MAX19692EVKIT [MAXIM]

On-Board 1.25V Reference Circuitry;
MAX19692EVKIT
型号: MAX19692EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

On-Board 1.25V Reference Circuitry

文件: 总16页 (文件大小:974K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for production status of specific part numbers.  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
General Description  
Features  
Evaluates the MAX19692/MAX19693  
The MAX19692 and MAX19693 evaluation kits (EV kits)  
include either a MAX19692 2.3Gsps or MAX19693 4.0Gsps  
12-bit, direct RF synthesis digital-to-analog converter  
(DAC). The evaluation board includes a transformer circuit  
used to convert the differential DAC output to a single-  
ended 50Ω signal. An on-board 3-transformer circuit is also  
provided to convert a single-ended 50Ω clock source into  
the well balanced, 50% duty cycle, 100Ω differential source  
required by the MAX19692/MAX19693.  
Supports Maximum Update Rates  
• 2.3Gsps for MAX19692  
• 4.0Gsps for MAX19693  
Proven 12-Layer PCB Design  
Single-Ended Clock Interface  
• 2.3GHz Maximum Clock Rate (MAX19692)  
• 2.0GHz Maximum Clock Rate (MAX19693)  
Single-Ended DAC Output Interface  
• Selectable Frequency Response (MAX19692)  
• Wideband Output Transformer  
The MAX19692/MAX19693 evaluation board employs  
two SAMTECH Q Strip (QSH) connectors for the  
digital interface. The EV Kit includes an adapter board  
that converts the QSH interface to an FPGA Mezzanine  
Connector (FMC). The FMC connector is commonly  
available on Commercial Off-the-Shelf (COTS) FPGA  
®
• Supports from 50MHz to >2GHz  
On-Board 1.25V Reference Circuitry  
Fully Assembled and Tested  
©
®
evaluation boards such as the Xilinx Virtex -7 VC707  
EV kit.  
The MAX19692/MAX19693 EV Kit is supported by the  
MUXDAC Data Source based on a VC707 FPGA board  
which provides a useful tool for supplying the digital  
signals required to evaluate the MAX19692/MAX19693.  
Refer to the MUXDAC Data Source User’s Guide for more  
information.  
Ordering Information appears at end of data sheet.  
19-0703; Rev 3; 10/20  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
Figure 1. MAX19692/MAX19693 EV Kit and MUXDAC Data Source Test Setup  
Maxim Integrated  
2  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
2) Setup and connect the MAX19692/MAX19693 EV kit  
board.  
Quick Start  
Required Equipment  
a. Install the two 1-1/4” stand-offs included with the  
MAX19692/MAX19693 EV kit. Stand-offs should  
be installed on the DAC output side of the board.  
Window PC (Windows 7/10 operating system), with  
two available USB2.0 ports  
Spectrum analyzer – Agilent PXA or equivalent  
b. Mate the MAXDACFMCADP1 board to the  
MAX19692/MAX19693 EV kit.  
RF signal generator – Rohde & Schwarz SMF100A  
or equivalent  
i. Secure the two boards using the supplied  
screws/nuts/washers.  
One 3.3V/0.5A power supply (AVDD3.3)  
c. Verify all jumpers on the MAX19692/MAX19693  
EV kit board are in the default position; refer to  
Table 1 and Table 2.  
One or two 1.8V power supplies (AVDD1.8 and  
AVCLK)  
Total current capability should be 0.5A per supply  
connection  
d. Connect the MAX19692/MAX19693 EV kit board  
to the VC707 board, HPC1 as shown in Figure 1.  
Xilinx VC707 EV kit – user supplied  
• VC707 board  
• 12V/5A power cube  
e. Connect the power supplies to the MAX19692/  
MAX19693 EV kit and enable the output.  
• 1 each USB-A to Mini-B cable for interfacing and  
programming  
• 1 each USB-A to Micro-B cable for interfacing and  
programming  
f. Connect the RF generator to the clock input with  
a low-loss SMA cable and set the frequency to  
2.0GHz (50% duty-cycle) with output power at  
+10dBm.  
Low-Loss SMA/SMA cables as needed for connections  
to the spectrum analyzer and signal generator  
g. Connect the DAC Output to the spectrum  
analyzer with a low-loss SMA cable.  
Included in the MAX19692/MAX19693 EV Kit  
• MAX19692/MAX19693 EV kit board  
