MAX2044ETP+ [MAXIM]

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer; 的SiGe ,高线性度, 2300MHz至4000MHz的上变频/下变频混频器,带有LO缓冲器
MAX2044ETP+
型号: MAX2044ETP+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer
的SiGe ,高线性度, 2300MHz至4000MHz的上变频/下变频混频器,带有LO缓冲器

文件: 总39页 (文件大小:6427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5002; Rev 0; 10/09  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
General Description  
Features  
The MAX2044 single, high-linearity upconversion/down-  
conversion mixer provides +32.5dBm input IP3, 8.5dB  
noise figure, and 7.7dB conversion loss for 2300MHz  
to 4000MHz LTE, WiMAXK, and MMDS wireless infra-  
structure applications. With an ultra-wide 2600MHz to  
4300MHz LO frequency range, the MAX2044 can be  
used in either low-side or high-side LO injection archi-  
tectures for virtually all 2.5GHz and 3.5GHz applications.  
2300MHz to 4000MHz RF Frequency Range  
S
S
S
S
S
S
S
S
2600MHz to 4300MHz LO Frequency Range  
50MHz to 500MHz IF Frequency Range  
7.7dB Conversion Loss  
8.5dB Noise Figure  
+32.5dBm Typical Input IP3  
21dBm Typical Input 1dB Compression Point  
In addition to offering excellent linearity and noise  
performance, the MAX2044 also yields a high level of  
component integration. This device includes a double-  
balanced passive mixer core, an LO buffer, and on-chip  
baluns that allow for single-ended RF and LO inputs.  
The MAX2044 requires a nominal LO drive of 0dBm,  
68dBc Typical 2RF - 2LO Spurious Rejection at  
P
RF  
= -10dBm  
Integrated LO Buffer  
S
S
Integrated RF and LO Baluns for Single-Ended  
Inputs  
and supply current is typically 138mA at V  
= 5.0V or  
CC  
121mA at V  
= 3.3V.  
CC  
Low -3dBm to +3dBm LO Drive  
S
S
The MAX2044 is pin similar with the MAX2029/MAX2031  
650MHz to 1000MHz mixers and the MAX2039/MAX2041/  
MAX2042 1700MHz to 3000MHz mixers, making this  
entire family of up/downconverters ideal for applica-  
tions where a common PCB layout is used for multiple  
frequency bands.  
Pin Similar with the MAX2029/MAX2031 Series  
of 650MHz to 1000MHz Mixers and the MAX2039/  
MAX2041/MAX2042 Series of 1700MHz to  
3000MHz Mixers  
Single 5.0V or 3.3V Supply  
S
S
External Current-Setting Resistor Provides Option  
for Operating Device in Reduced-Power/Reduced-  
Performance Mode  
The MAX2044 is available in a compact 20-pin thin QFN  
(5mm x 5mm) package with an exposed pad. Electrical  
performance is guaranteed over the extended -40NC to  
+85NC temperature range.  
Applications  
2.5GHz WiMAX and LTE Base Stations  
2.7GHz MMDS Base Stations  
3.5GHz WiMAX and LTE Base Stations  
Fixed Broadband Wireless Access  
Wireless Local Loop  
Ordering Information  
PART  
TEMP RANGE  
-40NC to +85NC  
-40NC to +85NC  
PIN-PACKAGE  
20 Thin QFN-EP*  
20 Thin QFN-EP*  
MAX2044ETP+  
MAX2044ETP+T  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Private Mobile Radios  
T = Tape and reel.  
Military Systems  
WiMAX is a trademark of WiMAX Forum.  
_______________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
to GND..........................................................-0.3V to +5.5V  
B
JC  
(Notes 1, 3)............................................................ +13NC/W  
Operating Case Temperature  
IF+, IF-, LOBIAS to GND.......................... -0.3V to (V  
+ 0.3V)  
CC  
RF, LO Input Power.......................................................+20dBm  
RF, LO Current (RF and LO is DC shorted  
to GND through a balun)................................... .............50mA  
Continuous Power Dissipation (Note 1) .................................5W  
Range (Note 4) ..................................... T = -40NC to +85NC  
C
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
B
(Notes 2, 3)............................................................ +38NC/W  
JA  
Note 1: Based on junction temperature T = T + (B x V  
x I ). This formula can be used when the temperature of the  
CC  
J
C
JC  
CC  
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details.  
The junction temperature must not exceed +150NC.  
Note 2: Junction temperature T = T + (B x V  
x I ). This formula can be used when the ambient temperature of the PCB is  
CC  
J
A
JA  
CC  
known. The junction temperature must not exceed +150NC.  
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Note 4: T is the temperature on the exposed pad of the package. T is the ambient temperature of the device and PCB.  
C
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, V  
= 4.75V to 5.25V, no input RF or LO signals. T = -40NC to +85NC, unless otherwise noted. Typical  
C
CC  
values are at V  
= 5.0V, T = +25NC, all parameters are production tested.)  
C
CC  
PARAMETER  
Supply Voltage  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5.0  
MAX  
5.25  
155  
UNITS  
V
V
4.75  
CC  
CC  
I
138  
mA  
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, V  
= 3.0V to 3.6V, no input RF or LO signals. T = -40NC to +85NC, unless otherwise noted. Typical  
C
CC  
values are at V  
= 3.3V, T = +25NC, parameters are guaranteed by design, unless otherwise noted.)  
C
CC  
PARAMETER  
Supply Voltage  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
3.3  
MAX  
3.6  
UNITS  
V
V
3.0  
CC  
CC  
I
Total supply current, V = 3.3V  
121  
135  
mA  
CC  
RECOMMENDED AC OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Typical Application Circuit with C1 = 3.3nH  
and C12 = 0.3pF, see Table 1 for details  
(Note 5)  
2300  
3000  
RF Frequency Range  
f
MHz  
RF  
Typical Application Circuit with C1 = 8.2pF  
and C12 not installed, see Table 1 for  
details (Note 5)  
3000  
2600  
4000  
4300  
LO Frequency  
IF Frequency  
LO Drive  
f
(Note 5)  
MHz  
MHz  
dBm  
LO  
Using an M/A-Com MABAES0029 1:1  
transformer as defined in the Typical  
Application Circuit, IF matching  
components affect the IF frequency range  
(Note 5)  
f
50  
-3  
500  
+3  
IF  
P
(Note 5)  
0
LO  
2
______________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,  
f
= 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)  
RF  
(Typical Application Circuit with tuning elements outlined in Table 1, V  
= 4.75V to 5.25V, RF and LO ports are driven from 50I  
CC  
sources, P = -3dBm to +3dBm, P = 0dBm, f = 3100MHz to 3900MHz, f = 2800MHz to 3600MHz, f = 300MHz, f > f ,  
LO  
LO  
RF  
RF  
LO  
IF  
RF  
T
T
= -40NC to +85NC. Typical values are at V  
= 5.0V, P = 0dBm, P = 0dBm, f = 3500MHz, f = 3200MHz, f = 300MHz,  
CC RF LO RF LO IF  
C
C
= +25NC. All parameters are guaranteed by design, unless otherwise noted.) (Note 6)  
PARAMETER SYMBOL CONDITIONS  
= +25NC (Notes 7, 8)  
MIN  
TYP  
MAX  
UNITS  
Conversion Loss  
L
T
7.2  
7.7  
8.5  
dB  
C
C
f
= 3100MHz to 3900MHz, over any  
RF  
0.15  
0.25  
100MHz band  
Loss Variation vs. Frequency  
DL  
dB  
C
f
= 3100MHz to 3900MHz, over any  
RF  
200MHz band  
Conversion Loss Temperature  
Coefficient  
f
T
= 3100MHz to 3900MHz,  
= -40NC to +85NC  
RF  
TC  
0.01  
21  
dB/NC  
CL  
C
Input Compression Point  
IP  
1dB  
(Note 9)  
dBm  
f
- f  
= 1MHz, P = 0dBm per tone  
RF  
RF1 RF2  
28.3  
30.0  
32.5  
(Note 7, 8)  
Third-Order Input Intercept  
Point  
IIP3  
dBm  
dBm  
f
P
= 3500MHz, f  
= 0dBm per tone. T = +25NC  
- f  
= 1MHz,  
RF  
RF1 RF2  
32.5  
RF  
C
(Notes 7, 8)  
Third-Order Input Intercept  
Point Variation Over  
Temperature  
f = 3100MHz to 3900MHz, f = 300MHz,  
RF IF  
f
- f  
= 1MHz, P = 0dBm per tone,  
±0.5  
RF1 RF2  
RF  
T
= -40NC to +85NC  
C
Single sideband, no blockers present  
(Notes 7, 10)  
8.5  
8.5  
10  
Noise Figure  
NF  
dB  
dB/NC  
dB  
SSB  
Single sideband, no blockers present,  
9.2  
T
= +25NC (Notes 7, 10)  
