MAX19999ETX+T [MAXIM]

Dual, SiGe High-Linearity, 3000MHz to 4000MHz Downconversion Mixer with LO Buffer; 双通道, SiGe,高线性度, 3000MHz的至4000MHz下变频混频器,带有LO缓冲器
MAX19999ETX+T
型号: MAX19999ETX+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual, SiGe High-Linearity, 3000MHz to 4000MHz Downconversion Mixer with LO Buffer
双通道, SiGe,高线性度, 3000MHz的至4000MHz下变频混频器,带有LO缓冲器

电信集成电路 蜂窝电话电路 电信电路 信息通信管理
文件: 总19页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4293; Rev 0; 10/08  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
MAX19  
General Description  
Features  
The MAX19999 dual-channel downconverter provides  
8.3dB of conversion gain, +24dBm input IP3, +11.4dBm  
1dB input compression point, and a noise figure of  
10.5dB for 3000MHz to 4000MHz WiMAX™ and LTE  
diversity receiver applications. With an optimized LO fre-  
quency range of 2650MHz to 3700MHz, this mixer is  
ideal for low-side LO injection architectures.  
o 3000MHz to 4000MHz RF Frequency Range  
o 2650MHz to 3700MHz LO Frequency Range  
o 50MHz to 500MHz IF Frequency Range  
o 8.3dB Conversion Gain  
o +24dBm Input IP3  
o 10.5dB Noise Figure  
In addition to offering excellent linearity and noise per-  
formance, the MAX19999 also yields a high level of  
component integration. This device includes two dou-  
ble-balanced passive mixer cores, two LO buffers, and  
a pair of differential IF output amplifiers. Integrated on-  
chip baluns allow for single-ended RF and LO inputs.  
o +11.4dBm Input 1dB Compression Point  
o 74dBc Typical 2 x 2 Spurious Rejection at  
P
RF  
= -10dBm  
o Dual Channels Ideal for Diversity Receiver  
Applications  
The MAX19999 requires a nominal LO drive of 0dBm  
o Integrated LO Buffer  
o Integrated LO and RF Baluns for Single-Ended  
and a typical supply current of 388mA at V  
= +5.0V  
CC  
or 279mA at V  
= +3.3V.  
CC  
Inputs  
The MAX19999 is pin compatible with the MAX19997A  
1800MHz to 2900MHz mixer and pin similar with the  
MAX19985/MAX19985A and MAX19995/MAX19995A  
series of 700MHz to 2200MHz mixers, making this  
entire family of downconverters ideal for applications  
where a common PCB layout is used across multiple  
frequency bands.  
o Low -3dBm to +3dBm LO Drive  
o Pin Compatible with the MAX19997A 1800MHz to  
2900MHz Mixer  
o Pin Similar to the MAX9995/MAX9995A and  
MAX19995/MAX19995A 1700MHz to 2200MHz  
Mixers and the MAX9985/MAX9985A and  
MAX19985/MAX19985A 700MHz to 1000MHz  
Mixers  
o 39dB Channel-to-Channel Isolation  
o Single +5.0V or +3.3V Supply  
The MAX19999 is available in a compact 6mm x 6mm,  
36-pin thin QFN package with an exposed pad.  
Electrical performance is guaranteed over the extended  
temperature range, from T = -40°C to +85°C.  
C
o External Current-Setting Resistors Provide Option  
for Operating Device in Reduced-Power/Reduced-  
Performance Mode  
Applications  
3.5GHz WiMAX and LTE Base Stations  
Fixed Broadband Wireless Access  
Microwave Links  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
36 Thin QFN-EP*  
36 Thin QFN-EP*  
Wireless Local Loop  
MAX19999ETX+  
MAX19999ETX+T  
Private Mobile Radios  
Military Systems  
+Denotes a lead-free/RoHS-compliant package.  
*EP = Exposed pad.  
T = Tape and reel.  
Pin Configuration/Functional Diagram and Typical  
Application Circuit appear at end of data sheet.  
WiMAX is a trademark of WiMAX Forum.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
ABSOLUTE MAXIMUM RATINGS  
CC  
RF_, LO to GND.....................................................-0.3V to +0.3V  
IFM_, IFD_, IFM_SET, IFD_SET, LO_ADJ_M,  
V
to GND...........................................................-0.3V to +5.5V  
θ
θ
(Notes 2, 3)..............................................................+38°C/W  
(Note 3).....................................................................7.4°C/W  
Operating Case Temperature Range  
JA  
JC  
LO_ADJ_D to GND.................................-0.3V to (V  
RF_, LO Input Power ......................................................+15dBm  
RF_, LO Current (RF and LO are DC shorted to GND  
through balun).................................................................50mA  
Continuous Power Dissipation (Note 1) ..............................8.7W  
+ 0.3V)  
(Note 4) ...................................................T = -40°C to +85°C  
CC  
C
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Note 1: Based on junction temperature T = T + (θ x V  
x I ). This formula can be used when the temperature of the exposed  
CC CC  
J
C
JC  
pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction  
temperature must not exceed +150°C.  
MAX19  
Note 2: Junction temperature T = T + (θ x V  
x I ). This formula can be used when the ambient temperature of the PCB is  
known. The junction temperature must not exceed +150°C.  
J
A
JA  
CC  
CC  
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Note 4: T is the temperature on the exposed pad of the package. T is the ambient temperature of the device and PCB.  
A
C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, no input RF or LO signals applied, V  
= +4.75V to +5.25V, T = -40°C to +85°C. Typical values are at  
CC  
C
V
CC  
= +5.0V, T = +25°C, unless otherwise noted. R1 = R4 = 750, R2 = R5 = 698.)  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5
MAX  
5.25  
420  
UNITS  
V
Supply Voltage  
Supply Current  
V
4.75  
CC  
CC  
I
Total supply current  
388  
mA  
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, no input RF or LO signals applied, T = -40°C to +85°C. Typical values are at  
C
V
CC  
= +3.3V, T = +25°C, unless otherwise noted. R1, R4 = 1.1k; R2, R5 = 845.) (Note 5)  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
3.3  
MAX  
UNITS  
V
Supply Voltage  
Supply Current  
V
(Note 6)  
Total supply current  
3
3.6  
CC  
CC  
I
279  
mA  
RECOMMENDED AC OPERATING CONDITIONS  
PARAMETER  
RF Frequency  
SYMBOL  
CONDITIONS  
MIN  
3000  
2650  
TYP  
MAX  
4000  
3700  
UNITS  
MHz  
f
(Notes 5, 7)  
(Notes 5, 7)  
RF  
LO  
LO Frequency  
IF Frequency  
LO Drive Level  
f
MHz  
Using Mini-Circuits TC4-1W-17 4:1  
transformer as defined in the Typical  
Application Circuit, IF matching  
components affect the IF frequency range  
(Notes 5, 7)  
100  
500  
f
MHz  
dBm  
IF  
Using alternative Mini-Circuits TC4-1W-7A  
4:1 transformer, IF matching components  
affect the IF frequency range (Notes 5, 7)  
50  
-3  
250  
+3  
P
(Note 7)  
LO  
2
_______________________________________________________________________________________  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
MAX19  
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, V  
= +4.75V to +5.25V, RF and LO ports are driven from 50sources, P  
= -3dBm to +3dBm,  
LO  
CC  
P
= -5dBm, f = 3200MHz to 3900MHz, f = 2800MHz to 3600MHz, f = 350MHz, f > f , T = -40°C to +85°C. Typical val-  
RF  
RF LO IF RF LO C  
ues are at V  
= +5.0V, P = -5dBm, P = 0dBm, f = 3550MHz, f = 3200MHz, f = 350MHz, T = +25°C, unless otherwise  
RF LO RF LO IF C  
CC  
noted.) (Note 8)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
G
T
C
= +25°C (Notes 6, 9)  
7.3  
8.3  
9.3  
dB  
C
f
= 3200MHz to 3900MHz, over any  
RF  
Conversion Gain Flatness  
0.15  
dB  
100MHz band  
f
= 3200MHz to 3900MHz, T = -40°C to  
RF  
C
Gain Variation Over Temperature  
Input Compression Point  
TC  
-0.01  
11.4  
24.3  
dB/°C  
dBm  
CG  
+85°C  
IP  
(Notes 6, 9, 10)  
9.8  
1dB  
f
- f  
= 1MHz, P = -5dBm per tone  
RF1 RF2 RF  
21.6  
(Notes 6, 9)  
Third-Order Input Intercept Point  
IIP3  
dBm  
f
= 3550MHz, f  
- f  
= 1MHz,  
RF  
RF1 RF2  
P
= -5dBm per tone, T = +25°C  
22  
24.3  
RF  
C
(Notes 6, 9)  
Third-Order Input Intercept Point  
Variation Over Temperature  
f
- f = 1MHz, T = -40°C to +85°C  
0.3  
10.5  
dBm  
dB  
RF1 RF2  
C
Single sideband, no blockers present  
(Notes 5, 6)  
13  
Noise Figure  
NF  
SSB  
Single sideband, no blockers present,  
f
10.5  
11.5  
= 3500MHz, T = +25°C (Notes 5, 6)  
C
RF  
Noise Figure Temperature  
Coefficient  
Single sideband, no blockers present,  
= -40°C to +85°C  
TC  
0.018  
dB/°C  
dB  
NF  
T
C
f
= 3700MHz, P  
= 8dBm,  
BLOCKER  
BLOCKER  
Noise Figure Under Blocking  
Conditions  
f
RF  
= 3450MHz, f = 3100MHz, P = 0dBm,  
LO LO  
NF  
21  
25  
B
V
CC  
= 5.0V, T = +25°C (Notes 5, 6, 11)  
C
P
= -10dBm,  
RF  
68  
63  
77  
67  
74  
69  
f
= 3500MHz, f  
=
RF  
LO  
= f  
(Notes 5, 6)  
2RF-2LO Spurious Rejection  
3RF-3LO Spurious Rejection  
2 x 2  
3 x 3  
3150MHz, f  
175MHz, T = +25°C  
+
dBc  
dBc  
SPUR  
LO  
P
= -5dBm,  
RF  
C
(Notes 6, 9)  
P
= -10dBm,  
RF  
86  
f
= 3500MHz, f  
=
RF  
LO  
= f  
(Notes 5, 6)  
3150MHz, f  
116.67MHz, T = +25°C  
+
SPUR  
LO  
P
= -5dBm,  
RF  
C
76  
(Notes 6, 9)  
LO on and IF terminated into a matched  
impedance  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
15.4  
14  
dB  
dB  
RF and IF terminated into a matched  
impedance  
Nominal differential impedance at the IC’s  
IF outputs  
Z
200  
IF  
_______________________________________________________________________________________  
3
