MAX2022_V01 [MAXIM]

High-Dynamic-Range, Direct Up/ Downconversion 1500MHz to 3000MHz Quadrature Modulator/Demodulator;
MAX2022_V01
型号: MAX2022_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

High-Dynamic-Range, Direct Up/ Downconversion 1500MHz to 3000MHz Quadrature Modulator/Demodulator

文件: 总26页 (文件大小:1255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
                        
                        
●ꢀ  
●ꢀ  
●ꢀ  
                        
SingleꢀandꢀMulticarrierꢀWCDMA/UMTSꢀandꢀ  
LTE/TD-LTE Base Stations  
SingleꢀandꢀMulticarrierꢀcdmaOne™ꢀandꢀcdma2000ꢀ  
Base Stations  
SingleꢀandꢀMulticarrierꢀDCSꢀ1800/PCSꢀ1900ꢀEDGEꢀ  
Base Stations  
Ordering Information appears at end of data sheet.  
EVALUATION KIT AVAILABLE  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
General Description  
Benefits and Features  
●ꢀ 1500MHzꢀtoꢀ3000MHzꢀRFꢀFrequencyꢀRange  
The MAX2022 low-noise, high-linearity, direct conversion  
quadrature modulator/demodulator is designed for single  
and multicarrier 1500MHz to 3000MHz UMTS/WCDMA,  
●ꢀ 1500MHzꢀtoꢀ3000MHzꢀLOꢀFrequencyꢀRange  
●ꢀ ScalableꢀPower:ꢀExternalꢀCurrent-SettingꢀResistorsꢀ  
Provide Option for Operating Device in Reduced-  
Power/Reduced-Performance Mode  
®
LTE/TD-LTE, cdma2000 , and DCS/PCS base-station  
applications. Direct conversion architectures are advanta-  
geous since they significantly reduce transmitter or receiv-  
er cost, part count, and power consumption as compared  
to traditional IF-based double conversion systems.  
●ꢀ 36-Pin,ꢀ6mmꢀxꢀ6mmꢀTQFNꢀProvidesꢀHighꢀIsolationꢀinꢀ  
a Small Package  
Modulator Operation (2140MHz):  
●ꢀ MeetsꢀFour-CarrierꢀWCDMAꢀ65dBcꢀACLR  
●ꢀ 23.3dBmꢀTypicalꢀOIP3  
●ꢀ 51.5dBmꢀTypicalꢀOIP2  
●ꢀ 45.7dBcꢀTypicalꢀSidebandꢀSuppression  
●ꢀ -40dBmꢀTypicalꢀLOꢀLeakage  
●ꢀ -173.2dBm/HzꢀTypicalꢀOutputꢀNoise,ꢀEliminatingꢀtheꢀ  
Need for an RF Output Filter  
●ꢀ BroadbandꢀBasebandꢀInput  
●ꢀ DC-CoupledꢀInputꢀProvidesꢀforꢀDirectꢀLaunchꢀDACꢀ  
Interface, Eliminating the Need for Costly I/Q  
Buffer Amplifiers  
Demodulator Operation (1890MHz):  
●ꢀ 39dBmꢀTypicalꢀIIP3  
●ꢀ 58dBmꢀTypicalꢀIIP2  
●ꢀ 9.2dBꢀTypicalꢀConversionꢀLoss  
●ꢀ 9.4dBꢀTypicalꢀNF  
In addition to offering excellent linearity and noise perfor-  
mance, the MAX2022 also yields a high level of component  
integration. This device includes two matched passive mix-  
ers for modulating or demodulating in-phase and quadra-  
ture signals, three LO mixer amplifier drivers, and an LO  
quadrature splitter. On-chip baluns are also integrated  
to allow for single-ended RF and LO connections. As an  
added feature, the baseband inputs have been matched  
to allow for direct interfacing to the transmit DAC, thereby  
eliminating the need for costly I/Q buffer amplifiers.  
The MAX2022 operates from a single +5V supply. It is  
available in a compact 36-pin TQFN package (6mm x  
6mm) with an exposed paddle. Electrical performance is  
guaranteed over the extended -40°C to +85°C tempera-  
ture range.  
Applications  
For related parts and recommended products to use with this part, refer  
to www.maximintegrated.com/MAX2022.related.  
WCDMA, ACLR, ALTCLR and Noise vs. RF Output  
Power at 2140MHz for Single, Two, and Four Carriers  
-60  
-62  
-64  
-66  
-68  
-70  
-72  
-74  
-76  
-78  
-80  
-125  
-135  
-145  
-155  
-165  
-175  
●ꢀ PHS/PASꢀBaseꢀStations  
●ꢀ PredistortionꢀTransmitters  
●ꢀ FixedꢀBroadbandꢀWirelessꢀAccess  
●ꢀ WirelessꢀLocalꢀLoop  
●ꢀ PrivateꢀMobileꢀRadio  
●ꢀ MilitaryꢀSystems  
4C ADJ  
4C ALT  
2C ADJ  
1C ADJ  
4C  
●ꢀ MicrowaveꢀLinks  
●ꢀ DigitalꢀandꢀSpread-SpectrumꢀCommunicationꢀSystems  
2C  
1C  
2C ALT  
1C ALT  
NOISE FLOOR  
cdma2000 is a registered trademark of Telecommunications  
Industry Association.  
-50  
-40  
-30  
-20  
-10  
0
RF OUTPUT POWER PER CARRIER (dBm)  
cdmaOne is a trademark of CDMA Development Group.  
19-3572; Rev 3; 7/13  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Absolute Maximum Ratings  
VCC_ꢀtoꢀGND.......................................................-0.3V to +5.5V  
BBIP,ꢀBBIN,ꢀBBQP,ꢀBBQNꢀtoꢀGND .......... -2.5V to (V  
LO,ꢀRFꢀtoꢀGNDꢀMaximumꢀCurrent.....................................50mA  
RF Input Power ..............................................................+20dBm  
Baseband Differential I/Q Input Power...........................+20dBm  
LO Input Power ..............................................................+10dBm  
RBIASLO1 Maximum Current ............................................10mA  
RBIASLO2 Maximum Current............................................10mA  
RBIASLO3 Maximum Current............................................10mA  
Continuous Power Dissipation (Note 1)..............................7.6W  
Operating Case Temperature Range (Note 2)... -40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
+ 0.3V)  
CC  
Note 1: Based on junction temperature T = T ꢀ+ꢀ(θ x V  
x I ). This formula can be used when the temperature of the exposed  
CC  
J
C
JC  
CC  
pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction  
temperature must not exceed +150°C.  
Note 2: T is the temperature on the exposed pad of the package. T is the ambient temperature of the device and PCB.  
C
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Thermal Characteristics  
TQFN  
Junction-to-Ambient  
ThermalꢀResistanceꢀ(θ ) (Notes 3, 4) .....................+34°C/W  
Junction-to-Case  
ThermalꢀResistanceꢀ(θ ) (Notes 1, 4)....................+8.5°C/W  
JA  
JC  
Note 3: Junction temperature T = T ꢀ+ꢀ(θ x V  
x I ). This formula can be used when the ambient temperature of the PCB is  
CC  
J
A
JA  
CC  
known. The junction temperature must not exceed +150°C.  
Note 4:ꢀ PackageꢀthermalꢀresistancesꢀwereꢀobtainedꢀusingꢀtheꢀmethodꢀdescribedꢀinꢀJEDECꢀspecificationꢀJESD51-7,ꢀusingꢀaꢀfour-layerꢀ  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
DC Electrical Characteristics  
(MAX2022 Typical Application Circuit, V =4.75Vto5.25V,V  
=0V,I/Qportsterminatedinto50ΩtoGND,LOandRFportsꢀ  
GND  
CC  
terminatedꢀintoꢀ50ΩꢀtoꢀGND,ꢀR1ꢀ=ꢀ432Ω,ꢀR2ꢀ=ꢀ562Ω,ꢀR3ꢀ=ꢀ301Ω,ꢀT = -40°C to +85°C, unless otherwise noted. Typical values are at  
C
V
= 5V, T = +25°C, unless otherwise noted.)  
C
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5.00  
292  
MAX  
5.25  
342  
UNITS  
V
Supply Voltage  
V
4.75  
CC  
Total Supply Current  
Total Power Dissipation  
I
Pins 3, 13, 15, 31, 33 all connected to V  
mA  
TOTAL  
CC  
1460  
1796  
mW  
Recommended AC Operating Conditions  
PARAMETER  
RF Frequency  
SYMBOL  
CONDITIONS  
MIN  
1500  
1500  
TYP  
MAX  
3000  
3000  
1000  
+3  
UNITS  
MHz  
MHz  
MHz  
dBm  
f
(Note 5)  
(Note 5)  
(Note 5)  
RF  
LO  
LO Frequency  
IF Frequency  
f
f
IF  
LO Power Range  
P
-3  
LO  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
AC Electrical Characteristics (Modulator)  
(MAX2022 Typical Application Circuit, V ꢀ =ꢀ 4.75Vꢀ toꢀ 5.25V,ꢀ V  
ꢀ =ꢀ 0V,ꢀ I/Qꢀ differentialꢀ inputsꢀ drivenꢀ fromꢀ aꢀ 100Ωꢀ differentialꢀ  
CC  
GND  
DC-coupled source, 0V common-mode input, P  
= 0dBm, f ꢀ=ꢀ1900MHzꢀtoꢀ2200MHz,ꢀ50ΩꢀLOꢀandꢀRFꢀsystemꢀimpedance,ꢀR1ꢀ=ꢀ  
LO  
LO  
432Ω,ꢀR2ꢀ=ꢀ562Ω,ꢀR3ꢀ=ꢀ301Ω,ꢀT = -40°C to +85°C. Typical values are at V  
= 5V, V ꢀ=ꢀ109mV  
differential, V  
ꢀ=ꢀ109mV  
C
CC  
BBI  
P-P  
BBQ P-P  
differential, f = 1MHz, T ꢀ=ꢀ+25°C,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Notesꢀ6,ꢀ7)  
IQ  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BASEBAND INPUT  
Baseband Input Differential  
Impedance  
43  
0
BB Common-Mode Input Voltage  
Range  
(Note 8)  
= +25°C  
-2.5  
-24  
+1.5  
V
Output Power  
T
dBm  
C
RF OUTPUTS (f  
= 1960MHz)  
LO  
V
, V  
ꢀ=ꢀ547mV  
differential per  
P-P  
BBI BBQ  
Output IP3  
toneꢀintoꢀ50Ω,ꢀf  
= 1.8MHz,  
21.8  
dBm  
dBm  
BB1  
f
ꢀ=ꢀ1.9MHz  
BB2  
V
, V  
ꢀ=ꢀ547mV  
differential per  
P-P  
= 1.8MHz,  
BBI BBQ  
Output IP2  
toneꢀintoꢀ50Ω,ꢀf  
48.9  
BB1  
f
ꢀ=ꢀ1.9MHz  
BB2  
Output Power  
-20.5  
dBm  
Output Power Variation Over  
Temperature  
T