• MAXDACFMCADP1 adapter Board  
• Mounting hardware  
h. Turn on the VC707 by sliding switch SW12 to the  
ON (left) position.  
i. Connect the USB A to Micro-B cable from the  
VC707 JTAG port to the PC.  
Required Installed Software and Drivers  
j. Connect the USB A to Mini-B cable from the  
VC707 USB2.0 port to the PC.  
Maxim Integrated MUXDAC data source and  
associated components  
3) Start the MUXDACEVKITSoftwareController.exe  
a. Wait for the program to initialize.  
Procedure  
1) Install the MUXDAC Data Source software  
4) Load the FPGA configuration  
a. Click on the Xilinx Impact Tool Installed checkbox.  
Reference the MUXDAC Data Source User’s Guide  
for detailed installation and operating instructions. The  
MUXDAC Data Source User’s Guide and software are  
available for download from www.maximintegrated.com.  
Search for ‘MUXDAC Data Source’, then download the  
User’s Guide and follow the link to download the software.  
You will be prompted to accept Maxim’s End User License  
Agreement to complete the download process.  
b. Click the <Load FPGA Configuration File> button.  
i. A file browser will open in the C:\  
maximintegrated\MUXDACEVKIT\  
VC707Files folder. Double click the  
MUXDAC_DSS_vNpM.bit file. (N and M are  
the revision numbers, i.e., v1p3 is Version 1.3)  
c. A progress bar will display while the FPGA is  
configured, should take < 2 minutes.  
Please ensure that all the USB device drivers are installed and ‘ready for use’ before proceeding to the next step. This preparation  
may take up to 20 minutes to complete. The Windows OS reports new device arrivals in the Notification Area of the Task Bar. Device  
Manager can also be used to verify the USB connections.  
Maxim Integrated  
3  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
Table 1. General MAX19692/MAX19693 EV Kit Jumper Settings  
JUMPER  
POSITION  
EVKIT FUNCTION  
Installed*  
Not Installed  
MAX19692/MAX19693 external reference connected  
MAX19692/MAX19693 using internal reference  
JU1  
Installed*  
Not Installed  
Power for U3 – MAX6161 – external reference  
MAX6161 NOT powered  
JU2  
JU3  
(DELAY)  
1-2*  
2-3  
Logic High (VDD3.3) – Delay of 1/2 Input Data Period  
Logic low (GND) – No Delay Added  
JU5  
(CLKDIV)  
1-2*  
2-3  
Logic High (VDD3.3) – DDR Mode: DATACLK = input data rate/2 (f  
/4)  
CLK  
/8)  
Logic low (GND) – QDR Mode: DATACLK = input data rate/4 (f  
CLK  
JU8  
(CAL)  
Installed*  
Not Installed  
External RESET (CAL Enable) Connected  
Float CAL Input  
*Default position.  
Table 2. MAX19692 Frequency-Response Selection (JU4, JU9)  
SHUNT POSITION  
OPERATING MODE  
JU4 RZ  
JU9 RF  
2-3*  
2-3*  
NRZ mode  
RZ mode  
RF mode  
2-3  
1-2  
1-2  
2-3  
*Default position.  
Table 3. MAX19693 Modulation Mode Selection (JU4)  
SHUNT POSITION  
OPERATING MODE  
1-2  
Enable fDAC/2 Modulation Mode  
Disable Modulation Mode  
2-3*  
*Default position.  
Table 4. MAX19693 Input Register Scan Enable (JU7)  
CONNECTION  
SE PIN  
SCAN FUNCTION  
Installed*  
Connected to GND  
Scan Disabled  
Not connected (SE pin  
internally pulled down to  
ground GND)  
User must supply a  
1.8V CMOS logic signal to pin 1 of jumper JU7 to enable scan  
Not Installed  
*Default position.  
Maxim Integrated  
4  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
5) Select the DAC in use  
Power Supplies  
a. Click on the text box in the DAC Selection section  
of the window.  
b. Select MAX19692 or MAX19693 from the list.  
Each evaluation board operates from two 1.8V and one  
3.3V power supplies. The two separate 1.8V power supplies  
can be driven from the same source. Each power plane on  
the PCB is filtered for optimum dynamic performance.  
6) Load Test Patterns  
a. Click the Load Pattern List button.  
b. A file browser will open in the C:\maximintegrated\  
MUXDACEVKIT\TestPatterns folder. Select the  
CW or Two-Tone list for 12-bit devices.  
Clock Signal  
Each DAC requires a differential clock input signal with  