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, V  
= +4.75V to +5.25V, RF and LO ports are driven from 50sources, P  
= -3dBm to +3dBm,  
LO  
CC  
P
= -5dBm, f = 3200MHz to 3900MHz, f = 2800MHz to 3600MHz, f = 350MHz, f > f , T = -40°C to +85°C. Typical val-  
RF  
RF LO IF RF LO C  
ues are at V  
= +5.0V, P = -5dBm, P = 0dBm, f = 3550MHz, f = 3200MHz, f = 350MHz, T = +25°C, unless otherwise  
RF LO RF LO IF C  
CC  
noted.) (Note 8)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RF terminated into 50, LO driven by a 50Ω  
source, IF transformed to 50using  
external components shown in the Typical  
Application Circuit  
IF Output Return Loss  
18  
dB  
MAX19  
RF-to-IF Isolation  
28  
-31  
-30  
-23  
dB  
LO Leakage at RF Port  
2LO Leakage at RF Port  
LO Leakage at IF Port  
(Notes 6, 9)  
-24  
dBm  
dBm  
dBm  
RFMAIN (RFDIV ) converted power  
measured at IFDIV (IFMAIN), relative to  
IFMAIN (IFDIV), all unused ports terminated  
to 50(Notes 6, 9)  
Channel Isolation  
36  
39  
dB  
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, typical values are at V  
= +3.3V, P  
= -5dBm, P  
= 0dBm, f  
= 3550MHz, f = 3200MHz,  
LO  
CC  
RF  
LO  
RF  
f
IF  
= 350MHz, T = +25°C, unless otherwise noted.) (Note 8)  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
G
8.0  
dB  
C
f
= 3200MHz to 3900MHz, over any  
RF  
Conversion Gain Flatness  
0.15  
dB  
100MHz band  
f
= 3200MHz to 3900MHz, T = -40°C to  
RF  
C
Gain Variation Over Temperature  
Input Compression Point  
TC  
-0.01  
8.4  
dB/°C  
dBm  
dBm  
CG  
+85°C  
IP  
1dB  
Third-Order Input Intercept Point  
IIP3  
f
f
- f  
= 1MHz, P = -5dBm per tone  
20.3  
RF1 RF2  
RF  
Third-Order Input Intercept  
Variation Over Temperature  
- f  
= 1MHz, T = -40°C to +85°C  
0.3  
10.5  
dBm  
dB  
RF1 RF2  
C
Noise Figure  
NF  
Single sideband, no blockers present  
Single sideband, no blockers present,  
T
SSB  
Noise Figure Temperature  
Coefficient  
TC  
0.018  
dB/°C  
NF  
= -40°C to +85°C  
C
P
P
P
P
= -10dBm  
= -5dBm  
= -10dBm  
= -5dBm  
74  
69  
75  
65  
RF  
RF  
RF  
RF  
2RF-2LO Spurious Rejection  
3RF-3LO Spurious Rejection  
RF Input Return Loss  
2 x 2  
3 x 3  
f
f
= f + 175MHz  
dBc  
dBc  
dB  
SPUR  
LO  
= f + 116.67MHz  
SPUR  
LO  
LO on and IF terminated into a matched  
impedance  
16  
RF and IF terminated into a matched  
impedance  
LO Input Return Loss  
15.5  
dB  
4
_______________________________________________________________________________________  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
MAX19  
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, typical values are at V  
= +3.3V, P  
= -5dBm, P  
= 0dBm, f  
= 3550MHz, f = 3200MHz,  
LO  
CC  
RF  
LO  
RF  
f
IF  
= 350MHz, T = +25°C, unless otherwise noted.) (Note 8)  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Nominal differential impedance at the IC’s  
IF outputs  
IF Output Impedance  
IF Output Return Loss  
Z
200  
IF  
RF terminated into 50, LO driven by a 50Ω  
source, IF transformed to 50using  
external components shown in the Typical  
Application Circuit  
19  
dB  
RF-to-IF Isolation  
28  
-36  
-34  
-27  
dB  
LO Leakage at RF Port  
2LO Leakage at RF Port  
LO Leakage at IF Port  
dBm  
dBm  
dBm  
RFMAIN (RFDIV ) converted power  
measured at IFDIV (IFMAIN), relative to  
IFMAIN (IFDIV), all unused ports terminated  
to 50Ω  
Channel Isolation  
38.5  
dB  
Note 5: Not production tested.  
Note 6: Guaranteed by design and characterization.  
Note 7: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating  
Characteristics section.  
Note 8: All limits reflect losses of external components, including a 0.9dB loss at f = 350MHz due to the 4:1 impedance trans-  
IF  
former. Output measurements were taken at IF outputs of the Typical Application Circuit.  
Note 9: 100% production tested for functional performance.  
Note 10: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50source.  
Note 11: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of  
all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and  
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.  
_______________________________________________________________________________________  
5
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
Typical Operating Characteristics  
(Typical Application Circuit, V  
= +5.0V, LO is low-side injected for a 350MHz IF, P = 0dBm, P = -5dBm, T =+25°C, unless  
RF  
LO C  
CC  
