MAX196AENI+ [MAXIM]

Analog Circuit, 1 Func, PDIP28, PLASTIC, DIP-28;
MAX196AENI+
型号: MAX196AENI+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit, 1 Func, PDIP28, PLASTIC, DIP-28

光电二极管
文件: 总16页 (文件大小:173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0435; Rev 0; 9/95  
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
6/MAX198  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
12-Bit Resolution, 1/2LSB Linearity  
Single +5V Supply Operation  
Software-Selectable Input Ranges:  
±10V, ±5V, 0V to +10V, 0V to +5V (MAX196)  
The MAX196/MAX198 multirange, 12-bit data-acquisi-  
tion systems (DAS) require only a single +5V supply for  
operation, yet convert analog signals at their inputs up  
to ±10V (MAX196) and ±4V (MAX198). These systems  
provide six analog input channels that are indepen-  
dently software programmable for a variety of ranges:  
±10V, ±5V, 0V to +10V, and 0V to +5V for the MAX196;  
±V  
, ±V  
/2, 0V to +V  
, 0V to +V /2  
REF  
REF  
REF  
REF  
(MAX198)  
Internal 4.096V or External Reference  
Fault-Protected Input Multiplexer  
6 Analog Input Channels  
6µs Conversion Time, 100ksps Sampling Rate  
Internal or External Acquisition Control  
Two Power-Down Modes  
±V  
, ±V  
/2, 0V to +V  
, and 0V to +V  
/2 for  
REF  
REF  
REF  
REF  
the MAX198. This range switching increases the effec-  
tive dynamic range to 14 bits and provides the flexibility  
to interface ±12V, ±15V, and 4mA to 20mA powered  
sensors to a single +5V system. In addition, these con-  
verters are fault protected to ±16.5V; a fault condition  
on any channel will not affect the conversion result of  
the selected channel. Other features include a 5MHz  
bandwidth track/hold, 100ksps throughput rate, soft-  
ware-selectable internal/external clock, internal/external  
acquisition control, 12-bit parallel interface, and internal  
4.096V or external reference.  
Internal or External Clock  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
28 Narrow Plastic DIP  
28 Narrow Plastic DIP  
28 Wide SO  
MAX196ACNI  
MAX196BCNI  
MAX196ACWI  
MAX196BCWI  
MAX196ACAI  
MAX196BCAI  
Two p rog ra mma b le p owe r-d own mod e s (STBYPD,  
FULLPD) provide low-current shutdown between con-  
ve rs ions . In STBYPD mod e , the re fe re nc e b uffe r  
remains active, eliminating start-up delays.  
28 Wide SO  
28 SSOP  
The MAX196/MAX198 employ a standard microproces-  
sor (µP) interface. A three-state data I/O port is config-  
ure d to op e ra te with 16-b it d a ta b us e s , a nd d a ta -  
access and bus-release timing specifications are com-  
patible with most popular µPs. All logic inputs and out-  
puts are TTL/CMOS compatible.  
28 SSOP  
Ordering Information continued at end of data sheet.  
__________________P in Co n fig u ra t io n  
TOP VIEW  
These devices are available in 28-pin DIP, wide SO,  
SSOP (55% smaller in area than wide SO), and ceramic  
SB packages. For 8+4 bus interface, see the MAX197  
and the MAX199 data sheets. An evaluation kit will be  
available after December 1995 (MAX196EVKIT-DIP).  
CLK  
CS  
28 DGND  
1
2
V
27  
26  
25  
24  
23  
DD  
WR  
RD  
D11  
D10  
D9  
3
4
INT  
REF  
5
________________________Ap p lic a t io n s  
Industrial-Control Systems  
Robotics  
MAX196  
MAX198  
D8  
6
D7  
7
22 REFADJ  
21 CH5  
D6  
8
Data-Acquisition Systems  
Automatic Testing Systems  
Medical Instruments  
D5  
CH4  
CH3  
CH2  
CH1  
CH0  
AGND  
9
20  
19  
18  
17  
16  
15  
D4  
10  
D3 11  
D2 12  
Telecommunications  
13  
14  
D1  
D0  
DIP/SO/SSOP/Ceramic SB  
Functional Diagram appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -7 2 2 -8 2 6 6 fo r fre e s a m p le s o r lit e ra t u re .  
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
V
to AGND............................................................-0.3V to +7V  
Wide SO (derate 12.50mW/°C above +70°C)..............1000mW  
SSOP (derate 9.52mW/°C above +70°C) ......................762mW  
Narrow Ceramic SB (derate 20.00mW/°C above +70°C)..1600mW  
Operating Temperature Ranges  
DD  
AGND to DGND.....................................................-0.3V to +0.3V  
REF to AGND..............................................-0.3V to (V + 0.3V)  
REFADJ to AGND.......................................-0.3V to (V + 0.3V)  
DD  
DD  
Digital Inputs to DGND...............................-0.3V to (V + 0.3V)  
MAX196_C_ I/MAX198_C_ I .................................0°C to +70°C  
MAX196_E_ I/MAX198_E_ I ...............................-40°C to +85°C  
MAX196_MYI/MAX198_MYI.............................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
Digital Outputs to DGND............................-0.3V to (V + 0.3V)  
DD  
CH0–CH5 to AGND ..........................................................±16.5V  
Continuous Power Dissipation (T = +70°C)  
A
Narrow Plastic DIP (derate 14.29mW/°C above +70°C)....1143mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 5V ±5%; unipolar/bipolar range; external reference mode, V  
DD  
= 4.096V; 4.7µF at REF pin; external clock, f  
= 2.0MHz  
REF  
CLK  
with 50% duty cycle; T = T  
to T ; unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
6/MAX198  
PARAMETER  
ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
LSB  
LSB  
MAX196A/MAX198A  
MAX196B/MAX198B  
±1/2  
±1  
Integral Nonlinearity  
INL  
Differential Nonlinearity  