minimal jitter. The evaluation boards feature single-ended-  
to-differential-conversion circuitry. Supply a single ended  
clock signal at the SMA connector labeled CLK. The  
power applied to the SMA should be between +10dBm  
and +15dBm when measured at the connector. Insertion  
losses due to the interconnecting cable decrease the  
power seen at the board input. Account for these losses  
when setting the signal generator amplitude.  
7) Wait for the patterns to load.  
8) Select a Pattern from the List  
a. Click on the Select Pattern text.  
b. Select a pattern from the populated list.  
i. The format of the CW pattern’s name is  
FO_FNumxFS_AO_ANumdBFS_12-Bit and  
the format of the two-tone pattern’s name  
is FCent_FNumxFS_FSpcSNUMxFS_AO_  
ANumdBFS_12-BIT, where the variables are  
FNum, ANum, and SNum for the frequency,  
amplitude, and spacing, respectively. The  
DAC output frequency of the patterns will be  
Reference Voltage Options  
The DAC requires a reference voltage to set its output  
power. The DAC features a stable on-chip bandgap refer-  
ence of 1.2V. The internal reference can be overdriven  
by an external reference to enhance accuracy and drift  
performance or for gain control.  
at or around FNum * f  
.
DAC  
9) Start the Pattern  
The evaluation board features three reference options.  
Use the DAC’s internal voltage reference by removing the  
shunts from jumpers JU1 and JU2. Use an external refer-  
ence by removing the shunts from jumpers JU1 and JU2  
and connecting a stable voltage reference at the REFIO  
pad. Install shunts on jumpers JU1 and JU2 to use the  
on-board reference (MAX6161). See Table 1 to configure  
the shunts across jumpers JU1 and JU2 and select the  
source of the reference voltage.  
a. Click the Start button.  
10) Observe the DAC output.  
Refer to the Test Patterns and Lists section of the  
MUXDAC User’s Guide for details regarding the creation  
of custom patterns and lists.  
Detailed Description of Hardware  
The MAX19692 and MAX19693 EV kits are designed to  
simplify the evaluation of the MAX19692 2.3Gsps and  
MAX19693 4.0Gsps 12-bit, direct RF synthesis DACs.  
Each EV Kit operates with LVDS data inputs, a single-  
ended clock input signal, and 1.8V/3.3V power supplies  
for simple board operation.  
The full-scale continuous-wave (CW) output power is  
dependent on the value of the reference voltage and  
resistor R6. Use the equation below to calculate the DAC  
full-scale output power:  
V
The evaluation board features on-board QSH connec-  
tors that interface to the MAXDACFMCADP1 board that  
allows direct connection to a VC707 FMC connector, cir-  
cuitry that converts the differential 50Ω output to a single-  
ended 50Ω signal, and circuitry to convert a user-supplied  
single-ended clock signal to a differential clock required  
by the DAC. The evaluation board also includes jumpers  
that configure frequency response, modulation, scan, ref-  
erence voltage, calibration, and data clock modes.  
REFIO  
R6  
P
= 73.1+ 20×log  
dBm  
[
]
OUT  
where:  
P
= DAC full-scale output power,  
OUT  
V
= Voltage present at the REFIO pad in volts  
(1.2V if using the device’s internal reference),  
REFIO  
R6 = Value of resistor R6 in ohms (2kΩ default).  
Maxim Integrated  
5  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
JU4 to configure the MOD pin. Refer to the MAX19693 IC  
data sheet for more details on the MOD pin. See Table 3  
for jumper JU4 configuration.  
Clock Division  
The data clock output differential signal (DATACLK)  
frequency is scaled down from the DAC clock input.  
Jumper JU5 controls the division factor. See Table 2 for  
shunt settings. Refer to the IC data sheet for details on  
synchronizing the DAC to an external pattern generator.  
Install resistors R2, R3, and R4 to access the differential  
output data clock signal at the DATA-CLKP and DATA-  
CLKN SMA connectors on the evaluation board when not  