= -40°C to +85°C  
-0.004  
dB/°C  
C
f
P
ꢀ=ꢀ1960MHz,ꢀsweepꢀf  
,
BB  
LO  
Output-Power Flatness  
0.6  
70  
dB  
ꢀflatnessꢀforꢀf from 1MHz to 50MHz  
BB  
RF  
ACLR (1st Adjacent Channel  
5MHz Offset)  
Single-carrierꢀWCDMAꢀ(Noteꢀ9),  
RFOUT = -16dBm  
dBc  
dBm  
No external calibration, with each baseband  
inputꢀterminatedꢀinꢀ50ΩꢀtoꢀGND  
LO Leakage  
-46.7  
Sideband Suppression  
RF Return Loss  
No external calibration  
47.3  
15.3  
dBc  
dB  
Output Noise Density  
LO Input Return Loss  
f
= 2060MHz (Note 10)  
-173.4  
10.1  
dBm/Hz  
dB  
meas  
RF OUTPUTS (f  
= 2140MHz)  
LO  
V
, V  
ꢀ=ꢀ547mV  
differential per  
P-P  
BBI BBQ  
Output IP3  
toneꢀintoꢀ50Ω,ꢀf  
= 1.8MHz,  
23.3  
51.5  
dBm  
dBm  
BB1  
f
ꢀ=ꢀ1.9MHz  
BB2  
V
, V  
ꢀ=ꢀ547mV  
differential per  
P-P  
= 1.8MHz,  
BB1  
BBI BBQ  
Output IP2  
toneꢀintoꢀ50Ω,ꢀf  
f
ꢀ=ꢀ1.9MHZ  
BB2  
Output Power  
-20.8  
dBm  
Output Power Variation Over  
Temperature  
T
= -40°C to +85°C  
-0.005  
dB/°C  
C
f
P
= 2140MHz, sweep f  
,
BB  
LO  
Output-Power Flatness  
0.32  
dB  
ꢀflatnessꢀforꢀf from 1MHz to 50MHz  
BB  
RF  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
AC Electrical Characteristics (Modulator) (continued)  
(MAX2022 Typical Application Circuit, V ꢀ =ꢀ 4.75Vꢀ toꢀ 5.25V,ꢀ V  
ꢀ =ꢀ 0V,ꢀ I/Qꢀ differentialꢀ inputsꢀ drivenꢀ fromꢀ aꢀ 100Ωꢀ differentialꢀ  
CC  
GND  
DC-coupled source, 0V common-mode input, P  
= 0dBm, f ꢀ=ꢀ1900MHzꢀtoꢀ2200MHz,ꢀ50ΩꢀLOꢀandꢀRFꢀsystemꢀimpedance,ꢀR1ꢀ=ꢀ  
LO  
LO  
432Ω,ꢀR2ꢀ=ꢀ562Ω,ꢀR3ꢀ=ꢀ301Ω,ꢀT = -40°C to +85°C. Typical values are at V  
= 5V, V ꢀ=ꢀ109mV  
differential, V  
ꢀ=ꢀ109mV  
C
CC  
BBI  
P-P  
BBQ P-P  
differential, f = 1MHz, T ꢀ=ꢀ+25°C,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Notesꢀ6,ꢀ7)  
IQ  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ACLR (1st Adjacent Channel  
5MHz Offset)  
Single-carrierꢀWCDMAꢀ(Noteꢀ9),  
70  
dBc  
RFOUT = -16dBm, f ꢀ=ꢀ2GHz  
LO  
No external calibration, with each baseband  
inputꢀterminatedꢀinꢀ50ΩꢀtoꢀGND  
LO Leakage  
-40.4  
dBm  
Sideband Suppression  
RF Return Loss  
No external calibration  
45.7  
13.5  
dBc  
dB  
Output Noise Density  
LO Input Return Loss  
f
= 2240MHz (Note 10)  
-173.2  
18.1  
dBm/Hz  
dB  
meas  
AC Electrical Characteristics (Demodulator, f  
(MAX2022 Typical Application Circuit when operated as a demodulator. I/Q outputs are recombined using network shown in Figure 5. Losses  
= 1880MHz)  
LO  
ofꢀcombiningꢀnetworkꢀnotꢀincludedꢀinꢀmeasurements.ꢀRFꢀandꢀLOꢀportsꢀareꢀdrivenꢀfromꢀ50Ωꢀsources.ꢀTypicalꢀvaluesꢀareꢀforꢀV = 5V, I/Q  
CC  
DCreturns=160ΩresistorstoGND,P  
= 0dBm, P  
= 0dBm, f =1890MHz,f  
= 1880MHz, f = 10MHz, T = +25°C, unless  
RF  
LO  
RF  
LO IF C  
otherwise noted.) (Notes 6, 11)  
PARAMETER  
Conversion Loss  
SYMBOL  
CONDITIONS  
MIN  
TYP  
9.2  
MAX  
UNITS  
dB  
L
C
Noise Figure  
NF  
9.4  
dB  
SSB  
f
P
f
=ꢀ1890MHz,ꢀf  
=ꢀ1891MHz,  
RF2  
RF1  
Input Third-Order  
Intercept Point  
IIP3  
= P  
= 0dBm, f = 10MHz,  
IF1  
39  
dBm  
dBm  
RF1  
RF2  
= 11MHz  
IF2  
f
P
f
=ꢀ1890MHz,ꢀf  
=ꢀ1891MHz,  
RF2  
RF1  
Input Second-Order  
Intercept Point  
IIP2  
= P  
= 0dBm, f = 10MHz,  
58  
RF1  
RF2  
IF1  
= 21MHz  
= 11MHz, f  
IF2  
IM2nd  
LO Leakage at RF Port  
GainꢀCompression  
Unnulled  
= 20dBm  
-40  
0.10  
35  
dBm  
dB  
dB  
dB  
dB  
P
RF  
Image Rejection  
RF Port Return Loss  
LO Port Return Loss  
IF Port Differential Impedance  
C9ꢀ=ꢀ1.2pF  
17  
C3 = 22pF  
9
43  
Minimum Demodulation 3dB  
Bandwidth  
>500  
>450  
MHz  
MHz  
Minimumꢀ1dBꢀGainꢀFlatness  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
AC Electrical Characteristics (Demodulator, f  
(MAX2022 Typical Application Circuit when operated as a demodulator. I/Q outputs are recombined using network shown in Figure 5. Losses  
= 2855MHz)  
LO  
ofꢀcombiningꢀnetworkꢀnotꢀincludedꢀinꢀmeasurements.ꢀRFꢀandꢀLOꢀportsꢀareꢀdrivenꢀfromꢀ50Ωꢀsources.ꢀTypicalꢀvaluesꢀareꢀforꢀV = 5V, I/Q  
CC  
DCreturns=160ΩresistorstoGND,P = 0dBm, P = 0dBm, f = 2655MHz, f = 2855MHz, f = 200MHz, T = +25°C, unless  
RF  
LO  
RF  
LO  
IF  
C
otherwise noted.) (Notes 6, 11)  
PARAMETER  
Conversion Loss  
Noise Figure  
SYMBOL  
CONDITIONS  
MIN  
TYP  
11.2  
11.4  
MAX  
UNITS  
dB  
L
C
NF  
dB  
SSB  
f
= 2655MHz, f  
= 2656.2MHz,  
RF1  
RF2  
Input Third-Order Intercept Point  
IIP3  
P
= P  
=ꢀ198.8MHz  
= 0dBm, f  
= 200MHz,  
RF1  
RF2  
IF1  
34.5  
60  
dBm  
f
IF2  
f
= 2655MHz, f  
= 2656.2MHz,  
RF2  
RF1  
Input Second-Order Intercept  
Point  
IIP2  
P
= P  
= 0dBm, f = 200MHz,  
dBm  
dBm  
RF1  
RF2  
IF1  
f
=ꢀ198.8MHz,ꢀf  
=ꢀ398.8MHz  
IM2nd  
IF2  
LO Leakage at RF Port  
-31.3  
-25.2  
-23.5  
-26  
I+  
I-  
LO Leakage at IF Port  
dBm  
Q+  
Q-  
-22.3  
0.10  
0.3  
GainꢀCompression  
P
= 20dBm  
dB  
dB  
deg  
dB  
dB  
RF  
I/QꢀGainꢀMismatch  
I/Q Phase Mismatch  
RF Port Return Loss  
LO Port Return Loss  
IF Port Differential Impedance  
0.5  
C9ꢀ=ꢀ22pF,ꢀL1ꢀ=ꢀ4.7nH,ꢀC14ꢀ=ꢀ0.7pFꢀ  
22.5  
14.2  
43  
C3 = 6.8pF  
Minimum Demodulation 3dB  
Bandwidth  
>500  
>450  
MHz  
MHz  
Minimumꢀ1dBꢀGainꢀFlatness  
Note 5: Recommended functional range, not production tested. Operation outside this range is possible, but with degraded perfor-  
mance of some parameters.  
Note 6: All limits include external component losses of components, PCB, and connectors.  
Note 7: It is advisable not to operate the I and Q inputs continuously above 2.5V  
Note 8:ꢀ Guaranteedꢀbyꢀdesignꢀandꢀcharacterization.  
differential.  
P-P  
Note 9: Single-carrier WCDMA peak-to-average ratio of 10.5dB for 0.1% complementary cumulative distribution function.  
Note 10:ꢀNoꢀbasebandꢀdriveꢀinput.ꢀMeasuredꢀwithꢀtheꢀbasebandꢀinputsꢀterminatedꢀinꢀ50ΩꢀtoꢀGND.ꢀAtꢀlow-outputꢀpowerꢀlevels,ꢀtheꢀ  
output noise density is equal to the thermal noise floor.  
Note 11:ꢀItꢀisꢀadvisableꢀnotꢀtoꢀoperateꢀtheꢀRFꢀinputꢀcontinuouslyꢀaboveꢀ+17dBm.  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Typical Operating Characteristics  
(MAX2022 Typical Application Circuit,ꢀ50ΩꢀLOꢀinput,ꢀR1ꢀ=ꢀ432Ω,ꢀR2ꢀ=ꢀ562Ω,ꢀR3ꢀ=ꢀ301Ω,ꢀV  
= 5V, P  
= 0dBm, f  
= 2140MHz,  
CC  
LO  
LO  
V = V ꢀ=ꢀ109mV  
differential, f ꢀ=ꢀ1MHz,ꢀI/Qꢀdifferentialꢀinputsꢀdrivenꢀfromꢀaꢀ100ΩꢀdifferentialꢀDC-coupledꢀsource,ꢀcommon-modeꢀ  
I
Q
P-P  
IQ  
input from 0V, T = +25°C, unless otherwise noted.)  
C
MODULATOR  
ACLR vs. OUTPUT POWER  
ACLR vs. OUTPUT POWER  
ACLR vs. OUTPUT POWER  
-60  
-62  
-64  
-66  
-68  
-70  
-72  
-74  
-76  
-78  
-80  
-60  
-62  
-64  
-66  
-68  
-70  
-72  
-74  
-76  
-78  
-80  
-60  
-62  
-64  
-66  
-68  
-70  
-72  
-74  
-76  
ADJACENT CHANNEL  
SINGLE CARRIER  
TWO CARRIER  
ADJACENT CHANNEL  
ADJACENT CHANNEL  
ALTERNATE CHANNEL  
ALTERNATE CHANNEL  
ALTERNATE CHANNEL  
-78 FOUR CARRIER  
-80  
-40  
-30  
-20  
-10  
0
-40  
-30  
-20  
-10  
0
-50  
-40  
-30  
-20  
-10  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
OUTPUT POWER vs. LO FREQUENCY  
OUTPUT POWER vs. LO FREQUENCY  
OUTPUT POWER vs. LO FREQUENCY  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
V = V = 0.611V DIFFERENTIAL  
V = V = 0.611V DIFFERENTIAL  
V = V = 0.611V DIFFERENTIAL  
I Q P-P  
I
Q
P-P  
I
Q
P-P  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
CC  
= 4.75V, 5.0V, 5.25V  
T
C
= +25°C  
T
= -40°C  
C
T
C
= +85°C  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
LO LEAKAGE vs. LO FREQUENCY  
LO LEAKAGE vs. LO FREQUENCY  
LO LEAKAGE vs. LO FREQUENCY  
BASEBAND INPUTS TERMINATED IN 50Ω  
BASEBAND INPUTS TERMINATED IN 50Ω  
BASEBAND INPUTS TERMINATED IN 50Ω  
-10  
-30  
-50  
-70  
-90  
-10  
-30  
-50  
-70  
-90  
-10  
-30  
-50  
-70  
-90  
P
LO  
= -3dBm, +3dBm  
T = -40°C, +85°C  
C
V
CC  
= 4.75V, 5.0V  
P
LO  
= 0dBm  
T = +25°C  
C
V
CC  
= 5.25V  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Maxim Integrated  
6
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Typical Operating Characteristics (continued)  
(MAX2022 Typical Application Circuit,ꢀ50ΩꢀLOꢀinput,ꢀR1ꢀ=ꢀ432Ω,ꢀR2ꢀ=ꢀ562Ω,ꢀR3ꢀ=ꢀ301Ω,ꢀV  