otherwise noted.)  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
10  
9
10  
9
10  
9
T
= -30°C  
C
T
= +25°C  
C
MAX19  
8
8
8
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
LO  
7
7
7
T
= +85°C  
C
6
6
6
3000  
3200  
3400  
3600  
3800  
4000  
4000  
3900  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
4000  
3900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
27  
26  
25  
24  
23  
22  
27  
26  
25  
24  
23  
22  
27  
26  
25  
24  
23  
22  
P
= -5dBm/TONE  
P
= -5dBm/TONE  
P = -5dBm/TONE  
RF  
RF  
RF  
T
= +85°C  
C
T
= +25°C  
C
T
= -30°C  
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
C
LO  
3000  
3200  
3400  
3600  
3800  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
13  
12  
11  
10  
9
T
= +85°C  
C
T
= +25°C  
C
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
LO  
T
C
= -30°C  
8
8
8
7
7
7
3200  
3375  
3550  
3725  
3200  
3375  
3550  
3725  
3900  
3200  
3375  
3550  
3725  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
MAX19  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +5.0V, LO is low-side injected for a 350MHz IF, P = 0dBm, P = -5dBm, T =+25°C, unless  
RF  
LO C  
CC  
otherwise noted.)  
2RF-2LO RESPONSE vs. RF FREQUENCY  
2RF-2LO RESPONSE vs. RF FREQUENCY  
2RF-2LO RESPONSE vs. RF FREQUENCY  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
P
= -5dBm  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
RF  
P
= 0dBm  
LO  
T
= +85°C  
C
P
= +3dBm  
LO  
P
= -3dBm  
T
= +25°C  
LO  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= -30°C  
C
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
3RF-3LO RESPONSE vs. RF FREQUENCY  
3RF-3LO RESPONSE vs. RF FREQUENCY  
3RF-3LO RESPONSE vs. RF FREQUENCY  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
P
= -5dBm  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
RF  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
T
= -30°C, +25°C, +85°C  
CC  
C
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
INPUT P vs. RF FREQUENCY  
1dB  
1dB  
1dB  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
13  
12  
11  
10  
9
V
= 5.25V  
T
= +85°C  
CC  
C
V
= 4.75V  
CC  
T
= +25°C  
P
= -3dBm, 0dBm, +3dBm  
V
= 5.0V  
CC  
C
LO  
T
= -30°C  
C
3200  
3375  
3550  
3725  
3900  
3200  
3375  
3550  
3725  
3900  
3200  
3375  
3550  
3725  
3900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +5.0V, LO is low-side injected for a 350MHz IF, P = 0dBm, P = -5dBm, T =+25°C, unless  
RF  
LO C  
CC  
otherwise noted.)  
CHANNEL ISOLATION vs. RF FREQUENCY  
CHANNEL ISOLATION vs. RF FREQUENCY  
CHANNEL ISOLATION vs. RF FREQUENCY  
50  
45  
40  
35  
30  
50  
45  
40  
35  
30  
50  
45  
40  
35  
30  
MAX19  
V
= 4.75V, 5.0V, 5.25V  
T
= -30°C, +25°C, +85°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
CC  
C
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
T
= -30°C  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= +25°C, +85°C  
C
2600  
2800  
3000  
3200  
3400  
3600  
2600  
2800  
3000  
3200  
3400  
3600  
2600  
2800  
3000  
3200  
3400  
3600  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
40  
30  
20  
10  
40  
30  
20  
10  
40  
30  
20  
10  
V
CC  
= 4.75V, 5.0V, 5.25V  
T
= +25°C  
C
T
= +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= -30°C  
C
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
8
_______________________________________________________________________________________  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
MAX19  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +5.0V, LO is low-side injected for a 350MHz IF, P = 0dBm, P = -5dBm, T =+25°C, unless  
RF  
CC  
LO  
C
otherwise noted.)  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
T
C
= -30°C, +25°C, +85°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
2700  
3100  
LO FREQUENCY (MHz)  
3500  
3900  
2700  
3100  
LO FREQUENCY (MHz)  
3500  
3900  
2700  
3100  
LO FREQUENCY (MHz)  
3500  
3900  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
T
C
= -30°C, +25°C, +85°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
2700  
3100  
3500  
3900  
2700  
3100  
3500  
3900  
2700  
3100  
3500  
3900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS vs. IF FREQUENCY  
0
5
0
5
f
IF  
= 350MHz  
f
= 3200MHz  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
10  
15  
20  
25  
30  
10  
15  
20  
25  
30  
P
= -3dBm, 0dBm, +3dBm  
LO  
3000  
3200  
3400  
3600  
3800  
4000  
50  
140  
230  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