using the MUXDAC Data Source System.  
Output Resistor Calibration  
The evaluation board circuit features an on-board µP  
supervisor (U2) to generate the CAL signal required to  
calibrate the integrated output termination resistors. At  
power-up, the supervisor applies a logic-high to the CAL  
pin 140ms after the final supply voltage is within its speci-  
fied range. Pressing switch SW1 recalibrates the inte-  
grated termination resistors by creating a logic-low pulse  
on the CAL pin. The shunt on jumper JU8 can be removed  
to apply an external logic signal to pin 1 of jumper JU8  
and initiate a CAL operation. See Table 1 for jumper JU8  
configuration. Refer to the IC data sheet for details on the  
CAL operation.  
Data Clock Delay  
Jumper JU3 adjusts the delay of the data clock output.  
Refer to the Data Timing Relationships section in the IC  
data sheet for more details. See Table 1 for shunt settings.  
Differential Output  
The DAC features a differential output with built-in self-  
calibrated output termination resistors. The evaluation  
board circuit pulls the outputs up to AVDD3.3 through  
bias inductors L4 and L5 to optimize performance of the  
device. Balun transformer T1 converts the differential sig-  
nal to a single-ended signal. Measure the resulting DAC  
output at the SMA connector labeled OUT.  
Input Register Scan (MAX19693)  
The MAX19693 scan function can be enabled or disabled  
by configuring the SE pin. When the scan function is  
enabled, the contents of the input register are shifted out  
on the SO pin. Connect a digital sampling device to pin 1  
of JU6 to access the scan output data on the SO pin. The  
EV kit circuit provides jumper JU7, which is used to enable  
or disable the scan function. During normal operation,  
install the shunt across jumper JU7 to disable the scan  
function. Refer to the MAX19693 IC data sheet for more  
details. See Table 4 for jumper JU7 configuration.  
Impulse/Frequency Response  
(MAX19692)  
The MAX19692 DAC has three impulse/frequency  
response modes: NRZ, RZ, and RF. These modes are  
set with the RZ and RF input pins. The MAX19692 EV kit  
provides jumpers JU4 and JU9 to configure these pins.  
See Table 2 for jumpers JU4 and JU9 configuration. Refer  
to the DAC Impulse/Frequency Response Mode section  
in the MAX19692 IC data sheet for more details.  
Operation with the MUXDAC  
Data Source  
The device’s LVDS-level data clock outputs (DATACLKP,  
DATACLKN) synchronize the data source and the DAC  
during normal operation of the EV Kit. Install a shunt  
on JU5:1-2 to configure the DAC for DDR mode which  
produce the correct DATACLK frequency for operation  
with the MUXDAC Data Source System.  
Modulation (MAX19693)  
The MAX19693 f  
/2 (or f  
) modulation mode can be  
DAC  
CLK  
enabled or disabled by connecting the MOD pin to 3.3V  
or to ground. The evaluation board circuit provides jumper  
Ordering Information  
PART  
TYPE  
EV KIT  
EV KIT  
MAX19692EVKIT  
MAX19693EVKIT  
Maxim Integrated  
6  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
MAX19692/MAX19693 EV Kit Bill of Materials  
ITEM REFERENCE QTY VALUE TOLERANCE  
DESCRIPTION  
PART NUMBER  
MANUFACTURER  
0402 Ceramic  
Capacitor, SMT, 50V  
C1005C0G1H101J  
GRM1555C1H101J  
TDK  
Murata  
1
2
3
4
5
C1, C2  
2
4
100pF  
0.1μF  
1.0μF  
-
±5%  
±20%  
±20%  
-
C3, C4, C12,  
C13  
0402 Ceramic  
Capacitor, SMT, 10V  
C1005X5R1A104M  
TDK  
C5-C8,  
C24-C31  
0402 Ceramic  
Capacitor, SMT, 6.3V  
12  
0
EEEFTV151XAP  
-
PANASONIC  
-
0603 Capacitors, SMT,  
Not Installed  
C9, C10, C11  
C14, C15,  
C16  
C-Case Tantalum  
Capacitor, SMT, 16V  
TPSC476M016R0350  
594D476X0016C2T  
AVX  
Vishay  
3
47μF  
±20%  
0805 Ceramic  
Capacitor, SMT, 6.3V  
C2012X5R0J106M  
GRM21BR60J106M  
TDK  
Murata  
6
7
C17-C23  
7
10μF  
±20%  
±20%  
0201 Ceramic  
Capacitor, SMT, 6.3V  
C32 – C47  
16  
0.1μF  
C0603X5R0J104M  
TDK  
SMA PC Mount  