DNL  
±1  
MAX196A/MAX198A  
±3  
Unipolar  
Bipolar  
MAX196B/MAX198B  
MAX196A/MAX198A  
MAX196B/MAX198B  
±5  
Offset Error  
LSB  
LSB  
±5  
±10  
Unipolar  
Bipolar  
±0.1  
±0.5  
Channel-to-Channel Offset  
Error Matching  
MAX196A/MAX198A  
MAX196B/MAX198B  
MAX196A/MAX198A  
MAX196B/MAX198B  
±7  
±10  
±7  
Unipolar  
Bipolar  
Gain Error  
(Note 2)  
LSB  
±10  
Unipolar  
Bipolar  
3
5
Gain Temperature Coefficient  
(Note 2)  
ppm/°C  
DYNAMIC SPECIFICATIONS (10kHz sine-wave input, ±10Vp-p (MAX196) or ±4.096Vp-p (MAX198), f  
= 100ksps)  
-78  
SAMPLE  
MAX196A/MAX198A  
MAX196B/MAX198B  
Up to the 5th harmonic  
70  
69  
Signal-to-Noise + Distortion Ratio  
Total Harmonic Distortion  
SINAD  
THD  
dB  
dB  
dB  
-85  
Spurious-Free Dynamic Range  
SFDR  
80  
50kHz, V = ±5V (MAX196) or ±4V (MAX198)  
IN  
(Note 3)  
Channel-to-Channel Crosstalk  
Aperture Delay  
-86  
dB  
External CLK mode/external acquisition control  
External CLK mode/external acquisition control  
15  
ns  
ps  
<50  
Aperture Jitter  
Internal CLK mode/internal acquisition  
control (Note 4)  
10  
ns  
2
_______________________________________________________________________________________  
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
6/MAX198  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±5%; unipolar/bipolar range; external reference mode, V  
= 4.096V; 4.7µF at REF pin; external clock, f = 2.0MHz  
CLK  
DD  
REF  
with 50% duty cycle; T = T  
to T ; unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT  
Track/Hold Acquisition Time  
f
= 2.0MHz  
3
µs  
CLK  
±10V or ±V  
range  
5
REF  
±5V or ±V /2 range  
2.5  
2.5  
1.25  
REF  
-3dB  
rolloff  
Small-Signal Bandwidth  
MHz  
0V to 10V or 0V to V  
range  
REF  
0V to 5V or 0V to V /2 range  
REF  
0
0
10  
5
MAX196  
MAX198  
MAX196  
MAX198  
Unipolar  
0
V
REF  
0
V
/2  
REF  
Input Voltage Range  
(see Table 3)  
V
IN  
V
-10  
-5  
10  
5
Bipolar  
Unipolar  
Bipolar  
-V  
REF  
V
REF  
-V /2  
REF  
V
/2  
REF  
0V to 10V range  
MAX196  
720  
360  
10  
0V to 5V range  
MAX198  
0.1  
Input Current  
I
IN  
±10V range  
MAX196  
-1200  
-600  
720  
360  
10  
µA  
±5V range  
±V  
REF  
range  
-1200  
-600  
MAX198  
±V /2 range  
REF  
10  
Unipolar  
Bipolar  
21  
16  
V  
I  
IN  
IN  
Input Resistance  
kΩ  
Input Capacitance  
(Note 5)  
40  
pF  
INTERNAL REFERENCE  
REF Output Voltage  
V
T
= +25°C  
4.076  
4.096  
15  
4.116  
V
REF  
A
REF Output Tempco  
MAX196_C/MAX198_C  
MAX196_E/MAX198_E  
MAX196_M/MAX198_M  
(Contact Maxim Applications for  
guaranteed temperature drift  
specifications)  
TC V  
30  
ppm/°C  
REF  
40  
Output Short-Circuit Current  
Load Regulation  
30  
10  
mA  
mV  
µF  
0mA to 0.5mA output current (Note 6)  
With recommended circuit (Figure 1)  
Capacitive Bypass at REF  
REFADJ Output Voltage  
REFADJ Adjustment Range  
Buffer Voltage Gain  
4.7  
2.465  
2.500  
±1.5  
2.535  
V
%
1.6384  
V/V  
_______________________________________________________________________________________  
3
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±5%; unipolar/bipolar range; external reference mode, V  
= 4.096V; 4.7µF at REF pin; external clock, f  
= 2.0MHz  
DD  
REF  
CLK  
with 50% duty cycle; T = T  
to T ; unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
REFERENCE INPUT (buffer disabled, reference input applied to REF pin)  
Input Voltage Range  
2.4  
4.18  
400  
1
V
Normal, or STANDBY  
power-down mode  
V
4.18V  
=
REF  
Input Current  
µA  
FULL power-down mode  
Normal, or STANDBY power-down mode  
FULL power-down mode  
10  
5
kΩ  
Input Resistance  
MΩ  
REFADJ Threshold for  
Buffer Disable  
V
DD  
- 50mV  
V
POWER REQUIREMENTS  
6/MAX198  
Supply Voltage  
V
DD  
4.75  
5.25  
V
Normal mode, bipolar ranges  
Normal mode, unipolar ranges  
STANDBY power-down mode  
FULL power-down mode (Note 7)  
External reference = 4.096V  
Internal reference  
18  
10  
mA  
6
700  
60  
Supply Current  
I
DD  
850  
120  
1
µA  
±0.1  
1
± /  
2
Power-Supply Rejection Ratio  
(Note 8)  
PSRR  
LSB  
± /  
2
TIMING  
Internal Clock Frequency  
External Clock Frequency Range  
f
C
= 100pF  
CLK  
1.25  
0.1  
3.0  
3.0  
3.0  
1.56  
2.00  
2.0  
MHz  
MHz  
CLK  
f
CLK  
External CLK  
Internal CLK  
t
Internal acquisition  
ACQI  
ACQE  
CONV  
5.0  
Acquisition Time  
µs  
External acquisition (Note 9)  
After FULLPD or STBYPD  
External CLK  
t
5
6.0  
6.0  
Conversion Time  
Throughput Rate  
t
µs  
Internal CLK, C  
External CLK  
= 100pF  
7.7  
10.0  
100  
CLK  
ksps  
Internal CLK, C  
= 100pF  
62  
CLK  
Bandgap Reference  
Start-Up Time  
Power-up (Note 10)  
200  
µs  
C
C
= 4.7µF  
= 33µF  
8
To 0.1mV REF bypass  
capacitor fully discharged  
REF  
REF  
Reference Buffer Settling  
ms  
60  
DIGITAL INPUTS (D7–D0, CLK, RD, WR, CS) (Note 11)  
Input High Voltage  
Input Low Voltage  
Input Leakage Current  
Input Capacitance  
V
2.4  
V
V
INH  
V
INL  
0.8  
±10  
15  
I
V
= 0V or V  
DD  
µA  
pF  
IN  
IN  
C
(Note 5)  
IN  
4
_______________________________________________________________________________________  
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
6/MAX198  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±5%; unipolar/bipolar range; external reference mode, V  
= 4.096V; 4.7µF at REF pin; external clock, f  
= 2.0MHz  
DD  
REF  