C
Noise Figure Temperature  
Coefficient  
Single sideband, no blockers present,  
= -40NC to +85NC  
TC  
0.018  
NF  
T
C
+8dBm blocker tone applied to RF port,  
Noise Figure Under Blocking  
Conditions  
f
f
= 3750MHz, f = 3500MHz,  
BLOCKER RF  
NF  
17.5  
20  
B
= 3200MHz, P = 0dBm, V = 5.0V,  
CC  
LO  
LO  
T
= +25NC (Notes 7, 10, 11)  
C
P
= -10dBm  
RF  
f
= f  
+
+
SPUR  
LO  
62  
52  
68  
58  
(Notes 7, 10)  
150MHz,  
T
= +25NC  
C
P
P
= 0dBm (Notes 7, 8)  
= -10dBm  
RF  
2RF - 2LO Spurious Rejection  
2 x 2  
dBc  
RF  
60  
50  
68  
58  
f
= f  
LO  
SPUR  
(Notes 7, 10)  
150MHz  
P
RF  
= 0dBm (Notes 7, 8)  
_______________________________________________________________________________________  
3
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,  
f
= 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (continued)  
RF  
(Typical Application Circuit with tuning elements outlined in Table 1, V  
= 4.75V to 5.25V, RF and LO ports are driven from 50I  
CC  
sources, P = -3dBm to +3dBm, P = 0dBm, f = 3100MHz to 3900MHz, f = 2800MHz to 3600MHz, f = 300MHz, f > f ,  
LO  
LO  
RF  
RF  
LO  
IF  
RF  
T
T
= -40NC to +85NC. Typical values are at V  
= +25NC. All parameters are guaranteed by design, unless otherwise noted.) (Note 6)  
= 5.0V, P = 0dBm, P = 0dBm, f = 3500MHz, f = 3200MHz, f = 300MHz,  
CC RF LO RF LO IF  
C
C
PARAMETER  
SYMBOL  
CONDITIONS  
= -10dBm  
MIN  
82  
TYP  
89  
MAX  
UNITS  
P
RF  
f
= f  
+
+
SPUR  
LO  
(Notes 7, 10)  
100MHz,  
T
= +25NC  
C
P
= 0dBm (Notes 7, 8)  
62  
69  
RF  
3RF - 3LO Spurious Rejection  
3 x 3  
dBc  
P
RF  
= -10dBm  
81  
89  
69  
16  
f
= f  
LO  
SPUR  
(Notes 7, 10)  
= 0dBm (Notes 7, 8)  
100MHz  
P
RF  
61  
LO on and IF terminated into a matched  
impedance  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
RL  
RL  
dB  
dB  
I
RF  
LO  
IF  
RF and IF terminated into a matched  
impedance  
14  
50  
Nominal differential impedance at the IC’s  
IF outputs  
Z
RF terminated into 50I, LO driven by a  
50Isource, IF transformed to 50Iusing  
external components shown in the Typical  
Application Circuit  
IF Output Return Loss  
RL  
16  
dB  
IF  
RF-to-IF Isolation  
f
f
= 3500MHz, P = +3dBm (Note 8)  
33  
42  
dB  
RF  
LO  
LO  
= 2500MHz to 4000MHz, P = +3dBm  
LO  
LO Leakage at RF Port  
-31  
dBm  
(Notes 7, 8)  
2LO Leakage at RF Port  
LO Leakage at IF Port  
P
P
= +3dBm  
-35  
-28  
dBm  
dBm  
LO  
LO  
= +3dBm (Note 8)  
4
______________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,  
f
= 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)  
RF  
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values  
are at V  
= 3.3V, P = 0dBm, P = 0dBm, f = 3500MHz, f = 3200MHz, f = 300MHz, T = +25NC, unless otherwise noted.)  
RF LO RF LO IF C  
CC  
(Note 6)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Loss  
L
7.7  
dB  
C
f
= 3100MHz to 3900MHz, over any  
RF  
Loss Variation vs. Frequency  
DL  
0.1  
dB  
C
100MHz band  
Conversion Loss Temperature  
Coefficient  
f
T
= 3100MHz to 3900MHz,  
= -40NC to +85NC  
RF  
TC  
0.009  
19.5  
29.5  
dB/NC  
dBm  
dBm  
CL  
C
Input Compression Point  
IP  
1dB  
(Note 9)  
Third-Order Input Intercept  
Point  
IIP3  
f
- f  
= 1MHz, P = 0dBm per tone  
RF1 RF2 RF  
Third-Order Input Intercept  
Variation Over Temperature  
f
T
- f  
= 1MHz, P = 0dBm per tone,  
RF1 RF2 RF  
±0.2  
8.5  
dB  
dB  
= -40NC to +85NC  
C
Noise Figure  
NF  
Single sideband, no blockers present  
SSB  
Noise Figure Temperature  
Coefficient  
Single sideband, no blockers present,  
TC  
0.018  
dB/NC  
NF  
T
= -40NC to +85NC  
C
P
P
P
P
= -10dBm  
= 0dBm  
69  
64  
f
= f  
+
RF  
RF  
RF  
RF  
SPUR  
LO  
2RF - 2LO Spurious Rejection  
3RF - 3LO Spurious Rejection  
RF Input Return Loss  
2 x 2  
3 x 3  
dBc  
dBc  
dB  
dB  
I
150MHz  
= -10dBm  
= 0dBm  
73.3  
63.3  
f
= f  
+
SPUR  
LO  
100MHz  
LO on and IF terminated into a matched  
impedance  
RL  
RL  
18  
19  
50  
RF  
LO  
IF  
RF and IF terminated into a matched  
impedance  
LO Input Return Loss  
Nominal differential impedance at the IC’s  
IF outputs  
IF Output Impedance  
Z
RF terminated into 50I, LO driven by a  
50Isource, IF transformed to 50Iusing  
external components shown in the Typical  
Application Circuit  
IF Output Return Loss  
RL  
14.5  
dB  
IF  
f
P
= 3100MHz to 3900MHz,  
RF  
RF-to-IF Isolation  
41  
-30  
dB  
= +3dBm  
LO  
LO  
LO  
LO  
f
P
= 2800MHz to 3600MHz,  
= +3dBm  
LO  
LO Leakage at RF Port  
2LO Leakage at RF Port  
LO Leakage at IF Port  
dBm  
dBm  
dBm  
f
P
= 2800MHz to 3600MHz,  
= +3dBm  
LO  
-25.6  
-27  
f
P
= 2800MHz to 3600MHz,  
= +3dBm  
LO  
_______________________________________________________________________________________  
5
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,  
f
= 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION)  
RF  
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values  
are at V  
= 5.0V, P = 0dBm, P = 0dBm, f = 2600MHz, f = 2900MHz, f = 300MHz, T = +25NC, unless otherwise noted.)  
RF LO RF LO IF C  
CC  
(Note 6)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Loss  
L
8.1  
dB  
C
f
= 2300MHz to 2900MHz, over any  
RF  
Loss Variation vs. Frequency  
DL  
0.15  
0.008  
34  
dB  
dB/NC  
dBm  
dB  
C
100MHz band  
Conversion Loss Temperature  
Coefficient  
f
T
= 2300MHz to 2900MHz,  
= -40NC to +85NC  
RF  
TC  
CL  
C
Third-Order Input Intercept  
Point  
IIP3  
f
- f  
= 1MHz, P = 0dBm per tone  
RF1 RF2 RF  
Third-Order Input Intercept  
Variation Over Temperature  
f
T
- f  
= 1MHz, P = 0dBm per tone,  
RF1 RF2 RF  
±0.2  
= -40NC to +85NC  
C
P
P
P
P
= -10dBm  
= 0dBm  
67  
62  
79  
69  
RF  
RF  
RF  
RF  
2LO - 2RF Spurious Rejection  
3LO - 3RF Spurious Rejection  
RF Input Return Loss  
2 x 2  
3 x 3  
f
= f - 150MHz  
dBc  
dBc  
dB  
SPUR  
LO  
= -10dBm  
= 0dBm  
f
= f - 100MHz  
SPUR  
LO  
LO on and IF terminated into a matched  
impedance  
RL  
RL  
23  
17  
50  
RF  
LO  
IF  
RF and IF terminated into a matched  
impedance  
LO Input Return Loss  
dB  
Nominal differential impedance at the IC’s  
IF outputs  
IF Output Impedance  
Z
I
RF terminated into 50I, LO driven by a  
50Isource, IF transformed to 50Iusing  
external components shown in the Typical  
Application Circuit  
IF Output Return Loss  
RL  
13.6  
dB  
IF  
f
P
= 2300MHz to 2900MHz,  
RF  
RF-to-IF Isolation  
39  
dB  
= +3dBm  
LO  
LO  
LO  
LO  
f
P
= 2600MHz to 3200MHz,  
= +3dBm  
LO  
LO Leakage at RF Port  
2LO Leakage at RF Port  
LO Leakage at IF Port  
-29.5  
-43  
dBm  
dBm  
dBm  
f
P
= 2600MHz to 3200MHz,  
= +3dBm  
LO  
f
P
= 2600MHz to 3200MHz,  
= +3dBm  
LO  
-28.6  
6
______________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,  
f
= 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION)  
RF  
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values  
are at V  
= 5.0V, P = 0dBm, P = 0dBm, f = 3500MHz, f = 3800MHz, f = 300MHz, T = +25NC, unless otherwise noted.)  
RF LO RF LO IF C  
CC  
(Note 6)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Loss  
L
7.8  
dB  
C
f
= 3100MHz to 3900MHz, over any  
RF  
Loss Variation vs. Frequency  
DL  
0.15  
0.008  
31.5  
dB  
dB/NC  
dBm  
dB  
C
100MHz band  
Conversion Loss Temperature  
Coefficient  
f
T
= 3100MHz to 3900MHz,  
= -40NC to +85NC  
RF  
TC  
CL  
C
Third-Order Input Intercept  
Point  
IIP3  
f
f
- f  
= 1MHz, P = 0dBm per tone  
RF1 RF2 RF  
Third-Order Input Intercept  
Variation Over Temperature  
- f  
= 1MHz, P = 0dBm per tone,  
RF1 RF2 RF  
±0.2  
T
= -40NC to +85NC  
C
P
P
P
P
= -10dBm  
= 0dBm  
67  
62  
RF  
RF  
RF  
RF  
2LO - 2RF Spurious Rejection  