Connector, Vertical,  
Not installed  
DATA-CLKP,  
DATA-CLKN  
8
9
0
2
2
4
-
-
-
-
-
-
-
-
PC edge mount 0.92”  
SMA Connector  
CLK, OUT  
H1, H2  
32K243-40ML5  
QSH-060-01-L-D-A  
Rosenberger  
Samtec  
Vertical 2x60 surface  
mount high speed  
socket connectors  
10  
JU1, JU2,  
JU7, JU8  
2x4 pin header(Cut to  
Fit)  
Sullins Electronic  
Corp.  
11  
12  
-
-
-
-
PEC36SAAN  
PEC36SAAN  
JU3, JU4,  
JU5, JU9*  
4
(3*)  
3 Pin Headers (Cut to  
Fit)  
Sullins Electronic  
Corp.  
2-pin headers,  
No Installed  
Sullins Electronic  
Corp.  
13  
14  
15  
16  
JU6  
L1, L2, L3  
L4, L5  
R1  
0
3
2
1
-
-
-
PEC36SAAN  
EXC-CL4532U1  
1008CS-222XJLB  
1812 Chip bead cores,  
SMT  
-
PANASONIC  
Coilcraft  
2520 wire-wound chip  
inductors, SMT, 0.47A  
2.2uH  
±5%  
±1%  
10.0  
kOhm  
0603 chip resistor, SMT  
0402 chip resistor,  
SMT,  
Not Installed  
0603 chip resistor,  
SMT,  
17  
18  
R2, R3  
R4  
0
0
-
-
-
-
Not Installed  
49.9  
Ohm  
2.0  
0402 chip resistors,  
SMT  
19  
20  
R5, R6  
R7  
2
1
±1%  
±0.1%  
0603 chip resistor, SMT  
kOhm  
Maxim Integrated  
7  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
MAX19692/MAX19693 EV Kit Bill of Materials (continued)  
ITEM REFERENCE QTY VALUE TOLERANCE  
DESCRIPTION  
PART NUMBER  
MANUFACTURER  
499  
Ohm  
21  
22  
23  
R8  
1
2
2
±1%  
±1%  
±1%  
0402 chip resistor, SMT  
174  
kOhm  
R9, R11  
R10, R12  
0603 chip resistor, SMT  
0603 chip resistor, SMT  
100k  
Ohm  
Switch, Momentary,  
Push-Button, SMT  
24  
25  
26  
SW1  
T1 - T4  
TP1  
1
4
0
-
-
-
-
-
-
B3S-1000  
Omron Electronics  
Mini-Circuits  
1:1 3000MHz RF  
Transformers  
TC1-1-13M+  
Test point, Not Installed  
PC Test Point, Red  
PC Test point, black  
VDD1.8,  
AVDD3.3,  
AVCLK  
Keystone  
Electronics  
27  
28  
3
3
-
-
-
-
5000  
5001  
Keystone  
Electronics  
GND  
12-Bit, 2.3Gsps, Digital-  
to-Analog Converter,  
169 CSBGA  
U1  
29  
30  
1
1
-
-
-
-
MAX19692EXW-D  
MAX19693EXW-D  
Maxim  
Maxim  
(MAX19692)  
12-Bit, 4Gsps, Digital-  
to-Analog Converter,  
169 CSBGA  
U1  
(MAX19693)  
High-Accuracy  
Supervisory Circuit,  
6-SOT23  
MAX6710LUT+  
(Top Mark: AAZL)  
31  
32  
33  
U2  
U3  
-
1
1
-
-
-
-
-
-
1.25V precision voltage  
reference, 8 SO  
MAX6161AESA+ or  
MAX6161BESA+  
Maxim  
8
(7*)  
Shunts (JU1-JU5, JU7-  
JU9*)  
Sullins Electronic  
Corp.  
STC02SYAN  
MAX19692 /  
MAX19693 Evaluation  
Kit  
PCB, 1 Oz Impedance  
Controlled  
34  
35  
1
1
-
-
Maxim  
Maxim  
FMC ADAPTER CARD  
MAXDACFMCADP1  
*MAX19693EVKIT Excludes JU9  
Maxim Integrated  
8  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
MAX19692 Kit Schematic  
Maxim Integrated  
9  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
MAX19692 Kit Schematic (continued)  
Maxim Integrated  
10  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
MAX19693 Kit Schematic  
Maxim Integrated  
11  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
MAX19693 Kit Schematic (continued)  
Maxim Integrated  
12  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
MAXDACFMCADP1 Bill of Materials  
ITEM  
REFERENCE  
QTY  
DESCRIPTION  
PART NUMBER  
QTH-060-01-L-D-A  
ASP-134488-01  
EEEFTV151XAP  
MANUFACTURER  
SAMTEC  
1
2
3
J1, J2  
2
1
1
120 pin high-speed connector, SMT  
High pin count FMC connector, SMT  
PCB:EPCBMAXADAPTDACFMC1  
J3  
SAMTEC  
PCB  
Maxim Integrated  
13  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
MAXDACFMCADP1 Schematic  
J1-A  
QTH-060-01-L-D-A  
J2-A  
QTH-060-01-L-D-A  
1
2
1
2
1
3
5
7
2
4
6
1
3
5
7
2
4
6
3
4
3
4
CLKBN0 IN  
CLKBP0 IN  
IN CLKAN0  
IN CLKAP0  
CLKCN0 IN  
CLKCP0 IN  
OUT  
OUT  
CLKDN0  
CLKDP0  
5
6
5
6
7
8
7
8
8
8
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
DB_N(0) IN  
IN DA_N(0)  
DC_N(0) IN  
IN DD_N(0)  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
IN  
IN  
IN  
IN  
DB_P(0)  
DA_P(0)  
DC_P(0)  
DD_P(0)  
DB_N(1) IN  
IN DA_N(1)  
DC_N(1) IN  
OUT  
OUT  
DD_N(1)  
DD_P(1)  
IN  
IN  
IN  
DB_P(1)  
DA_P(1)  