CLK  
with 50% duty cycle; T = T  
to T ; unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL OUTPUTS (D11–D0, INT)  
Output Low Voltage  
V
V
= 4.75V, I  
= 4.75V, I  
= 1.6mA  
0.4  
15  
V
V
OL  
DD  
SINK  
Output High Voltage  
V
OH  
V
DD  
= 1mA  
V
DD  
- 1  
SOURCE  
Three-State Output Capacitance  
C
(Note 5)  
pF  
OUT  
TIMING CHARACTERISTICS  
(V = 5V ±5%; unipolar/bipolar range; external reference mode, V  
DD  
= 4.096V; 4.7µF at REF pin; external clock, f = 2.0MHz  
CLK  
REF  
with 50% duty cycle; T = T  
to T ; unless otherwise noted.)  
MAX  
A
MIN  
PARAMETER  
CS Pulse Width  
SYMBOL  
CONDITIONS  
MIN  
80  
80  
0
TYP  
MAX  
UNITS  
ns  
t
CS  
WR Pulse Width  
t
ns  
WR  
CS to WR Setup Time  
CS to WR Hold Time  
CS to RD Setup Time  
CS to RD Hold Time  
CLK to WR Setup Time  
CLK to WR Hold Time  
Data Valid to WR Setup  
Data Valid to WR Hold  
t
ns  
CSWS  
CSWH  
t
0
ns  
t
0
ns  
CSRS  
t
0
ns  
CSRH  
t
100  
50  
ns  
CWS  
t
ns  
CWH  
t
60  
0
ns  
DS  
DH  
DO  
t
ns  
RD Low to Output Data Valid  
RD High to Output Disable  
RD Low to INT High Delay  
t
Figure 2, C = 100pF (Note 12)  
L
120  
70  
ns  
t
TR  
(Note 13)  
ns  
t
120  
ns  
INT1  
Note 1: Accuracy specifications tested at V = 5.0V. Performance at power-supply tolerance limits guaranteed by Power-Supply  
DD  
Rejection test. Tested for the ±10V (MAX196) and ±4.096V (MAX198) input ranges.  
Note 2: External reference: V  
= 4.096V, offset error nulled, ideal last code transition = FS - 3/2LSB.  
REF  
Note 3: Ground on” channel; sine wave applied to all “off” channels.  
Note 4: Maximum full-power input frequency for 1LSB error with 10ns jitter = 3kHz.  
Note 5: Guaranteed by design. Not tested.  
Note 6: Use static loads only.  
Note 7: Tested using internal reference.  
Note 8: PSRR measured at full-scale.  
Note 9: External acquisition timing: starts at data valid at ACQMOD = low control byte; ends at rising edge of WR with ACQMOD  
= high control byte.  
Note 10: Not subject to production testing. Provided for design guidance only.  
Note 11: All input control signals specified with t = t = 5ns from a voltage level of 0.8V to 2.4V.  
R
F
Note 12: t  
is measured with the load circuits of Figure 2 and defined as the time required for an output to cross 0.8V or 2.4V.  
DO  
Note 13: t is defined as the time required for the data lines to change by 0.5V.  
TR  
_______________________________________________________________________________________  
5
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
INTEGRAL NONLINEARITY  
EFFECTIVE NUMBER OF BITS  
vs. INPUT FREQUENCY  
vs. DIGITAL CODE  
FFT PLOT  
0
-20  
0.250  
12.0  
11.5  
11.0  
10.5  
f
= 100kHz  
SAMPLE  
f
= 10kHz  
= 100kHz  
TONE  
0.200  
0.150  
0.100  
0.050  
0
f
SAMPLE  
-40  
-60  
-80  
-0.050  
-0.100  
-0.150  
-100  
-120  
6/MAX198  
10.0  
0
1000  
2000  
3000  
4000  
0
25  
FREQUENCY (kHz)  
50  
1
10  
INPUT FREQUENCY (kHz)  
100  
DIGITAL CODE  
POWER-SUPPLY REJECTION RATIO  
vs. TEMPERATURE  
REFERENCE OUTPUT VOLTAGE (V  
)
REF  
vs. TEMPERATURE  
0.4  
4.100  
V
DD  
= 5V ±0.25V  
120Hz  
0.2  
0
4.095  
100Hz  
4.090  
-0.2  
-0.4  
A = 1.6384  
V
+2.5V  
INTERNAL  
REFERENCE  
4.085  
4.080  
REF  
REFADJ  
-0.6  
-70 -50  
110  
130  
-30 -10 10 30 50 70 90  
TEMPERATURE (°C)  
-55 -35  
5
25 45 65  
-15  
85 105 125  
TEMPERATURE (°C)  
CHANNEL-TO-CHANNEL  
CHANNEL-TO-CHANNEL  
OFFSET-ERROR MATCHING vs. TEMPERATURE  
GAIN-ERROR MATCHING vs. TEMPERATURE  
0.33  
0.20  
0.32  
0.31  
0.30  
0.18  
0.16  
0.14  
0.12  
0.10  
0.29  
0.28  
0.27  
130  
130  
-70 -50 -30 -10 10 30 50 70 90 110  
-70 -50 -30 -10 10 30 50 70 90 110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
6/MAX198  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Clock Input. In external clock mode, drive CLK with a TTL/CMOS-compatible clock. In internal clock mode,  
1
CLK  
place a capacitor (C  
) from this pin to ground to set the internal clock frequency; f  
= 1.56MHz typical  
CLK  
CLK  
with C  
= 100pF.  
CLK  
2
CS  
Chip Select, active low  
3–14  
15  
D11–D0  
AGND  
Three-State Digital I/O, D11 = MSB  
Analog Ground  
16–21 CH0–CH5  
Analog Input Channels  
Bandgap Voltage-Reference Output/External Adjust Pin. Bypass with a 0.01µF capacitor to AGND. Connect  
to V when using an external reference at the REF pin.  
DD  
22  
REFADJ  
Reference Buffer Output/ADC Reference Input. In internal reference mode, the reference buffer provides a  
4.096V nominal output, externally adjustable at REFADJ. In external reference mode, disable the internal  
23  
REF  
buffer by pulling REFADJ to V  
.
DD  
24  
25  
INT  
RD  
INT goes low when conversion is complete and output data is ready.  
If CS is low, a falling edge on RD will enable a read operation on the data bus.  
In the internal acquisition mode, when CS is low, a rising edge on WR latches in configuration data and starts an  
acquisition plus a conversion cycle. In the external acquisition mode, when CSis low, the first rising edge on WR  
starts an acquisition, and a second rising edge on WRends acquisition and starts a conversion cycle.  
26  
WR  
27  
28  
V
+5V Supply. Bypass with 0.1µF capacitor to AGND.  
Digital Ground  
DD  
DGND  
_______________De t a ile d De s c rip t io n  
+5V  
Co n ve rt e r Op e ra t io n  
The MAX196/MAX198 multirange, fault-tolerant ADCs  