3LO - 3RF Spurious Rejection  
RF Input Return Loss  
2 x 2  
3 x 3  
f
= f - 150MHz  
dBc  
dBc  
dB  
SPUR  
LO  
= -10dBm  
= 0dBm  
76.7  
66.7  
f
= f - 100MHz  
SPUR  
LO  
LO on and IF terminated into a matched  
impedance  
RL  
RL  
17.7  
16.3  
50  
RF  
LO  
IF  
RF and IF terminated into a matched  
impedance  
LO Input Return Loss  
dB  
Nominal differential impedance at the IC’s  
IF outputs  
IF Output Impedance  
Z
I
RF terminated into 50I, LO driven by a  
50Isource, IF transformed to 50Iusing  
external components shown in the Typical  
Application Circuit  
IF Output Return Loss  
RL  
15  
dB  
IF  
f
P
= 3100MHz to 3900MHz,  
RF  
RF-to-IF Isolation  
41  
-30  
dB  
= +3dBm  
LO  
LO  
LO  
LO  
f
P
= 3400MHz to 4200MHz,  
= +3dBm  
LO  
LO Leakage at RF Port  
2LO Leakage at RF Port  
LO Leakage at IF Port  
dBm  
dBm  
dBm  
f
P
= 3400MHz to 4200MHz,  
= +3dBm  
LO  
-21  
f
P
= 3400MHz to 4200MHz,  
= +3dBm  
LO  
-27.2  
_______________________________________________________________________________________  
7
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION,  
f
= 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)  
RF  
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values  
are for T = +25NC, V  
= 5.0V, P = 0dBm, P = 0dBm, f = 3500MHz, f = 3300MHz, f = 200MHz, unless otherwise noted.)  
C
CC  
IF  
LO  
RF  
LO  
IF  
PARAMETER  
Conversion Loss  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
L
7.7  
dB  
C
f
= 3100MHz to 3900MHz, over any  
RF  
0.2  
100MHz band  
Conversion Loss Variation vs.  
Frequency  
DL  
dB  
C
f
= 3100MHz to 3900MHz, over any  
RF  
0.25  
0.01  
33.5  
±0.2  
200MHz band  
Conversion Loss Temperature  
Coefficient  
TC  
T
= -40NC to +85NC  
dB/NC  
dBm  
dB  
CL  
C
f
P
= 200MHz, f  
= 201MHz,  
IF1  
IF2  
Input Third-Order Intercept Point  
IIP3  
= 0dBm/tone  
IF  
f
P
= 200MHz, f  
IF2  
= 201MHz,  
IF1  
IIP3 Variation with T  
C
= 0dBm/tone, T = -40NC to +85NC  
C
IF  
LO - 2IF  
LO + 2IF  
LO - 3IF  
LO + 3IF  
61.6  
60.2  
78.2  
80.3  
-165  
LO ± 2IF Spur  
1 x 2  
1 x 3  
dBc  
LO ± 3IF Spur  
dBc  
Output Noise Floor  
P
OUT  
= 0dBm (Note 11)  
dBm/Hz  
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION,  
= 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)  
f
RF  
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values  
are for T = +25NC, V = 3.3V, P = 0dBm, P = 0dBm, f = 3500MHz, f = 3200MHz, f = 200MHz, unless otherwise noted.)  
C
CC  
IF  
LO  
RF  
LO  
IF  
PARAMETER  
Conversion Loss  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
L
8
dB  
C
f
= 3100MHz to 3900MHz, over any  
RF  
0.2  
100MHz band  
Conversion Loss Variation vs.  
Frequency  
DL  
dB  
C
f
= 3100MHz to 3900MHz, over any  
RF  
0.25  
0.01  
29.5  
±0.2  
200MHz band  
Conversion Loss Temperature  
Coefficient  
TC  
T
= -40NC to +85NC  
dB/NC  
dBm  
dB  
CL  
C
f
= 200MHz, f  
= 201MHz,  
IF1  
IF2  
Input Third-Order Intercept Point  
IIP3  
P
= 0dBm/tone  
IF  
f
P
= 200MHz, f = 201MHz,  
IF2  
= 0dBm/tone, T = -40NC to +85NC  
C
IF1  
IIP3 Variation with T  
C
IF  
8
______________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION,  
f
= 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (continued)  
RF  
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values  
are for T = +25NC, V = 3.3V, P = 0dBm, P = 0dBm, f = 3500MHz, f = 3200MHz, f = 200MHz, unless otherwise noted.)  
C
CC  
IF  
LO  
RF  
LO  
IF  
PARAMETER  
LO ± 2IF Spur  
SYMBOL  
CONDITIONS  
MIN  
TYP  
58.9  
57.8  
69.4  
69.5  
-165  
MAX  
UNITS  
LO - 2IF  
1 x 2  
dBc  
LO + 2IF  
LO - 3IF  
LO + 3IF  
LO ± 3IF Spur  
1 x 3  
dBc  
Output Noise Floor  
P
OUT  
= 0dBm (Note 11)  
dBm/Hz  
Note 5: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating  
Characteristics.  
Note 6: All limits reflect losses of external components, including a 0.5dB loss at f = 300MHz due to the 1:1 impedance trans-  
IF  
former. Output measurements were taken at IF outputs of the Typical Application Circuit.  
Note 7: Guaranteed by design and characterization.  
Note 8: 100% production tested for functional performance.  
Note 9: Maximum reliable continuous input power applied to the RF or IF port of this device is +20dBm from a 50I source.  
Note 10: Not production tested.  
Note 11: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects  
of all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and  
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.  
Typical Operating Characteristics  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 5.0V, f  
= 3000MHz to  
RF  
CC  
4000MHz, LO is low-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
CONVERSION LOSS vs. RF FREQUENCY  
CONVERSION LOSS vs. RF FREQUENCY  
CONVERSION LOSS vs. RF FREQUENCY  
10  
9
10  
9
10  
9
T
C
= +85°C  
T
C
= +25°C  
8
8
8
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
7
7
LO  
7
T
= -40°C  
C
6
6
6
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
_______________________________________________________________________________________  
9
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 5.0V, f  
= 3000MHz to  
RF  
CC  
4000MHz, LO is low-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
37  
35  
33  
31  
29  
27  
37  
35  
33  
31  
29  
27  
37  
35  
33  
31  
29  
27  
P
= 0dBm/TONE  
P
= 0dBm/TONE  
P
= 0dBm/TONE  
RF  
RF  
RF  
P
= +3dBm  
V
= 5.25V  
LO  
CC  
T
= -40°C  
C
T
= +25°C  
C
V
= 5.0V  
CC  
P
= 0dBm  
3600  
LO  
T
= +85°C  
C
V
= 4.75V  
CC  
P
= -3dBm  
LO  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
2RF - 2LO RESPONSE vs. RF FREQUENCY  
2RF - 2LO RESPONSE vs. RF FREQUENCY  
2RF - 2LO RESPONSE vs. RF FREQUENCY  
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
P
= 0dBm  
P
= 0dBm  
P
= 0dBm  
RF  
RF  
RF  
V
= 5.25V  
P
= 0dBm  
CC  
LO  
T
= +85°C  
P
= +3dBm  
C
LO  
V
= 4.75V  
CC  
T
= -40°C  
C
P
= -3dBm  
3400  
LO  
V
= 5.0V  
T
C
= +25°C  
CC  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
3RF - 3LO RESPONSE vs. RF FREQUENCY  
3RF - 3LO RESPONSE vs. RF FREQUENCY  
3RF - 3LO RESPONSE vs. RF FREQUENCY  
85  
75  
65  
55  
85  
75  
65  
55  
85  
75  
65  
55  
P
= 0dBm  
P
= 0dBm  
P
= 0dBm  
RF  
RF  
RF  
T
= -40°C  
P
= +3dBm  
V
= 5.25V  
C
LO  
CC  
T
= +25°C  
C
P
= 0dBm  
3200  
LO  
V
= 5.0V  
CC  
P
= -3dBm  
V
= 4.75V  
CC  
LO  
T
C
= +85°C  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
10 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 5.0V, f  
= 3000MHz to  
RF  
CC  
4000MHz, LO is low-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
11  
10  
9
11  
10  
9
11  
10  
9
T
C
= +85°C  
T
= +25°C  
C
V
= 5.25V  
CC  
V
CC  
= 4.75V  
8
8
8
V
= 5.0V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
7
7
7
T
= -40°C  
C
6
6
6
5
5
5
3000  
3000  
2700  
3200  
3400  
3600  
3800  
4000  
3000  
3000  
2700  
3200  
3400  
3600  
3800  
4000  
4000  
3700  
3000  
3000  
2700  
3200  
3400  
3600  
3800  
4000  
4000  
3700  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
INPUT P vs. RF FREQUENCY  
1dB  
1dB  
1dB  
25  
23  
21  
19  
17  
25  
23  
21  
19  
17  
25  
23  
21  
19  
17  
T
C
= -40°C  
P
= +3dBm  
V
CC  
= 5.25V  
LO  
T
= +25°C  
C
V
CC  
= 5.0V  
P
= -3dBm  
LO  
P
LO  
= 0dBm  
T
C
= +85°C  
V
= 4.75V  
3800  
CC  
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
3200  
3400  
3600  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
T
C
= -40°C  
T
C
= +25°C  
3300  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
C
= +85°C  
2900  
3100  
3500  
3700  
2900  
3100  
3300  
3500  
2900  
3100  
3300  
3500  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