DC_P(1)  
DB_N(2) IN  
IN DA_N(2)  
DC_N(2) IN  
IN DD_N(2)  
IN  
IN  
IN  
IN  
DB_P(2)  
DA_P(2)  
DC_P(2)  
DD_P(2)  
DB_N(3) IN  
IN DA_N(3)  
DC_N(3) IN  
IN DD_N(3)  
IN  
IN  
IN  
IN  
DB_P(3)  
DA_P(3)  
DC_P(3)  
DD_P(3)  
DB_N(4) IN  
IN DA_N(4)  
DC_N(4) IN  
IN DD_N(4)  
IN  
IN  
IN  
IN  
DB_P(4)  
DA_P(4)  
DC_P(4)  
DD_P(4)  
DB_N(5) IN  
IN DA_N(5)  
DC_N(5) IN  
IN DD_N(5)  
IN  
IN  
IN  
IN  
DB_P(5)  
DA_P(5)  
DC_P(5)  
DD_P(5)  
DB_N(6) IN  
IN DA_N(6)  
DC_N(6) IN  
IN DD_N(6)  
IN  
IN  
IN  
IN  
DB_P(6)  
DA_P(6)  
DC_P(6)  
DD_P(6)  
DB_N(7) IN  
IN DA_N(7)  
DC_N(7) IN  
IN DD_N(7)  
IN  
IN  
IN  
IN  
DB_P(7)  
DA_P(7)  
DC_P(7)  
DD_P(7)  
JI-B  
QTH-060-01-L-D-A  
J2-B  
QTH-060-01-L-D-A  
61  
62  
61  
62  
61  
63  
65  
67  
69  
71  
73  
75  
77  
79  
81  
83  
85  
87  
89  
91  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
92  
94  
61  
63  
65  
67  
69  
71  
73  
75  
77  
79  
81  
83  
85  
87  
89  
91  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
92  
94  
63  
64  
63  
64  
DB_N(8)  
IN  
DA_N(8)  
IN  
DC_N(8)  
IN  
DD_N(8)  
IN  
IN DD_P(8)  
65  
66  
65  
66  
DB_P(8)  
IN  
DC_P(8)  
IN  
IN DA_P(8)  
67  
68  
67  
68  
69  
70  
69  
70  
DB_N(9)  
IN  
DA_N(9)  
IN DA_P(9)  
DA_N(10)  
DC_N(9)  
IN  
DD_N(9)  
IN DD_P(9)  
DD_N(10)  
IN DD_P(10)  
IN  
IN  
71  
72  
71  
72  
DB_P(9)  
IN  
DC_P(9)  
IN  
73  
74  
73  
74  
75  
76  
75  
76  
DB_N(10)  
IN  
DC_N(10)  
IN  
IN  
IN  
77  
78  
77  
78  
DB_P(10)  
IN  
DC_P(10)  
IN  
IN DA_P(10)  
79  
80  
79  
80  
81  
82  
81  
82  
83  
84  
83  
84  
DB_N(11)  
IN  
DC_N(11)  
IN  
DD_N(11)  
DD_P(11)  
IN  
IN  
IN  
IN  
DA_N(11)  
85  
86  
85  
86  
DB_P(11)  
DC_P(11)  
IN  
IN  
DA_P(11)  
87  
88  
87  
88  
89  
90  
89  
90  
DB_N(12)  
DB_P(12)  
DA_N(12)  
IN DA_P(12)  
DA_N(13)  
IN DA_P(13)  
DC_N(12)  
DC_P(12)  
DD_N(12)  
IN DD_P(12)  
IN  
IN  
IN  
IN  
IN  
IN  
91  
92  
91  
92  
93  
94  
93  
94  
93  
95  
97  
99  
93  
95  
97  
99  
95  
96  
95  
96  
DB_N(13)  
DB_P(13)  
96  
98  
DC_N(13)  
DC_P(13)  
96  
98  
DD_N(13)  
IN DD_P(13)  
IN  
IN  
IN  
IN  
IN  
IN  
97  
98  
97  
98  
99  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
99  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
101  
103  
105  
107  
109  
111  
113  
115  
117  
119  
101  
103  
105  
107  
109  
111  
113  
115  
117  
119  
101  
103  
105  
107  
109  
111  
113  
115  
117  
119  
101  
103  
105  
107  
109  
111  
113  
115  
117  
119  
DB_N(14)  
DB_P(14)  
DA_N(14)  
IN DA_P(14)  
DC_N(14)  
DC_P(14)  
DD_N(14)  
IN DD_P(14)  
IN  
IN  
IN  
IN  
IN  
IN  
DB_N(15)  
DB_P(15)  
DA_N(15)  
DA_P(15)  
DC_N(15)  
DC_P(15)  
DD_N(15)  
DD_P(15)  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
CLKBN1  
CLKBP1  
CLKAN1  
CLKAP1  
CLKCN1  
CLKCP1  
CLKDN1  
CLKDP1  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
J1-C  
QTH-060-01-L-D-A  
J2-3  
QTH-060-01-L-D-A  
121  
123  
125  
127  
122  
124  
126  
128  
121  
123  
125  
127  
122  
124  
126  
128  
121  
123  
125  
127  
122  
124  
126  
128  
121  
123  
125  
127  
122  
124  
126  
128  
Maxim Integrated  
14  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
MAXDACFMCADP1 Schematic (continued)  
J3-A  
J3-B  
J3-C  
J3-D  
J3-E  
ASP-134488-01  
ASP-134488-01  
ASP-134488-01  
ASP-134488-01  
ASP-134488-01  
A1  
A2  
B1  
B2  
C1  
C2  
D1  
D2  
E1  
E2  
1
1
1
1
1
2
2
2
2
2
A3  
B3  
C3  
D3  
E3  
3
3
3
3
3
A4  
B4  
C4  
D4  
E4  
4
4
4
4
4
A5  
B5  
C5  
D5  
E5  
5
5
5
5
5
A6  
A7  
A8  
A9  
B6  
B7  
B8  
B9  
C6  
C7  
C8  
C9  
D6  
D7  
D8  
D9  
E6  
E7  
E8  
E9  
6
6
6
6
6
DD_P(6) OUT  
DD_N(6) OUT  
7
7
7
7
7
8
8
8
8
8
DA_P(0) OUT  
DA_N(0) OUT  
9
9
9
9
9
DD_P(13) OUT  
DD_N(13) OUT  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
A40  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
B40  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
C36  