510k  
100k  
24k  
REFADJ  
us e s uc c e s s ive a p p roxima tion a nd inte rna l inp ut  
track/hold (T/H) circuitry to convert an analog signal to  
a 12-bit digital output. The 12-bit parallel-output format  
p rovid e s e a s y inte rfa c e to mic rop roc e s s ors (µPs ).  
Figure 3 shows the MAX196/MAX198 in the simplest  
operational configuration.  
0.01µF  
MAX196  
MAX198  
Figure 1. Reference-Adjust Circuit  
An a lo g -In p u t Tra c k /Ho ld  
In the internal acquisition control mode (control bit D5  
set to 0), the T/H enters its tracking mode on WR’s ris-  
ing edge, and enters its hold mode when the internally  
timed (6 clock cycles) acquisition interval ends. In bipo-  
lar mode and unipolar mode (MAX196 only), a low-  
impedance input source, which settles in less than  
1.5µs, is required to maintain conversion accuracy at  
the maximum conversion rate.  
+5V  
3k  
D
OUT  
D
OUT  
C
LOAD  
3k  
C
LOAD  
When the MAX198 is configured for unipolar mode, the  
input does not need to be driven from a low-impedance  
a) High-Z to V and V to V  
OH  
b) High-Z to V and V to V  
OL  
OH  
OL  
OL  
OH  
source. The acquisition time (t ) is a function of the  
AZ  
source output resistance (R ), the channel input resis-  
S
Figure 2. Load Circuits for Enable Time  
tance (R ), and the T/H capacitance.  
IN  
_______________________________________________________________________________________  
7
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
Acquisition time is calculated as follows:  
In p u t Ba n d w id t h  
The ADCs input tracking circuitry has a 5MHz small-  
signal bandwidth. When using the internal acquisition  
mode with an external clock frequency of 2MHz, a  
100ksps throughput rate can be achieved. It is possible  
to digitize high-speed transient events and measure  
periodic signals with bandwidths exceeding the ADCs  
sampling rate by using undersampling techniques. To  
avoid high-frequency signals being aliased into the fre-  
quency band of interest, anti-alias filtering is recom-  
mended (MAX274/MAX275 continuous-time filters).  
For 0V to V : t = 9 x (R + R ) x 16pF  
REF AZ  
S
IN  
For 0V to V /2: t = 9 x (R + R ) x 32pF  
REF  
AZ  
S
IN  
where R = 7kand t is never less than 2µs (0V to  
IN  
AZ  
V
range) or 3µs (0V to V /2 range).  
REF  
REF  
In the external acquisition control mode (D5 = 1), the  
T/H enters its tracking mode on the first WR rising edge  
and enters its hold mode when it detects the second  
WR rising edge with D5 = 0 (see External Acquisition  
section).  
In p u t Ra n g e a n d P ro t e c t io n  
Figure 4 shows the equivalent input circuit. The full-  
scale input voltage depends on the voltage at the refer-  
1
28  
CLK  
DGND  
100pF  
ence (V ). The MAX196 uses a scaling factor, which  
REF  
27  
23  
22  
MAX196  
MAX198  
V
REF  
+5V  
DD  
allows input voltage ranges of ±10V, ±5V, 0V to +10V,  
or 0V to +5V with a 4.096V voltage reference (Table 1).  
Program the desired range by setting the appropriate  
control bits (D3, D4) in the control byte (Tables 2 and  
3). The MAX198 does not use a scaling factor, so its  
input voltage range directly corresponds with the refer-  
ence voltage. It can be programmed for input voltages  
of ±V , ±V /2, 0V to V , or 0V to V /2 (Table  
25  
26  
2
6/MAX198  
µP  
CONTROL  
INPUTS  
RD  
WR  
CS  
4.7µF  
4.7µF  
REFADJ  
3
4
5
0.01µF  
0.01µF  
D11  
D10  
D9  
24  
INT  
OUTPUT STATUS  
6
7
8
9
D8  
REF  
REF  
REF  
REF  
21  
20  
19  
18  
17  
16  
D7  
D6  
D5  
CH5  
CH4  
3). When an external reference is applied at REFADJ,  
the voltage at REF is given by V = 1.6384 x V  
REF  
REFADJ  
ANALOG  
INPUTS  
CH3  
CH2  
CH1  
CH0  
10  
11  
(2.4V < V  
< 4.18V).  
D4  
REF  
D3  
D2  
The inp ut c ha nne ls a re ove rvolta g e p rote c te d to  
±16.5V. This protection is active even if the device is in  
power-down mode.  
12  
13  
14  
D1  
D0  
15  
AGND  
Even with V = 0V, the input resistive network provides  
DD  
current-limiting that adequately protects the device.  
µP DATA BUS  
Dig it a l In t e rfa c e  
Input data (control byte) and output data are multi-  
plexed on a three-state parallel interface. This parallel  
I/O can easily be interfaced with a µP. CS, WR, and RD  
control the write and read operations. CS is the stan-  
dard chip-select signal, which enables a µP to address  
the MAX196/MAX198 as an I/O port. When high, it dis-  
ables the WR and RD inputs and forces the interface  
into a high-Z state.  
Figure 3. Operational Diagram  
BIPOLAR  
VOLTAGE  
REFERENCE  
S1  
UNIPOLAR  
OFF  
5.12k  
R1  
CH_  
C
HOLD  
S2  
R2  
T/H  
OUT  
Table 1. Full Scale and Zero Scale  
(MAX196 only)  
ON  
S3  
TRACK  
TRACK S4  
HOLD  
RANGE (V) ZERO SCALE (V) -FULL SCALE +FULL SCALE  
HOLD  
0 to +5  
0 to +10  
±5  
0
V
x 1.2207  
x 2.4414  
x 1.2207  
x 2.4414  
REF  
0
V
REF  
S1 = BIPOLAR/UNIPOLAR SWITCH R1 = 12.5k(MAX196) OR 5.12k(MAX198)  
S2 = INPUT MUX SWITCH  
S3, S4 = T/H SWITCH  
R2 = 8.67k(MAX196) OR (MAX198)  
-V  
x 1.2207  
x 2.4414  
V
REF  
REF  
±10  
-V  
REF  
V
REF  
Figure 4. Equivalent Input Circuit  
_______________________________________________________________________________________  
8
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
6/MAX198  
Table 2. Control-Byte Format  