______________________________________________________________________________________ 11  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 5.0V, f  
= 3000MHz to  
RF  
CC  
4000MHz, LO is low-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
T
= +85°C  
C
T
C
= +25°C  
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
LO  
T
C
= -40°C  
3000  
2500  
2500  
3200  
3400  
3600  
3800  
4000  
3000  
2500  
2500  
3200  
3400  
3600  
3800  
4000  
4000  
4000  
3000  
2500  
2500  
3200  
3400  
3600  
3800  
4000  
4000  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
T
= +85°C  
= -40°C  
C
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
LO  
T
C
= +25°C  
T
C
3000  
3500  
4000  
3000  
3500  
3000  
3500  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
P
= +3dBm  
LO  
T
= -40°C  
C
V
= 4.75V  
CC  
P
= 0dBm  
LO  
T
C
= +25°C  
V
CC  
= 5.0V  
P
= -3dBm  
LO  
T
= +85°C  
C
V
= 5.25V  
CC  
3000  
3500  
4000  
3000  
3500  
3000  
3500  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
12 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 5.0V, f  
= 3000MHz to  
RF  
CC  
4000MHz, LO is low-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
0
5
0
5
f
IF  
= 300MHz  
f
LO  
= 3200MHz  
10  
15  
20  
25  
30  
10  
15  
20  
25  
30  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
3000  
3200  
3400  
3600  
3800  
4000  
50  
140  
230  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
LO PORT RETURN LOSS  
vs. LO FREQUENCY  
SUPPLY CURRENT  
vs. TEMPERATURE (T )  
C
0
10  
20  
30  
150  
145  
140  
135  
130  
125  
120  
V
CC  
= 5.25V  
P
= -3dBm  
LO  
V
= 5.0V  
CC  
V
= 4.75V  
CC  
P
LO  
= +3dBm  
P
= 0dBm  
LO  
2500  
3000  
3500  
4000  
-40  
-15  
10  
35  
60  
85  
LO FREQUENCY (MHz)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 13  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 3.3V, f  
= 3000MHz to  
RF  
CC  
4000MHz, LO is low-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
CONVERSION LOSS vs. RF FREQUENCY  
CONVERSION LOSS vs. RF FREQUENCY  
CONVERSION LOSS vs. RF FREQUENCY  
10  
9
10  
9
10  
9
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
C
= +85°C  
T
= +25°C  
C
8
8
8
P
= -3dBm, 0dBm, +3dBm  
V
= 3.0V, 3.3V, 3.6V  
CC  
LO  
7
7
7
T
C
= -40°C  
6
6
6
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
34  
32  
30  
28  
26  
24  
34  
32  
30  
28  
26  
24  
34  
32  
30  
28  
26  
24  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
P
= 0dBm/TONE  
RF  
P
= 0dBm/TONE  
P
RF  
= 0dBm/TONE  
RF  
V
= 3.6V  
CC  
T
= +85°C  
= +25°C  
C
T
C
P
= -3dBm, 0dBm, +3dBm  
LO  
T
C
= -40°C  
V
= 3.3V  
CC  
V
= 3.0V  
CC  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
2RF - 2LO RESPONSE vs. RF FREQUENCY  
2RF - 2LO RESPONSE vs. RF FREQUENCY  
2RF - 2LO RESPONSE vs. RF FREQUENCY  
80  
70  
60  
50  
80  
70  
60  
50  
80  
70  
60  
50  
V
P
= 3.3V  
= 0dBm  
V
P
= 3.3V  
= 0dBm  
P
= 0dBm  
CC  
RF  
CC  
RF  
RF  
P
= +3dBm  
LO  
V
= 3.6V  
CC  
V
= 3.3V  
CC  
T
C
= +85°C  
P
= 0dBm  
3800  
LO  
T
C
= +25°C  
3200  
T
= -40°C  
V
= 3.0V  
C
CC  
P
= -3dBm  
3400  
LO  
3000  
3400  
3600  
3800  
4000  
3000  
3200  
3600  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
14 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 3.3V, f  
= 3000MHz to  
RF  
CC  
4000MHz, LO is low-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
3RF - 3LO RESPONSE vs. RF FREQUENCY  
3RF - 3LO RESPONSE vs. RF FREQUENCY  
3RF - 3LO RESPONSE vs. RF FREQUENCY  
75  
65  
55  
45  
75  
65  
55  
45  
75  
65  
55  
45  
V
= 3.3V  
= 0dBm  
CC  
V
= 3.3V  
= 0dBm  
P
= 0dBm  
RF  
CC  
P
RF  
P
RF  
V
= 3.6V  
CC  
T
= +25°C  
C
T
C
= -40°C  
P
= -3dBm, 0dBm, +3dBm  
V
= 3.3V  
LO  
CC  
V
= 3.0V  
CC  
T
= +85°C  
C
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
4000  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
11  
10  
9
11  
10  
9
11  
10  
9
V
= 3.3V  
V
CC  
= 3.3V  
CC  
T
= +85°C  
C
V
= 3.0V  
CC  
T
= +25°C  
P
= -3dBm  
LO  
C
V
= 3.3V  
P
= 0dBm  
CC  
LO  
8
8
8
V
= 3.6V  
CC  
P
= +3dBm  
LO  
7
7
7
T
= -40°C  
C
6
6
6
5
5
5
3000  
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
INPUT P vs. RF FREQUENCY  
1dB  
1dB  
1dB  
23  
21  
19  
17  
15  
23  
21  
19  
17  
15  
23  
21  
19  
17  
15  
V
= 3.3V  
CC  
V
= 3.3V  
CC  
T
= -40°C  
C
V
CC  
= 3.6V  
T
C
= +25°C  
V
CC  
= 3.3V  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
C
= +85°C  
V
CC  
= 3.0V  
3000  
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 15  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 3.3V, f  
= 3000MHz to  
RF  
CC  
4000MHz, LO is low-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
C
= -40°C  
T
= +25°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 3.0V, 3.3V, 3.6V  
CC  
T
C
= +85°C  
2700  
2900  
3100  
3300  
3500  
3700  
2700  
2900  
3100  
3300  
3500  
3700  
2700  
2900  
3100  
3300  
3500  
3700  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
= +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
V
= 3.0V, 3.3V, 3.6V  
CC  
T
= +25°C  
LO  
C
T
C
= -40°C  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
V
CC  
= 3.3V  
V
= 3.3V  
CC  
P
= -3dBm, 0dBm, +3dBm  
V
= 3.0V, 3.3V, 3.6V  
CC  
LO  
T
C
= -40°C, +25°C, +85°C  
2500  
3000  
3500  
4000  
2500  
3000  
3500  
4000  
2500  
3000  
3500  
4000  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
16 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 3.3V, f  
= 3000MHz to  
RF  
CC  
4000MHz, LO is low-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-15  
-25  
-35  
-45  
-55  
-15  
-25  
-35  
-45  
-55  
-15  
-25  
-35  
-45  
-55  
V
= 3.3V  
V
= 3.3V  
CC  
V
= 3.0V  
= 3.6V  
T
C
= -40°C  
CC  
CC  
V
CC  
= 3.3V  
T
= +25°C  
C
V
T
C
= +85°C  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
2500  
3000  
3500  
4000  
2500  
3000  
3500  
4000  
2500  
3000  
3500  
4000  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
0
5
0
5
V
CC  
= 3.3V  
f
LO  
= 3200MHz  
f
IF  
= 300MHz  
10  
15  
20  
25  
30  
10  
15  
20  
25  
30  
V
= 3.0V, 3.3V, 3.6V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
3000  
3200  
3400  
3600  
3800  
4000  
50  
140  
230  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
LO PORT RETURN LOSS  
vs. LO FREQUENCY  
SUPPLY CURRENT  
vs.TEMPERATURE (T )  
C
0
10  
20  
30  
135  
130  
125  
120  
115  
110  
105  
V
= 3.3V  
CC  
V
CC  
= 3.6V  
P
= -3dBm  
LO  
V
CC  
= 3.3V  
P
= 0dBm  
LO  
V
= 3.0V  
CC  
P
= +3dBm  
LO  
2500  
3000  
3500  
4000  
-40  
-15  
10  
35  
60  
85  
LO FREQUENCY (MHz)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 17  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 5.0V, f  
= 2300MHz to  
RF  
CC  
2900MHz, LO is high-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
CONVERSION LOSS vs. RF FREQUENCY  
CONVERSION LOSS vs. RF FREQUENCY  
CONVERSION LOSS vs. RF FREQUENCY  
10  
9
10  
9
10  
9
T
C
= +85°C  
T
C
= +25°C  
8
8
8
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
LO  
7
7
7
T
C
= -40°C  
6
6
6
2300  
2450  
2600  
2750  
2900  
2900  
2900  
2300  
2450  
2600  
2750  
2900  
2900  
2900  
2300  
2450  
2600  
2750  
2900  
2900  
2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
37  
35  
33  
31  
29  
27  
37  
35  
33  
31  
29  
27  
37  
35  
33  
31  
29  
27  
P
= 0dBm/TONE  
RF  
P
= 0dBm/TONE  
P
= 0dBm/TONE  
T
C
= -40°C  
RF  
RF  
P
= +3dBm  
LO  
V
= 5.25V  
CC  
V
= 5.0V  
CC  
T
C
= +25°C  
P
= 0dBm  
LO  
P
= -3dBm  
V
CC  
= 4.75V  
LO  
T
C
= +85°C  
2450  
2300  
2600  
2750  
2300  
2450  
2600  
2750  
2300  
2450  
2600  
2750  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