C37  
C38  
C39  
C40  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
D32  
D33  
D34  
D35  
D36  
D37  
D38  
D39  
D40  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
E30  
E31  
E32  
E33  
E34  
E35  
E36  
E37  
E38  
E39  
E40  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
DA_P(3) OUT  
DA_N(3) OUT  
DA_P(14) OUT  
DA_N(14) OUT  
DD_P(11) OUT  
DD_N(11) OUT  
DA_P(9) OUT  
DA_N(9) OUT  
DA_P(15) OUT  
DA_N(15) OUT  
DD_P(12) OUT  
DD_N(12) OUT  
DA_P(13) OUT  
DA_N(13) OUT  
DA_P(11) OUT  
DA_N(11) OUT  
DD_P(7) OUT  
DD_N(7) OUT  
CLKBP1 OUT  
CLKBN1 OUT  
DC_P(2) OUT  
DC_N(2) OUT  
DB_P(0) OUT  
OUT  
DB_P(7) OUT  
DB_N(7) OUT  
DB_N(0)  
DC_P(10) OUT  
DC_N(10) OUT  
DB_P(13) OUT  
OUT  
DB_P(4) OUT  
DB_N(4) OUT  
DB_N(13)  
DC_P(14) OUT  
DC_N(14) OUT  
OUT  
DC_P(6)  
DC_N(6) OUT  
IN  
DC_P(0)  
DC_N(0) IN  
J3-F  
J3-G  
J3-H  
J3-J  
J3-K  
ASP-134488-01  
ASP-134488-01  
ASP-134488-01  
ASP-134488-01  
ASP-134488-01  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
1
1
1
1
1
2
2
2
2
2
CLKBP0 IN  
CLKBN0 IN  
3
3
3
3
3
4
4
4
4
4
CLKDP1 OUT  
CLKDN1 OUT  
CLKAP0 OUT  
CLKAN0 OUT  
5
5
5
5
5
6
6
6
6
6
CLKAP1 OUT  
CLKAN1 OUT  
DD_P(10) OUT  
DD_N(10) OUT  
7
7
7
7
7
DD_P(8) OUT  
DD_N(8) OUT  
DA_P(10) OUT  
DA_N(10) OUT  
DD_P(2) OUT  
DD_N(2) OUT  
8
8
8
8
8
9
9
9
9
9
DA_P(7) OUT  
DA_N(7) OUT  
DD_P(4) OUT  
DD_N(4) OUT  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F27  
F28  
F29  
F30  
F31  
F32  
F33  
F34  
F35  
F36  
F37  
F38  
F39  
F40  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
G31  
G32  
G33  
G34  
G35  
G36  
G37  
G38  
G39  
G40  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H30  
H31  
H32  
H33  
H34  
H35  
H36  
H37  
H38  
H39  
H40  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
J31  
J32  
J33  
J34  
J35  
J36  
J37  
J38  
J39  
J40  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
K31  
K32  
K33  
K34  
K35  
K36  
K37  
K38  
K39  
K40  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
DD_P(3) OUT  
DD_N(3) OUT  
DA_P(1) OUT  
DA_N(1) OUT  
DD_P(9) OUT  
DD_N(9) OUT  
DA_P(12) OUT  
DA_N(12) OUT  
DD_P(5) OUT  
DD_N(5) OUT  
DA_P(5) OUT  
DA_N(5) OUT  
DD_P(14) OUT  
DD_N(14) OUT  
DA_P(8) OUT  
DA_N(8) OUT  
DD_P(15) OUT  
DD_N(15) OUT  
DA_P(4) OUT  
DA_N(4) OUT  
CLKDP0 OUT  
CLKDN0 OUT  
DA_P(2) OUT  
DA_N(2) OUT  
DD_P(0) OUT  
DD_N(0) OUT  
DA_P(6) OUT  
DA_N(6) OUT  
DB_P(2) OUT  
DB_N(2) OUT  
DD_P(1) OUT  
DD_N(1) OUT  
DC_P(3) OUT  
DC_N(3) OUT  
DB_P(3) OUT  
DB_N(3) OUT  
DB_P(5) OUT  
DB_N(5) OUT  
DC_P(4) OUT  
DC_N(4) OUT  
DC_P(5) OUT  
DC_N(5) OUT  
DB_P(11) OUT  
DB_N(11) OUT  
CLKCP1 IN  
CLKCN1 IN  
DB_P(9) OUT  
DB_N(9) OUT  
DC_P(12) OUT  
DC_N(12) OUT  
DC_P(7) OUT  
DC_N(7) OUT  
DB_P(15) OUT  
DB_N(15) OUT  
DB_P(10) OUT  
DB_N(10) OUT  
DC_P(8) OUT  
DC_N(8) OUT  
DB_P(1) OUT  
DB_N(1) OUT  
DC_P(11) OUT  
DC_N(11) OUT  
DB_P(12) OUT  
DB_N(12) OUT  
DC_P(13) OUT  
DC_N(13) OUT  
DC_P(9) OUT  
DC_N(9) OUT  
DB_P(6) OUT  
DB_N(6) OUT  
DC_P(15) OUT  
DC_N(15) OUT  
DB_P(8) OUT  
DB_N(8) OUT  
DC_P(1) OUT  
DC_N(1) OUT  
DB_P(14) OUT  
DB_N(14) OUT  
CLKCP0 IN  
CLKCN0 IN  
Maxim Integrated  
15  
www.maximintegrated.com  
Evaluates: MAX19692/MAX19693  
MAX19692/MAX19693  
Evaluation Kit User’s Guide  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
12/06  
Initial release  
The EV kit board was redesigned. The same data sheet is now used for both the  
MAX19692 and MAX19693 EV kits  
1
5/08  
1–16  
Extensive changes to flow and content of document. Changes include matching  
newer format. Also details new tools and adapters provided for the MAX19692  
and MAX19693 EV kits  
2
3/19  
1–16  
Updated Procedure, Detailed Description of Hardware, Power Supplies, Clock  
Division, Operation with the MUXDAC Data Source sections, Table 1 and  
Ordering Information table  
3
10/20  
3–6  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2020 Maxim Integrated Products, Inc.  
16  