D7 (MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0 (LSB)  
PD1  
PD0  
ACQMOD  
RNG  
BIP  
A2  
A1  
A0  
BIT  
NAME  
PD1, PD0  
ACQMOD  
RNG  
DESCRIPTION  
These two bits select the clock and power-down modes (Table 4).  
7, 6  
5
0 = internally controlled acquisition (6 clock cycles), 1 = externally controlled acquisition  
Selects the full-scale voltage magnitude at the input (Table 3).  
4
3
BIP  
Selects unipolar or bipolar conversion mode (Table 3).  
2, 1, 0  
A2, A1, A0  
These are address bits for the input mux to select the “on” channel (Table 5).  
Table 3. Range and Polarity Selection  
Table 4. Clock and Power-Down Selection  
PD1 PD0  
DEVICE MODE  
INPUT RANGE (V)  
(MAX196)  
INPUT RANGE (V)  
(MAX198)  
BIP  
RNG  
0
0
0
1
Normal Operation / External Clock Mode  
Normal Operation / Internal Clock Mode  
0
0
1
1
0
1
0
1
0 to 5  
0 to 10  
±5  
0 to V /2  
REF  
Standby Power-Down (STBYPD); clock mode  
is unaffected  
0 to V  
REF  
1
1
0
1
±V /2  
REF  
Full Power-Down (FULLPD); clock mode is  
unaffected  
±10  
±V  
REF  
Table 5. Channel Selection  
A2  
0
A1  
0
A0  
0
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
_______________________________________________________________________________________  
9
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
Input Format  
The control byte is latched into the device, on pins  
D7–D0, during a write cycle. Table 2 shows the control-  
byte format.  
duration is internally timed. Conversion starts when this  
six-clock-cycle acquisition interval (3µs with f  
2MHz) ends (see Figure 5).  
=
CLK  
External Acquisition  
Use the external acquisition timing mode for precise con-  
trol of the sampling aperture and/or independent control  
of acquisition and conversion times. The user controls  
acquisition and start-of-conversion with two separate  
write pulses. The first pulse, written with ACQMOD = 1,  
starts an acquisition interval of indeterminate length. The  
second write pulse, written with ACQMOD = 0, termi-  
nates acquisition and starts conversion on WR’s rising  
edge (Figure 6). However, if the second control byte  
contains ACQMOD = 1, an indefinite acquisition interval  
is restarted.  
Output Data Format  
The output data format is binary in unipolar mode and  
twos-complement binary in bipolar mode. When reading  
the output data, CS and RD must be low.  
Ho w t o S t a rt a Co n ve rs io n  
Conversions are initiated with a write operation, which  
selects the mux channel and configures the MAX196/  
MAX198 for either a unipolar or bipolar input range. A  
write pulse (WR + CS) can either start an acquisition inter-  
val or initiate a combined acquisition plus conversion. The  
sampling interval occurs at the end of the acquisition  
interval. The ACQMOD bit in the input control byte offers  
two options for acquiring the signal: internal or external.  
The conversion period lasts for 12 clock cycles in either  
internal or external clock or acquisition mode.  
6/MAX198  
The address bits for the input mux must have the same  
values on the first and second write pulses. Power-down  
mode bits (PD0, PD1) can assume new values on the  
second write pulse (see Power-Down Mode section).  
Writing a new control byte during a conversion cycle will  
abort the conversion and start a new acquisition interval.  
Ho w t o Re a d a Co n ve rs io n  
A standard interrupt signal, INT, is provided to allow the  
device to flag the µP when the conversion has ended  
and a valid result is available. INT goes low when con-  
ve rs ion is c omp le te a nd the outp ut d a ta is re a d y  
(Figures 5 and 6). It returns high on the first read cycle  
or if a new control byte is written.  
Internal Acquisition  
Select internal acquisition by writing the control byte with  
the ACQMOD bit cleared (ACQMOD = 0). This causes  
the write pulse to initiate an acquisition interval whose  
tCSRH  
tCS  
tCSRS  
CS  
tACQI  
tCONV  
tCSWS  
tCSWH  
tDH  
tWR  
WR  
tDS  
CONTROL  
BYTE  
D7D0  
ACQMOD ="0"  
tINT1  
INT  
RD  
tTR  
tD0  
HIGH-Z  
HIGH-Z  
DATA VALID  
DOUT  
Figure 5. Conversion Timing Using Internal Acquisition Mode  
10 ______________________________________________________________________________________  
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
6/MAX198  
tCSRS  
tCSRH  
tCS  
CS  
tCSWS  
tACQI  
tCSHW  
tCONV  
tWR  
WR  
tDH  
tDS  
CONTROL  
CONTROL  
BYTE  
ACQMOD = "0"  
D7D0  
INT  
BYTE  
ACQMOD = "1"  
tINT1  
RD  
tD0  
tTR  
DATA VALID  
DOUT  
Figure 6. Conversion Timing Using External Acquisition Mode  
Clo c k Mo d e s  
The MAX196/MAX198 operate with either an internal or  
an external clock. Control bits (D6, D7) select either  
internal or external clock mode. Once the desired clock  
mod e is s e le c te d , c ha ng ing the s e b its to p rog ra m  
power-down will not affect the clock mode. In each  
mode, internal or external acquisition can be used. At  
power-up, external clock mode is selected.  
2000  
1500  
1000  
Internal Clock Mode  
Se le c t inte rna l c loc k mod e to fre e the µP from the  
burden of running the SAR conversion clock. To select  
this mode, write the control byte with D7 = 0 and D6 =  
1. A 100pF capacitor between the CLK pin and ground  
s e ts this fre q ue nc y to 1.56MHz nomina l. Fig ure 7  
shows a linear relationship between the internal clock  