= 5V, P  
= 0dBm, f  
= 2140MHz,  
CC  
LO  
LO  
V = V ꢀ=ꢀ109mV  
differential, f ꢀ=ꢀ1MHz,ꢀI/Qꢀdifferentialꢀinputsꢀdrivenꢀfromꢀaꢀ100ΩꢀdifferentialꢀDC-coupledꢀsource,ꢀcommon-modeꢀ  
I
Q
P-P  
IQ  
input from 0V, T = +25°C, unless otherwise noted.)  
C
MODULATOR  
IMAGE REJECTION vs. LO FREQUENCY  
IMAGE REJECTION vs. LO FREQUENCY  
IMAGE REJECTION vs. LO FREQUENCY  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
f
= 1MHz, V = V = 112mV  
f
= 1MHz, V = V = 112mV  
f
= 1MHz, V = V = 112mV  
BB  
I
Q
P-P  
BB  
I
Q
P-P  
BB  
I
Q
P-P  
P
LO  
= -3dBm  
T
C
= -40°C, +25°C, +85°C  
P
LO  
= 0dBm  
V
CC  
= 4.75, 5.0V, 5.25V  
P
LO  
= +3dBm  
1.7  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
1.5  
1.9  
2.1  
2.3  
2.5  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
IF FLATNESS  
OUTPUT NOISE vs. OUTPUT POWER  
OUTPUT NOISE vs. OUTPUT POWER  
vs. BASEBAND FREQUENCY  
-150  
-156  
-14  
-15  
-16  
-17  
-18  
-19  
-20  
-21  
-22  
-23  
-24  
P
LO  
= 0dBm, f = 1960MHz  
P = 0dBm, f = 2140MHz  
LO LO  
LO  
-155  
-160  
-165  
-160  
-164  
-168  
T
C
= -40°C  
f
- f  
LO IQ  
T
C
= +25°C  
T
C
= +85°C  
T
C
= +25°C  
T
= +85°C  
C
f + f  
LO IQ  
-170  
-175  
-180  
-172  
-176  
-180  
f
= 1960MHz, P = -12dBm/PORT INTO 50Ω  
BB  
T
C
= -40°C  
LO  
-25 -20 -15 -10  
-5  
0
5
10  
-25 -20 -15 -10  
-5  
0
5
10  
0
20  
40  
60  
80  
100  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
BASEBAND FREQUENCY (MHz)  
IF FLATNESS  
vs. BASEBAND FREQUENCY  
BASEBAND DIFFERENTIAL INPUT  
RESISTANCE vs. BASEBAND FREQUENCY  
BASEBAND DIFFERENTIAL INPUT  
RESISTANCE vs. BASEBAND FREQUENCY  
-14  
-15  
-16  
-17  
-18  
-19  
-20  
-21  
-22  
-23  
-24  
45.0  
44.5  
44.0  
43.5  
43.0  
42.5  
42.0  
41.5  
41.0  
44.5  
44.0  
43.5  
43.0  
42.5  
V
= 4.75V  
CC  
f
- f  
LO IQ  
P
= +3dBm  
P
LO  
V
CC  
= 5.0V  
V
CC  
= 5.25V  
= -3dBm  
LO  
f
+ f  
LO IQ  
P
= 0dBm  
LO  
f
= 2140MHz, P = -12dBm/PORT INTO 50Ω  
f
= 2GHz, P = 0dBm  
f
= 2GHz, V = 5.0V  
LO CC  
LO  
BB  
LO  
LO  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
BASEBAND FREQUENCY (MHz)  
BASEBAND FREQUENCY (MHz)  
BASEBAND FREQUENCY (MHz)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Typical Operating Characteristics (continued)  
(MAX2022 Typical Application Circuit,ꢀ50ΩꢀLOꢀinput,ꢀR1ꢀ=ꢀ432Ω,ꢀR2ꢀ=ꢀ562Ω,ꢀR3ꢀ=ꢀ301Ω,ꢀV  
= 5V, P  
= 0dBm, f  
= 2140MHz,  
CC  
LO  
LO  
V = V ꢀ=ꢀ109mV  
differential, f ꢀ=ꢀ1MHz,ꢀI/Qꢀdifferentialꢀinputsꢀdrivenꢀfromꢀaꢀ100ΩꢀdifferentialꢀDC-coupledꢀsource,ꢀcommon-modeꢀ  
I
Q
P-P  
IQ  
input from 0V, T = +25°C, unless otherwise noted.)  
C
MODULATOR  
OUTPUT IP3  
vs. LO FREQUENCY  
OUTPUT IP3  
vs. LO FREQUENCY  
OUTPUT IP3  
vs. LO FREQUENCY  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
25  
20  
15  
10  
5
P
= -3dBm  
V
= 4.75V  
LO  
CC  
T
= -40°C, +25°C, +85°C  
C
V
= 5.0V, 5.25V  
P
= 0dBm, +3dBm  
CC  
LO  
V
BB1  
= 0.61V DIFFERENTIAL PER TONE,  
V
= 0.61V DIFFERENTIAL PER TONE,  
V
= 0.61V DIFFERENTIAL PER TONE,  
P-P  
BB  
P-P  
BB  
BB1  
P-P  
BB  
BB1  
f
= 1.8MHz, f  
= 1.9MHz  
f
= 1.8MHz, f  
= 1.9MHz  
f
= 1.8MHz, f  
BB2  
= 1.9MHz  
BB2  
BB2  
0
0
0
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
OUTPUT IP3  
vs. COMMON-MODE BASEBAND VOLTAGE  
OUTPUT IP2  
vs. LO FREQUENCY  
OUTPUT IP2  
vs. LO FREQUENCY  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
BB1  
= 0.61V DIFFERENTIAL PER TONE,  
P-P  
V
= 4.75V, 5.0V  
BB  
T
= +25°C  
= +85°C  
CC  
C
f
= 1.8MHz, f  
= 1.9MHz  
BB2  
T
C
T
= -40°C  
C
V
= 5.25V  
CC  
f
= 2140MHz  
LO  
f
= 1960MHz  
LO  
V
f
= 0.61V DIFFERENTIAL PER TONE,  
V
= 0.61V DIFFERENTIAL PER TONE,  
P-P  
= 1.8MHz, f  
BB2  
BB  
BB1  
P-P  
BB  
BB1  
= 1.8MHz, f  
= 1.9MHz  
f
= 1.9MHz  
BB2  
-3  
-2  
-1  
0
1
2
3
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
COMMMON-MODE BASEBAND VOLTAGE (V)  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
OUTPUT IP2  
vs. LO FREQUENCY  
OUTPUT IP2  
vs. COMMON-MODE BASEBAND VOLTAGE  
LO LEAKAGE vs. LO FREQUENCY  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
0
-20  
f
= 1960MHz  
NULLED AT f = 1960MHz AT  
LO  
LO  
P = -18dBm  
RF  
P
= +3dBm  
LO  
f
= 2140MHz  
LO  
-40  
P
LO  
= 0dBm  
P
= -3dBm  
LO  
-60  
-80  
V
f
= 0.61V DIFFERENTIAL PER TONE,  
P-P  
= 1.8MHz, f  
V
f
= 0.61V DIFFERENTIAL PER TONE,  
P-P  
BB  
BB1  
BB  
BB1  
= 1.9MHz  
BB2  
= 1.8MHz, f  
= 1.9MHz  
BB2  
-100  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
-3  
-2  
-1  
0
1
2
3
1.945 1.950 1.955 1.960 1.965 1.970 1.975  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
COMMMON-MODE BASEBAND VOLTAGE (V)  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Typical Operating Characteristics (continued)  
(MAX2022 Typical Application Circuit,ꢀ50ΩꢀLOꢀinput,ꢀR1ꢀ=ꢀ432Ω,ꢀR2ꢀ=ꢀ562Ω,ꢀR3ꢀ=ꢀ301Ω,ꢀV  
= 5V, P  
= 0dBm, f  
= 2140MHz,  
CC  
LO  
LO  
V = V ꢀ=ꢀ109mV  
differential, f ꢀ=ꢀ1MHz,ꢀI/Qꢀdifferentialꢀinputsꢀdrivenꢀfromꢀaꢀ100ΩꢀdifferentialꢀDC-coupledꢀsource,ꢀcommon-modeꢀ  
I
Q
P-P  
IQ  
input from 0V, T = +25°C, unless otherwise noted.)  
C
MODULATOR  
LO LEAKAGE vs. P WITH  
RF  
LO LEAKAGE NULLED AT SPECIFIC P  
RF  
LO LEAKAGE vs. P WITH  
LO LEAKAGE vs. f WITH  
LO  
LO LEAKAGE NULLED AT SPECIFIC P  
RF  
LO LEAKAGE NULLED AT SPECIFIC P  
RF  
RF  
-68  
-70  
-72  
-74  
-76  
-78  
-80  
-82  
-84  
-86  
-88  
-90  
-68  
-70  
-72  
-74  
-76  
-78  
-80  
-82  
-84  
-86  
-88  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f
= 2140Hz  
LO  
NULLED AT -10dBm  
NULLED AT -10dBm  
NULLED AT -14dBm,  
-18dBm, -22dBm  
NULLED AT -14dBm,  
-18dBm, -22dBm  
f
= 1960MHz  
LO  
f
= 1960MHz, NULLED AT -10dBm P  
RF  
LO  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
OUTPUT POWER P (dBm)  
OUTPUT POWER P (dBm)  
LO FREQUENCY (GHz)  
RF  
RF  
LO LEAKAGE vs. f WITH  
LO LEAKAGE vs. DIFFERENTIAL  
DC OFFSET ON Q-SIDE  
LO  
LO LEAKAGE NULLED AT SPECIFIC P  
RF  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-40  
f
= 2140MHz, NULLED AT -10dBm P  
P
= -18dBm, I-SIDE NULLED  
LO  
RF  
RF  
f
= 2140MHz  
f
LO  
-50  
-60  
-70  
-80  
= 1960MHz  
LO  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
-15 -14 -13 -12 -11 -10  
-9  
-8  
LO FREQUENCY (GHz)  
DC DIFFERENTIAL OFFSET ON Q-SIDE (mV)  
SIDEBAND SUPRESSION vs. P  
SIDEBAND SUPRESSION vs. P  
RF  
RF  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
1.8MHz  
9MHz  
1.8MHz  
9MHz  
f
= 1.8MHz, f  
= 9MHz, f = 1960MHz,  
f
= 1.8MHz, f  
= 9MHz, f = 2140MHz,  
BB2 LO  
BB1  
BB2  
LO  
BB1  
1.8MHz BASEBAND TONE NULLED AT  
1.8MHz BASEBAND TONE NULLED AT  
P
= -20dBm  
P
= -20dBm  
RF  
RF  
-30  
-25  
-20  
-15  
-10  
-30  
-25  
-20  
-15  
-10  
MODULATOR P  
(dBm)  
MODULATOR P  
(dBm)  
OUT  
OUT  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Typical Operating Characteristics (continued)  
(MAX2022 Typical Application Circuit,ꢀ50ΩꢀLOꢀinput,ꢀR1ꢀ=ꢀ432Ω,ꢀR2ꢀ=ꢀ562Ω,ꢀR3ꢀ=ꢀ301Ω,ꢀV  
= 5V, P  
= 0dBm, f  
= 2140MHz,  
CC  
LO  
LO  
V = V ꢀ=ꢀ109mV  
differential, f ꢀ=ꢀ1MHz,ꢀI/Qꢀdifferentialꢀinputsꢀdrivenꢀfromꢀaꢀ100ΩꢀdifferentialꢀDC-coupledꢀsource,ꢀcommon-modeꢀ  
I
Q
P-P  
IQ  
input from 0V, T = +25°C, unless otherwise noted.)  
C
MODULATOR  
RF PORT MATCH  
vs. LO FREQUENCY  
LO PORT MATCH  
vs. LO FREQUENCY  
0
0
-5  
-5  
V
CC  
= 4.75V, 5.0V, 5.25V  
-10  
-15  
-20  
-25  
-30  
-10  
V
= 4.75V, 5.0V, 5.25V  
CC  
-15  
-20  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
LO PORT MATCH  
OUTPUT POWER vs. INPUT POWER (P *)  
IN  
vs. LO FREQUENCY  
10  
8
0
-5  
f
= 1960MHz  
LO  
*P IS THE AVAILABLE  
IN  
6
POWER FROM ONE OF  
THE FOUR 50Ω  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
4
BASEBAND SOURCES  
P
= -3dBm  
2
LO  
0
P
= 0dBm  
LO  
-2  
-4  
-6  
-8  
-10  
T
= -40°C, +25°C, +85°C  
P
LO  
= +3dBm  
2.1  
C
-2  
3
8
13  
18  
1.5  
1.7  
1.9  
2.3  
2.5  
INPUT POWER (P *) (dBm)  
IN  
LO FREQUENCY (GHz)  
TOTAL SUPPLY CURRENT  
OUTPUT POWER vs. INPUT POWER (P *)  
IN  