2LO - 2RF RESPONSE  
vs. RF FREQUENCY  
2LO - 2RF RESPONSE  
vs. RF FREQUENCY  
2LO - 2RF RESPONSE  
vs. RF FREQUENCY  
80  
70  
60  
50  
80  
70  
60  
50  
80  
70  
60  
50  
P
= 0dBm  
P
= 0dBm  
P
= 0dBm  
RF  
RF  
RF  
T
= +85°C  
C
P
LO  
= +3dBm  
V
= 4.75V  
CC  
V
= 5.0V  
CC  
P
= 0dBm  
LO  
T
C
= +25°C  
P
= -3dBm  
LO  
V
= 5.25V  
CC  
T
C
= -40°C  
2300  
2450  
2600  
2750  
2300  
2450  
2600  
2750  
2300  
2450  
2600  
2750  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
18 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 5.0V, f  
= 2300MHz to  
RF  
CC  
2900MHz, LO is high-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
3LO - 3RF RESPONSE  
vs. RF FREQUENCY  
3LO - 3RF RESPONSE  
vs. RF FREQUENCY  
3LO - 3RF RESPONSE  
vs. RF FREQUENCY  
85  
75  
65  
55  
85  
75  
65  
55  
85  
75  
65  
55  
P
= 0dBm  
P
= 0dBm  
P
= 0dBm  
RF  
RF  
RF  
T
= +85°C  
C
P
= +3dBm  
= -3dBm  
LO  
T
C
= +25°C  
V
= 5.25V  
CC  
P
LO  
P
LO  
= 0dBm  
V
CC  
= 4.75V  
T
C
= -40°C  
V
= 5.0V  
CC  
2300  
2450  
2600  
2750  
2900  
2300  
2450  
2600  
2750  
2900  
2300  
2450  
2600  
2750  
2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
T
C
= +25°C  
V
= 4.75V  
CC  
T
C
= +85°C  
P
= -3dBm, 0dBm, +3dBm  
V
= 5.0V  
LO  
CC  
T
C
= -40°C  
V
= 5.25V  
2750  
CC  
2600  
2750  
2900  
3050  
3200  
2600  
2750  
2900  
3050  
3200  
2600  
2900  
3050  
3200  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
T
= -40°C  
C
T
= +25°C  
C
V
= 4.75V, 5.0V, 5.25V  
P
= -3dBm, 0dBm, +3dBm  
CC  
LO  
T
C
= +85°C  
2300  
2450  
2600  
2750  
2900  
2300  
2450  
2600  
2750  
2900  
2300  
2450  
2600  
2750  
2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 19  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 5.0V, f  
= 2300MHz to  
RF  
CC  
2900MHz, LO is high-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
T
C
= +85°C  
T
C
= +25°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
C
= -40°C  
2300  
2725  
3150  
3575  
4000  
2300  
2725  
3150  
3575  
4000  
2300  
2725  
3150  
3575  
4000  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-30  
-40  
-50  
-60  
-20  
-30  
-40  
-50  
-60  
-20  
-30  
-40  
-50  
-60  
V
= 5.25V  
T
C
= -40°C  
CC  
P
LO  
= 0dBm  
P
= +3dBm  
LO  
T
C
= +25°C  
V
= 5.0V  
CC  
P
= -3dBm  
LO  
T
C
= +85°C  
V
= 4.75V  
CC  
2300  
2725  
3150  
3575  
4000  
2300  
2725  
3150  
3575  
4000  
2300  
2725  
3150  
3575  
4000  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
20 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 5.0V, f  
= 2300MHz to  
RF  
CC  
2900MHz, LO is high-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
0
5
0
5
f
= 300MHz  
V
= 4.75V, 5.0V, 5.25V  
IF  
CC  
f
= 3200MHz  
LO  
10  
15  
20  
25  
30  
10  
15  
20  
25  
30  
P
= -3dBm, 0dBm, +3dBm  
LO  
f
= 2900MHz  
LO  
f
LO  
= 2600MHz  
2300  
2450  
2600  
2750  
2900  
50  
140  
230  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
LO PORT RETURN LOSS  
vs. LO FREQUENCY  
SUPPLY CURRENT  
vs. TEMPERATURE (T )  
C
0
10  
20  
30  
40  
150  
145  
140  
135  
130  
125  
120  
V
CC  
= 5.25V  
P
= -3dBm  
LO  
V
CC  
= 5.0V  
P
= 0dBm  
LO  
P
= +3dBm  
LO  
V
CC  
= 4.75V  
2500  
3000  
3500  
4000  
-40  
-15  
10  
35  
60  
85  
LO FREQUENCY (MHz)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 21  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 5.0V, f  
= 3000MHz to  
RF  
CC  
4000MHz, LO is high-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
CONVERSION LOSS vs. RF FREQUENCY  
CONVERSION LOSS vs. RF FREQUENCY  
CONVERSION LOSS vs. RF FREQUENCY  
10  
9
10  
9
10  
9
T
= +25°C  
C
T
C
= +85°C  
8
8
8
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
LO  
CC  
7
7
7
T
= -40°C  
C
6
6
6
3000  
3200  
3400  
3600  
3800  
4000  
4000  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
4000  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
4000  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
37  
35  
33  
31  
29  
27  
37  
35  
33  
31  
29  
27  
37  
35  
33  
31  
29  
27  
P
= 0dBm/TONE  
P
= 0dBm/TONE  
P = 0dBm/TONE  
RF  
RF  
RF  
V
= 5.0V  
CC  
T
C
= -40°C  
V
= 5.25V  
P
= +3dBm  
CC  
LO  
P
= -3dBm  
3200  
T
= +25°C  
LO  
C
P
= 0dBm  
3600  
LO  
V
= 4.75V  
CC  
T
= +85°C  
C
3000  
3200  
3400  
3600  
3800  
3000  
3400  
3800  
3000  
3200  
3400  
3600  
3800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
2LO - 2RF RESPONSE  
vs. RF FREQUENCY  
2LO - 2RF RESPONSE  
vs. RF FREQUENCY  
2LO - 2RF RESPONSE  
vs. RF FREQUENCY  
80  
70  
60  
50  
80  
70  
60  
50  
80  
70  
60  
50  
P
= 0dBm  
P
= 0dBm  
P
= 0dBm  
RF  
RF  
RF  
V
= 5.25V  
CC  
P
= +3dBm  
LO  
V
= 5.0V  
CC  
T
= +85°C  
C
P
= 0dBm  
LO  
V
= 4.75V  
CC  
T
= +25°C  
C
T
C
= -40°C  
P
= -3dBm  
LO  
3000  
3200  
3400  
3600  
3800  
3000  
3200  
3400  
3600  
3800  
3000  
3200  
3400  
3600  
3800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
22 _____________________________________________________________________________________  
SiGe, High-Linearity, 3000MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 5.0V, f  
= 3000MHz to  
RF  
CC  
4000MHz, LO is high-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
3LO - 3RF RESPONSE  
vs. RF FREQUENCY  
3LO - 3RF RESPONSE  
vs. RF FREQUENCY  
3LO - 3RF RESPONSE  
vs. RF FREQUENCY  
85  
75  
65  
55  
85  
75  
65  
55  
85  
75  
65  
55  
P
= 0dBm  
P
= 0dBm  
P
= 0dBm  
RF  
RF  
RF  
V
CC  
= 5.25V  
P
= +3dBm  
T
C
= -40°C  
LO  
P
LO  
= 0dBm  
V
CC  
= 5.0V  
T
C
= +25°C  
3600  
V
CC  
= 4.75V  
P
= -3dBm  
LO  
T
= +85°C  
C
3000  
3200  
3400  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
T
C
= -40°C  
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
LO  
CC  
T
C
= +25°C  
3700  
T
= +85°C  
4100  
C
3300  
3500  
3900  
4300  
3300  
3500  
3700  
3900  
4100  
4300  
3300  
3500  
3700  
3900  
4100  
4300  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
T
C
= +25°C, +85°C  
V = 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
C
= -40°C  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 23  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 5.0V, f  
= 3000MHz to  
RF  
CC  
4000MHz, LO is high-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
T
C
= +85°C  
T
C
= +25°C  
V
CC  
= 4.75V, 5.0V, 5.25V  
4000  
P
= -3dBm, 0dBm, +3dBm  
4000  
LO  
T
C
= -40°C  
3000  
3500  
4000  
4500  
3000  
3500  
4500  
3000  
3500  
4500  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
P
LO  
= +3dBm  
T
C
= -40°C  
P
= 0dBm  
LO  
V
CC  
= 4.75V  
T
= +25°C  
C
P
= -3dBm  
LO  
T
C
= +85°C  
V
CC  
= 5.0V  
V
CC  
= 5.25V  
3000  
3400  
3800  
4200  
3000  
3400  
3800  
4200  
3000  
3400  
3800  
4200  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
24 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, V  
= 5.0V, f  
= 3000MHz to  
RF  
CC  
4000MHz, LO is high-side injected for a 300MHz IF, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
0
5
0
5
f
= 300MHz  
f
= 3800MHz  
LO  
IF  
10  
15  
20  
25  
30  
10  
15  
20  
25  
30  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
3000  
3200  
3400  
3600  
3800  
4000  
50  
140  
230  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
SUPPLY CURRENT  
vs. TEMPERATURE (T )  
LO PORT RETURN LOSS  
vs. LO FREQUENCY  
C
0
10  
20  
30  
40  
50  
150  
145  
140  
135  
130  
125  
120  
P
= -3dBm  
LO  
V
= 5.25V  
CC  
P
= 0dBm  
LO  
V
CC  
= 5.0V  
P
= +3dBm  
LO  
V
CC  
= 4.75V  
3000  
3500  
4000  
4500  
-40  
-15  
10  
35  
60  
85  
LO FREQUENCY (MHz)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 25  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, V  
