1  
R2  
R3  
R4  
R5  
1, 3  
1, 3  
Sets output voltage  
10k1% resistor  
(Table 4)  
Sets output voltage  
10k1% resistor  
(Table 5)  
1, 2, 3, 4  
1, 2  
390k5% resistor  
105% resistor  
390k5% resistor  
105% resistor  
1, 2, 3, 4  
1.5m5%, 1W resistor  
Panasonic ERJM1WTJ1M5U  
1.5m5%, 1W resistor  
Panasonic ERJM1WTJ1M5U  
R6  
3, 4  
R7, R8  
1, 2, 3, 4  
15% resistors  
15% resistors  
______________________________________________________________________________________ 21  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
Table 4. R1, R3, and C9 Component Values for 1MHz Operation  
V
= 3.3V  
V
= 2.5V  
V
= 1.8V  
V
= 1.5V  
OUT  
OUT  
OUT  
OUT  
V
IN  
R1 (k) R3 (k) C9 (µF) R1 (k) R3 (k) C9 (µF) R1 (k) R3 (k) C9 (µF) R1 () R3 (k) C9 (µF)  
5V  
3.12  
1.2  
0.0068  
2.13  
9.1  
0.01  
1.24  
1.24  
1.24  
6.8  
2.7  
3.9  
0.01  
0.01  
0.01  
876  
876  
876  
5.5  
2.4  
3.3  
0.01  
0.01  
0.01  
3.3V  
2.5V  
Table 5. R1, R3, and C9 Component Values for 500kHz Operation  
V
= 3.3V  
V
= 2.5V  
V
= 1.8V  
V
= 1.5V  
OUT  
OUT  
OUT  
OUT  
V
IN  
R1 (k) R3 (k) C9 (µF) R1 (k) R3 (k) C9 (µF) R1 (k) R3 (k) C9 (µF) R1 () R3 (k) C9 (µF)  
5V  
3.12  
36  
0.0033  
2.13  
2.13  
27  
47  
0.0047  
0.0033  
1.24  
1.24  
1.24  
20  
30  
39  
0.0068  
0.0047  
0.0033  
876  
876  
876  
16  
27  
33  
0.0068  
0.0047  
0.0033  
3.3V  
2.5V  
Table 6. Component Suppliers  
Selector Guide  
SUPPLIER  
Central Semiconductor  
International Rectifier  
Kamaya  
PHONE  
WEBSITE  
VOLTAGE  
MARGINING  
CURRENT  
LIMIT  
OUTPUT  
VOLTAGE  
PART  
631-435-1110 www.centralsemi.com  
310-322-3331 www.irf.com  
MAX1960  
MAX1961  
Adjustable  
4 Presets  
FET V  
DS  
4%  
Sensing  
260-489-1533 www.kamaya.com  
814-237-1431 www.murata.com  
714-373-7939 www.panasonic.com  
619-661-6835 www.sanyo.com  
847-956-0666 www.sumida.com  
408-573-4150 www.t-yuden.com  
Murata  
10% with  
4 Presets or  
Adjustable  
MAX1962  
No  
R
Panasonic  
SENSE  
Sanyo  
Sumida  
Taiyo Yuden  
22 ______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
C1  
INPUT  
2.7V TO 5.5V  
C4  
C+  
C-  
V
AV  
V
CC  
DD  
C2  
R5  
CTL1  
CTL2  
DD  
C6  
D1  
BST  
DH  
LX  
R7  
MAX1960  
N1  
N2  
COMP  
REF  
OUTPUT  
DOWN TO 0.8V  
C5  
C13  
L1  
C9  
C3  
R8  
DL  
C8  
R3  
C14  
PGND  
ILIM  
GND  
R1  
FSET/SYNC  
CLKOUT  
CLKOUT  
R4  
FB  
N.C.  
R2  
Figure 9. Application Circuit 1MAX1960 Adjustable Output Voltage  
______________________________________________________________________________________ 23  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
C1  
INPUT  
2.7V TO 5.5V  
C4  
C+  
C-  
V
AV  
V
CC  
DD  
C2  
R5  
CTL1  
CTL2  
DD  
C6  
D1  
BST  
DH  
LX  
R7  
MAX1961  
N1  
N2  
COMP  
REF  
C5  
C13  
L1  
OUTPUT 2.5V  
C3  
C9  
R8  
DL  
C8  
R3  
C14  
PGND  
ILIM  
GND  
FSET/SYNC  
CLKOUT  
CLKOUT  
R4  
OUT  
VSEL  
Figure 10. Application Circuit 2MAX1961 Preset Output Voltage  
24 ______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
C1  
INPUT  
2.7V TO 5.5V  
C4  
C+  
C-  
V
AV  
CC  
DD  
DD  
C2  
R5  
V
C6  
D1  
BST  
DH  
LX  
EN  
R7  
MAX1962  
N1  
N2  
COMP  
REF  
OUTPUT  
C5  
C13  
L1  
R6  
DOWN TO 0.8V  
C9  
C3  
R8  
DL  
C8  
R3  
C14  
PGND  
CS  
GND  
FSET/SYNC  
CLKOUT  
CLKOUT  
OUT  
R1  
R2  
FB  
VSEL  
Figure 11. Application Circuit 3MAX1962 Adjustable Output Voltage  
______________________________________________________________________________________ 25  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
D2  
D3  
D4  
D5  
C11  
C10  
C12  
INPUT  
2.35V TO 3.6V  
C4  
C+  
C-  
V
AV  
V
CC  
DD  
C2  
R5  
DD  
C6  
D1  
BST  
DH  
LX  
EN  
R7  
MAX1962  
N1  
COMP  
REF  
C5  
C13  
L1  
R6  
OUTPUT 1.5V  
C3  
C9  
R8  
DL  
N2  
C8  
R3  
C14  
PGND  
CS  
GND  
FSET/SYNC  
CLKOUT  
CLKOUT  
OUT  
FB  
V
VSEL  
DD  
Figure 12. Application Circuit 4MAX1962 Tripler Configuration, Preset Output  
26 ______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
C1  
0.47µF  
C4  
INPUT  
1µF  
C+  
C-  
2.7V TO 5.5V  
V
AV  
V
CC  
DD  
C2  
5 x 10µF  
R5  
10Ω  
C6  
2.2µF  
CTL1  
CTL2  
DD  
D1  
BST  
DH  
LX  
R7  
1Ω  
MAX1960  
N1  
N2  
COMP  
REF  
C5  
0.1µF  
C13  
4700pF  
L1  
OUTPUT 2.5V, 15A  
C10  
C9  
820pF  
33pF  
C3  
R8  
1Ω  
4 x 47µF  
C8  
0.22µF  
DL  
TAIYO-YUDEN  
R3  
10kΩ  
C14  
4700pF  
JMK325BJ476MN  
PGND  
ILIM  
GND  
R9  
680Ω  
FSET/SYNC  
CLKOUT  
CLKOUT  
R4  
390kΩ  
C7  
560pF  
R1  
6.84kΩ  
FB  
N.C.  
R2  
3.22kΩ  
N1 – IRLR7821  
N2 – IRLR7833  
Figure 13. Application CircuitCeramic Output Capacitors with Type 3 Compensation  
______________________________________________________________________________________ 27  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
Pin Configurations  
TOP VIEW  
TOP VIEW  
CLKOUT  
FSET/SYNC  
EN  
1
2
3
4
5
6
7
8
9
20 LX  
19 DH  
18 BST  
CLKOUT  
FSET/SYNC  
ILIM  
1
2
3
4
5
6
7
8
9
20 LX  
19 DH  
18 BST  
SEL  
17 V  
CC  
N.C. (SEL)  
CTL1  
17 V  
CC  
MAX1962  
MAX1960  
MAX1961  
OUT  
16 C+  
15 C-  
16 C+  
15 C-  
14  
CS  
CTL2  
AV  
DD  
14  
AV  
DD  
PGND  
13 DL  
12  
11 GND  
PGND  
FB  
FB (OUT)  
COMP  
13 DL  
12  
COMP  
V
V
DD  
DD  
REF 10  
REF 10  
11 GND  
QSOP  
QSOP  
( ) ARE FOR MAX1961.  
Chip Information  
TRANSISTOR COUNT: 4476  
PROCESS: BiCMOS  
28 ______________________________________________________________________________________  
2.35V to 5.5V, 0.5% Accurate, 1MHz PWM  
Step-Down Controllers with Voltage Margining  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 29  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1961EEP-T