period and the value of the external capacitor used.  
500  
0
0
50 100 150 200 250 300 350  
CLOCK PIN CAPACITANCE (pF)  
External Clock Mode  
Select external clock mode by writing the control byte  
with D7 = 0 and D6 = 0. Figure 8 shows CLK and WR  
timing relationships in internal and external acquisition  
modes, with an external clock. A 100kHz to 2.0MHz  
external clock with 45% to 55% duty cycle is required for  
proper operation. Operating at clock frequencies lower  
than 100kHz will cause a voltage droop across the hold  
capacitor, and subsequently degrade performance.  
Figure 7. Internal Clock Period vs. Clock Pin Capacitance  
______________________________________________________________________________________ 11  
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
ACQUISITION STARTS  
CONVERSION STARTS  
ACQUISITION ENDS  
CLK  
WR  
tCWS  
WR GOES HIGH WHEN CLK IS HIGH  
ACQMOD = "0"  
ACQUISITION ENDS  
tCWH  
ACQUISITION STARTS  
CONVERSION STARTS  
CLK  
WR  
6/MAX198  
ACQMOD = "0"  
WR GOES HIGH WHEN CLK IS LOW  
Figure 8a. External Clock and WR Timing (Internal Acquisition Mode)  
ACQUISITION STARTS  
ACQUISITION ENDS  
CONVERSION STARTS  
CLK  
tCWS  
tDH  
WR  
ACQMOD = "0"  
ACQMOD = "1"  
WR GOES HIGH WHEN CLK IS HIGH  
ACQUISITION ENDS  
ACQUISITION STARTS  
CONVERSION STARTS  
CLK  
WR  
tCWH  
tDH  
ACQMOD = "1"  
WR GOES HIGH WHEN CLK IS LOW  
ACQMOD = "0"  
Figure 8b. External Clock and WR Timing (External Acquisition Mode)  
12 ______________________________________________________________________________________  
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
6/MAX198  
__________Ap p lic a t io n s In fo rm a t io n  
4.096V  
4.7µF  
REF 26  
P o w e r-On Re s e t  
At power-up, the internal power-on reset circuitry sets  
INT high and puts the device in normal operation/exter-  
nal clock mode. This state is selected to keep the inter-  
nal clock from loading the external clock driver when  
the part is used in external clock mode.  
MAX196  
MAX198  
C
REF  
A = 1.638  
V
REFADJ 25  
In t e rn a l o r Ex t e rn a l Re fe re n c e  
The MAX196/MAX198 can operate with either an inter-  
nal or external reference. An external reference can be  
connected to either the REF pin or the REFADJ pin  
(Figure 9).  
0.01µF  
10k  
2.5V  
To use the REF input directly, disable the internal buffer  
by tying REFADJ to V . Using the REFADJ input elimi-  
DD  
nates the need to buffer the reference externally. When  
the reference is applied at REFADJ, bypass REFADJ with  
a 0.01µF capacitor to AGND.  
Figure 9a. Internal Reference  
The REFADJ internal buffer gain is trimmed to 1.6384 to  
provide 4.096V at the REF pin from a 2.5V reference.  
REF 26  
4.096V  
4.7µF  
MAX196  
MAX198  
Internal Reference  
The inte rna lly trimme d 2.50V re fe re nc e is g a ine d  
through the REFADJ buffer to provide 4.096V at REF.  
Bypass the REF pin with a 4.7µF capacitor to AGND  
and the REFADJ pin with a 0.01µF capacitor to AGND.  
The internal reference voltage is adjustable to ±1.5%  
(±65 LSBs) with the reference-adjust circuit of Figure 1.  
C
REF  
A = 1.638  
V
DD  
V
REFADJ 25  
10k  
External Reference  
At REF and REFADJ, the input impedance is a mini-  
mum of 10kfor DC currents. During conversions, an  
e xte rna l re fe re nc e a t REF mus t b e a b le to d e live r  
400µA DC load currents, and must have an output  
impedance of 10or less. If the reference has higher  
output impedance or is noisy, bypass it close to the  
REF pin with a 4.7µF capacitor to AGND.  
2.5V  
Figure 9b. External Reference, Reference at REF  
4.096V  
4.7µF  
REF 26  
With an external reference voltage of less than 4.096V  
at the REF pin or less than 2.5V at the REFADJ pin, the  
increase in the ratio of the RMS noise to the LSB value  
(FS / 4096) results in performance degradation (loss of  
effective bits).  
MAX196  
MAX198  
C
REF  
A = 1.638  
V
REFADJ 25  
2.5V  
0.01µF  
P o w e r-Do w n Mo d e  
To save power, you can put the converter into low-  
current shutdown mode between conversions. Two  
p rog ra mma b le p owe r-d own mod e s a re a va ila b le :  
STBYPD and FULLPD. Select STBYPD or FULLPD by  
programming PD0 and PD1 in the input control byte.  
When power-down is asserted, it becomes effective  
only after the end of conversion. In all power-down  
modes, the interface remains active and conversion  
10k  
2.5V  
Figure 9c. The external reference overdrives the internal refer-  
ence.  
______________________________________________________________________________________ 13  
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
results may be read. Input overvoltage protection is  
active in all power-down modes. The device returns to  
normal operation on the first WR falling edge during  
write operation.  
than a fraction of an LSB), run a STBYPD power-down  
cycle prior to starting conversions. Take into account  
that the reference buffer recharges the bypass capaci-  
tor at an 80mV/ms slew rate, and add 50µs for settling  
time. Throughput rates of 10ksps offer typical supply  
c urre nts of 470µA, us ing the re c omme nd e d 33µF  
capacitor value.  
Choosing Power-Down Modes  
The bandgap reference and reference buffer remain  
active in STBYPD mode, maintaining the voltage on the  
4.7µF capacitor at the REF pin. This is a “DC” state that  