vs. TEMPERATURE (T )  
C
10  
8
340  
320  
300  
280  
260  
240  
P
= 2140MHz  
LO  
*P IS THE AVAILABLE  
IN  
6
POWER FROM ONE OF  
THE FOUR 50Ω  
BASEBAND SOURCES  
4
V
CC  
= 5.25V  
2
0
-2  
-4  
-6  
-8  
-10  
V
CC  
= 5.0V  
T
C
= -40°C, +25°C, +85°C  
V
CC  
= 4.75V  
-15  
-2  
3
8
13  
18  
-40  
10  
35  
60  
85  
INPUT POWER (P *) (dBm)  
IN  
TEMPERATURE (°C)  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Typical Operating Characteristics (continued)  
(MAX2022 Typical Application Circuit,ꢀ50ΩꢀLOꢀinput,ꢀR1ꢀ=ꢀ432Ω,ꢀR2ꢀ=ꢀ562Ω,ꢀR3ꢀ=ꢀ301Ω,ꢀV  
= 5V, P  
= 0dBm, f  
= 2140MHz,  
CC  
LO  
LO  
V = V ꢀ=ꢀ109mV  
differential, f ꢀ=ꢀ1MHz,ꢀI/Qꢀdifferentialꢀinputsꢀdrivenꢀfromꢀaꢀ100ΩꢀdifferentialꢀDC-coupledꢀsource,ꢀcommon-modeꢀ  
I
Q
P-P  
IQ  
input from 0V, T = +25°C, unless otherwise noted.)  
C
MODULATOR  
VCCLOA SUPPLY CURRENT  
VCCLOI1 SUPPLY CURRENT  
vs. TEMPERATURE (T )  
vs. TEMPERATURE (T )  
C
C
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
V
CC  
= 5.25V  
V
= 5.25V  
= 5.0V  
CC  
V
CC  
= 5.0V  
V
CC  
V
CC  
= 4.75V  
V
= 4.75V  
CC  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
VCCLOI2 SUPPLY CURRENT  
vs. TEMPERATURE (T )  
VCCLOQ1 SUPPLY CURRENT  
vs. TEMPERATURE (T )  
C
C
70  
65  
60  
55  
50  
45  
40  
55  
50  
45  
40  
35  
30  
V
CC  
= 5.25V  
V
CC  
= 5.25V  
V
CC  
= 5.0V  
V
CC  
= 5.0V  
V
CC  
= 4.75V  
V
CC  
= 4.75V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
VCCLOQ2 SUPPLY CURRENT  
vs. TEMPERATURE (T )  
C
70  
65  
60  
55  
50  
45  
40  
V
CC  
= 5.25V  
V
CC  
= 5.0V  
V
= 4.75V  
CC  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Typical Operating Characteristics  
(MAX2022 Typical Application Circuit, RF and LO ports tuned for 1500MHz to 2400MHz as noted in Table 1. I/Q outputs are recombined  
using network shown in Figure 5. Losses of combining network not included in measurements. V ꢀ=ꢀ5.0V,ꢀGNDꢀ=ꢀ0V,ꢀP = 0dBm,  
CC  
RF  
P
= 0dBm, f = 20MHz, f > f ,ꢀintermodulationꢀdeltaꢀfrequencyꢀ=ꢀ1.2MHz,ꢀ50ΩꢀLOꢀandꢀRFꢀsystemꢀimpedance,ꢀT = +25°C un-  
LO  
IF  
LO  
RF  
C
less otherwise noted.)  
DEMODULATOR LOW BAND TUNING (VARIABLE LO)  
CONVERSION LOSS  
vs. RF FREQUENCY  
CONVERSION LOSS  
vs. RF FREQUENCY  
CONVERSION LOSS  
vs. RF FREQUENCY  
12  
11  
10  
9
12  
11  
10  
9
12  
11  
10  
9
P
LO  
= -3dBm, 0dBm, +3dBm  
V
CC  
= 4.75V, 5.0V, 5.25V  
T
= +25°C  
C
T
= +85°C  
C
8
8
8
T
= -40°C  
1780  
C
7
7
7
1480  
2080  
2380  
1480  
1780  
2080  
2380  
1480  
1780  
2080  
2380  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
40  
35  
30  
25  
40  
35  
30  
25  
40  
35  
30  
25  
P
= 0dBm/TONE  
RF  
V
= 5.0V  
CC  
P
= 0dBm/TONE  
P
= 0dBm/TONE  
RF  
RF  
V
= 5.25V  
CC  
T
= +85°C  
P
LO  
= 0dBm, +3dBm  
C
P
= -3dBm  
LO  
T
= +25°C  
C
V
= 4.75V  
CC  
T
= -40°C  
C
1480  
1780  
2080  
2380  
1480  
1780  
2080  
2380  
1480  
1780  
2080  
2380  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Typical Operating Characteristics (continued)  
(MAX2022 Typical Application Circuit, RF and LO ports tuned for 1500MHz to 2400MHz as noted in Table 1. I/Q outputs are recombined  
using network shown in Figure 5. Losses of combining network not included in measurements. V ꢀ=ꢀ5.0V,ꢀGNDꢀ=ꢀ0V,ꢀP = 0dBm,  
CC  
RF  
P
= 0dBm, f = 20MHz, f > f ,ꢀintermodulationꢀdeltaꢀfrequencyꢀ=ꢀ1.2MHz,ꢀ50ΩꢀLOꢀandꢀRFꢀsystemꢀimpedance,ꢀT = +25°C un-  
LO  
IF  
LO  
RF  
C
less otherwise noted.)  
DEMODULATOR LOW BAND TUNING (VARIABLE LO)  
IMAGE REJECTION  
vs. LO FREQUENCY  
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
INPUT IP2 vs. RF FREQUENCY  
80  
70  
60  
50  
40  
50  
40  
30  
20  
10  
0
5
P
= 0dBm/TONE  
= +25°C  
RF  
T
= +85°C  
C
T
C
P
LO  
= -3dBm, 0dBm, +3dBm  
10  
15  
20  
25  
30  
T
= -40°C  
C
1480  
1780  
2080  
2380  
1500  
1800  
2100  
2400  
1500  
2000  
2500  
3000  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
LO PORT RETURN LOSS  
vs. LO FREQUENCY  
LO PORT RETURN LOSS  
vs. LO FREQUENCY  
0
5
0
10  
20  
30  
40  
0
10  
20  
30  
40  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= 0dBm  
LO  
V
CC  
= 4.75V, 5.0V, 5.25V  
10  
15  
20  
25  
30  
P
= +3dBm  
LO  
P
= -3dBm  
LO  
1500  
2000  
2500  
3000  
1500  
2000  
2500  
3000  
1500  
2000  
2500  
3000  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Typical Operating Characteristics  
(MAX2022 Typical Application Circuit, RF and LO ports tuned for 2400MHz to 3000MHz as noted in Table 1. I/Q outputs are recombined  
using network shown in Figure 5. Losses of combining network not included in measurements. V ꢀ=ꢀ5.0V,ꢀGNDꢀ=ꢀ0V,ꢀP = 0dBm,  
CC  
RF  
P
= 0dBm, f = 20MHz, f > f ,ꢀintermodulationꢀdeltaꢀfrequencyꢀ=ꢀ1.2MHz,ꢀ50ΩꢀLOꢀandꢀRFꢀsystemꢀimpedance,ꢀT = +25°C, un-  
LO  
IF  
LO  
RF  
C
less otherwise noted.)  
DEMODULATOR HIGH BAND TUNING (VARIABLE LO)  
CONVERSION LOSS  
vs. RF FREQUENCY  
CONVERSION LOSS  
vs. RF FREQUENCY  
CONVERSION LOSS  
vs. RF FREQUENCY  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
13  
12  
11  
10  
9
T
= +25°C  
C
P
LO  
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= +85°C  
C
T
= -40°C  
2780  
C
2380  
2580  
2980  
2380  
2580  
2780  
2980  
2380  
2580  
2780  
2980  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
40  
38  
36  
34  
32  
30  
40  
38  
36  
34  
32  
30  
40  
38  
36  
34  
32  
30  
P
= 0dBm/TONE  
RF  
P
= 0dBm/TONE  
P
= 0dBm/TONE  
RF  
RF  
T
= +85°C  
C
T
= +25°C  
V
= 5.25V  
P
= +3dBm  
C
CC  
LO  
V
CC  
= 5.0V  
V
= 4.75V  
CC  
P
= 0dBm  
LO  
P
= -3dBm  
LO  
T
= -40°C  
C
2380  
2580  
2780  
2980  
2380  
2580  
2780  
2980  
2380  
2580  
2780  
2980  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Typical Operating Characteristics (continued)  
(MAX2022 Typical Operating Characteristics, RF and LO ports tuned for 2400MHz to 3000MHz as noted in Table 1. I/Q outputs are  
recombined using network shown in Figure 5. Losses of combining network not included in measurements. V ꢀ=ꢀ5.0V,GNDꢀ=ꢀ0V,ꢀ  
CC  
P
= 0dBm, P = 0dBm, f = 20MHz, f > f ,ꢀintermodulationꢀdeltaꢀfrequencyꢀ=ꢀ1.2MHz,ꢀ50ΩꢀLOꢀandꢀRFꢀsystemꢀimpedance,ꢀT  
RF  
LO IF LO RF C  
= +25°C, unless otherwise noted.)  
DEMODULATOR HIGH BAND TUNING (VARIABLE LO)  
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IMAGE REJECTION  
vs. LO FREQUENCY  
INPUT IP2 vs. RF FREQUENCY  
90  
80  
70  
60  
50  
40  
0
5
50  
40  
30  
20  
10  
P
= 0dBm/TONE  
RF  
T
= +85°C  
C
T
= +25°C  
C
10  
15  
20  
25  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= -40°C  
C
2380  
2580  
2780  
2980  
1500  
2000  
2500  
3000  
2400  
2600  
2800  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO PORT RETURN LOSS  
vs. LO FREQUENCY  
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
LO PORT RETURN LOSS  
vs. LO FREQUENCY  
0
5
0
5
0
5
P
= 0dBm  
LO  
V
CC  
= 4.75V, 5.0V, 5.25V  
10  
15  
20  
25  
30  
10  
15  
20  
25  
30  
10  
15  
20  
25  
V
CC  
= 4.75V, 5.0V, 5.25V  
P
= -3dBm  
LO  
P
LO  
= +3dBm  
1500  
2000  
2500  
3000  
1500  
2000  
2500  
3000  
1500  
2000  
2500  
3000  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Typical Operating Characteristics (continued)  
(MAX2022 Typical Application Circuit, RF and LO ports tuned for 2400MHz to 3000MHz as noted in Table 1. I/Q outputs are recombined  
using network shown in Figure 5. Losses of combining network not included in measurements. V ꢀ=ꢀ5.0V,ꢀGNDꢀ=ꢀ0V,ꢀP = 0dBm, P  
CC  
RF  
LO  
= 0dBm, f = 2855MHz, f = f - f ,ꢀintermodulationꢀdeltaꢀfrequencyꢀ=ꢀ1.2MHz,ꢀ50ΩꢀLOꢀandꢀRFꢀsystemꢀimpedance,ꢀT = +25°C,  
LO  
IF  
LO RF  
C
unless otherwise noted.)  
DEMODULATOR HIGH BAND TUNING (FIXED LO)  
CONVERSION LOSS  
vs. RF FREQUENCY  
I/Q GAIN MISMATCH  
vs. IF FREQUENCY  
I/Q PHASE MISMATCH  
vs. IF FREQUENCY  
0.10  
0.05  
0
2
1
12  
11  
10  
9
f
= 2855MHz  
f
= 2855MHz  
f
= 2855MHz  
LO  
LO  
LO  
0
-0.05  
-0.10  
-1  
-2  
10  
170  
330  
490  
650  
10  
170  
330  
490  
650  
2200  
2360  
2520  
2680  