暂无描述
MAXIM

MAX1962

2.35V to 5.5V, 0.5% Accurate, 1MHz PWM Step-Down Controllers with Voltage Margining
MAXIM

MAX1962EEP

2.35V to 5.5V, 0.5% Accurate, 1MHz PWM Step-Down Controllers with Voltage Margining
MAXIM

MAX1962EEP+

Switching Regulator/Controller, Voltage-mode, 1200kHz Switching Freq-Max, BICMOS, PDSO20,
MAXIM

MAX1962EEP+T

Switching Controller, Voltage-mode, 1120kHz Switching Freq-Max, BICMOS, PDSO20, 0.150 INCH, MO-137, QSOP-20
MAXIM

MAX1962EEP-T

Switching Controller, Voltage-mode, 1120kHz Switching Freq-Max, BICMOS, PDSO20, QSOP-20
MAXIM

MAX1963

Low-Input-Voltage, 300mA LDO Regulators with RESETin SOT and TDFN
MAXIM

MAX1963A

Low-Input-Voltage, 300mA LDO Regulators with RESET in SOT and TDFN
MAXIM

MAX1963AETA

Low-Input-Voltage, 300mA LDO Regulators with RESET in SOT and TDFN
MAXIM

MAX1963AETA+T

Low-Input-Voltage, 300mA LDO Regulators with RESET in SOT and TDFN
MAXIM

MAX1963AETT

Low-Input-Voltage, 300mA LDO Regulators with RESET in SOT and TDFN
MAXIM

MAX1963AETT+T

Low-Input-Voltage, 300mA LDO Regulators with RESET in SOT and TDFN
MAXIM