does not degrade after power-down of any duration.  
Therefore, you can use any sampling rate with this  
mode, without regard to start-up delays.  
Auto-Shutdown  
Selecting STBYPD on every conversion automatically  
shuts the MAX196/MAX198 down after each conversion  
without requiring any start-up time on the next conversion.  
However, in FULLPD mode, only the bandgap refer-  
ence is active. Connect a 33µF capacitor between REF  
and AGND to maintain the reference voltage between  
conversions and to reduce transients when the buffer is  
enabled and disabled. Throughput rates down to 1ksps  
can be achieved without allotting extra acquisition time  
for reference recovery prior to conversion. This allows  
c onve rsion to be gin imme dia te ly a fte r powe r-down  
ends. If the discharge of the REF capacitor during  
FULLPD exceeds the desired limits for accuracy (less  
Tra n s fe r Fu n c t io n  
Output data coding for the MAX196/MAX198 is binary  
in unipolar mode with 1LSB = (FS / 4096) and twos-  
complement binary in bipolar mode with 1LSB = [(2 x  
6/MAX198  
FS ) / 4096]. Code transitions occur halfway between  
| |  
s uc c e s s ive -inte g e r LSB va lue s . Fig ure s 10 a nd 11  
show the input/output (I/O) transfer functions for unipo-  
lar and bipolar operations, respectively. For full-scale  
(FS) values, refer to Table 1.  
OUTPUT CODE  
OUTPUT CODE  
FS  
4096  
2 FS  
4096  
1 LSB =  
1 LSB =  
FULL-SCALE  
TRANSITION  
11... 111  
011... 111  
011... 110  
11... 110  
11... 101  
000... 001  
000... 000  
111... 111  
100... 010  
100... 001  
100... 000  
00... 011  
00... 010  
00... 001  
00... 000  
-FS  
0V  
+FS - 1 LSB  
FS  
0
1
2
3
3
FS - / LSB  
INPUT VOLTAGE (LSB)  
INPUT VOLTAGE (LSB)  
2
Figure 11. Bipolar Transfer Function  
Figure 10. Unipolar Transfer Function  
14 ______________________________________________________________________________________  
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
6/MAX198  
La yo u t , Gro u n d in g , a n d Byp a s s in g  
Careful printed circuit board layout is essential for best  
s ys te m p e rforma nc e . For b e s t p e rforma nc e , us e a  
ground plane. To reduce crosstalk and noise injection,  
ke e p a na log a nd d ig ita l s ig na ls s e p a ra te . Dig ita l  
ground lines can run between digital signal lines to  
minimize interference. Connect analog grounds and  
DGND in a star configuration to AGND. For noise-free  
operation, ensure the ground return from AGND to the  
supply ground is low impedance and as short as possi-  
ble. Connect the logic grounds directly to the supply  
SUPPLY  
GND  
+5V  
4.7µF  
0.1µF  
R* = 5Ω  
**  
V
DD  
+5V  
DGND  
AGND  
DGND  
ground. Bypass V  
with 0.1µF and 4.7µF capacitors  
DD  
to AGND to minimize high- and low-frequency fluctua-  
tions. If the supply is excessively noisy, connect a 5Ω  
DIGITAL  
CIRCUITRY  
MAX196  
MAX198  
resistor between the supply and V , as shown in  
DD  
Figure 12.  
* OPTIONAL  
** CONNECT AGND AND DGND WITH A GROUND PLANE OR A SHORT TRACE  
Figure 12. Power-Supply Grounding Connection  
_________________________________________________________Fu n c t io n a l Dia g ra m  
REF  
REFADJ  
10k  
+2.5V  
REFERENCE  
A =  
V
1.638  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
SIGNAL  
CONDITIONING  
BLOCK  
&
T/H  
OVERVOLTAGE  
TOLERANT  
MUX  
CHARGE REDISTRIBUTION  
12-BIT DAC  
COMP  
12  
CLK  
CLOCK  
SUCCESSIVE-  
APPROXIMATION  
REGISTER  
CS  
WR  
RD  
CONTROL LOGIC  
&
LATCHES  
8
12  
V
DD  
MAX196  
MAX198  
THREE-STATE, BIDIRECTIONAL  
I/O INTERFACE  
INT  
AGND  
DGND  
D0D11  
12-BIT DATA BUS  
______________________________________________________________________________________ 15  
Mu lt ira n g e , S in g le +5 V, 1 2 -Bit DAS  
w it h 1 2 -Bit Bu s In t e rfa c e  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
___________________Ch ip To p o g ra p h y  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
Dice*  
D11 CLK  
CS  
V
V
CC  
DD  
DGND  
WR  
MAX196BC/D  
MAX196AENI  
MAX196BENI  
MAX196AEWI  
MAX196BEWI  
MAX196AEAI  
MAX196BEAI  
MAX196AMYI  
MAX196BMYI  
MAX198ACNI  
MAX198BCNI  
MAX198ACWI  
MAX198BCWI  
MAX198ACAI  
MAX198BCAI  
MAX198BC/D  
MAX198AENI  
MAX198BENI  
MAX198AEWI  
MAX198BEWI  
MAX198AEAI  
MAX198BEAI  
MAX198AMYI  
MAX198BMYI  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
28 Narrow Plastic DIP  
28 Narrow Plastic DIP  
28 Wide SO  
D10  
RD  
D9  
D8  
INT  
REF  
28 Wide SO  
D7  
28 SSOP  
28 SSOP  
0. 231"  
-55°C to +125°C 28 Narrow Ceramic SB**  
-55°C to +125°C 28 Narrow Ceramic SB**  
(5. 870mm)  
REFADJ  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
28 Narrow Plastic DIP  
28 Narrow Plastic DIP  
28 Wide SO  
6/MAX198  
CH5  
D6  
28 Wide SO  
CH4  
CH3  
CH2  
D5  
D4  
28 SSOP  
28 SSOP  
D3  
Dice*  
28 Narrow Plastic DIP  
28 Narrow Plastic DIP  
28 Wide SO  
D1  
CH0  
D2  
D0 AGND  
0. 144"  
CH1  
28 Wide SO  
(3. 659mm)  
28 SSOP  
28 SSOP  
TRANSISTOR COUNT: 2956  
SUBSTRATE CONNECTED TO GND  
-55°C to +125°C 28 Narrow Ceramic SB**  
-55°C to +125°C 28 Narrow Ceramic SB**  
* Dice are specified at T = +25°C, DC parameters only.  
A
** Contact factory for availability and processing to MIL-STD-883.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1995 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX196AEWI