2840  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP2 vs. RF FREQUENCY  
40  
38  
36  
34  
32  
30  
80  
70  
60  
50  
40  
P
RF  
= 0dBm/TONE  
P
= 0dBm/TONE  
RF  
IF1+IF2 TERM  
f
= 2855MHz  
f
= 2855MHz  
LO  
LO  
2200  
2400  
2600  
2800  
2200  
2400  
2600  
2800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Pin Configuration/Functional Diagram  
TOP VIEW  
28  
33  
32  
30  
29  
36  
34  
31  
35  
+
GND  
RBIASLO3  
VCCLOA  
1
2
3
27  
26  
GND  
MAX2022  
BIAS  
LO3  
BBQP  
BBQN  
25  
90°  
0°  
4
5
24  
23  
LO  
GND  
RF  
GND  
BIAS  
LO1  
RBIASLO1  
6
22  
GND  
N.C.  
RBIASLO2  
GND  
7
8
9
21 BBIN  
BIAS  
LO2  
20  
19  
BBIP  
GND  
EP  
16  
10  
18  
11  
12  
13  
14  
15  
17  
TQFN  
(6mm x 6mm)  
Pin Description  
PIN  
NAME  
FUNCTION  
1,ꢀ5,ꢀ9–12,ꢀ14,ꢀ16–19,ꢀ22,ꢀ24,ꢀ  
27–30,ꢀ32,ꢀ34,ꢀ35,ꢀ36  
GND  
Ground  
2
3
RBIASLO3  
VCCLOA  
LO  
3rdꢀLOꢀAmplifierꢀBias.ꢀConnectꢀaꢀ301Ωꢀresistorꢀtoꢀground.ꢀ  
LOꢀInputꢀBufferꢀAmplifierꢀSupplyꢀVoltage  
4
LocalꢀOscillatorꢀInput.ꢀ50Ωꢀinputꢀimpedance.ꢀ  
6
RBIASLO1  
N.C.  
1stꢀLOꢀInputꢀBufferꢀAmplifierꢀBias.ꢀConnectꢀaꢀ432Ωꢀresistorꢀtoꢀground.ꢀ  
No internal connection and can be connected to ground or left open.  
2ndꢀLOꢀAmplifierꢀBias.ꢀConnectꢀaꢀ562Ωꢀresistorꢀtoꢀground.  
I-Channelꢀ1stꢀLOꢀAmplifierꢀSupplyꢀVoltageꢀ  
7
8
RBIASLO2  
VCCLOI1  
VCCLOI2  
BBIP  
13  
15  
20  
I-Channelꢀ2ndꢀLOꢀAmplifierꢀSupplyꢀVoltage  
Baseband In-Phase Positive Input  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Pin Description (continued)  
PIN  
21  
23  
25  
26  
31  
33  
NAME  
FUNCTION  
BBIN  
RF  
Baseband In-Phase Negative Input  
RF Port  
BBQN  
Baseband Quadrature Negative Input  
Baseband Quadrature Positive Input  
Q-Channelꢀ2ndꢀLOꢀAmplifierꢀSupplyꢀVoltageꢀ  
Q-Channelꢀ1stꢀLOꢀAmplifierꢀSupplyꢀVoltage  
BBQP  
VCCLOQ2  
VCCLOQ1  
ExposedꢀGroundꢀPaddle.ꢀTheꢀexposedꢀpaddleꢀMUST be soldered to the  
ground plane using multiple vias.  
EP  
LO Driver  
Detailed Description  
The MAX2022 is designed for upconverting differential  
in-phase (I) and quadrature (Q) inputs from baseband to  
a 1500MHz to 3000MHz RF frequency range. The device  
can also be used as a demodulator, downconverting an  
RF input signal directly to baseband or an IF frequency.  
Applications include single and multicarrier 1500MHz  
to 3000MHz UMTS/WCDMA, LTE/TD-LTE, cdma2000,  
and DCS/PCS base stations. Direct conversion architec-  
tures are advantageous since they significantly reduce  
transmitter or receiver cost, part count, and power con-  
sumption as compared to traditional IF-based double-  
conversion systems.  
Followingꢀtheꢀphaseꢀsplitter,ꢀtheꢀ0°ꢀandꢀ90°ꢀLOꢀsignalsꢀareꢀ  
each amplified by a two-stage amplifier to drive the I and  
Q mixers. The amplifier boosts the level of the LO signals  
to compensate for any changes in LO drive levels. The  
two-stage LO amplifier allows a wide input power range  
for the LO drive. While a nominal LO power of 0dBm is  
specified, the MAX2022 can tolerate LO level swings from  
-3dBm to +3dBm.  
I/Q Modulator  
The MAX2022 modulator is composed of a pair of  
matched double-balanced passive mixers and a balun.  
The I and Q differential baseband inputs accept signals  
from DC to beyond 500MHz with differential amplitudes  
The MAX2022 integrates internal baluns, an LO buffer, a  
phase splitter, two LO driver amplifiers, two matched dou-  
ble-balanced passive mixers, and a wideband quadrature  
combiner. Precision matching between the in-phase and  
quadrature channels, and highly linear mixers achieves  
excellent dynamic range, ACLR, 1dB compression point,  
and LO and sideband suppression, making it ideal for  
four-carrier WCDMA/UMTS operation.  
up to 2V  
differential (common-mode input equals 0V).  
P-P  
The wide input bandwidth allows for direct interface with  
the baseband DACs. No active buffer circuitry between  
the baseband DAC and the MAX2022 is required.  
TheꢀIꢀandꢀQꢀsignalsꢀdirectlyꢀmodulateꢀtheꢀ0°ꢀandꢀ90°ꢀLOꢀ  
signals and are upconverted to the RF frequency. The  
outputs of the I and Q mixers are combined through a  
balun to a singled-ended RF output.  
LO Input Balun, LO Buffer, and Phase Splitter  
The MAX2022 requires a single-ended LO input, with a  
nominal power of 0dBm. An internal low-loss balun at  
the LO input converts the single-ended LO signal to a  
differential signal at the LO buffer input. In addition, the  
internal balun matches the buffer’s input impedance to  
50Ωꢀoverꢀtheꢀentireꢀbandꢀofꢀoperation.  
Applications Information  
LO Input Drive  
The LO input of the MAX2022 requires a single-ended  
drive at a 1500MHz to 3000MHz frequency. It is internally  
matchedꢀtoꢀ50Ω.ꢀAnꢀintegratedꢀbalunꢀconvertsꢀtheꢀsingle-  
ended input signal to a differential signal at the LO buffer  
differential input. An external DC-blocking capacitor is the  
only external part required at this interface. The LO input  
power should be within the -3dBm to +3dBm range.  
The output of the LO buffer goes through a phase splitter,  
whichꢀgeneratesꢀaꢀsecondꢀLOꢀsignalꢀthatꢀisꢀshiftedꢀbyꢀ90°ꢀ  
withꢀ respectꢀ toꢀ theꢀ original.Theꢀ 0°ꢀ andꢀ 90°ꢀ LOꢀ signalsꢀ  
drive the I and Q mixers, respectively.  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
be in the -12dBm range for a single CDMA or WCDMA  
carrier, reducing to -18dBm per carrier for a four-carrier  
application.  
Modulator Baseband I/Q Input Drive  
The MAX2022 I and Q baseband inputs should be driven  
differentially for best performance. The baseband inputs  
haveꢀ aꢀ 50Ωꢀ differentialꢀ inputꢀ impedance.ꢀ Theꢀ optimumꢀ  
sourceꢀimpedanceꢀforꢀtheꢀIꢀandꢀQꢀinputsꢀisꢀ100Ωꢀdifferen-  
tial. This source impedance will achieve the optimal signal  
transfer to the I and Q inputs, and the optimum output RF  
impedance match. The MAX2022 can accept input power  
levels of up to +12dBm on the I and Q inputs. Operation  
with complex waveforms, such as CDMA or WCDMA  
carriers, utilize input power levels that are far lower. This  
lower power operation is made necessary by the high  
peak-to-average ratios of these complex waveforms. The  
peak signals must be kept below the compression level of  
the MAX2022. The input common-mode voltage should  
be confined to the -2V to +1.5V DC range.  
The I/Q input bandwidth is greater than 50MHz at -0.1dB  
response. The direct connection of the DAC to the  
MAX2022 insures the maximum signal fidelity, with no  
performance-limiting baseband amplifiers required. The  
DAC output can be passed through a lowpass filter to  
remove the image frequencies from the DAC’s output  
response.TheMAX5895dualinterpolatingDACcanbeꢀ  
operated at interpolation rates up to x8. This has the ben-  
efit of moving the DAC image frequencies to a very high,  
remote frequency, easing the design of the baseband  
filters. The DAC’s output noise floor and interpolation  
filter stopband attenuation are sufficiently good to insure  
thatꢀ theꢀ 3GPPꢀ noiseꢀ floorꢀ requirementꢀ isꢀ metꢀ forꢀ largeꢀ  
frequency offsets, 60MHz for example, with no filtering  
required on the RF output of the modulator.  
The MAX2022 is designed to interface directly with Maxim  
high-speed DACs. This generates an ideal total transmit-  
ter lineup, with minimal ancillary circuit elements. Such  
DACsꢀ includeꢀ theꢀ MAX5875ꢀ seriesꢀ ofꢀ dualꢀ DACs,ꢀ andꢀ  
theꢀMAX5895ꢀdualꢀinterpolatingꢀDAC.ꢀTheseꢀDACsꢀhaveꢀ  
ground-referenced differential current outputs. Typical  
terminationofeachDACoutputintoa50Ωloadresistorꢀ  
to ground, and a 10mA nominal DC output current results  
in a 0.5V common-mode DC level into the modulator I/Q  
inputs. The nominal signal level provided by the DACs will  
Figure 1 illustrates the ease and efficiency of interfac-  
ing the MAX2022 with a Maxim DAC, in this case the  
MAX5895ꢀdualꢀ16-bitꢀinterpolating-modulatingꢀDAC.  
Theꢀ MAX5895ꢀ DACꢀ hasꢀ programmableꢀ gainꢀ andꢀ dif-  
ferential offset controls built in. These can be used to  