= 5.0V, f = 3000MHz to 4000MHz,  
RF  
CC  
LO is low-side injected, f = 200MHz, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
IF  
IF  
LO  
C
CONVERSION LOSS vs. RF FREQUENCY  
CONVERSION LOSS vs. RF FREQUENCY  
CONVERSION LOSS vs. RF FREQUENCY  
10  
9
10  
9
10  
9
T
C
= +85°C  
T
= +25°C  
C
8
8
8
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
LO  
7
7
7
T
C
= -40°C  
6
6
6
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
36  
34  
32  
30  
28  
36  
34  
32  
30  
28  
36  
34  
32  
30  
28  
P
= 0dBm/TONE  
P
= 0dBm/TONE  
P = 0dBm/TONE  
IF  
IF  
IF  
T
= -40°C  
P
= +3dBm  
V
= 5.25V  
C
LO  
P
CC  
T
C
= +25°C  
= 0dBm  
V
= 5.0V  
CC  
LO  
T
C
= +85°C  
P
= -3dBm  
LO  
V
= 4.75V  
CC  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO - 2IF RESPONSE vs. RF FREQUENCY  
LO - 2IF RESPONSE vs. RF FREQUENCY  
LO - 2IF RESPONSE vs. RF FREQUENCY  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
P
= 0dBm  
P
= 0dBm  
P = 0dBm  
IF  
IF  
IF  
V
= 5.0V  
CC  
T
= +85°C  
C
P = +3dBm  
LO  
T
= +25°C  
V
= 5.25V  
C
CC  
V
= 4.75V  
CC  
P
= 0dBm  
3400  
LO  
P
= -3dBm  
LO  
T
= -40°C  
3600  
C
3000  
3200  
3400  
3800  
4000  
3000  
3200  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
26 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, V  
= 5.0V, f = 3000MHz to 4000MHz,  
RF  
CC  
LO is low-side injected, f = 200MHz, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
IF  
IF  
LO  
C
LO + 2IF RESPONSE vs. RF FREQUENCY  
LO + 2IF RESPONSE vs. RF FREQUENCY  
LO + 2IF RESPONSE vs. RF FREQUENCY  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
V
= 5.0V  
CC  
P
= 0dBm  
P
= 0dBm  
P = 0dBm  
IF  
IF  
IF  
V
= 5.25V  
CC  
V
= 4.75V  
CC  
T
= +25°C  
C
P
= 0dBm  
P
LO  
T
C
= +85°C  
P
= +3dBm  
3800  
LO  
T
= -40°C  
3600  
C
= -3dBm  
LO  
3000  
3200  
3400  
3800  
4000  
3000  
3200  
3400  
3600  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO - 3IF RESPONSE vs. RF FREQUENCY  
LO - 3IF RESPONSE vs. RF FREQUENCY  
LO - 3IF RESPONSE vs. RF FREQUENCY  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
P
= 0dBm  
P
= 0dBm  
P = 0dBm  
IF  
IF  
IF  
T
= -40°C  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
T
C
= +25°C  
T
= +85°C  
3600  
P
= -3dBm, 0dBm, +3dBm  
C
LO  
3000  
3200  
3400  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO + 3IF RESPONSE vs. RF FREQUENCY  
LO + 3IF RESPONSE vs. RF FREQUENCY  
LO + 3IF RESPONSE vs. RF FREQUENCY  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
P
= 0dBm  
P
= 0dBm  
P = 0dBm  
IF  
IF  
IF  
T
= -40°C  
C
V
= 5.25V  
CC  
V
= 5.0V  
CC  
T
= +25°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
T
C
= +85°C  
3200  
V
= 4.75V  
3200  
CC  
3000  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 27  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, V  
= 5.0V, f = 3000MHz to 4000MHz,  
RF  
CC  
LO is low-side injected, f = 200MHz, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
IF  
IF  
LO  
C
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
T
C
= +85°C  
T = +25°C  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
C
= -40°C  
2800  
3000  
3200  
3400  
3600  
3800  
2800  
3000  
3200  
3400  
3600  
3800  
2800  
3000  
3200  
3400  
3600  
3800  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
IF LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
IF LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
IF LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-50  
-60  
-50  
-60  
-50  
-60  
T
C
= -40°C  
V
= 5.25V  
CC  
P
= +3dBm  
LO  
-70  
-70  
-70  
-80  
-80  
-80  
V
= 5.0V  
V
= 4.75V  
CC  
T
C
= +25°C  
CC  
P
= 0dBm  
LO  
T
C
= +85°C  
3200  
P
LO  
= -3dBm  
-90  
-90  
-90  
-100  
-100  
-100  
2800  
3000  
3400  
3600  
3800  
2800  
3000  
3200  
3400  
3600  
3800  
2800  
3000  
3200  
3400  
3600  
3800  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
28 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, V  
= 5.0V, f = 3000MHz to 4000MHz,  
RF  
CC  
LO is low-side injected, f = 200MHz, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
IF  
IF  
LO  
C
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
0
5
0
5
f
= 200MHz  
f
= 3200MHz  
LO  
IF  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
10  
15  
20  
25  
30  
10  
15  
20  
25  
30  
3000  
3200  
3400  
3600  
3800  
4000  
50  
140  
230  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
LO PORT RETURN LOSS  
vs. LO FREQUENCY  
SUPPLY CURRENT  
vs. TEMPERATURE (T )  
C
0
5
150  
145  
140  
135  
130  
125  
120  
V
= 5.25V  
CC  
V
CC  
= 5.0V  
P
= -3dBm  
= +3dBm  
LO  
10  
15  
20  
25  
30  
P
= 0dBm  
LO  
V
= 4.75V  
CC  
P
LO  
2500  
3000  
3500  
4000  
-40  
-15  
10  
35  
60  
85  
LO FREQUENCY (MHz)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 29  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, V  
= 3.3V, f = 3000MHz to 4000MHz,  
RF  
CC  
LO is low-side injected, f = 200MHz, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
IF  
IF  
LO  
C
CONVERSION LOSS vs. RF FREQUENCY  
CONVERSION LOSS vs. RF FREQUENCY  
CONVERSION LOSS vs. RF FREQUENCY  
10  
9
10  
9
10  
9
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
C
= +85°C  
T
C
= +25°C  
8
8
8
P
= -3dBm, 0dBm, +3dBm  
V
= 3.0V, 3.3V, 3.6V  
CC  
LO  
7
7
7
T
C
= -40°C  
6
6
6
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
34  
32  
30  
28  
26  
24  
34  
32  
30  
28  
26  
24  
34  
32  
30  
28  
26  
24  
V
= 3.3V  
V
= 3.3V  
P
= 0dBm/TONE  
IF  
CC  
CC  
P
IF  
= 0dBm/TONE  
P = 0dBm/TONE  
IF  
V
= 3.6V  
CC  
T
C
= -40°C  
T
C
= +25°C  
T
C
= +85°C  
V
CC  
= 3.0V  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 3.3V  
CC  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO - 2IF RESPONSE vs. RF FREQUENCY  
LO - 2IF RESPONSE vs. RF FREQUENCY  
LO - 2IF RESPONSE vs. RF FREQUENCY  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
V
= 3.3V  
= 0dBm  
V
= 3.3V  
= 0dBm  
P = 0dBm  
IF  
CC  
CC  
P
IF  
P
IF  
T
= +85°C  
C
P
= +3dBm  
LO  
V
V
= 3.6V  
CC  
CC  
T
= +25°C  
3800  
C
P
= -3dBm  
LO  
V
= 3.3V  
CC  
P
= 0dBm  
LO  
= 3.0V  
T
C
= -40°C  
3000  
3200  
3400  
3600  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
30 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, V  
= 3.3V, f = 3000MHz to 4000MHz,  
RF  
CC  
LO is low-side injected, f = 200MHz, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
IF  
IF  
LO  
C
LO + 2IF RESPONSE vs. RF FREQUENCY  
LO + 2IF RESPONSE vs. RF FREQUENCY  
LO + 2IF RESPONSE vs. RF FREQUENCY  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
V
P
= 3.3V  
= 0dBm  
V
P
= 3.3V  
= 0dBm  
P = 0dBm  
IF  
CC  
CC  
IF  
IF  
P
P
= +3dBm  
T
= +85°C  
LO  
LO  
C
V
V
= 3.6V  
= 3.0V  
CC  
CC  
P
= 0dBm  
T
= +25°C  
3800  
LO  
C
V
= 3.3V  
CC  
= -3dBm  
T
C
= -40°C  
3000  
3200  
3400  
3600  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO - 3IF RESPONSE vs. RF FREQUENCY  
LO - 3IF RESPONSE vs. RF FREQUENCY  
LO - 3IF RESPONSE vs. RF FREQUENCY  
80  
70  
60  
50  
80  
70  
60  
50  
80  
70  
60  
50  
V
= 3.3V  
V
CC  
= 3.3V  
P = 0dBm  
IF  
CC  
P
IF  
= 0dBm  
P = 0dBm  
IF  
V
= 3.6V  
CC  
T
C
= +25°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= +85°C  
C
V
= 3.0V  
CC  
V
= 3.3V  
3200  
CC  
T
C
= -40°C  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO + 3IF RESPONSE vs. RF FREQUENCY  
LO + 3IF RESPONSE vs. RF FREQUENCY  
LO + 3IF RESPONSE vs. RF FREQUENCY  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
V
CC  
= 3.3V  
V
= 3.3V  
P = 0dBm  
IF  
CC  
P
IF  
= 0dBm  
P
IF  
= 0dBm  
V
= 3.6V  
CC  
T
= +25°C  
C
V
= 3.3V  
CC  