_______________________________________________________________________________________  
9
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +5.0V, LO is low-side injected for a 350MHz IF, P = 0dBm, P = -5dBm, T =+25°C, unless  
RF  
LO C  
CC  
otherwise noted.)  
LO PORT RETURN LOSS vs. LO FREQUENCY  
SUPPLY CURRENT vs. TEMPERATURE (T )  
C
0
400  
390  
380  
370  
360  
350  
V
= 5.25V  
CC  
5
10  
15  
20  
25  
P
= -3dBm  
LO  
MAX19  
V
= 4.75V  
CC  
V
= 5.0V  
CC  
P
= 0dBm  
LO  
P
= +3dBm  
LO  
2650  
2900  
3150  
3400  
3650  
-35  
-15  
5
25  
45  
65  
85  
LO FREQUENCY (MHz)  
TEMPERATURE (°C)  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +3.3V, LO is low-side injected for a 350MHz IF, P = 0dBm, P = -5dBm, T =+25°C, unless  
LO RF C  
CC  
otherwise noted.)  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
10  
9
10  
9
10  
9
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
= +25°C  
C
T
= -30°C  
C
8
8
8
7
7
7
P
= -3dBm, 0dBm, +3dBm  
V
= 3.0V, 3.3V, 3.6V  
CC  
LO  
T
= +85°C  
C
6
6
6
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
10 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
MAX19  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +3.3V, LO is low-side injected for a 350MHz IF, P = 0dBm, P = -5dBm, T =+25°C, unless  
LO RF C  
CC  
otherwise noted.)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
23  
22  
23  
22  
23  
22  
P
= -5dBm/TONE  
= 3.3V  
P
V
CC  
= -5dBm/TONE  
= 3.3V  
P
= -5dBm/TONE  
RF  
RF  
RF  
T
= +85°C  
C
V
CC  
T
= +25°C  
C
21  
20  
19  
21  
20  
19  
21  
20  
19  
P
= -3dBm, 0dBm, +3dBm  
V
= 3.0V, 3.3V, 3.6V  
LO  
CC  
T
= -30°C  
C
18  
18  
18  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
13  
12  
11  
10  
9
V
= 3.3V  
V
= 3.3V  
CC  
T
= +85°C  
CC  
C
V
= 3.0V, 3.3V, 3.6V  
P
= -3dBm, 0dBm, +3dBm  
CC  
LO  
T
= +25°C  
C
T
= -30°C  
C
8
8
8
7
7
7
3200  
3375  
3550  
3725  
3900  
3200  
3375  
3550  
3725  
3900  
3200  
3375  
3550  
3725  
3900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
2RF-2LO RESPONSE vs. RF FREQUENCY  
2RF-2LO RESPONSE vs. RF FREQUENCY  
2RF-2LO RESPONSE vs. RF FREQUENCY  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
P
V
= -5dBm  
= 3.3V  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
RF  
CC  
V
= 3.3V  
CC  
P
= 0dBm  
LO  
T
= +85°C  
C
V
= 3.6V  
CC  
P
= +3dBm  
LO  
V
= 3.3V  
CC  
P
= -3dBm  
3800  
LO  
T
= +25°C  
C
V
= 3.0V  
3800  
T
= -30°C  
CC  
C
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
4000  
3000  
3200  
3400  
3600  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 11  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +3.3V, LO is low-side injected for a 350MHz IF, P = 0dBm, P = -5dBm, T =+25°C, unless  
LO RF C  
CC  
otherwise noted.)  
3RF-3LO RESPONSE vs. RF FREQUENCY  
3RF-3LO RESPONSE vs. RF FREQUENCY  
3RF-3LO RESPONSE vs. RF FREQUENCY  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
P
= -5dBm  
P
= -5dBm  
P
RF  
= -5dBm  
RF  
RF  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
C
= +85°C  
MAX19  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
CC  
= 3.0V, 3.3V, 3.6V  
T
C
= -30°C  
T
= +25°C  
C
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
INPUT P vs. RF FREQUENCY  
1dB  
1dB  
1dB  
10  
9
10  
9
10  
9
V
= 3.3V  
V
CC  
= 3.3V  
CC  
T
C
= +85°C  
V
= 3.6V  
CC  
8
8
8
V
= 3.3V  
3725  
CC  
T
C
= +25°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
7
7
7
T
C
= -30°C  
V
CC  
= 3.0V  
6
6
6
3200  
3375  
3550  
3725  
3900  
3200  
3375  
3550  
3725  
3900  
3200  
3375  
3550  
3900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
CHANNEL ISOLATION vs. RF FREQUENCY  
CHANNEL ISOLATION vs. RF FREQUENCY  
CHANNEL ISOLATION vs. RF FREQUENCY  
50  
45  
40  
35  
30  
50  
45  
40  
35  
30  
50  
45  
40  
35  
30  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
V
= 3.0V, 3.3V, 3.6V  
CC  
T
C
= -30°C, +25°C, +85°C  
P
LO  
= -3dBm, 0dBm, +3dBm  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
12 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
MAX19  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +3.3V, LO is low-side injected for a 350MHz IF, P = 0dBm, P = -5dBm, T =+25°C, unless  
CC  
LO  
RF  
C
otherwise noted.)  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
V
= 3.3V  
CC  
V
= 3.3V  
CC  
T
= -30°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 3.0V, 3.3V, 3.6V  
CC  
T
= +85°C  
C
T
= +25°C  
C
2600  
2800  
3000  
3200  
3400  
3600  
2600  
2800  
3000  
3200  
3400  
3600  
2600  
2800  
3000  
3200  