optimize the LO leakage and sideband suppression of the  
MAX2022 quadrature modulator.  
MAX5895  
DUAL 16-BIT INTERP DAC  
50Ω  
MAX2022  
RF MODULATOR  
50Ω  
BBI  
FREQ  
50Ω  
50Ω  
0°  
RF  
LO  
I/Q GAIN AND  
OFFSET ADJUST  
90°  
50Ω  
FREQ  
BBQ  
50Ω  
Figure 1. MAX5895 DAC Interfaced with MAX2022  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
illustrates a complete transmitter lineup for a multicarrier  
WCDMA transmitter in the UMTS band.  
RF Output  
The MAX2022 utilizes an internal passive mixer architec-  
ture.ꢀThisꢀenablesꢀaꢀveryꢀlowꢀnoiseꢀfloorꢀofꢀ-173.2dBm/Hzꢀ  
for low-level signals, below about -20dBm output power  
level. For higher output level signals, the noise floor will  
be determined by the internal LO noise level at approxi-  
mately -162dBc/Hz.  
Theꢀ MAX5895ꢀ dualꢀ interpolating-modulatingꢀ DACꢀ isꢀ  
operated as a baseband signal generator. For genera-  
tion of four carriers of WCDMA modulation, and digital  
predistortion, an input data rate of 61.44 or 122.88Mbps  
can be used. The DAC can then be programmed to  
operate in x8 or x4 interpolation mode, resulting in a  
491.52Mspsꢀ outputꢀ sampleꢀ rate.ꢀ Theꢀ DACꢀ willꢀ gener-  
ate four carriers of WCDMA modulation with an ACLR  
typicallyꢀgreaterꢀthanꢀ77dBꢀunderꢀtheseꢀconditions.ꢀTheꢀ  
output power will be approximately -18dBm per carrier,  
with a noise floor typically less than -144dBc/Hz.  
The I/Q input power levels and the insertion loss of the  
device will determine the RF output power level. The input  
power is the function of the delivered input I and Q voltag-  
esꢀtoꢀtheꢀinternalꢀ50Ωꢀtermination.ꢀForꢀsimpleꢀsinusoidalꢀ  
basebandꢀsignals,ꢀaꢀlevelꢀofꢀ89mV  
differential on the I  
P-P  
andꢀtheꢀQꢀinputsꢀresultsꢀinꢀanꢀinputꢀpowerꢀlevelꢀofꢀ-17dBmꢀ  
deliveredtotheIandQinternal50Ωterminations.Thisꢀ  
results in a -23.5dBm RF output power.  
Theꢀ MAX5895ꢀ DACꢀ hasꢀ built-inꢀ gainꢀ andꢀ offsetꢀ fineꢀ  
adjustments. These are programmable by a 3-wire serial  
logic interface. The gain adjustment can be used to adjust  
the relative gains of the I and Q DAC outputs. This feature  
can be used to improve the native sideband suppression  
of the MAX2022 quadrature modulator. The gain adjust-  
ment resolution of 0.01dB allows sideband nulling down  
to approximately -60dB. The offset adjustment can simi-  
larly be used to adjust the offset DC output of each I and  
Q DAC. These offsets can then be used to improve the  
native LO leakage of the MAX2022. The DAC resolution  
of 4 LSBs will yield nulled LO leakage of typically less  
than -50dBc relative to four-carrier output levels.  
Generation of WCDMA Carriers  
The MAX2022 quadrature modulator makes an ideal sig-  
nal source for the generation of multiple WCDMA carriers.  
The combination of high OIP3 and exceptionally low out-  
put noise floor gives an unprecedented output dynamic  
range. The output dynamic range allows the generation of  
four WCDMA carriers in the UMTS band with a noise floor  
sufficientlyꢀ lowꢀ toꢀ meetꢀ theꢀ 3GPPꢀ specificationꢀ require-  
ments with no additional RF filtering. This promotes an  
extremely simple and efficient transmitter lineup. Figure 2  
MAX5895  
MAX2022  
RF-MODULATOR  
I
L-C FILTER  
MAX2057  
+12dB  
TX  
OUTPUT  
I
I/Q GAIN AND  
OFFSET ADJUST  
Q
Q
SYNTH  
CLOCK  
Figure 2. Complete Transmitter Lineup for a Multicarrier WCDMA in the UMTS Band  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
The DAC outputs must be filtered by baseband filters to  
remove the image frequency signal components. The  
baseband signals for four-carrier operation cover DC  
to 10MHz. The image frequency appears at 481MHz to  
491MHz.ꢀ Thisꢀ veryꢀ largeꢀ frequencyꢀ spreadꢀ allowsꢀ theꢀ  
use of very low-complexity lowpass filters, with excellent  
in-band gain and phase performance. The low DAC noise  
floor allows for the use of a very wideband filter, since  
thefilterisnotnecessarytomeetthe3GPPnoisefloorꢀ  
specification.  
C = 2.2pF  
MAX2022  
50Ω  
RF MODULATOR  
L = 11nH  
I
50Ω  
LO  
0°  
90°  
The MAX2022 quadrature modulator then upconverts the  
baseband signals to the RF output frequency. The output  
power of the MAX2022 will be approximately -28dBm  
perꢀcarrier.ꢀTheꢀnoiseꢀfloorꢀwillꢀbeꢀlessꢀthanꢀ-169dBm/Hz,ꢀ  
with an ACLR typically greater than 65dBc. This perfor-  
mancemeetsthe3GPPspecificationrequirementswithꢀ  
substantial margins. The noise floor performance will be  
maintained for large offset frequencies, eliminating the  
need for subsequent RF filtering in the transmitter lineup.  
C = 2.2pF  
RF  
50Ω  
L = 11nH  
Q
50Ω  
C = 2.2pF  
The RF output from the MAX2022 is then amplified by  
a combination of a low-noise amplifier followed by a  
MAX2057ꢀ RF-VGA.ꢀ Thisꢀ VGAꢀ canꢀ beꢀ usedꢀ forꢀ lineupꢀ  
compensation for gain variance of transmitter and power  
amplifier elements. No significant degradation of the  
signal or noise levels will be incurred by this additional  
amplification.ꢀTheꢀMAX2057ꢀwillꢀdeliverꢀanꢀoutputꢀpowerꢀ  
of -6dBm per carrier, 0dBm total at an ACLR of 65dB and  
noise floor of -142dBc/Hz.  
Figure 3. Diplexer Network Recommended for UMTS  
Transmitter Applications  
As demonstrated in Figure 3, providing an RC termination  
on each of the I+, I-, Q+, Q- ports reduces the amount of  
LO leakage present at the RF port under varying tempera-  
ture, LO frequency, and baseband termination conditions.  
See the Typical Operating Characteristics for details. Note  
thatꢀtheꢀresistorꢀvalueꢀisꢀchosenꢀtoꢀbeꢀ50Ωꢀwithꢀaꢀcornerꢀ  
External Diplexer  
LO leakage at the RF port can be nulled to a level less  
than -80dBm by introducing DC offsets at the I and Q  
ports. However, this null at the RF port can be compro-  
mised by an improperly terminated I/Q interface. Care  
must be taken to match the I/Q ports to the external  
circuitry. Without matching, the LO’s second-order term  
frequencyꢀ1ꢀ/ꢀ(2�RC)ꢀselectedꢀtoꢀadequatelyꢀfilterꢀtheꢀf  
LO  
and 2f  
leakage, yet not affecting the flatness of the  
LO  
baseband response at the highest baseband frequency.  
The common-mode f and 2f signals at I+/I- and  
LO  
LO  
Q+/Q- effectively see the RC networks and thus become  
terminatedꢀinꢀ25Ωꢀ(R/2).ꢀTheꢀRCꢀnetworkꢀprovidesꢀaꢀpathꢀ  
(2f ) it may reflect back into the modulator’s I/Q ports  
LO  
for absorbing the 2f  
and f  
leakage, while the induc-  
where it can remix with the internal LO signal to produce  
additional LO leakage at the RF output. This reflection  
effectively counteracts against the LO nulling. In addi-  
tion, the LO signal reflected at the I/Q IF port produces  
a residual DC term that can disturb the nulling condition.  
LO  
LO  
tor provides high impedance at f  
and 2f  
to help the  
LO  
LO  
diplexing process.  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
within the -2.5V to +1.5V common-mode range), through  
an inductor to ground, or through a low-value resistor to  
ground. Figure 6 shows a typical network that would be  
used to connect to each baseband port for demodulator  
operation. This network provides a common-mode DC  
return, implements a high-frequency diplexer to terminate  
unwanted RF terms, and also provides an impedance  
transformation to a possible higher impedance baseband  
amplifier.  
RF Demodulator  
The MAX2022 can also be used as an RF demodulator  
(see Figure 4), downconverting an RF input signal directly  
to baseband. The single-ended RF input accepts signals  
from 1500MHz to 3000MHz. The passive mixer architec-  
tureꢀproducesꢀaꢀconversionꢀlossꢀofꢀtypicallyꢀ9.2dBꢀandꢀaꢀ  
noiseꢀ figureꢀ ofꢀ 9.4dB.ꢀ Theꢀ downconverterꢀ isꢀ optimizedꢀ  
forꢀhighꢀlinearityꢀofꢀtypicallyꢀ+39dBmꢀIIP3.ꢀAꢀwideꢀI/Qꢀportꢀ  
bandwidth allows the port to be used as an image-reject  
mixer for downconversion to a quadrature IF frequency.  
The network C , R , L , and C form a highpass/lowpass  
a
a
a
b
network to terminate the high frequencies into a load  
while passing the desired lower IF frequencies. Elements  