相关型号:

MAX19693

On-Board 1.25V Reference Circuitry
MAXIM

MAX1969EUI

Power Drivers for Peltier TEC Modules
MAXIM

MAX1969EUI+

暂无描述
MAXIM

MAX1969EUI+T

Switching Regulator, Current-mode, 9A, 1000kHz Switching Freq-Max, BICMOS, PDSO28, 4.40 MM, EXPOSED PAD, TSSOP-28
MAXIM

MAX196ACAI

Multirange, Single %V, 12-Bit DAS with 12-Bit Bus Interface
MAXIM

MAX196ACNI

Multirange, Single %V, 12-Bit DAS with 12-Bit Bus Interface
MAXIM

MAX196ACNI+

Analog Circuit, 1 Func, PDIP28, PLASTIC, DIP-28
MAXIM

MAX196ACWI

Multirange, Single %V, 12-Bit DAS with 12-Bit Bus Interface
MAXIM

MAX196ACWI+

Analog Circuit, 1 Func, PDSO28, 0.300 INCH, MS-013AE, SOIC-28
MAXIM

MAX196ACWI+T

Analog Circuit, 1 Func, PDSO28, 0.300 INCH, MS-013AE, SOIC-28
MAXIM

MAX196AEAI

Multirange, Single %V, 12-Bit DAS with 12-Bit Bus Interface
MAXIM

MAX196AEAI-T

Analog Circuit, 1 Func, PDSO28, 0.200 INCH, 0.65 MM PITCH, SSOP-28
MAXIM