3400  
3600  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
40  
30  
20  
10  
40  
30  
20  
10  
40  
30  
20  
10  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
= +85°C  
C
V
= 3.0V, 3.3V, 3.6V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= +25°C  
C
T
= -30°C  
C
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
P
= -3dBm, 0dBm, +3dBm  
V
= 3.0V, 3.3V, 3.6V  
CC  
T
= -30°C, +25°C, +85°C  
LO  
C
2700  
3100  
3500  
3900  
2700  
3100  
3500  
3900  
2700  
3100  
3500  
3900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
______________________________________________________________________________________ 13  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= +3.3V, LO is low-side injected for a 350MHz IF, P = 0dBm, P = -5dBm, T =+25°C, unless  
LO RF C  
CC  
otherwise noted.)  
2LO LEAKAGE AT RF PORT vs.  
LO FREQUENCY  
2LO LEAKAGE AT RF PORT vs.  
LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
= -30°C, +25°C, +85°C  
C
MAX19  
V
= 3.0V, 3.3V, 3.6V  
P
= -3dBm, 0dBm, +3dBm  
CC  
LO  
2700  
3100  
3500  
3900  
2700  
3100  
3500  
3900  
2700  
3100  
3500  
3900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF PORT RETURN LOSS vs.  
RF FREQUENCY  
IF PORT RETURN LOSS vs.  
IF FREQUENCY  
0
5
0
5
V
= 3.3V  
f
= 350MHz  
f
= 3200MHz  
LO  
CC  
IF  
V
= 3.0V, 3.3V, 3.6V  
P
= -3dBm, 0dBm, +3dBm  
CC  
LO  
10  
15  
20  
25  
30  
10  
15  
20  
25  
30  
50  
140  
230  
320  
410  
500  
3000  
3200  
3400  
RF FREQUENCY (MHz)  
3600  
3800  
4000  
IF FREQUENCY (MHz)  
LO PORT RETURN LOSS vs.  
LO FREQUENCY  
SUPPLY CURRENT vs.  
TEMPERATURE (T )  
C
0
300  
290  
280  
270  
260  
250  
240  
V
= 3.3V  
CC  
V
= 3.3V  
V
= 3.6V  
CC  
CC  
5
10  
15  
20  
25  
P
= 0dBm  
LO  
P
P
= -3dBm  
= +3dBm  
LO  
LO  
V
= 3.0V  
CC  
2650  
2900  
3150  
3400  
3650  
-35  
-15  
5
25  
45  
65  
85  
LO FREQUENCY (MHz)  
TEMPERATURE (°C)  
14 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
MAX19  
Pin Description  
PIN  
NAME  
FUNCTION  
1
RFMAIN  
Main Channel RF Input. Internally matched to 50. Requires an input DC-blocking capacitor.  
2, 5, 6, 8, 12, 15,  
18, 23, 28, 31, 34  
GND  
GND  
Ground. Not internally connected. Ground these pins or leave unconnected.  
3, 7, 20, 22, 24,  
25, 26, 27  
Ground. Internally connected to the exposed pad (EP). Connect all ground pins and the exposed  
pad together.  
4, 10, 16, 21,  
30, 36  
Power Supply. Connect bypass capacitors as close as possible to the pin (see the Typical  
Application Circuit).  
V
CC  
Diversity Channel RF Input. This input is internally matched to 50. Requires a DC-blocking  
capacitor.  
9
11  
RFDIV  
IFD_SET  
IFD+, IFD-  
LO_ADJ_D  
LO  
IF Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias  
current for the diversity IF amplifier.  
Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins to V  
CC  
13, 14  
17  
(see the Typical Application Circuit).  
LO Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias  
current for the diversity LO amplifier.  
Local Oscillator Input. This input is internally matched to 50. Requires an input DC-blocking  
capacitor.  
19  
LO Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current  
for the main LO amplifier.  
29  
LO_ADJ_M  
IFM-, IFM+  
IFM_SET  
Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to V  
CC  
32, 33  
35  
(see the Typical Application Circuit).  
IF Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for  
the main IF amplifier.  
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses  
multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These  
multiple via grounds are also required to achieve the noted RF performance  
EP  
required because the input is internally DC shorted to  
Detailed Description  
ground through each channel’s on-chip balun. When  
using a 1.5pF DC-blocking capacitor, the RF port input  
return loss is typically 15dB over the RF frequency  
range of 3200MHz to 3900MHz.  
The MAX19999 provides high linearity and low noise fig-  
ure for a multitude of 3000MHz to 4000MHz WiMAX and  
LTE base-station applications. This device operates over  
an LO range of 2650MHz to 3700MHz and an IF range of  
50MHz to 500MHz. Integrated baluns and matching cir-  
cuitry allow 50single-ended interfaces to the RF and  
LO ports. The integrated LO buffer provides a high drive  
level to the mixer core, reducing the LO drive required at  
the MAX19999’s input to a range of -3dBm to +3dBm.  
The IF port incorporates a differential output, which is  
ideal for providing enhanced 2RF-2LO performance.  
LO Input, Buffer, and Balun  
A two-stage internal LO buffer allows a wide input  
power range for the LO drive. All guaranteed specifica-  
tions are for an LO signal power from -3dBm to +3dBm.  
The on-chip low-loss balun, along with an LO buffer,  
drives the double-balanced mixer. All interfacing and  
matching components from the LO input to the IF out-  
puts are integrated on chip.  
RF Input and Balun  
The MAX19999’s two RF inputs (RFMAIN and RFDIV)  
provide a 50match when combined with a series DC-  
blocking capacitor. This DC-blocking capacitor is  
High-Linearity Mixer  
The core of the MAX19999 is a pair of double-bal-  
anced, high-performance passive mixers. Exceptional  
______________________________________________________________________________________ 15  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
linearity is provided by the large LO swing from the on-  
chip LO buffer. When combined with the integrated IF  
amplifiers, the cascaded IIP3, 2RF-2LO rejection, and  
NF performance is typically +24dBm, 74dBc, and  
10.5dB, respectively, for low-side LO injection architec-  
tures covering the 3000MHz to 4000MHz RF band.  
Significant reductions in power consumption can also  
be realized by operating the mixer with an optional sup-  
ply voltage of 3.3V. Doing so reduces the overall power  
consumption by up to 53%. See the +3.3V Supply AC  
Electrical Characteristics table and the relevant +3.3V  
curves in the Typical Operating Characteristics section  
to evaluate the power vs. performance trade-offs.  
Differential IF Output Amplifier  
The MAX19999 mixers have an IF frequency range of  
50MHz to 500MHz. The differential, open-collector IF  
Layout Considerations  
A properly designed PCB is an essential part of any  
RF/microwave circuit. Keep RF signal lines as short as  
possible to reduce losses, radiation, and inductance.  
For the best performance, route the ground pin traces  
directly to the exposed pad under the package.  
output ports require external pullup inductors to V  
.
CC  
MAX19  
These pullup inductors are also used to resonate out  
the parasitic shunt capacitance of the IC, PCB compo-  
nents, and PCB to provide an optimized IF match at the  
frequency of interest. Note that differential IF outputs  
are ideal for providing enhanced 2RF-2LO rejection  
performance. Single-ended IF applications require a  
4:1 balun to transform the 200differential output  
impedance to a 50single-ended output. After the  
balun, the IF return loss is typically 18dB.  
The PCB exposed pad MUST be connected to the  
ground plane of the PCB. It is suggested that multiple  
vias be used to connect this pad to the lower level  
ground planes. This method provides a good RF/ther-  
mal-conduction path for the device. Solder the exposed  
pad on the bottom of the device package to the PCB.  
The MAX19999 evaluation kit can be used as a refer-  
ence for board layout. Gerber files are available upon  
request at www.maxim-ic.com.  
Applications Information  
Input and Output Matching  
The RF and LO inputs are internally matched to 50. No  
matching components are required for RF frequencies  
ranging from 3000MHz to 4000MHz. RF and LO inputs  
require only DC-blocking capacitors for interfacing.  
Power-Supply Bypassing  
Proper voltage-supply bypassing is essential for high-  
frequency circuit stability. Bypass each V  
pin with  
CC  
the capacitors shown in the Typical Application Circuit.  
The IF output impedance is 200(differential). For  
evaluation, an external low-loss 4:1 (impedance ratio)  
balun transforms this impedance down to a 50single-  
ended output (see the Typical Application Circuit).  
Exposed Pad RF/Thermal Considerations  
The exposed pad (EP) of the MAX19999’s 36-pin thin  
QFN-EP package provides a low thermal-resistance  
path to the die. It is important that the PCB on which the  
MAX19999 is mounted be designed to conduct heat  
from the exposed pad. In addition, provide the exposed  
pad with a low-inductance path to electrical ground.  
The exposed pad MUST be soldered to a ground plane  
on the PCB, either directly or through an array of plated  
via holes.  
Reduced-Power Mode  
Each channel of the MAX19999 has two pins (LO_ADJ,  
IF_SET) that allow external resistors to set the internal  
bias currents. Nominal values for these resistors are  
given in Table 1. Larger valued resistors can be used to  
reduce power dissipation at the expense of some per-  
formance loss. If 1% resistors are not readily avail-  
able, 5% resistors can be substituted.  
16 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
MAX19  
Table 1. Application Circuit Component Values  
DESIGNATION  
QTY  
DESCRIPTION  
SUPPLIER  
C1, C8, C14  
3
1.5pF microwave capacitors (0402)  
Murata Electronics North America, Inc.  
C4, C9, C13,  
C15, C17, C18  
6
0.01µF microwave capacitors (0402)  
Murata Electronics North America, Inc.  
C10, C11, C12,  
C19, C20, C21  
6
4
82pF microwave capacitors (0603)  
Murata Electronics North America, Inc.  
Coilcraft, Inc.  
L1–L4  
R1, R4  
120nH wire-wound high-Q inductors* (0805)  
7501% resistor (0402). Use for V = +5.0V applications.  
CC  
Larger values can be used to reduce power at the expense  
of some performance loss. See the Typical Operating  
Characteristics.  
Digi-Key Corp.  
Digi-Key Corp.  
Digi-Key Corp.  
Digi-Key Corp.  
Digi-Key Corp.  
2
1.1k1% resistor (0402). Use for V = +3.3V applications.  
CC  
Larger values can be used to reduce power at the expense  
of some performance loss. See the Typical Operating  
Characteristics.  
6981% resistor (0402). Use for V = +5.0V applications.  
CC  
Larger values can be used to reduce power at the expense  
of some performance loss. See the Typical Operating  
Characteristics.  
R2, R5  
2
2
8451% resistor (0402). Use for V = +3.3V applications.  
CC  
Larger values can be used to reduce power at the expense  
of some performance loss. See the Typical Operating  
Characteristics.  
0resistors (1206). These resistors can be increased in  
value to reduce power dissipation in the device but will  
reduce the compression point. Full P  
R3, R6  
performance  
1dB  
achieved using 0.  
T1, T2  
U1  
2
1
4:1 IF balun TC4-1W-17+  
Mini-Circuits  
MAX19999 IC (36 TQFN-EP)  
Maxim Integrated Products, Inc.  
*Use 390nH (0805) inductors for an IF frequency of 200MHz. Contact the factory for details.  
______________________________________________________________________________________ 17  
Dual, SiGe High-Linearity, 3000MHz to  
4000MHz Downconversion Mixer with LO Buffer  
Typical Application Circuit  
C19  
T1  
L1*  
L2*  
IF MAIN OUTPUT  
V
CC  
C21  
R3  
MAX19  
4:1  
CC  
R1  
V
V
CC  
C20  
R2  
C18  
C17  
+
C1  
RFMAIN  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
RF MAIN INPUT  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
MAX19999  
GND  
V
CC  
V
CC  
C4  
GND  
GND  
V
CC  
GND  
V
CC  
C15  
EXPOSED  
PAD  
GND  
GND  
LO  
RFDIV  
RF DIV INPUT  
LO  
C14  
C8  
V
CC  
C9  
R4  
V
CC  
R5  
C13  
T2  
C11  
L4*  
V
CC  
C12  
R6  
IF DIV OUTPUT  
L3*  
*USE 390nH (0805) INDUCTORS FOR AN IF FREQUENCY  
OF 200MHz. CONTACT THE FACTORY FOR DETAILS.  
4:1  
C10  
18 ______________________________________________________________________________________  
Dual, SiGe High-Linearity, 3000MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
MAX19  
Pin Configuration/Functional Diagram  
TOP VIEW  
+
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
RFMAIN  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
MAX19999  
GND  
V
CC  
GND  
GND  
V
CC  
GND  
EXPOSED  
PAD  
GND  
LO  
GND  
RFDIV  
THIN QFN-EP  
(6mm x 6mm)  
EXPOSED PAD ON THE BOTTOM OF THE PACKAGE.  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
PROCESS: SiGe BiCMOS  
to www.maxim-ic.com/packages.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
36 Thin QFN-EP  
T3666+2  
21-0141  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19  
© 2008 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1999EEI

High-Efficiency, Quad Output, Main Power- Supply Controllers for Notebook Computers
MAXIM

MAX1999EEI+

Dual Switching Controller, Current-mode, 500kHz Switching Freq-Max, BICMOS, PDSO28, 0.150 INCH, 0.025 INCH PITCH, QSOP-28
MAXIM

MAX1999EVKIT

Evaluation Kit for the MAX1777/MAX1977/MAX1999
MAXIM

MAX199ACAI

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface
MAXIM

MAX199ACAI-T

Analog Circuit, 1 Func, PDSO28, SSOP-28
MAXIM

MAX199ACNI

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface
MAXIM

MAX199ACWI

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface
MAXIM

MAX199ACWI-T

Analog Circuit, 1 Func, PDSO28, 0.300 INCH, SO-28
MAXIM

MAX199AEAI

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface
MAXIM

MAX199AEAI

SPECIALTY ANALOG CIRCUIT, PDSO28, SSOP-28
ROCHESTER

MAX199AEAI+

Analog Circuit, 1 Func, PDSO28, SSOP-28
MAXIM

MAX199AENI

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface
MAXIM