T
C
= +85°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 3.0V  
CC  
T
C
= -40°C  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 31  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, V  
= 3.3V, f = 3000MHz to 4000MHz,  
RF  
CC  
LO is low-side injected, f = 200MHz, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
IF  
IF  
LO  
C
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
C
= +85°C  
T
C
= -40°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 3.0V, 3.3V, 3.6V  
CC  
T
C
= +25°C  
2800  
3000  
3200  
3400  
3600  
3800  
2800  
3000  
3200  
3400  
3600  
3800  
2800  
3000  
3200  
3400  
3600  
3800  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
IF LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
IF LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
IF LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-60  
-70  
-60  
-70  
-60  
-70  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
V
= 3.0V  
CC  
T
C
= -40°C  
P
LO  
= 0dBm  
P
= -3dBm  
LO  
-80  
-80  
-80  
V
= 3.3V  
-90  
-90  
-90  
CC  
P
= +3dBm  
LO  
V
= 3.6V  
CC  
T
= +25°C  
T
= +85°C  
3600  
C
C
-100  
-100  
-100  
2800  
3000  
3200  
3400  
3800  
2800  
3000  
3200  
3400  
3600  
3800  
2800  
3000  
3200  
3400  
3600  
3800  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
32 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, V  
= 3.3V, f = 3000MHz to 4000MHz,  
RF  
CC  
LO is low-side injected, f = 200MHz, P = 0dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
IF  
IF  
LO  
C
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
0
5
0
5
V
= 3.3V  
f
= 3200MHz  
LO  
CC  
f
= 200MHz  
IF  
V
= 3.0V, 3.3V, 3.6V  
CC  
10  
15  
20  
25  
30  
10  
15  
20  
25  
30  
P
= -3dBm, 0dBm, +3dBm  
LO  
3000  
3200  
3400  
3600  
3800  
4000  
50  
140  
230  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
SUPPLY CURRENT  
vs. TEMPERATURE (T )  
LO PORT RETURN LOSS  
vs. LO FREQUENCY  
C
135  
130  
125  
120  
115  
110  
105  
0
5
V
= 3.3V  
CC  
V
= 3.6V  
CC  
V
CC  
= 3.3V  
10  
15  
20  
25  
30  
P
= -3dBm  
LO  
V
= 3.0V  
CC  
P
= +3dBm  
P
= 0dBm  
LO  
LO  
-40  
-15  
10  
35  
60  
85  
2500  
3000  
3500  
4000  
TEMPERATURE (°C)  
LO FREQUENCY (MHz)  
______________________________________________________________________________________ 33  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Pin Configuration/Functional Diagram  
TOP VIEW  
20  
19  
18  
17  
16  
V
1
2
3
4
5
GND  
15  
14  
13  
CC  
RF  
MAX2044  
V
CC  
GND  
GND  
GND  
GND  
12 GND  
11 LO  
EP*  
6
7
8
9
10  
*EXPOSED PAD  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 6, 8, 14  
V
CC  
Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin.  
Single-Ended 50IRF Input/Output. Internally matched and DC shorted to GND through a balun.  
Provide an input DC-blocking capacitor if required.  
2
RF  
3, 9, 13, 15  
GND  
GND  
Ground. Not internally connected. Pins can be grounded.  
4, 5, 10,  
12, 17  
Ground. Internally connected to the exposed pad (EP). Connect all ground pins and the exposed  
pad together.  
LO Output Bias Resistor for LO Buffer. Connect a 698I1% resistor (138mA bias condition) from  
LOBIAS to ground.  
7
LOBIAS  
Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking  
capacitor.  
11  
LO  
16, 20  
18, 19  
GND  
Ground. Connect pins to ground.  
Mixer Differential IF Output/Input. Provide DC-blocking capacitors if required. These ports are  
internally biased to V /2.  
CC  
IF-, IF+  
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses  
multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These  
multiple via grounds are also required to achieve the noted RF performance.  
EP  
34 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
capacitor. A two-stage internal LO buffer allows for a  
Detailed Description  
-3dBm to +3dBm LO input power range. The on-chip  
The MAX2044 is a high-linearity passive mixer targeting  
low-loss balun, along with an LO buffer, drives the  
2.5GHz and 3.5GHz wireless infrastructure applications.  
double-balanced mixer. All interfacing and matching  
With an ultra-wide 2600MHz to 4300MHz LO frequency  
components from the LO inputs to the IF outputs are  
range, the MAX2044 can be used in either low-side or  
integrated on-chip.  
high-side LO injection architectures for virtually all WiMAX,  
High-Linearity Mixer  
The core of the MAX2044 is a double-balanced, high-  
performance passive mixer. Exceptional linearity is pro-  
vided by the large LO swing from the on-chip LO buffer.  
IIP3, 2RF - 2LO rejection, and noise figure performance  
are typically +32.5dBm, 68dBc, and 8.5dB, respectively.  
LTE, and MMDS receive and transmit applications.  
When used as a low-side LO injection downconverting  
mixer in the 3000MHz to 4000MHz band, the MAX2044  
provides +32.5dBm of input IP3, with typical conversion  
loss and noise figure values of only 7.7dB and 8.5dB,  
respectively. The integrated baluns and matching cir-  
cuitry allow for 50I single-ended interfaces to the RF  
and the LO port. The integrated LO buffer provides  
a high drive level to the mixer core, reducing the LO  
drive required at the MAX2044’s input to a -3dBm to  
+3dBm range. The IF port incorporates a differential  
output, which is ideal for providing enhanced 2RF - 2LO  
or 2LO - 2RF performance.  
Differential IF Output  
The MAX2044 has a 50MHz to 500MHz IF frequency  
range, where the low-end frequency depends on the  
frequency response of the external IF components.  
The MAX2044’s differential ports are ideal for provid-  
ing enhanced 2RF - 2LO and 2LO - 2RF performance.  
Single-ended IF applications require a 1:1 (impedance  
ratio) balun to transform the 50I differential IF imped-  
ance to a 50I single-ended system. An MABAES0029  
1:1 transformer is used to characterize the part and its  
loss is included in the data presented in this data sheet.  
The user can connect a differential IF amplifier or SAW  
filter to the mixer IF port, but a DC block is required on  
both IF+/IF- ports to keep external DC from entering the  
IF ports of the mixer. Capacitors C4 and C7 are required  
DC blocks since the IF+ and IF- terminals are internally  
Specifications are guaranteed over broad frequency ranges  
to allow for use in WiMAX, LTE, and MMDS base stations.  
The MAX2044 is specified to operate over a 2300MHz  
to 4000MHz RF input range, a 2600MHz to 4300MHz  
LO range, and a 50MHz to 500MHz IF range. Operation  
beyond these ranges is possible (see the Typical Operating  
Characteristics for additional information).  
RF Input and Balun  
The MAX2044 RF input provides a 50I match when  
combined with a series DC-blocking capacitor. This  
DC-blocking capacitor is required as the input is inter-  
nally DC shorted to ground through the on-chip balun.  
When using an 8.2pF DC-blocking capacitor, the RF  
port input return loss is typically better than 13dB over  
the 3300MHz to 3900MHz RF frequency range. A return  
loss of 15dB over the 2400MHz to 2700MHz range is  
achievable by changing the input matching components  
per Tables 1 and 2. Other combinations of C1 and C12  
can be used to optimize RF return loss in the 2300MHz  
to 4000MHz band.  
biased to V /2.  
CC  
Applications Information  
Input and Output Matching  
The RF input provides a 50Imatch when combined with  
a series DC-blocking capacitor. Use an 8.2pF capaci-  
tor value for RF frequencies ranging from 3000MHz to  
4000MHz. See Tables 1 and 2 for alternative compo-  
nents that provide an excellent match over the 2300MHz  
to 3000MHz band. The LO input is internally matched to  