Theꢀ RFꢀ andꢀ LOꢀ inputsꢀ areꢀ internallyꢀ matchedꢀ toꢀ 50Ω.ꢀ  
Thus, no matching components are required, and only  
DC-blocking capacitors are needed for interfacing.  
L , C , L , C , L , and C provide a possible impedance  
a
b
b
c
c
d
transformer. Depending on the impedance being trans-  
formed and the desired bandwidth, a fewer number of ele-  
Demodulator Output Port Considerations  
ments can be used. It is suggested that L and C always  
a
b
Much like in the modulator case, the four baseband ports  
require some form of DC return to establish a common  
mode that the on-chip circuitry drives. This is achieved  
by directly DC-coupling to the baseband ports (staying  
be used since they are part of the high-frequency diplexer.  
If power matching is not a concern, then this reduces the  
elements to just the diplexer.  
MAX2022  
DIPLEXER/  
DC RETURN  
MATCHING  
MATCHING  
ADC  
ADC  
90  
RF  
LO  
0
DIPLEXER/  
DC RETURN  
Figure 4. MAX2022 Demodulator Configuration  
I+  
I-  
3dB PAD  
3dB PAD  
DC BLOCK  
DC BLOCK  
0°  
MINI-CIRCUITS  
ZFSCJ-2-1  
180°  
3dB PADS LOOK LIKE 160Ω TO GROUND  
AND PROVIDES THE COMMON-MODE  
DC RETURN FOR THE ON-CHIP CIRCUITRY.  
MINI-CIRCUITS  
ZFSC-2-1W-S+  
0° COMBINER  
Q+  
Q-  
3dB PAD  
DC BLOCK  
0°  
MINI-CIRCUITS  
90°  
ZFSCJ-2-1  
3dB PAD  
DC BLOCK  
180°  
Figure 5. Demodulator Combining Diagram  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
L
d
R
a
R
b
C
a
C
e
L
L
L
c
a
b
EXTERNAL  
STAGE  
MAX2022  
I/Q OUTPUTS  
C
b
C
c
C
d
Figure 6. Baseband Port Typical Filtering and DC Return Network  
Resistor R provides a DC return to set the common-  
b
multiple vias be used to connect this pad to the lower-  
level ground planes. This method provides a good RF/  
thermal conduction path for the device. Solder the  
exposed pad on the bottom of the device package to  
the PCB. The MAX2022 evaluation kit can be used as  
aꢀreferenceꢀforꢀboardꢀlayout.ꢀGerberꢀfilesꢀareꢀavailableꢀ  
upon request at www.maximintegrated.com.  
mode voltage. In this case, due to the on-chip circuitry,  
the voltage is approximately 0V DC. It can also be used  
to reduce the load impedance of the next stage. Inductor  
L can provide a bit of high-frequency gain peaking for  
d
wideband IF systems. Capacitor C is a DC block.  
e
Typical values for C , R , L , and C would be 1.5pF,  
a
a
a
b
50Ω,ꢀ 11nH,ꢀ andꢀ 4.7pF,ꢀ respectively.ꢀ Theseꢀ valuesꢀ canꢀ  
change depending on the LO, RF, and IF frequencies  
Power-Supply Bypassing  
Proper voltage-supply bypassing is essential for high-  
frequency circuit stability. Bypass all V  
and 0.1µF capacitors placed as close to the pins as pos-  
sible. The smallest capacitor should be placed closest to  
the device.  
used. Resistor R ꢀisꢀinꢀtheꢀ50Ωꢀtoꢀ200Ωꢀrange.  
b
pins with 22pF  
CC  
The circuitry presented in Figure 6 does not allow for  
LO leakage at RF port nulling. Depending on the LO at  
RF leakage requirement, a trim voltage may need to be  
introduced on the baseband ports to null the LO leakage.  
To achieve optimum performance, use good voltage-  
supply layout techniques. The MAX2022 has several RF  
processing stages that use the various V  
Power Scaling with Changes to the Bias  
Resistors  
pins, and  
CC  
while they have on-chip decoupling, off-chip interaction  
between them may degrade gain, linearity, carrier sup-  
pression, and output power-control range. Excessive  
coupling between stages may degrade stability.  
Bias currents for the LO buffers are optimized by fine tun-  
ing resistors R1, R2, and R3. Maxim recommends using  
±1%-tolerance resistors; however, standard ±5% values  
can be used if the ±1% components are not readily avail-  
able. The resistor values shown in the Typical Application  
Circuit were chosen to provide peak performance for the  
entire 1500MHz to 3000MHz band. If desired, the current  
can be backed off from this nominal value by choosing  
different values for R1, R2, and R3. Contact the factory  
for additional details.  
Exposed Pad RF/Thermal Considerations  
The EP of the MAX2022’s 36-pin thin QFN-EP package  
provides a low thermal-resistance path to the die. It is  
important that the PCB on which the IC is mounted be  
designed to conduct heat from this contact. In addition,  
the EP provides a low-inductance RF ground path for the  
device.  
Layout Considerations  
A properly designed PCB is an essential part of any  
RF/microwave circuit. Keep RF signal lines as short  
as possible to reduce losses, radiation, and induc-  
tance. For the best performance, route the ground pin  
traces directly to the exposed pad under the pack-  
age. The PCB exposed paddle MUST be connected  
to the ground plane of the PCB. It is suggested that  
The exposed paddle (EP) MUST be soldered to a ground  
plane on the PCB either directly or through an array of  
platedviaholes.ꢀAnarrayof9vias,ina3x3array,isꢀ  
suggested. Soldering the pad to ground is critical for  
efficient heat transfer. Use a solid ground plane wherever  
possible.  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Table 1. Component List Referring to the Typical Application Circuit  
COMPONENT  
VALUE  
22pF  
DESCRIPTION  
22pFꢀ±5%,ꢀ50VꢀC0Gꢀceramicꢀcapacitorsꢀ(0402)  
0.1µFꢀ±10%,ꢀ16VꢀX7Rꢀceramicꢀcapacitorsꢀ(0603)  
C1,ꢀC6,ꢀC7,ꢀC10,ꢀC13  
C2, C5, C8, C11, C12  
0.1µF  
22pF  
22pFꢀ±5%,ꢀ50VꢀC0Gꢀceramicꢀcapacitorꢀ(0402),ꢀf  
= 1500MHz to 2400MHz  
= 2400MHz to 3000MHz  
LO  
C3  
C9  
6.8pF  
1.2pF  
22pF  
6.8pFꢀ±5%,ꢀ50VꢀC0Gꢀceramicꢀcapacitorꢀ(0402),ꢀf  
LO  
1.2pFꢀ±0.1pF,ꢀ50VꢀC0Gꢀceramicꢀcapacitorꢀ(0402),ꢀf = 1500MHz to 2400MHz  
RF  
22pFꢀ±5%,ꢀ50VꢀC0Gꢀceramicꢀcapacitorꢀ(0402),ꢀf = 2400MHz to 3000MHz  
RF  
Short  
0.7pF  
Replaceꢀwithꢀaꢀshortꢀcircuitꢀorꢀ0Ωꢀresistorꢀ(0402),ꢀf = 1500MHz to 2400MHz  
RF  
C16  
0.7pFꢀ±0.1pF,ꢀ50VꢀC0Gꢀceramicꢀcapacitorꢀ(0402),ꢀf = 2400MHz to 3000MHz  
RF  
Not Used  
Not installed for f = 1500MHz to 2400MHz  
RF  
L1  
4.7nH  
432Ω  
562Ω  
301Ω  
4.7nHꢀ±0.3nHꢀinductorꢀ(0402)ꢀforꢀf = 2400MHz to 3000MHz  
RF  
R1  
R2  
R3  
432Ωꢀ±1%ꢀresistorꢀ(0402)  
562Ωꢀ±1%ꢀresistorꢀ(0402)  
301Ωꢀ±1%ꢀresistorꢀ(0402)  
Ordering Information  
Chip Information  
PROCESS:ꢀSiGeꢀBiCMOS  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX2022ETX+  
MAX2022ETX+T  
-40°C to +85°C  
-40°C to +85°C  
36 TQFN-EP*  
36 TQFN-EP*  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*EP = Exposed pad.  
PACKAGE  
TYPE  
PACKAGE OUTLINE  
LAND  
PATTERN NO.  
CODE  
NO.  
TQFN-EP  
(6mm x 6mm)  
T3666+2  
21-0141  
90-0049  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Typical Application Circuit  
C11  
C10  
C12  
0.1µF  
C13  
22pF  
0.1µF  
22pF  
V
CC  
V
CC  
GND GND GND  
GND  
32  
GND GND GND  
R3  
301Ω  
28  
33  
30  
29  
36  
34  
31  
35  
GND  
1
2
3
27  
26  
MAX2022  
GND  
BIAS  
LO3  
RBIASLO3  
VCCLOA  
Q+  
Q-  
C2  
0.1µF  
C1  
BBQP  
BBQN  
22pF  
V
CC  
25  
C3  
LO  
GND  
90°  
0°  
LO  
4
5
24  
23  
GND  
RF  
C9  
C16  
RF  
BIAS  
LO1  
RBIASLO1  
L1  
6
22  
GND  
R1  
432Ω  
N.C.  
7
8
9
I-  
I+  
21  
20  
BBIN  
BBIP  
BIAS  
LO2  
RBIASLO2  
R2  
562Ω  
GND  
19  
EP  
16  
GND  
10  
GND GND GND  
18  
11  
12  
13  
14  
GND  
15  
17  
GND GND GND  
V
CC  
V
CC  
C5  
0.1µF  
C6  
22pF  
C8  
0.1µF  
C7  
22pF  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX2022  
High-Dynamic-Range, Direct Up/  
Downconversion 1500MHz to 3000MHz  
Quadrature Modulator/Demodulator  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
4/05  
Initial release  
Updated the Benefits and Features, Applications, Absolute Maximum Ratings, and  
Ordering Information;ꢀaddedꢀnewꢀelectricalꢀcharacteristicsꢀtables,ꢀfigures,ꢀandꢀsections  
1
9/12  
1–19  
Corrected pin 15 name from VCCLOI1 to VCCLOI2 in the Pin Configuration/Functional  
Diagram and Pin Description  
2
3
3/13  
11, 12  
7/13  
AddedꢀnewꢀTOCsꢀ46–74  
12–16  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2013 Maxim Integrated Products, Inc.  
26  

相关型号:

MAX2023

High-Dynamic-Range, Direct Up-/Downconversion 1500MHz to 2300MHz Quadrature Mod/Demod
MAXIM

MAX2023ETX

High-Dynamic-Range, Direct Up-/Downconversion 1500MHz to 2300MHz Quadrature Mod/Demod
MAXIM

MAX2023ETX+

High-Dynamic-Range, Direct Up-/Downconversion 1500MHz to 2300MHz Quadrature Mod/Demod
MAXIM

MAX2023ETX+T

High-Dynamic-Range, Direct Up-/Downconversion 1500MHz to 2300MHz Quadrature Mod/Demod
MAXIM

MAX2023ETX-T

High-Dynamic-Range, Direct Up-/Downconversion 1500MHz to 2300MHz Quadrature Mod/Demod
MAXIM

MAX2023EVKIT

Evaluation Kit
MAXIM

MAX2023_1

Evaluation Kit
MAXIM

MAX2023_V1

High-Dynamic-Range, Direct Up-/Downconversion 1500MHz to 2500MHz Quadrature Mod/Demod
MAXIM

MAX2027

IF Digitally Controlled Variable-Gain Amplifier
MAXIM

MAX2027EUP+T

Analog Circuit, 1 Func, PDSO20, 4.40 MM, EXPOSED PAD, TSSOP-20
MAXIM

MAX2027EUP+TD

暂无描述
MAXIM

MAX2027EUP-T

Amplifier. Other
MAXIM