Multirange, Single %V, 12-Bit DAS with 12-Bit Bus Interface
MAXIM

MAX196AEWI+

Analog Circuit, 1 Func, PDSO28, 0.300 INCH, MS-013AE, SOIC-28
MAXIM

MAX196AEWI+T

暂无描述
MAXIM

MAX196AEWI-T

Analog Circuit, 1 Func, PDSO28, 0.300 INCH, MS-013AE, SOIC-28
MAXIM

MAX196AMYI

Multirange, Single %V, 12-Bit DAS with 12-Bit Bus Interface
MAXIM

MAX196BC/D

Multirange, Single %V, 12-Bit DAS with 12-Bit Bus Interface
MAXIM

MAX196BCAI

Multirange, Single %V, 12-Bit DAS with 12-Bit Bus Interface
MAXIM

MAX196BCNI

Multirange, Single %V, 12-Bit DAS with 12-Bit Bus Interface
MAXIM

MAX196BCNI+

Analog Circuit, 1 Func, PDIP28, PLASTIC, DIP-28
MAXIM

MAX196BCWI

Multirange, Single %V, 12-Bit DAS with 12-Bit Bus Interface
MAXIM

MAX196BEAI

Multirange, Single %V, 12-Bit DAS with 12-Bit Bus Interface
MAXIM

MAX196BEAI+T

Analog Circuit, 1 Func, PDSO28, 0.200 INCH, 0.65 MM PITCH, SSOP-28
MAXIM