50I; use a 2pF DC-blocking capacitor to cover opera-  
tions spanning the 2600MHz to 4300MHz range. The  
IF output impedance is 50I (differential). For evalua-  
tion, an external low-loss 1:1 (impedance ratio) balun  
transforms this impedance down to a 50I single-ended  
output (see the Typical Application Circuit).  
LO Inputs, Buffer, and Balun  
With a broadband LO drive circuit spanning 2600MHz to  
4300MHz, the MAX2044 can be used in either low-side  
or high-side LO injection architectures for virtually all  
2.5GHz and 3.5GHz applications. The LO input is inter-  
nally matched to 50I, requiring only a 2pF DC-blocking  
______________________________________________________________________________________ 35  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Reduced-Power Mode  
The MAX2044 has one pin (LOBIAS) that allows an  
external resistor to set the internal bias current. Nominal  
values for this resistor are shown in Tables 1 and 2.  
Larger value resistors can be used to reduce power  
dissipation at the expense of some performance loss. If  
Q1% resistors are not readily available, substitute with  
Q5% resistors.  
Layout Considerations  
A properly designed PCB is an essential part of any RF/  
microwave circuit. Keep RF signal lines as short as pos-  
sible to reduce losses, radiation, and inductance. The  
load impedance presented to the mixer must be such  
that any capacitance from both IF- and IF+ to ground  
does not exceed several picofarads. For the best per-  
formance, route the ground pin traces directly to the  
exposed pad under the package. The PCB exposed pad  
MUST be connected to the ground plane of the PCB. It is  
suggested that multiple vias be used to connect this pad  
to the lower level ground planes. This method provides a  
good RF/thermal-conduction path for the device. Solder  
the exposed pad on the bottom of the device package  
to the PCB.  
Significant reductions in power consumption can also  
be realized by operating the mixer at a supply voltage  
of 3.3V. Doing so reduces the overall power consump-  
tion by typically 42%. See the 3.3V Supply AC Electrical  
Characteristics table and the relevant 3.3V curves in the  
Typical Operating Characteristics section to evaluate the  
power vs. performance trade-offs.  
Power-Supply Bypassing  
Proper voltage supply bypassing is essential for high-  
frequency circuit stability. Bypass each V  
pin with the  
CC  
capacitors shown in the Typical Application Circuit and  
see Table 1.  
Table 1. Downconverter Mode Component Values  
DESIGNATION  
QTY  
DESCRIPTION  
COMPONENT SUPPLIER  
Coilcraft, Inc.  
3.3nH microwave inductor (0402). Use for RF  
frequencies ranging from 2300MHz to 3000MHz.  
C1  
1
8.2pF microwave capacitor (0402). Use for RF  
frequencies ranging from 3000MHz to 4000MHz.  
Murata Electronics North America, Inc.  
C2, C6, C8, C11  
C3, C9  
C4, C7  
C5  
4
0
2
0
1
0.01FF microwave capacitors (0402)  
Not installed, microwave capacitors (0402)  
470pF microwave capacitors (0402)  
Not installed, microwave capacitor (0402)  
2pF microwave capacitor (0402)  
Murata Electronics North America, Inc.  
Murata Electronics North America, Inc.  
C10  
Murata Electronics North America, Inc.  
0.3pF microwave capacitor (0402). Use for RF  
frequencies ranging from 2300MHz to 3000MHz.  
1
0
Murata Electronics North America, Inc.  
C12  
R1  
Microwave capacitor (0402) not installed for RF  
frequencies ranging from 3000MHz to 4000MHz.  
698I±1% resistor (0402). Use for V  
applications.  
= +5.0V  
CC  
Digi-Key Corp.  
Digi-Key Corp.  
1
698I±1% resistor (0402). Use for V  
= +3.3V  
CC  
applications.  
T1  
1
1
1:1 IF balun MABAES0029  
MAX2044 IC (20 TQFN)  
M/A-Com  
U1  
Maxim Integrated Products, Inc.  
36 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
the EP. In addition, provide the EP with a low-inductance  
path to electrical ground. The EP MUST be soldered to  
a ground plane on the PCB, either directly or through an  
array of plated via holes.  
Exposed Pad RF/Thermal Considerations  
The exposed pad (EP) of the MAX2044’s 20-pin thin  
QFN package provides a low thermal-resistance path  
to the die. It is important that the PCB on which the  
MAX2044 is mounted be designed to conduct heat from  
Table 2. Upconverter Mode Component Values  
DESIGNATION  
QTY  
DESCRIPTION  
COMPONENT SUPPLIER  
3.3nH microwave inductor (0402). Use for RF  
frequencies ranging from 2300MHz to 3000MHz.  
Coilcraft, Inc.  
C1  
1
8.2pF microwave capacitor (0402). Use for RF  
Murata Electronics North America, Inc.  
frequencies ranging from 3000MHz to 4000MHz.  
C2, C6, C8, C11  
C3, C9  
C4, C7  
C5  
4
0
2
0
1
0.01FF microwave capacitors (0402)  
Not installed, microwave capacitors (0402)  
470pF microwave capacitors (0402)  
Not installed, microwave capacitor (0402)  
2pF microwave capacitor (0402)  
Murata Electronics North America, Inc.  
Murata Electronics North America, Inc.  
C10  
Murata Electronics North America, Inc.  
0.3pF microwave capacitor (0402). Use for RF  
frequencies ranging from 2300MHz to 3000MHz.  
1
0
Murata Electronics North America, Inc.  
C12  
R1  
Microwave capacitor (0402) not installed for RF  
frequencies ranging from 3000MHz to 4000MHz.  
698I±1% resistor (0402). Use for V  
applications.  
= +5.0V  
CC  
Digi-Key Corp.  
Digi-Key Corp.  
1
698I±1% resistor (0402). Use for V  
= +3.3V  
CC  
applications.  
T1  
1
1
1:1 IF balun MABAES0029  
MAX2044 IC (20 TQFN)  
M/A-Com  
U1  
Maxim Integrated Products, Inc.  
______________________________________________________________________________________ 37  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Typical Application Circuit  
3
2
5
N.C.  
T1  
IF  
1
C7  
4
1:1  
C4  
C5  
V
CC  
20  
19  
18  
17  
16  
C3  
C2  
V
CC  
RF  
GND  
15  
14  
13  
12  
11  
1
2
3
4
5
U1  
C1  
MAX2044  
V
CC  
RF  
C11  
C12*  
GND  
GND  
GND  
GND  
GND  
LO  
EP  
C10  
LO  
INPUT  
6
7
8
9
10  
V
CC  
R1  
C6  
NOTE: PINS 4, 5, 10, 12, AND 17 ARE ALL INTERNALLY  
CONNECTED TO THE EXPOSED GROUND PAD. CONNECT  
THESE PINS TO GROUND TO IMPROVE ISOLATION.  
C8  
C9  
V
CC  
PINS 3, 9, 13, AND 15 HAVE NO INTERNAL CONNECTION, BUT CAN BE  
EXTERNALLY GROUNDED TO IMPROVE ISOLATION.  
*C12 NOT USED FOR 3000MHz TO 4000MHz APPLICATIONS.  
38 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Upconversion/Downconversion Mixer with LO Buffer  
Chip Information  
Package Information  
PROCESS: SiGe BiCMOS  
For the latest package outline information and land pat-  
terns, go to www.maxim-ic.com/packages. Note that  
a “+”, “#”, or “-” in the package code indicates RoHS  
status only. Package drawings may show a different suf-  
fix character, but the drawing pertains to the package  
regardless of RoHS status.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
20 TQFN-EP  
T2055+3  
21-0140  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
39  
©
2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX2044ETP+T

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer
MAXIM

MAX2045

High-Gain Vector Multipliers
MAXIM

MAX20457

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATIA

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATIB

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATIC

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATID

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATIE

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATIF

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATIG

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATIH

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATII

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM