MAX20461ATJA [MAXIM]

Automotive High-Current Step-Down Converter with USB-C Protection/Host Charger;
MAX20461ATJA
型号: MAX20461ATJA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Automotive High-Current Step-Down Converter with USB-C Protection/Host Charger

文件: 总65页 (文件大小:1273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here to ask about the production status of specific part numbers.  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
General Description  
Benefits and Features  
The MAX20461 combines a 3A high-efficiency, automo-  
tive-grade, step-down converter, a USB Type-C/BC1.2  
host charger emulator, and high bandwidth USB protec-  
tion switches for automotive USB 2.0 host applications.  
The device also includes a USB load current-sense am-  
plifier and a configurable feedback-adjustment circuit that  
provides automatic USB voltage compensation for voltage  
drops in captive cables often found in automotive applica-  
tions. The device limits the USB load current using both  
a fixed internal peak-current threshold and a user-config-  
urable external current-sense USB load threshold.  
● One-Chip Type-C Solution Directly from Car Battery to  
Portable Device  
• MAX20461: USB Type-C Compliant DFP Controller  
with V  
Protection  
CONN  
• MAX20461A: USB Type-C Compliant DFP  
Controller  
• 1GHz Bandwidth USB 2.0 Data Switches  
• 4.5V to 28V Input (40V Load Dump), Synchronous  
Buck Converter  
• 5V to 7V, 3A Output Capability  
● Optimal USB Charging and Communication for  
Portable Devices  
The MAX20461 is optimized for high-frequency operation  
and includes programmable frequency selection from  
310kHz to 2.2MHz, allowing optimization of efficiency,  
noise, and board space based on the application require-  
ments. The fully synchronous DC-DC converter integrates  
high-side and low-side MOSFETs with an external SYNC  
input/output, and can be configured for spread-spectrum  
operation.  
• User-Programmable Voltage Gain Adjusts Output  
for Up to 474mΩ Cable Resistance  
• User-Programmable USB Current Limit  
• Type-C Cable Orientation Indicator for USB3  
Applications  
• Supports USB BC1.2 CDP and SDP Modes  
• Compatible with USB On-the-Go Specification and  
Apple CarPlay®  
The MAX20461 allows flexible configuration and ad-  
vanced diagnostic options for both stand-alone and super-  
vised applications The device can be programmed using  
● Low-Noise Features Prevent Interference with AM  
Band and Portable Devices  
2
either external programming resistors and/or internal I C  
• Fixed-Frequency 310kHz to 2.2MHz Operation  
• Fixed-PWM Option at No Load  
2
registers via the I C bus.  
• Spread Spectrum for EMI Reduction  
• SYNC Input/Output for Frequency Parking  
The MAX20461 is available in a small 5mm x 5mm 32-pin  
TQFN package and is designed to minimize required ex-  
ternal components and layout area.  
● Robust Design Keeps Vehicle System and Portable  
Device Safe in an Automotive Environment  
• Short-to-Battery Protection on VBUS, HVD± Pins  
• CC1 and CC2 Tolerant to 20V Transients  
• Advanced Diagnostics Through I C Bus  
• ±25kV Air/±8kV Contact ISO 10605 (330pF, 2kΩ)*  
• ±15kV Air/±8kV Contact ISO 10605 (330pF, 2kΩ)**  
• ±15kV Air/±8kV Contact ISO 10605 (330pF, 330Ω)*  
• ±15kV Air/±8kV Contact IEC 61000-4-2 (150pF,  
330Ω)*  
Applications  
● Automotive Radio and Navigation  
● USB Port for Host and Hub Applications  
● Automotive Connectivity/Telematics  
2
• Overtemperature Protection, Warning, and  
Intelligent Current Foldback  
• -40°C to +125°C Operating Temperature Range  
*Tested in Typical Application Circuit as used on the  
MAX20461 Evaluation Kit with 1m captive cable.  
**Tested in Typical Application Circuit as used on the  
MAX20461 Evaluation Kit without 1m captive cable.  
Ordering Information appears at end of datasheet.  
Apple and CarPlay are registered trademarks of Apple Inc.  
19-100338; Rev 4; 12/20  
 
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Simplified Block Diagram  
CAPTIVE  
CABLE  
RADIO  
HEAD  
MAX20461  
DC-DC +  
USB TYPE-C  
VBAT  
VBUS  
D-  
HVD-  
HVD+  
CC  
PORTABLE  
DEVICE  
USB TYPE-C  
CONNECTOR  
USB  
PHY  
D+  
VCONN  
CAPTIVE  
CABLE  
RADIO  
HEAD  
MAX20461A  
DC-DC +  
USB TYPE-C  
VBAT  
VBUS  
D-  
HVD-  
HVD+  
CC  
PORTABLE  
DEVICE  
USB TYPE-C  
CONNECTOR  
USB  
PHY  
D+  
www.maximintegrated.com  
Maxim Integrated | 2  
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
TABLE OF CONTENTS  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
32 Pin TQFN 5x5x0.75mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
MAX20461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
MAX20461A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Functional Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
On-Channel -3dB Bandwidth and Crosstalk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
On-Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DCDC_ON Reset Behavior and Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
ADC Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
ATTACH Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Cable Attach-Detach and SENSN Discharge Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
USB Type-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Configuration Channel (CC1 and CC2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
CC Polarity Output Pin (CC_POL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
V
V
(MAX20461 Only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
CONN  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
BUS  
External FET Gate Drive (G_DMOS Pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Legacy Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Power-Up and Enabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
System Enable (HVEN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
DC-DC Enable (ENBUCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.3V Input (IN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Linear Regulator Output (BIAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Power-On Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Step-Down DC-DC Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Step-Down Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Wide Input Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
TABLE OF CONTENTS (CONTINUED)  
Maximum Duty-Cycle Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Output Voltage (SENSP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Reset Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Reset Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Switching Frequency Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Switching Frequency Synchronization (SYNC Pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Forced-PWM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Intelligent Skip-Mode Operation and Attach Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Spread-Spectrum Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Output Short-Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Thermal Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Pre-Thermal Overload Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Automatic Thermal Foldback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
USB Current Limit and Output Voltage Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Current-Sense Amplifier (SENSP, SENSN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
USB DC Current Limit Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Voltage Feedback Adjustment Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Remote Sense Feedback Adjustment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
High Voltage Modes Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
USB Protection Switches and BC1.2 Host Charger Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
USB Protection Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
USB Host Charger Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
USB On-The-Go and Dual-Role Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2
I C, Control, and Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2
2
I C Configuration (CONFIG1 and I C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Stand-Alone Configuration (CONFIG1–CONFIG3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2
I C Diagnostics and Event Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Interrupt and Attach Output (INT(ATTACH)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2
I C Output Voltage and Current Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
2
I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
STOP and START Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Early STOP Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Clock Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
2
I C General Call Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
2
I C Slave Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
TABLE OF CONTENTS (CONTINUED)  
Acknowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Write Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Read Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Fault Detection and Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Fault Output Pin (FAULT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Register Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
DC-DC Switching Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
DC-DC Input Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
DC-DC Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
DC-DC Output Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Determining USB System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
USB Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
USB Output Current Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
USB Voltage Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Tuning of USB Data Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
USB Data Line Common-Mode Choke Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
ESD Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
ESD Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
IEC 61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
LIST OF FIGURES  
Figure 1. Type-C Pullup Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 2. USB Type-C Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 3. Remote Cable-Sense Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 4. Data Switch and Charge-Detection Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2
Figure 5. I C Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 6. START, STOP and REPEATED START Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 7. Acknowledge Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2
Figure 8. Data Format of I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 9. DC Voltage Adjustment Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 10. Increase in SENSP vs. USB Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 11. Tuning of Data Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 12. Near-Eye Diagram (with No Switch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 13. Untuned Near-Eye Diagram (with MAX20461) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 14. Human Body ESD Test Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 15. IEC 61000-4-2 ESD Test Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 16. Human Body Current Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 17. IEC 61000-4-2 Current Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
www.maximintegrated.com  
Maxim Integrated | 6  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
LIST OF TABLES  
Table 1. Charge Detection Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 2. CC Pulldown Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 3. CC Pulldown Response (MAX20461A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 4. Type-C Source V  
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
CONN  
Table 5. DC-DC Converter Intelligent Skip Mode Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2
Table 6. Data Switch Mode Truth Table (I C Variant, ATJA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 7. Data Switch Mode Truth Table (Standalone Variant, ATJD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2
Table 8. CONFIG1 Pin Table (I C Version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 9. CONFIG1 Pin Table (Standalone Variants) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 10. CONFIG2 and CONFIG3 Pin Table (Standalone Variants) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2
Table 11. I C Slave Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 12. Fault Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 13. Recommended Output Filters For I  
of 3A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
LOAD  
www.maximintegrated.com  
Maxim Integrated | 7  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Absolute Maximum Ratings  
SUPSW to PGND................................................... -0.3V to +40V  
LX Continuous RMS Current .................................................3.5A  
Output Short-Circuit Duration......................................Continuous  
Thermal Charactaristics  
HVEN to PGND ....................................... -0.3V to V  
LX to PGND (Note 1)............................... -0.3V to V  
SYNC to AGND ............................................-0.3V to V  
+0.3V  
+0.3V  
+0.3V  
+0.3V  
SUPSW  
SUPSW  
Continuous Power Dissipation - Single Layer Board (T  
=
BIAS  
A
SENSN, SENSP, VBMON to AGND ...... -0.3V to V  
+70°C, 32-TQFN (derate 21.3mW/°C above +70°C))....1702.1  
mW  
SUPSW  
AGND to PGND..................................................... -0.3V to +0.3V  
BST to PGND ........................................................ -0.3V to +46V  
BST to LX ................................................................. -0.3V to +6V  
IN, CONFIG1, ENBUCK, SDA (CONFIG2), SCL (CONFIG3),  
BIAS, BCMODE, FAULT, CC_POL (SHIELD), CC1, CC2,  
Continuous Power Dissipation - Multi Layer Board (T  
=
A
+70°C, 32-TQFN (derate 34.5mW/°C above +70°C))....2758.6  
mW  
Operating Temperature Range .......................-40°C to +125°C  
Junction Temperature ...................................................+150°C  
Storage Temperature Range...........................-40°C to +150°C  
Lead Temperature (soldering, 10s)...............................+300°C  
Soldering Temperature (reflow).....................................+260°C  
V
CONN  
, INT(ATTACH) to AGND.............................. -0.3V to +6V  
HVDP, HVDM to AGND.......................................... -0.3V to +18V  
DP, DM to AGND..............................................-0.3V to V +0.3V  
IN  
G_DMOS to AGND................................................. -0.3V to +16V  
Note 1: Self-protected from transient voltages exceeding these limits for ≤ 50ns in circuit under normal operation.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Package Information  
32 Pin TQFN 5x5x0.75mm  
Package Code  
T3255+4C  
21-0140  
90-0012  
Outline Number  
Land Pattern Number  
Thermal Resistance, Single-Layer Board:  
Junction to Ambient (θ  
)
47 °C/W  
JA  
Junction to Case (θ  
)
1.70 °C/W  
JC  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
29 °C/W  
JA  
Junction to Case (θ  
)
1.70 °C/W  
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates  
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal  
considerations, refer to www.maximintegrated.com/thermal-tutorial.  
www.maximintegrated.com  
Maxim Integrated | 8  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Electrical Characteristics  
(V  
= 14V, V = 3.3V, V  
= 3.3V, V  
= 5V, Temperature = T  
T = -40°C to +125°C, unless otherwise noted.,  
A = J  
SUPSW  
IN  
ENBUCK  
VCONN  
Actual typical values may vary and are not guaranteed.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply and Enable  
Supply Voltage Range  
V
(Note 2)  
< 1s  
4.5  
28  
40  
V
V
SUPSW  
Load Dump Event  
Supply Voltage Range  
V
SUPSW_LD  
Supply Current - Off  
State  
V
V
= 18V; V  
= 0V, Off State  
= 0V; V = 0V;  
HVEN IN  
SUPSW  
I
I
10  
1.1  
1.8  
20  
μA  
mA  
mA  
SUPSW  
CONN  
Supply Current - Buck  
Off  
V
HVEN  
= 14V; V  
= 0V  
SUPSW  
ENBUCK  
Supply Current - Skip  
Mode  
I
I
V
V
= 14V; buck switching; no load  
= 14V; buck switching; no load  
SUPSW  
HVEN  
Supply Current - FPWM  
BIAS Voltage  
28  
4.7  
150  
mA  
V
SUPSW  
HVEN  
V
5.75V ≤ V  
≤ 28V  
SUPSW  
4.5  
50  
5.25  
3.6  
BIAS  
BIAS Current Limit  
mA  
BIAS Undervoltage  
Lockout  
V
V
BIAS  
rising  
3.0  
3.3  
0.2  
V
V
V
V
UV_BIAS  
BIAS Undervoltage  
Lockout Hysteresis  
SUPSW Undervoltage  
Lockout  
V
V
rising  
3.9  
4.42  
UV_SUPSW  
SUPSW  
SUPSW Undervoltage  
Lockout Hysteresis  
0.2  
IN Voltage Range  
V
3
3.6  
4.3  
10  
V
V
IN  
IN Overvoltage Lockout  
IN Input Current  
V
V
V
rising  
3.8  
4
IN_OVLO  
IN  
I
µA  
V
IN  
HVEN Rising Threshold  
HVEN Falling Threshold  
HVEN Hysteresis  
0.6  
1.5  
0.2  
12  
2.4  
0.4  
HVEN_R  
V
V
HVEN_F  
V
V
HVEN  
HVEN Delay Rising  
HVEN Delay Falling  
HVEN Input Leakage  
G_DMOS Pin  
t
2.5  
5
15  
25  
10  
μs  
μs  
µA  
HVEN_R  
t
HVEN_F  
V
V
= V  
= 18V, V  
= 0V  
HVEN  
HVEN  
SUPSW  
G_DMOS Unloaded  
Output Voltage  
to V  
, internal discharge  
BIAS  
G_DMOS  
V
7
10  
100  
20  
13.0  
250  
V
G_DMOS_OC  
G_DMOS_OC  
G_DMOS_SC  
path 2MΩ to GND  
G_DMOS Output  
Impedance  
R
kΩ  
μA  
G_DMOS DC Output  
Current  
I
G_DMOS to BIAS  
USB Type C / Power Requirements (MAX20461 Only)  
VCONN Source Voltage  
Input  
V
1W (3.3V/305mA, 5.5V/185mA) (Note 3)  
3.3  
5.5  
V
VCONN_IN  
www.maximintegrated.com  
Maxim Integrated | 9  
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Electrical Characteristics (continued)  
(V  
= 14V, V = 3.3V, V  
= 3.3V, V  
= 5V, Temperature = T  
T = -40°C to +125°C, unless otherwise noted.,  
A = J  
SUPSW  
IN  
ENBUCK  
VCONN  
Actual typical values may vary and are not guaranteed.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resistance from V  
to CC1 and  
CONN  
VCONN On Resistance  
R
600  
1200  
mΩ  
ON_VCONN  
CC2, V  
= 5V  
CONN  
Measured on CC1 and CC2.  
3.60V ≤ V ≤ 5.5V  
VCONN Current Limit  
I
310  
2.2  
400  
2.45  
3
mA  
V
LIM_VCONN  
CONN  
VCONN UVLO  
Threshold  
V
VCONN_UVL  
O
2.65  
6.2  
VCONN to CC1/CC2  
Discharge Resistance  
R
DCH  
kΩ  
USB Type C / Current Level Characteristics  
CC DFP 0.5A Current  
Source  
I
I
I
4.0V < V  
4.0V < V  
4.0V < V  
< 5.5V, ±20%  
< 5.5V, ±8%  
< 5.5V, ±8%  
64  
80  
96  
µA  
µA  
µA  
DFP0.5_CC  
DFP1.5_CC  
DFP3.0_CC  
BIAS  
BIAS  
BIAS  
CC DFP 1.5A Current  
Source  
166  
304  
180  
330  
194  
356  
CC DFP 3.0A Current  
Source  
USB Type C / Timing Characteristics  
Type-C CC Pin  
Detection Debounce  
t
Final transition to Attached states  
160  
ms  
CCDEBOUNCE  
DP, DM Analog USB Switches  
On-Channel -3dB  
Bandwidth  
BW  
R = R = 50Ω  
1000  
MHz  
V
L
S
Analog Signal Range  
0
3.6  
4.1  
Protection Trip  
Threshold  
V
3.65  
3.85  
2
V
OV_D  
Protection Response  
Time  
V
IN  
= 4.0V, V  
= 3.3V to 4.3V step,  
HVD±  
t
µs  
Ω
FP_D  
R = 15kΩ on D±, delay to V < 3V  
L
D±  
I = 10mA, V = 0V to V , V = 3.0V  
L
D±  
IN IN  
On-Resistance Switch A  
R
4
8
ON_SA  
to 3.6V  
On-Resistance Match  
between Channels  
Switch A  
∆R  
I = 10mA, V = 1.5V or 3.0V  
0.2  
Ω
ON_SA  
L
D±  
On-Resistance Flatness  
Switch A  
R
I = 10mA,V = 0V or 0.4V  
0.01  
90  
Ω
Ω
FLAT(ON)A  
L
D_  
On Resistance of  
HVD+/HVD- short  
R
V
V
V
V
= 1V, I  
= 500μA  
180  
7
SHORT  
DP  
DM  
HVD+/HVD- On-  
Leakage Current  
I
= 3.6V or 0V  
-7  
-1  
µA  
µA  
µA  
HVD_ON  
HVD±  
HVD±  
HVD±  
HVD+/HVD- Off-  
Leakage Current  
I
= 18V, V = 0V  
150  
1
HVD_OFF  
D±  
D+/D- Off-Leakage  
Current  
I
= 18V, V = 0V  
D±  
D_OFF  
www.maximintegrated.com  
Maxim Integrated | 10  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Electrical Characteristics (continued)  
(V  
= 14V, V = 3.3V, V  
= 3.3V, V  
= 5V, Temperature = T  
T = -40°C to +125°C, unless otherwise noted.,  
A = J  
SUPSW  
IN  
ENBUCK  
VCONN  
Actual typical values may vary and are not guaranteed.)  
PARAMETER SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Current-Sense Amplifier (SENSP, SENSN) and Analog Inputs (VBMON)  
10mV < V  
GAIN[4:0] = 0b11111  
- V  
< 110mV,  
SENSN  
SENSP  
Gain  
19.4  
18  
V/V  
mΩ  
Cable Compensation  
LSB  
R
LSB  
ILIM[2:0] = 0b111, R  
ILIM[2:0] = 0b110, R  
ILIM[2:0] = 0b101, R  
ILIM[2:0] = 0b100, R  
ILIM[2:0] = 0b011, R  
ILIM[2:0] = 0b010, R  
ILIM[2:0] = 0b001, R  
ILIM[2:0] = 0b000, R  
= 33mΩ  
= 33mΩ  
= 33mΩ  
= 33mΩ  
= 33mΩ  
= 33mΩ  
= 33mΩ  
= 33mΩ  
3.04  
2.6  
3.14  
2.75  
2.25  
1.7  
3.30  
2.9  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
2.1  
2.4  
1.62  
1.05  
0.8  
1.78  
1.21  
0.92  
0.65  
0.36  
Overcurrent Threshold  
ILIM_SET  
A
1.13  
0.86  
0.6  
0.55  
0.3  
0.33  
SENSN / VBMON  
Discharge Current  
I
11  
18  
32  
mA  
ms  
SENSN_DIS  
Startup Wait Time  
t
100  
1
BUCK_WAIT  
t
Discharge after POR  
DCDC_ON toggle  
Type-C detach  
DIS_POR  
s
SENSN / VBMON  
Discharge Time  
t
2
DIS_CD  
t
100  
2
ms  
s
DIS_DET  
BUCKOFF_CD  
t
DCDC_ON toggle; see reset criteria  
Type-C detach  
Forced Buck Off-Time  
t
BUCKOFF_DE  
T
100  
16  
ms  
Attach Comparator Load  
Current Rising  
Threshold  
Common mode input = 5.15V  
Common mode input = 5.15V  
5
28  
mA  
Attach Comparator  
Hysteresis  
2.5  
4.375  
7.46  
2
mA  
V
SENSN Undervoltage  
Threshold (Falling)  
V
V
4
7
4.75  
7.9  
UV_SENSN  
SENSN Overvoltage  
Threshold (Rising)  
V
OV_SENSN  
SENSN Short Circuit  
Threshold (Falling)  
V
1.75  
2.25  
V
SHT_SENSN  
SENSN Undervoltage  
Fault Blanking Time  
16  
ms  
µs  
V
SENSN Overvoltage  
Fault Blanking Time  
From overvoltage condition to FAULT  
asserted  
t
3
6
B,OV_SENSN  
SENSN Discharge  
Threshold Falling  
V
Falling  
0.47  
0.51  
0.57  
SENSN  
www.maximintegrated.com  
Maxim Integrated | 11  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Electrical Characteristics (continued)  
(V  
= 14V, V = 3.3V, V  
= 3.3V, V  
= 5V, Temperature = T  
T = -40°C to +125°C, unless otherwise noted.,  
A = J  
SUPSW  
IN  
ENBUCK  
VCONN  
Actual typical values may vary and are not guaranteed.)  
PARAMETER SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Remote Feedback Adjustment  
SHIELD Input Voltage  
Range  
0.1  
0.75  
V
Gain  
1.935  
2
2.065  
V/V  
mV  
Input Referred Offset  
Voltage  
±2.0  
Digital Inputs (SDA, SCL, ENBUCK, BCMODE)  
Input Leakage Current  
Logic High  
V
PIN  
= 5.5V, 0V  
-5  
5
µA  
V
V
IH  
1.6  
Logic Low  
V
IL  
0.5  
V
USB 2.0 Host Charger Emulator (HVD+/HVD-, D+/D-)  
Input Logic High  
Input Logic Low  
Data Sink Current  
V
2.0  
V
V
IH  
V
0.8  
IL  
I
V
= 0.25V to 0.4V  
50  
100  
150  
μA  
DAT_SINK  
DAT_SINK  
Data Detect Voltage  
High  
V
0.4  
V
V
DAT_REFH  
Data Detect Voltage  
Low  
V
0.25  
0.7  
DAT_REFL  
Data Detect Voltage  
Hysteresis  
V
60  
mV  
V
DAT_HYST  
Data Source Voltage  
V
I
= 200μA  
0.5  
DAT_SRC  
SRC  
Synchronous Step-Down DC-DC Converter  
PWM Output Voltage  
V
7V ≤ V  
7V ≤ V  
7V ≤ V  
≤ 28V, No Load  
5.15  
5.25  
V
V
SENSP  
SUPSW  
SUPSW  
SUPSW  
Skip Mode Output  
Voltage  
V
≤ 18V, No Load (Note 2)  
≤ 18V, for 5V nominal  
SENSP_SKIP  
Load Regulation  
R
LR  
51  
mΩ  
V
output setting  
8V ≤ V  
≤ 18V, 2.4A, V  
-
SENSP  
SUPSW  
Output Voltage  
Accuracy  
V
= 79.2mV , GAIN[4:0] =  
6.33  
1.4  
6.68  
SENSN  
0b11111 cable compensation.  
Spread Spectrum  
Range  
SS Enabled  
±3.4  
%
V
SYNC Switching  
Threshold High  
V
Rising  
Falling  
SYNC_HI  
SYNC Switching  
Threshold Low  
V
0.4  
95  
V
SYNC_LO  
SYNC Internal Pulldown  
200  
1
kΩ  
SYNC Input Clock  
Acquisition Time  
t
(Note 4)  
Cycles  
SYNC  
High-Side Switch On-  
Resistance  
R
I
LX  
= 1A  
54  
mΩ  
ONH  
www.maximintegrated.com  
Maxim Integrated | 12  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Electrical Characteristics (continued)  
(V  
= 14V, V = 3.3V, V  
= 3.3V, V  
= 5V, Temperature = T  
T = -40°C to +125°C, unless otherwise noted.,  
A = J  
SUPSW  
IN  
ENBUCK  
VCONN  
Actual typical values may vary and are not guaranteed.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
72  
MAX  
UNITS  
mΩ  
mA  
Low-Side Switch On-  
Resistance  
R
ONL  
I
= 1A  
135  
LX  
BST Input Current  
I
V
– V = 5V, High-side on  
2.2  
5
BST  
BST  
LX  
LX Current-Limit  
Threshold  
A
Skip Mode Peak-Current  
Threshold  
I
1
A
SKIP_TH  
Negative Current Limit  
Soft-Start Ramp Time  
LX Rise Time  
1.2  
8
A
t
ms  
ns  
ns  
SS  
(Note 4)  
(Note 4)  
3
LX Fall Time  
4
BST Refresh Algorithm  
Low-Side Minimum On-  
Time  
60  
ns  
CC_POL, FAULT, INT (ATTACH), SYNC Outputs  
Output-High Leakage  
Current  
FAULT, INT(ATTACH), CC_POL = 5.5V  
Sinking 1mA  
-10  
10  
µA  
V
Output Low Level  
0.4  
SYNC Output High  
Level  
Sourcing 1mA, SYNC configured as  
output  
V
BIAS  
0.4  
-
V
Config Resistors Converter  
CONFIG1-3 Current  
Leakage  
V
= 0V to 4V  
±5  
4
µA  
%
CONFIG  
Minimum Window  
Amplitude  
-4  
ADC  
Resolution  
ADC Gain Error  
8
Bits  
LSBs  
LSB  
±2  
±1  
Offset Error  
Offset_ADC  
Oscillators  
Internal High-Frequency  
Oscillator  
HFOSC  
7
8
9
MHz  
MHz  
kHz  
Buck Oscillator  
Frequency  
f
f
FSW[2:0] = 0b000  
FSW[2:0] = 0b101  
1.95  
340  
2.2  
410  
2.45  
480  
SW  
SW  
Buck Oscillator  
Frequency  
Thermal Overload  
Thermal Warning  
Temperature  
140  
10  
°C  
°C  
Thermal Warning  
Hysteresis  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Electrical Characteristics (continued)  
(V  
= 14V, V = 3.3V, V  
= 3.3V, V  
= 5V, Temperature = T  
T = -40°C to +125°C, unless otherwise noted.,  
A = J  
SUPSW  
IN  
ENBUCK  
VCONN  
Actual typical values may vary and are not guaranteed.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Thermal Shutdown  
Temperature  
165  
°C  
Thermal Shutdown  
Hysteresis  
10  
°C  
2
I C  
Serial Clock Frequency  
f
400  
kHz  
µs  
SCL  
Bus Free Time Between  
STOP and START  
Condition  
t
1.3  
BUF  
START Condition Setup  
Time  
t
0.6  
0.6  
0.6  
µs  
µs  
µs  
SU:STA  
HD:STA  
SU:STO  
START Condition Hold  
Time  
t
STOP Condition Setup  
Time  
t
Clock Low Period  
Clock High Period  
Data Setup Time  
Data Hold Time  
t
1.3  
0.6  
100  
0.3  
µs  
µs  
ns  
µs  
LOW  
t
HIGH  
t
SU:DAT  
HD:DAT  
t
From 50% SCL falling to SDA change  
Human Body Model  
0.6  
Pulse Width of Spike  
Suppressed  
t
50  
±2  
ns  
SP  
ESD Protection (All Pins)  
ESD Protection Level  
V
kV  
ESD  
ESD Protection (HVDP, HVDM, CC1, CC2)  
ISO 10605 Air Gap (330pF, 2kΩ)  
ISO 10605 Contact (330pF, 2kΩ)  
IEC 61000-4-2 Air Gap (150pF, 330Ω)  
IEC 61000-4-2 Contact (150pF, 330Ω)  
ISO 10605 Air-Gap (330pF, 330Ω)  
ISO 10605 Contact (330pF, 330Ω)  
±25  
±8  
±15  
±8  
ESD Protection Level  
V
ESD  
kV  
±15  
±8  
Note 2: Device is designed for use in applications with continuous operation of 14V. Device meets electrical table up to maximum  
supply voltage.  
Note 3: The IR drop of the system must be considered when selecting the V  
pin source voltage.  
CONN  
Note 4: Guaranteed by design and bench characterization; not production tested.  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
www.maximintegrated.com  
Maxim Integrated | 15  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
www.maximintegrated.com  
Maxim Integrated | 16  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
www.maximintegrated.com  
Maxim Integrated | 17  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Pin Configurations  
MAX20461  
TOP VIEW  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
HVEN  
SDA (CONFIG2)  
15  
14  
13  
12  
11  
10  
9
SCL (CONFIG3)  
SUPSW  
FAULT  
SUPSW  
VBMON  
SENSP  
SENSN  
G_DMOS  
BIAS  
SYNC  
MAX20461  
INT(ATTACH)  
IN  
DM  
DP  
+
1
2
3
4
5
6
7
8
TQFN  
5mm x 5mm  
MAX20461A  
TOP VIEW  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
HVEN  
SDA (CONFIG2)  
SCL (CONFIG3)  
FAULT  
SUPSW  
SUPSW  
VBMON  
SENSP  
SENSN  
G_DMOS  
BIAS  
SYNC  
MAX20461A  
INT(ATTACH)  
IN  
DM  
DP  
+
1
2
3
4
5
6
7
8
TQFN  
5mm x 5mm  
www.maximintegrated.com  
Maxim Integrated | 18  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX20461  
MAX20461A  
1, 5  
2
1, 3, 5  
AGND  
CC1  
Analog Ground.  
2
4
Type-C Configuration Channel (CC).  
3
VCONN  
CC2  
Power Source. Supplies power to the unused CC pin if required.  
Type-C Configuration Channel (CC).  
4
High-Voltage-Protected USB Differential Data D- Output. Connect HVD- to the  
downstream USB connector D- pin.  
6
7
6
7
HVDM  
HVDP  
High-Voltage-Protected USB Differential Data D+ Output. Connect HVD+ to the  
downstream USB connector D+ pin.  
CC_POL  
(SHIELD)  
In USB-C Configuration, CC_POL Output. In BC1.2 only variant, remote feedback  
input. See Figure 3.  
8
8
USB Differential Data D+ Input. Connect D+ to the low-voltage USB transceiver  
D+ pin.  
9
9
DP  
USB Differential Data D- Input. Connect D- to the low-voltage USB transceiver D-  
pin.  
10  
10  
DM  
Logic Enable Input. Connect to I/O voltage of USB transceiver. IN is also used for  
clamping during overvoltage events on HVD+ or HVD-. Connect a 1µF-10µF  
ceramic capacitor from IN to GND.  
11  
11  
IN  
2
INT  
(ATTACH)  
In the I C Variant, Functions as an Active-Low INT Pin. In the stand-alone variant,  
12  
13  
14  
15  
16  
17  
12  
13  
14  
15  
16  
17  
functions as active-low attach. Connect a 100kΩ pullup resistor to IN.  
Switching frequency Input/Output for synchronization with other supplies. See  
Applications Information section.  
SYNC  
Active-low, open-drain,fault indicator output. Connect a 100kΩ pullup resistor to  
the IN pin.  
FAULT  
2
2
SCL  
(CONFIG3)  
In the I C Variant, this serves as the I C SCL Pin. In stand-alone variant, this  
serves as CONFIG3 pin. See Table 10.  
2
2
SDA  
(CONFIG2)  
In the I C Variant, this serves as the I C SDA Pin. In stand-alone variant, this  
serves as CONFIG2 pin. See Table 10.  
This pin selects between the two modes of data switch operation. The modes are  
defined in the Data Switch Mode Truth Table.  
BCMODE  
18  
19  
18  
19  
ENBUCK  
BST  
DC-DC Enable Input. Drive high/low to enable/disable the buck converter.  
High-Side Driver Supply. Connect a 0.1μF capacitor from BST to LX.  
Inductor connection. Connect an inductor from LX to the DC-DC converter output  
(SENSP).  
20, 21  
22, 23  
24  
20, 21  
22, 23  
24  
LX  
PGND  
Power Ground.  
Configuration. Connect a resistor to GND to set default configuration. See Table 8  
and Table 9.  
CONFIG1  
HVEN  
25  
25  
Active-high system enable pin. HVEN is battery-voltage tolerant.  
Internal High-Side Switch Supply Input. V  
provides power to the internal  
SUPSW  
switch and LDO. Connect a 10μF ceramic capacitor in parallel with a 47μF  
electrolytic capacitor from SUPSW to PGND. See the DC-DC Input Capacitor  
section.  
26, 27  
28  
26, 27  
28  
SUPSW  
VBMON  
USB VBUS monitor.  
www.maximintegrated.com  
Maxim Integrated | 19  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX20461  
MAX20461A  
DC-DC converter feedback input and current-sense amplifier positive input. DC-  
DC bulk capacitance placed here. Connect to positive terminal of current-sense  
resistor and the main output of the converter. Used for internal voltage regulation  
loop.  
29  
29  
SENSP  
Current-sense amplifier negative input. Connect to negative terminal of current-  
sense resistor.  
30  
31  
30  
31  
SENSN  
Gate drive output. Optionally connect to the gate of an external N-channel FET,  
otherwise terminate with 10pF.  
G_DMOS  
5V linear regulator output. Connect a 2.2µF ceramic capacitor from BIAS to GND.  
BIAS powers the internal circuitry.  
32  
32  
BIAS  
EP  
EP  
EP  
Exposed pad. Connect EP to multiple GND planes with 3 x 3 via grid (minimum).  
Functional Diagrams  
On-Channel -3dB Bandwidth and Crosstalk  
V
OUT  
ON-LOSS = 20log  
+3.3V  
V
NETWORK ANALYZER  
50Ω 50Ω  
IN  
IN  
V
OUT  
CROSSTALK = 20log  
V
D+ (D-)  
IN  
V
IN  
+14V  
SUPSW  
+3.3V  
ENBUCK  
HVD+  
D+  
ON-LOSS = 20log  
1
MEAS  
REF  
HVD-  
D-  
V
OUT  
HVD+ (HVD-)  
ON-LOSS = 20log  
2
HVD+  
D-  
50Ω  
50Ω  
CROSSTALK = 20log  
1
GND  
HVD-  
D+  
CROSSTALK = 20log  
2
ON-LOSS IS MEASURED BETWEEN D+ AND HVD+, OR D- AND HVD-.  
CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL.  
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.  
www.maximintegrated.com  
Maxim Integrated | 20  
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Functional Diagrams (continued)  
On-Capacitance  
+3.3V  
IN  
+14V  
D_ OR  
HVD_  
SUPSW  
CAPACITANCE  
METER  
+3.3V  
ENBUCK  
GND  
DCDC_ON Reset Behavior and Timing Diagram  
HVEN  
DCDC_ON TOGGLE  
DCDC_ON TOGGLE  
> 2s  
< 2s  
DCDC_ON  
R
D
ALREADY ATTACHED &  
I2C CONFIGURED BIT = 1  
ON  
USB SIGNAL  
CHAIN ACTIVE  
OFF  
ON  
SENSN  
DISCHARGE  
t
t
DIS_CD  
DIS_CD  
OFF  
ON  
BUCK  
CONTROL  
OFF  
t
+
BUCKOFF_CD  
t
t
BUCK_WAIT +  
t
CCDEBOUNCE  
DIS_POR  
t
CCDEBOUNCE  
t
CCDEBOUNCE  
www.maximintegrated.com  
Maxim Integrated | 21  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Functional Diagrams (continued)  
ADC Timing Diagram  
ADC_REQ  
ADC_USBV  
ADC_USBI  
ADC_TEMP  
ADC_DONE  
INT  
EN_ADC_DONE  
SAMPLE READY  
IRQ_0 READ  
SAMPLE READY  
IRQ_0 READ  
MASTER WRITES  
ADC_REQ  
MASTER WRITES  
ADC_REQ  
AND  
EN_ADC_DONE  
www.maximintegrated.com  
Maxim Integrated | 22  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Functional Diagrams (continued)  
ATTACH Logic Diagram  
SOFT START DONE  
CC_ATTACH  
LDO  
SWITCHOVER  
CC_ENB  
500ms  
ASSERTION  
DELAY  
CC_ENB  
0
DCDC ENABLE  
ENABLE FPWM  
1
1ms  
ASSERTION  
DELAY  
CURRENT SENSE  
ATTACH CRITERIA  
BC_ATTACH  
1
USB2 DATA-LINE  
ATTACH CRITERIA  
INT (ATTACH)  
PIN  
INT  
0
CD[1]  
CD[0]  
STANDALONE  
Cable Attach-Detach and SENSN Discharge Timing Diagram  
PASSENGER PHONE [R ] & PASSENGER POWERED CABLE [R ]  
PASSENGER PHONE [R ] & PASSENGER UN-POWERED CABLE  
D
D
A
WITH VCONN CONSIDERATIONS  
DCDC_ON low for ≥ 2s  
DCDC_ON low for ≥ 2s  
R
R
D
D
DCDC_ON  
DETACH  
DETACH  
R
R
D
D
V
BIAS  
ATTACH  
ATTACH  
CC1  
CC2  
CC2 DRIVEN  
V
CONN  
0
CC2 DRIVEN  
pin = 5V  
R
A
V
BIAS  
ATTACH  
V
CONN  
CC2 UNUSED  
pin = 0V  
0
SENSN  
G_DMOS  
SENSN  
DISCHARGE  
11ms  
DEBOUNCE  
11ms  
DEBOUNCE  
t
t
CCDEBOUNCE  
CCDEBOUNCE  
t
t
DIS_DET  
DIS_DET  
R
A
ATTACH Region  
www.maximintegrated.com  
Maxim Integrated | 23  
 
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Functional Diagrams (continued)  
Detailed Block Diagram  
CC2  
CC1  
V
CONN  
VBMON  
IN  
BC1.2 (CDP, SDP)  
HOST CHARGER  
EMULATION  
USB TYPE-C DFP AND  
ORIENTATION  
AGND  
MAX20461  
DETECTION  
HVDM  
HVDP  
DM  
DP  
G_DMOS  
SENSN  
SENSP  
CHARGE PUMP  
SENSN MON  
CONFIG1  
CURRENT-SENSE AMP  
OV  
7.46V  
SDA (CONFIG2)  
SCL (CONFIG3)  
BCMODE  
SHORT  
BIAS  
LDO  
2.0V  
4.37V  
0.5V  
BIAS  
UV  
I/O CONTROL  
AND  
DIAGNOSTICS  
FEEDBACK  
FAULT  
ADJUSTMENT  
BST  
REMOTE  
CABLE  
DISCH  
INT (ATTACH)  
SUPSW  
SENSE  
ENBUCK  
HVEN  
HS_CS  
USB  
OVERCURRENT  
THRESHOLD  
TEMP  
MONITOR  
ADC  
3.5A FPWM  
BUCK  
CONVERTER  
LX  
CC_POL/SHIELD  
SYNC  
OSC  
PGND  
LS_CS  
www.maximintegrated.com  
Maxim Integrated | 24  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Functional Diagrams (continued)  
CC2  
CC1  
VBMON  
USB TYPE-C DFP AND  
ORIENTATION  
IN  
DETECTION  
BC1.2 (CDP, SDP)  
HOST CHARGER  
EMULATION  
AGND  
MAX20461A  
HVDM  
HVDP  
DM  
DP  
G_DMOS  
SENSN  
SENSP  
CHARGE PUMP  
SENSN MON  
CONFIG1  
CURRENT-SENSE AMP  
OV  
7.46V  
2.0V  
SDA (CONFIG2)  
SCL (CONFIG3)  
BCMODE  
SHORT  
UV  
BIAS  
LDO  
BIAS  
I/O CONTROL  
AND  
DIAGNOSTICS  
FEEDBACK  
ADJUSTMENT  
4.37V  
0.5V  
FAULT  
BST  
REMOTE  
CABLE  
DISCH  
INT (ATTACH)  
SUPSW  
SENSE  
ENBUCK  
HVEN  
HS_CS  
USB  
OVERCURRENT  
THRESHOLD  
TEMP  
MONITOR  
ADC  
3.5A FPWM  
BUCK  
CONVERTER  
LX  
CC_POL/SHIELD  
SYNC  
OSC  
PGND  
LS_CS  
www.maximintegrated.com  
Maxim Integrated | 25  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Detailed Description  
The MAX20461 combines a 5V/3A automotive-grade step-down converter, a USB host charger emulator, and USB  
2
protection switches. The device variants offer options for both stand-alone/GPIO and I C configuration and control. This  
device family is designed for high-power USB ports in automotive radio, navigation, connectivity, USB hub, and dedicated  
charging applications.  
The MAX20461 features high-voltage, high-ESD, 1GHz bandwidth data switches. MAX20461 protects up to 18V and  
includes internal ESD protection circuitry.  
The data switches of all device variants protect the sensitive 3.3V pins of the USB transceiver and support USB Low-  
Speed (1.5Mbps), Full-Speed (12Mbps) and Hi-Speed (480Mbps) communication modes. The internal host charger  
port-detection circuitry offers automatic sensing and conformance to multiple standards, including USB Type-C 3.0A/  
1.5A/0.5A and USB-IF BC1.2 CDP/SDP modes. All variants enable USB-IF OTG, Apple CarPlay, and Android Auto  
conformance, while retaining industry-leading protection features and automotive-grade robustness.  
The high-efficiency step-down DC-DC converter operates with an input voltage up to 28V, and is protected from load  
dump transients up to 40V. The DC-DC converter can be programmed from 310kHz to 2.2MHz switching frequency, or  
synced to 248kHz to 2.2MHz switching frequency. The converter can deliver 3A of continuous current at 105°C.  
The MAX20461 features a high-side current-sense amplifier and a programmable feedback-adjustment circuit that  
provides automatic USB voltage adjustment to compensate for voltage drops in captive cables associated with  
automotive applications. The precision current sense allows for an accurate DC output current limit that minimizes the  
solution component size and cost.  
USB Type-C  
USB Type-C introduces a new connector, cable, and detection mechanism while maintaining backwards compatibility  
with the existing USB ecosystem. The small-form-factor Type-C connector is reversible and bidirectional, which  
eliminates the Type A/Type B distinction. To maintain the USB host/device relationship, Type-C requires a configuration  
channel (CC). The CC pins are used to advertise and detect current capabilities and for the host to detect the cable  
orientation, which is required for USB3 and active cables.  
A Type-C implementation supports, but does not require, USB Power Delivery, BC1.2, and USB3. For backwards  
compatibility, a USB3 implementation also requires an independent USB 2.0 channel. It is also advisable to implement  
BC1.2 detection, in addition to CC detection, on HVDP/HVDM. This ensures the highest possible charge current when a  
legacy adapter is used. Table 1 shows the precedence of power negotiation as mandated by USB-IF. See USB Type-C  
2.0 for details.  
The MAX20461 provides an integrated Type-C 5V solution tailored to the automotive market. The device integrates all  
control and power circuitry necessary to maintain a 5V/3A downstream facing port (DFP) at the end of a captive-cable.  
It also provides BC1.2 charge detection, USB 2.0 data protection, and support for USB3 cable orientation detection and  
V
CONN  
power.  
Table 1. Charge Detection Precedence  
PRECEDENCE  
MODE OF OPERATION  
USB Type-C @ 3A Advertisement  
USB Type-C @ 1.5A Advertisement  
USB BC1.2  
NOMINAL VOLTAGE  
MAXIMUM CURRENT  
5V  
5V  
5V  
5V  
5V  
3A  
Highest  
1.5A  
≤ 1.5A  
900 mA  
500 mA  
Lowest  
USB 3.1  
USB 2.0  
Default USB Power  
Configuration Channel (CC1 and CC2)  
The CC pins utilize combinations of pullups and pulldowns to detect Type-C device attachment, advertise the current  
capabilities of the source, and detect the type and orientation of the cable and the device. There are three possible pullup  
www.maximintegrated.com  
Maxim Integrated | 26  
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
resistors (R ) that represent the three source current capabilities: 0.5A, 1.5A, and 3A. There are also two possible device  
P
pulldown resistors (R and R ) to provide device and cable information to the host. Figure 1 shows how these are used  
A
D
for Type-C detection on the CC pins. This configuration allows for simultaneous advertisement and detection. The Type-  
C specification also allows for dynamic R changes without any resets. Table 2, Table 3 and Cable Attach-Detach and  
P
SENSN Discharge Timing Diagram detail how the MAX20461 responds to the various combinations or R and R .  
A
D
Table 2. CC Pulldown Response  
MAX20461 ACTION TAKEN  
CC1  
CC2  
TYPE-C STATUS  
Nothing attached  
Sink attached  
VBUS VCONN  
CC_ATTACH  
CC_POL  
CC_PIN_STATE  
0b00  
Open Open  
Open  
Off  
On  
On  
Off  
Off  
On  
On  
Off  
Off  
Off  
Off  
0
1
1
0
0
1
1
0
0
0
1
0
0
0
1
0
0
0
R
D
0b01  
Open  
Open  
R
R
Off  
0b10  
D
Off  
0b00  
A
Powered cable without Sink attached  
Powered cable with Sink attached  
R
A
R
D
R
A
R
D
R
A
Open  
Off  
0b00  
R
A
R
D
R
D
R
A
On CC2  
On CC1  
Off  
0b01  
0b10  
Debug Accessory attached  
0b00  
Audio Adapter Accessory attached  
Off  
0b00  
Table 3. CC Pulldown Response (MAX20461A)  
MAX20461A ACTION TAKEN  
CC1  
CC2  
TYPE-C STATUS  
Nothing attached  
Sink attached  
VBUS  
Off  
CC_ATTACH  
CC_POL  
CC_PIN_STATE  
Open  
Open  
Open  
0
1
1
0
0
1
1
0
0
0
1
0
0
0
1
0
0
0
0b00  
0b01  
0b10  
0b00  
0b00  
0b01  
0b10  
0b00  
0b00  
R
D
On  
Open  
Open  
R
R
On  
D
Off  
A
Powered cable without Sink attached  
Powered cable with Sink attached  
R
A
R
D
R
A
R
D
R
A
Open  
Off  
R
A
R
D
R
D
R
A
On  
On  
Debug Accessory attached  
Off  
Audio Adapter Accessory attached  
Off  
www.maximintegrated.com  
Maxim Integrated | 27  
 
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
SOURCE MONITORS  
FOR CONNECTION  
AND ORIENTATION  
SINK MONITORS FOR  
CURRENT CAPABILITY  
BIAS  
CC  
R
R
D
D
R
R
P
R
A
R
A
P
SOURCE MONITORS  
FOR CONNECTION  
AND ORIENTATION  
SINK MONITORS FOR  
CURRENT CAPABILITY  
Figure 1. Type-C Pullup Model  
CC Polarity Output Pin (CC_POL)  
The MAX20461 features an open-drain, active-low CC polarity output. The pin will assert low when R is detected on  
D
CC2. See Table 2.  
V
CONN  
(MAX20461 Only)  
While there are two CC pins that must be monitored on the host receptacle, there is only one CC wire running through  
the Type-C cable. This allows orientation to be determined, and leaves the second CC pin available for other uses. The  
Type-C specification allows the unused CC pin to operate as V  
, which is a low power source intended to power  
CONN  
active cables that can include authentication ICs or superspeed muxes.  
The MAX20461 includes complete support for V power control and protection. When a power source within  
CONN  
the acceptable operating voltage is connected to the V  
pin, MAX20461 can connect the voltage source to the  
CONN  
appropriate CC pin. Back-to-back V  
FETs provide overvoltage and overcurrent protection to the V  
source in  
CONN  
CONN  
addition to controlling the application of V  
per the Type-C specification.  
CONN  
Table 4. Type-C Source V  
Requirements  
CONN  
PORT FEATURES  
V
CONN  
REQUIREMENTS  
D+/D-  
No  
SSTX/SSRX, VPD  
>3A  
No  
No  
No  
Not required  
Not required  
1W, 3V-5.5V  
Yes  
Yes  
No  
Yes  
No  
www.maximintegrated.com  
Maxim Integrated | 28  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
BIAS  
CC2_VCONN_EN  
CC1_VCONN_EN  
R
P
R
P
CC1_RP_EN  
CC2_RP_EN  
CC1  
CC2  
V
CONN  
V
ILIM  
CONN  
5.5V CLAMPS  
CC1_VRA_RD  
CC1_VOPEN  
CC2_VRA_RD  
CC2_VOPEN  
VCONN_UVLO  
Type C  
Control Logic  
CC1_VCONN_EN  
CC2_VCONN_EN  
CC1_RP_EN  
VRA_RD  
VOPEN  
CC2_RP_EN  
VSAFE0V  
VBMON  
R
P
CC_CUR_SRC[1:0]  
V
V
RA_RD  
OPEN  
ENBUCK  
DCDC_ON  
G_DMOS  
EN_DCDC  
R
P
Enable  
BUCK CONTROL  
CC_ENB  
FAULT RETRY TIMER EXPIRED  
STARTUP/DISCHARGE TIMER EXPIRED  
DCDC_ON RETRY TIMER EXPIRED  
ALLOW DCDC  
Figure 2. USB Type-C Block Diagram  
V
BUS  
Type-C includes new requirements for V  
, even when operating exclusively in 5V mode. When no device is attached  
BUS  
to the CC pins, the host must switch the V  
source off so that near zero volts is present at the receptacle pin. To  
BUS  
achieve this, the MAX20461 disables the external FET gate drive and turns off the buck converter when in a detached  
state, reducing quiescent current. The MAX20461 integrates control and discharge circuits to ensure all Type-C timing  
requirements are met. Throughout this document, the term V  
is used loosely to refer to voltage at SENSP, SENSN  
BUS  
or VBMON. When more precision is required, the specific pin name is referenced.  
www.maximintegrated.com  
Maxim Integrated | 29  
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
External FET Gate Drive (G_DMOS Pin)  
The MAX20461 includes a gate drive for an optional external FET that can be used to isolate the bulk capacitance when  
is not being sourced. If used, connect the G_DMOS pin to the gate of the external FET. If not used, terminate  
V
BUS  
G_DMOS with a 10pF capacitor. G_DMOS activates prior to soft-start, and turns off after discharge. If V  
battery is required, the FET should be appropriately rated. The external DMOS device must be a 20V V  
charge pump generates at least 7V.  
short-to-  
type. The  
BUS  
GS  
Legacy Devices  
The Type-C specification ensures interoperability with Type-A and Type-B devices by defining requirements for legacy  
adapters. As a DFP, relevant adapters connect from the Type-C receptacle to either a Type-B plug or to a Type-A  
receptacle, which can then be used with any legacy Type-A cable. A compliant legacy adapter of this type must include  
an R termination inside the adapter. In this case, the MAX20461 detects a Type-C attachment whenever the adapter  
D
is connected, regardless of whether a portable device is connected. The portable device sees the DFP as a BC1.2 port  
(when configured as such).  
Power-Up and Enabling  
System Enable (HVEN)  
HVEN is used as the main enable to the device and initiates system start-up and configuration. If HVEN is at a logic-low  
level, SUPSW power consumption is reduced and the device enters a standby, low quiescent current level. HVEN is  
compatible with inputs from 3.3V logic up to automotive battery. After a system reset (e.g., HVEN toggle, BIAS UV), the  
2
I C variant asserts the INT pin to indicate that the IC has not been configured. The buck converter is forced off until the  
CONFIGURED bit of SETUP_4 is written to a 1. This ensures that a portable device cannot attach before the IC registers  
are correctly set for the application.  
DC-DC Enable (ENBUCK)  
The buck regulator on the MAX20461 is controlled by the ENBUCK pin for stand-alone variants, and by both the ENBUCK  
2
2
pin and the I C interface for I C variants. DCDC_ON, the logical AND of ENBUCK and EN_DCDC, determines if the  
buck converter can be enabled by the Type-C control logic. On stand-alone variants, EN_DCDC is always high and only  
2
2
ENBUCK can be used to enable the buck converter. On I C variants, setting ENBUCK low overrides an I C EN_DCDC  
enable command, which allows compatibility with USB hub controllers. For a typical USB hub application, connect  
ENBUCK to the enable output of the USB hub controller. This allows the USB hub controller to enable and disable the  
USB power port using software commands. ENBUCK can be directly connected to the BIAS or IN pin for applications  
that do not require GPIO control of the DC-DC converter enable.  
3.3V Input (IN)  
IN is used to clamp the D+ and D- pins during an ESD or overvoltage event on the HVD+ and HVD- pins. This clamping  
protects the downstream USB transceiver. The presence of these clamping diodes requires that IN remain set to 3.3V at  
all times for USB communication to occur. The IN pin features an overvoltage lockout that disables the data switches if  
IN is above V  
. Bypass IN with a 1μF ceramic capacitor, place it close to the IN pin, and connect it to the same  
IN_OVLO  
3.3V supply that is shared with the multimedia processor or hub transceiver.  
Linear Regulator Output (BIAS)  
BIAS is the output of a 5V linear regulator that powers the internal logic and control circuitry for the device. BIAS is  
internally powered from SUPSW or SENSP and automatically powers up when HVEN is high and SUPSW voltage  
exceeds V  
. The BIAS output contains an undervoltage lockout that keeps the internal circuitry disabled when  
UV_SUPSW  
BIAS is below V  
. The linear regulator automatically powers down when HVEN is low, and a low shutdown current  
UV_BIAS  
mode is entered. Bypass BIAS to GND with a 2.2μF ceramic capacitor.  
Power-On Sequencing  
HVEN, ENBUCK and IN do not have a power-up sequence requirement by design. However, the desired system  
behavior should be considered for the state of these pins at startup. The D+ and D- pins are clamped to IN, therefore IN  
www.maximintegrated.com  
Maxim Integrated | 30  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
should be set to 3.3V before any USB communication is required. It is recommended that IN is set to 3.3V before HVEN  
is set high. ENBUCK acts as the master disable for the DC-DC converter. If ENBUCK is low when HVEN is set high, all  
variants keep the buck converter in the disabled state until ENBUCK is set high.  
Step-Down DC-DC Regulator  
Step-Down Regulator  
The MAX20461 features a current-mode, step-down converter with integrated high-side and low-side MOSFETs. The  
low-side MOSFET enables fixed-frequency, forced-PWM operation under light loads. The DC-DC regulator features a  
cycle-by-cycle current limit and intelligent transition from skip mode to forced-PWM mode that makes the device ideal for  
automotive applications.  
Wide Input Voltage Range  
The device is specified for a wide 4.5V to 28V input voltage range. SUPSW provides power to the internal BIAS linear  
regulator and internal power switch. Certain conditions such as cold cranking can cause the voltage at the output to drop  
below the programmed output voltage. Under such conditions, the device operates in a high duty-cycle mode to facilitate  
minimum dropout from input to output.  
Maximum Duty-Cycle Operation  
The MAX20461 has a maximum duty cycle of 98% (typ). The IC monitors the off-time (time for which the low-side FET  
is on) in both PWM and skip modes for every switching cycle. Once the off-time of 150ns (typ) is detected continuously  
for 7.5μs, the low-side FET is forced on for 60ns (typ) every 7.5μs. The input voltage at which the device enters dropout  
changes depending on the input voltage, output voltage, switching frequency, load current, and design efficiency. The  
input voltage at which the devices enter dropout can be approximated as:  
V
+ I  
× R  
ONH  
(
)
OUT  
LOAD  
V
=
SUPSW  
0.98  
Note: The equation above does not take into account the efficiency and switching frequency but will provide a good first-  
order approximation. Use the R  
(max) in the Electrical Characteristics table.  
ONH  
Output Voltage (SENSP)  
The device features a precision internal feedback network that is connected to SENSP and that is used to set the output  
voltage of the DC-DC converter. The network nominally sets the average DC-DC converter output voltage to the voltage  
that corresponds to the V  
configuration register, with a default value of 5.15V.  
OUT  
Soft-Start  
When the DC-DC converter is enabled, the regulator soft-starts by gradually ramping up the output voltage from 0V to  
5.15V over approximately 8ms. This soft-start feature reduces inrush current during startup. Soft-start is guaranteed into  
compliant USB loads (see the USB Loads section).  
Reset Behavior  
The MAX20461 implements a discharge function on SENSN any time that the DC-DC regulator is disabled for any  
reason. When the discharge function is activated, current (I  
) is drained through a current-limited FET, and a  
SENSN_DIS  
reset timer is also started. This timer prevents the DC-DC regulator from starting up again until the timer has expired.  
This allows for easy compatibility with USB specifications and removes the need for long discharge algorithms to be  
implemented in system software. See the relevant Functional Diagrams and Figure 2 for reset timer details.  
Reset Criteria  
The MAX20461 DC-DC converter automatically resets for all undervoltage, overvoltage, overcurrent and  
overtemperature fault conditions. See Table 12 for details. The fault retry timer is configurable in the SETUP_3 register.  
This timer is activated after a fault condition is removed and prevents the buck converter from switching on until the timer  
expires.  
www.maximintegrated.com  
Maxim Integrated | 31  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Another internal retry timer is enabled after DCDC_ON is set low or a Type-C detach event. DCDC_ON toggle causes  
buck shutdown and prevent the buck from switching on until t  
buck shutdown and prevent the buck from switching on until t  
expires. A Type-C detach event will cause  
expires.  
BUCKOFF_CD  
BUCKOFF_DET  
Switching Frequency Configuration  
The DC-DC switching frequency can be referenced to an internal oscillator or from an external clock signal on the SYNC  
pin. The internal oscillator frequency is set by the FSW[2:0] bits of the SETUP_1 register, which has a POR value  
2
corresponding to 2.2MHz. The internal oscillator can be programmed via I C to eight discrete values from 310kHz to  
2.2MHz. For standalone variants, FSW configuration value is loaded from the CONFIG1 pin at startup with four discrete  
values from 310kHz to 2.2MHz available.  
Switching Frequency Synchronization (SYNC Pin)  
When the SYNC pin is configured to operate as an output, skip mode operation is disallowed, and the internal oscillator  
drives the SYNC pin. This allows other devices to synchronize with the MAX20461 180 degrees out of phase for EMI  
reduction.  
When SYNC is configured as an input, the SYNC pin becomes a logic-level input that can be used for both operating-  
mode selection and frequency control. Connecting SYNC to GND or an external clock enables fixed-frequency, forced-  
PWM mode. Connecting SYNC to a logic-high signal allows intelligent skip-mode operation (Type-A mode, i.e. CC_ENB  
= 1) or FPWM mode (default Type-C mode, i.e. CC_ENB = 0). The device can be externally synchronized to frequencies  
within ±20% of the programmed internal oscillator frequency.  
Forced-PWM Operation  
In forced-PWM mode, the device maintains fixed-frequency PWM operation over all load conditions, including no-load  
conditions.  
Intelligent Skip-Mode Operation and Attach Detection  
2
When the SYNC pin is configured as an input and CC_ENB = 1 (via I C only), but neither a clocked signal nor a logic-  
low level exists on the SYNC pin, the MAX20461 operates in skip mode at very light load/no load conditions. Intelligent  
device attach detection is used to determine when a device is attached to the USB port. The device intelligently exits  
skip mode and enters forced-PWM mode when a device is attached and remains in forced-PWM mode as long as the  
attach signal persists. This minimizes the EMI concerns caused by automotive captive USB cables and poorly shielded  
consumer USB cables. The device attach event is also signaled by the ATTACH pin (stand-alone variants) or ATTACH  
2
bits (I C variants). The criteria for device attach detection and intelligent skip-mode operation are shown in Table 5. Note  
that when operating in Type-C mode, the buck only switches on when a Type-C device is attached. This means skip  
mode cannot be entered if CC_ENB = 0.  
Table 5. DC-DC Converter Intelligent Skip Mode Truth Table  
SYNC  
PIN  
SYNC_ DATA SWITCH CHARGE CDP ATTACH  
CURRENT SENSE  
ATTACH DETECTION  
DC-DC CONVERTER  
OPERATION  
CC_ENB  
DIR BIT  
DETECTION MODE  
DETECTION  
Forced-PWM Mode:  
Type-C Device Attached  
0
1
1
1
1
1
x
x
x
x
x
x
x
x
0
1
Forced-PWM Mode:  
Continuous  
x
1
0
0
0
0
x
x
x
x
x
x
x
x
Forced-PWM Mode:  
Continuous  
0
Forced-PWM Mode:  
Continuous  
Clocked  
High-Speed Pass Thru  
(SDP) Mode  
Intelligent Skip Mode: No  
Device Attached  
1
1
High-Speed Pass Thru  
(SDP) Mode  
Forced-PWM Mode:  
Device Attached  
www.maximintegrated.com  
Maxim Integrated | 32  
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Table 5. DC-DC Converter Intelligent Skip Mode Truth Table (continued)  
SYNC  
PIN  
SYNC_ DATA SWITCH CHARGE CDP ATTACH  
CURRENT SENSE  
ATTACH DETECTION  
DC-DC CONVERTER  
OPERATION  
CC_ENB  
DIR BIT  
DETECTION MODE  
DETECTION  
Intelligent Skip Mode: No  
Device Attached  
1
1
1
1
1
1
0
BC1.2 Auto CDP Mode  
0
0
x
1
Forced-PWM Mode:  
Device Attached  
0
0
BC1.2 Auto CDP Mode  
BC1.2 Auto CDP Mode  
1
x
Forced-PWM Mode:  
Device Attached  
Spread-Spectrum Option  
Spread-spectrum operation is offered to improve the EMI performance of the MAX20461. Spread-spectrum operation is  
enabled by the SS_EN bit of the SETUP_0 register, which is preloaded on startup from the CONFIG1 pin for both stand-  
2
alone and I C variants. The internal operating frequency modulates the switching frequency by up to ±3.4% relative to  
the internally generated operating frequency. This results in a total spread-spectrum range of 6.8%. Spread-spectrum  
mode is only active when operating from the internal oscillator. Spread-spectrum clock dithering is not possible when  
operating from an external clock.  
Current Limit  
The MAX20461 limits the USB load current using both a fixed internal peak current threshold of the DC-DC converter,  
as well as a user-programmable external DC load current-sense amplifier threshold. This allows the current limit to be  
adjusted between 300mA to 3A depending on the application requirements, while protecting the system in the event of a  
fault. Upon exceeding either the DC-DC peak or user-programmable current thresholds, the high-side FET is immediately  
switched off and current-limit algorithms are initiated. When the external current limit lasts for longer than 16ms, the  
FAULT pin asserts and the VBUS_ILIM bit of the IRQ_1 register is set. Once the load current exceeds the programmed  
threshold, the DC-DC converter acts as a constant-current source. This may cause the output voltage to droop. The  
ILIM_ITRIP bit of the SETUP_2 register determines the output voltage droop required to initiate a DC-DC converter reset  
during VBUS_ILIM. When ILIM_ITRIP = 0, the USB current limit is detected for 16ms and the output voltage falls below  
V
, the DC-DC converter resets. The DC-DC converter also resets if the internal LX peak current threshold is  
UV_SENSN  
exceeded for four consecutive switching cycles and the output voltage droops to less than 2.0V.  
In some cases, the designer may want to increase the load to 160%, refer to USB Output Current Limit for details.  
Output Short-Circuit Protection  
The DC-DC converter output (SENSP, SENSN) is protected against both short-to-ground and short-to-battery conditions.  
If a short-to-ground or undervoltage condition is encountered, the DC-DC converter immediately resets, asserts the  
FAULT pin, flags the fault in the IRQ_1 register, and then reattempts soft-start after the reset delay. This pattern repeats  
until the short circuit has been removed.  
If a short-to-battery is encountered (V  
> V  
), the buck converter shuts down, G_DMOS is disabled, the  
OV_SENSN  
SENSN  
FAULT pin is asserted, and the fault is flagged in the IRQ_1 register. The buck converter stays shut down until the fault  
condition resolves and the 2s timer expires.  
Thermal Overload Protection  
Thermal overload protection limits the total power dissipated by the device. A thermal-protection circuit monitors the die  
temperature. If the die temperature exceeds +165°C, the device shuts down, so it can cool. Once the device has cooled  
by 10°C, the device is enabled again. This results in a pulsed output during continuous thermal overload conditions,  
protecting the device during fault conditions. For continuous operation, do not exceed the absolute maximum junction  
temperature of +150°C. See the Thermal Considerations section for more information.  
Pre-Thermal Overload Warning  
2
The MAX20461 I C variant features a thermal overload warning flag which sets the THM_WARN bit of the IRQ_2 register  
www.maximintegrated.com  
Maxim Integrated | 33  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
when the die temperature crosses +140°C. This allows a system software implementation of thermal foldback or load  
shedding algorithms to prevent a thermal overload condition.  
Automatic Thermal Foldback  
All MAX20461 variants implement a thermal foldback feature which, when enabled, reduces the Type-C current  
advertised on the CC pins by R . When THM_WARN = 1, the R current advertisement reduces to the setting  
P
P
immediately below what is set in CC_CUR_SRC[1:0]. When the die temperature drops below the thermal warning  
threshold, R returns to its original setting based on CC_SRC_CUR[1:0].  
P
Note that Type-C allows for dynamic R changes in the Attached.SRC state without reinitializing detection. The  
P
MAX20461 thermal foldback does not: force BUS to reset, change the BC1.2 mode, or reduce the USB current  
limit. Alternative thermal foldback algorithms are available and can be performed in system software. Contact Maxim  
Applications for support.  
USB Current Limit and Output Voltage Adjustment  
Current-Sense Amplifier (SENSP, SENSN)  
MAX20461 features an internal USB load current-sense amplifier to monitor the DC load current delivered to the USB  
port. The V  
voltage (V  
- V  
) is used internally to provide precision DC current-limit and voltage-  
SENSE  
SENSP  
SENSN  
compensation functionality. A 33mΩ sense resistor should be placed between SENSP and SENSN.  
In some cases, the designer may want to increase the load to 160%, refer to USB Output Current Limit for details.  
USB DC Current Limit Configuration  
2
The MAX20461 allows configuration of the precision DC current limit by the ILIM[2:0] bits of the SETUP_2 register. I C  
configuration enables selection of eight discrete DC current limit values. See SETUP_2 for current limit configuration  
values.  
Stand-alone variants of the device allow selection of a subset of the eight available current limit options by reading the  
CONFIG3 resistor. See Table 10 and the Applications Information section for more information.  
In some cases, the designer may want to increase the load to 160%, refer to USB Output Current Limit for details.  
Voltage Feedback Adjustment Configuration  
2
The MAX20461 compensates voltage drop for up to 474mΩ of USB cable in typical USB charging applications. I C  
variants of the device allow this configuration by the GAIN[4:0] bits of the SETUP_1 register. See GAIN[4:0] for voltage  
gain configuration. Stand-alone variants of the device allow configuration by the CONFIG2 resistor, which sets GAIN[3:0],  
and the CONFIG3 resistor, which sets GAIN[4]. See the SETUP_1 register map and the Applications Information section  
for more information.  
In some cases, the designer may want to increase the load to 160%, refer to USB Output Current Limit for details.  
Remote Sense Feedback Adjustment  
The remote-sense feature (available by custom order only) provides another option to adjust the output voltage by  
sensing the ground node on the USB port at the far-end of the captive cable; either with the cable shield or with an  
additional sensing wire. This feature automatically senses the cable resistance and adjusts the voltage compensation  
without changing the GAIN[4:0] setting.  
The user needs to compensate the voltage drop because of the sense resistor, the load line behavior of the buck, and  
any difference between the V  
order.  
and GND conductors. See Figure 3 and contact the factory for support and how to  
BUS  
www.maximintegrated.com  
Maxim Integrated | 34  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
REGULATED FOR  
+ VDUT  
-
I
LOAD and RCABLE  
CAPTIVE  
USB CABLE  
MAX20461  
R
VBUS  
HVBUS  
HVD-  
DM  
DP  
PORTABLE  
DEVICE  
HVD+  
AGND  
SHEILD  
R
GND  
USB SHEILD OR  
SENSE WIRE  
GAIN[4:0] =  
CANNOT CONNECT TO IC GND  
Figure 3. Remote Cable-Sense Diagram  
High Voltage Modes Configuration  
2
I C variants of the MAX20461 allow high output voltage mode configurations for flexible use in higher power charging  
applications, and for load-dump protected battery pass-through output to automotive modules. Contact factory for  
support.  
USB Protection Switches and BC1.2 Host Charger Emulation  
USB Protection Switches  
MAX20461 provides automotive-grade ESD and short-circuit protection for the low-voltage USB data lines of high-  
integration multimedia processors. HVDP/HVDM protection consists of ESD and OVP (overvoltage protection) for  
1.5Mbps, 12Mbps, and 480Mbps USB transceiver applications. This is accomplished with a very low-capacitance FET in  
series with the D+ and D- data path.  
The MAX20461 does not require an external ESD array, and protects the HVD+ and HVD- pins to ±15kV Air-Gap/±8kV  
Contact Discharge with the 150pF/330Ω IEC 61000-4-2 model and the 330pF/330Ω model, as well as protecting up  
to ±25kV Air-Gap/±8kV Contact Discharge with the 330pF/2kΩ ISO 10605 model. The MAX20461 provides robust,  
automotive-grade protection while maintaining a 1GHz -3dB insertion loss. This ensures optimum eye diagram at the end  
of a captive cable.  
The HVD+ and HVD- short-circuit protection features include protection for a short to the USB +5V BUS and a short to  
the +18V car battery. These protection features prevent damage to the low-voltage USB transceiver when shorts occur  
in the vehicle harness or customer USB connector/cable. Short-to-GND protection is provided by the upstream USB  
transceiver.  
USB Host Charger Emulator  
The USB protection switches integrate the latest USB-IF Battery Charging Specification Revision 1.2 CDP and SDP  
circuitry.  
2
Table 6. Data Switch Mode Truth Table (I C Variant, ATJA)  
DEVICE INPUTS  
SA  
SB  
DATA SWITCH MODE  
HVEN  
IN  
X
CD[1]  
CD[0]  
BCMODE  
0
1
X
X
X
X
X
1
0
0
Off  
0
Invalid Mode (IN = 3.3V required for all modes)  
www.maximintegrated.com  
Maxim Integrated | 35  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
2
Table 6. Data Switch Mode Truth Table (I C Variant, ATJA) (continued)  
1
0
0
X
0
Invalid Mode (IN = 3.3V required for all modes)  
1
1
0
0
0
1
0
Hi-Speed Pass-Through (SDP)  
BC1.2 Auto-CDP (CDP)  
On if  
CDP = 0  
On if  
CDP = 1  
1
1
1
1
0
1
0
1
On if  
CDP = 0  
On if  
CDP = 1  
X
X
BC1.2 Auto-CDP (CDP)  
Table 7. Data Switch Mode Truth Table (Standalone Variant, ATJD)  
DEVICE INPUTS  
SA  
SB  
DATA SWITCH MODE  
HVEN  
IN  
X
0
BCMODE  
0
1
1
X
X
0
0
0
Off  
Invalid Mode (IN = 3.3V required for all modes)  
1
1
0
Hi-Speed Pass-Through (SDP)  
BC1.2 Auto-CDP (CDP)  
On if  
CDP = 1  
1
1
1
On if CDP = 0  
www.maximintegrated.com  
Maxim Integrated | 36  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
IN  
SA  
DP  
HVDP  
ESD  
POTECTION  
SA  
SB  
SB  
DM  
HVDM  
ESD  
POTECTION  
DEVICE  
USB 2.0  
DISCONNECT  
HOST CHARGER  
FOR 500ms  
R
EMULATION  
S
Q
CDP  
LS/FS DETECTION  
ON HVDP/HVDM  
CD[1:0]  
BCMODE  
HVEN  
ATTACH  
FAULT/ERROR  
CONTROL  
LOGIC  
SA  
SB  
HVDP/HVDM OV  
IN OV  
CDP  
MAX20461  
Figure 4. Data Switch and Charge-Detection Block Diagram  
USB On-The-Go and Dual-Role Applications  
The MAX20461 is fully compatible with USB on-the-go (OTG) and dual-role applications. A negotiated role swap (HNP  
or Apple CarPlay) requires no software interaction with the IC. When there is no negotiation before the SOC enters  
peripheral mode, the MAX20461 must be in Hi-Speed pass-through (SDP mode) before and during the role swap. The  
MAX20461ATJA/V+ and MAX20461ATJD/V+ default to SDP mode on startup if the BCMODE pin is logic-low. This  
configuration allows a role swap immediately on startup without microcontroller interaction.  
2
I C, Control, and Diagnostics  
2
2
I C Configuration (CONFIG1 and I C)  
2
The MAX20461 I C variants allow basic device configuration through a resistor placed to GND on the CONFIG1 pin. The  
2
configuration parameters correlating to the chosen resistor are pre-loaded into their respective I C registers on startup  
2
when HVEN is toggled high. After startup, the user is free to change the affected I C registers as desired.  
www.maximintegrated.com  
Maxim Integrated | 37  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
2
For I C variants, CONFIG1 sets the startup value of the DC-DC spread-spectrum enable bit SS_EN and the SYNC  
2
direction control bit SYNC_DIR. CONFIG1 also sets the LSBs of the I C slave address. The configuration table for the  
2
I C variant CONFIG table is shown in Table 8.  
2
Table 8. CONFIG1 Pin Table (I C Version)  
2
RESISTANCE (Ω, typ)  
STEP  
SS_EN  
1 (ON)  
1 (ON)  
1 (ON)  
1 (ON)  
1 (ON)  
1 (ON)  
1 (ON)  
1 (ON)  
0 (OFF)  
0 (OFF)  
0 (OFF)  
0 (OFF)  
0 (OFF)  
0 (OFF)  
0 (OFF)  
SYNC_DIR  
1 (IN)  
I C_ADDR LSBs  
Short to GND  
619  
0
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
1
1 (IN)  
976  
2
1 (IN)  
1370  
3
1 (IN)  
1820  
4
0 (OUT)  
0 (OUT)  
0 (OUT)  
0 (OUT)  
1 (IN)  
2370  
5
3090  
6
3920  
7
4990  
8
6340  
9
1 (IN)  
8250  
10  
11  
12  
13  
14  
1 (IN)  
11000  
15400  
23700  
44200  
1 (IN)  
0 (OUT)  
0 (OUT)  
0 (OUT)  
Short to BIAS  
(or R > 71.5kΩ)  
15  
0 (OFF)  
0 (OUT)  
11  
Stand-Alone Configuration (CONFIG1–CONFIG3)  
The MAX20461 standalone variants allow full device configuration from three resistors placed among the three CONFIG  
pins and GND. For standalone variants, SDA and SCL serve as CONFIG2 and CONFIG3, respectively.  
CONFIG1 sets the internal oscillator switching frequency, SYNC pin direction, and DC-DC spread spectrum mode.  
CONFIG2 sets the 4 LSBs of the voltage adjustment gain (GAIN[3:0]). CONFIG3 sets the USB DC current limit, type-  
C current advertisement, automatic thermal foldback, and MSB of voltage adjustment gain (GAIN[4]). See tables below  
for stand-alone variant CONFIG options. See the Applications Information section for setting selection and Ordering  
Information for variant part number information.  
In some cases, the designer may want to increase the load to 160%, refer to USB Output Current Limit for details.  
Table 9. CONFIG1 Pin Table (Standalone Variants)  
RESISTANCE (Ω, typ)  
STEP  
SS_EN  
SYNC_DIR  
IN  
FSW (kHz)  
2200  
488  
Short to GND  
619  
0
1
2
3
4
5
6
7
8
ON  
ON  
IN  
976  
ON  
IN  
350  
1370  
ON  
IN  
310  
1820  
ON  
OUT  
OUT  
OUT  
OUT  
IN  
2200  
488  
2370  
ON  
3090  
ON  
350  
3920  
ON  
310  
4990  
OFF  
2200  
www.maximintegrated.com  
Maxim Integrated | 38  
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Table 9. CONFIG1 Pin Table (Standalone Variants) (continued)  
RESISTANCE (Ω, typ)  
STEP  
SS_EN  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
SYNC_DIR  
FSW (kHz)  
488  
6340  
8250  
9
IN  
10  
IN  
350  
11000  
15400  
23700  
44200  
11  
IN  
310  
12  
OUT  
OUT  
OUT  
2200  
488  
13  
14  
350  
Short to BIAS  
(or R > 71.5kΩ)  
15  
OFF  
OUT  
310  
Table 10. CONFIG2 and CONFIG3 Pin Table (Standalone Variants)  
CONFIG2  
CONFIG3  
CURRENT LIMIT  
ILIM_SET (A)  
TYPE-C MODE  
CC_SRC_CUR (A)  
RESISTANCE (Ω, typ)  
STEP  
GAIN[3:0]  
THM_FLDBK_EN  
GAIN[4]  
Short to GND  
619  
0
1
0b0000  
0b0001  
0b0010  
0b0011  
0b0100  
0b0101  
0b0110  
0b0111  
0b1000  
0b1001  
0b1010  
0b1011  
0b1100  
0b1101  
0b1110  
ON  
ON  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0.55  
1.62  
2.60  
3.04  
0.55  
1.62  
2.60  
3.04  
0.55  
1.62  
2.60  
3.04  
0.55  
1.62  
2.60  
0.5  
1.5  
1.5  
3.0  
0.5  
1.5  
1.5  
3.0  
0.5  
1.5  
1.5  
3.0  
0.5  
1.5  
1.5  
976  
2
ON  
1370  
3
ON  
1820  
4
ON  
2370  
5
ON  
3090  
6
ON  
3920  
7
ON  
4990  
8
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
6340  
9
8250  
10  
11  
12  
13  
14  
11000  
15400  
23700  
44200  
Short to BIAS  
(or R > 71.5kΩ)  
15  
0b1111  
OFF  
1
3.04  
3.0  
2
I C Diagnostics and Event Handling  
2
The I C-based diagnostic functionality is independent of the FAULT pin. Setting the IRQMASK bit for a specific fault  
condition does not mask the FAULT pin for the respective fault. IRQMASK register functionality affects only the behavior  
2
of the INT pin. This allows the FAULT pin to be tied to over-current fault input of a hub controller or SoC, while the I C  
interface is simultaneously used by the system software for advanced diagnostic functionality.  
Interrupt and Attach Output (INT(ATTACH))  
2
The MAX20461 INT(ATTACH) pin functions as an interrupt (INT) for I C variants. The INT pin asserts an interrupt based  
on the configuration of the IRQ_MASK_0, IRQ_MASK_1, and IRQ_MASK_2 registers. Interrupt configuration allows the  
INT pin to assert any of the featured fault detection, as well as on device attachment, and USB voltage/current ADC  
conversion completion. The INT pin only asserts while a masked IRQ bit is asserted, which means its behavior is also  
dependent on the AUTOCLR bit.  
Stand-alone variants of the MAX20461 feature an open-drain, active-low, ATTACH output that serves as the attach  
www.maximintegrated.com  
Maxim Integrated | 39  
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
detection pin. For standalone variants, the ATTACH pin can be used for GPIO input to a microprocessor, or to drive an  
LED for attach/charge indication.  
The INT(ATTACH) assertion logic is shown in ATTACH Logic Diagram.  
2
I C Output Voltage and Current Measurement  
2
The MAX20461 I C variant allows measurement of the instantaneous SENSN voltage, DC output current, and die  
temperature using an integrated ADC. To initiate a measurement, set the ADC_REQ bit of the ADC_REQUEST register.  
The ADC_REQ bit is cleared by the IC once the measurement is complete and the ADC samples are available.  
Additionally, the ADC_DONE bit of the IRQ_0 register will be set when the sample is available. ADC_DONE can be  
masked to assert an interrupt when the sample is ready.  
The sampled measurements can be read from the ADC_USBV, ADC_USBI, and ADC_TEMP registers. The new sample  
persists in the register until another sample request is initiated by setting the ADC_REQ bit.  
All measurements provide 8 bits of resolution. The measured SENSN voltage has a range of 0V to 19.8V. Convert the  
sample to a voltage as follows  
19.8V  
V
=
· ADC_USBV (Volts).  
256  
SENSN  
The measured SENSE voltage has a range from 0 to 116mV. Convert the sample to a current as follows  
116mV ADC_USBI  
I
=
·
(Amps).  
LOAD  
256  
R
SENSE  
The measured die temp has a range from -40ºC to 170ºC and a temperature resolution of 3.5ºC. Convert the sample to  
a die temperature by T = 3.5ºC · ADC_TEMP - 270 (ºC).  
J
2
I C Interface  
2
The MAX20461 features an I C, 2-wire serial interface consisting of a serial-data line (SDA) and a serial clock line (SCL).  
SDA and SCL facilitate communication between the MAX20461 and the master at clock rates up to 400kHz. The master,  
typically a microcontroller, generates SCL and initiates data transfer on the bus. Figure 5 shows the 2-wire interface  
timing diagram.  
A master device communicates to the MAX20461 by transmitting the proper address followed by the data word. Each  
transmit sequence is framed by a START (S) or REPEATED START (Sr) condition and a STOP (P) condition. Each word  
transmitted over the bus is 8 bits long and is always followed by an acknowledge clock pulse. The MAX20461 SDA line  
operates as both an input and an open-drain output. A pullup resistor greater than 500Ω is required on the SDA bus.  
The MAX20461 SCL line operates as an input only. A pullup resistor greater than 500Ω is required on SCL if there are  
multiple masters on the bus, or if the master in a single-master system has an open-drain SCL output. Series resistors in  
line with SDA and SCL are optional. The SCL and SDA inputs suppress noise spikes to assure proper device operation  
even on a noisy bus.  
www.maximintegrated.com  
Maxim Integrated | 40  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
SDA  
SCL  
t
BUF  
t
t
SU,STA  
SU, DAT  
t
SP  
t
HD,DAT  
t
SU,STO  
t
LOW  
t
HD,DAT  
t
HIGH  
t
HD,STA  
t
t
F
R
START CONDITION  
REPEATED START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
2
Figure 5. I C Timing Diagram  
Bit Transfer  
One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the  
SCL pulse. Changes in SDA while SCL is high are considered control signals (see the STOP and START Conditions  
2
section). SDA and SCL idle high when the I C bus is not busy.  
STOP and START Conditions  
A master device initiates communication by issuing a START condition. A START condition is a high-to-low transition  
on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high (Figure 6). A START (S)  
condition from the master signals the beginning of a transmission to the MAX20461. The master terminates transmission,  
and frees the bus, by issuing a STOP (P) condition. The bus remains active if a REPEATED START (Sr) condition is  
generated instead of a STOP condition.  
S
Sr  
P
SDA  
SCL  
t
t
SU:STO  
SU:STA  
t
t
HD:STA  
HD:STA  
Figure 6. START, STOP and REPEATED START Conditions  
Early STOP Condition  
The MAX20461 recognizes a STOP condition at any point during data transmission, unless the STOP condition occurs  
in the same high pulse as a START condition.  
Clock Stretching  
2
2
In general the clock signal generation for the I C bus is the responsibility of the master device. The I C specification  
allows slow slave devices to alter the clock signal by holding down the clock line. The process in which a slave device  
holds down the clock line is typically called clock stretching. The MAX20461 does not use any form of clock stretching to  
hold down the clock line.  
2
I C General Call Address  
2
The MAX20461 does not implement the I C specifications general call address. If the MAX20461 sees the general call  
www.maximintegrated.com  
Maxim Integrated | 41  
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
address (0b0000_0000), it does not issue an acknowledge.  
2
I C Slave Addressing  
2
Once the device is enabled, the I C slave address is set by the CONFIG1 pin.  
The address is defined as the 7 most significant bits (MSBs) followed by the R/W bit. Set the R/W bit to 1 to configure  
the device to read mode. Set the R/W bit to 0 to configure the device to write mode. The address is the first byte of  
information sent to the device after the START condition.  
2
Table 11. I C Slave Addresses  
CONFIG1 CODE  
A6  
A5  
A4  
A3  
0
A2  
0
A1  
0
A0  
0
7-BIT ADDRESS  
WRITE  
0x60  
0x62  
0x64  
0x66  
READ  
0x61  
0x63  
0x65  
0x67  
0b00  
0b01  
0b10  
0b11  
0
1
1
0x30  
0x31  
0x32  
0x33  
0
1
1
0
0
0
1
0
1
1
0
0
1
0
0
1
1
0
0
1
1
Acknowledge  
The acknowledge bit (ACK) is a clocked 9th bit that the device uses to handshake receipt each byte of data (Figure  
7). The device pulls down SDA during the master generated 9th clock pulse. The SDA line must remain stable and  
low during the high period of the acknowledge clock pulse. Monitoring ACK allows for detection of unsuccessful data  
transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event  
of an unsuccessful data transfer, the bus master can reattempt communication.  
Not Acknowledge (nA)  
S
Acknowledge (A)  
SDA  
SCL  
t
SU:DAT  
8
t
HD:DAT  
1
2
9
Figure 7. Acknowledge Condition  
Write Data Format  
A write to the device includes transmission of a START condition, the slave address with the write bit set to 0, one byte  
of data to a register address, one byte of data to the command register, and a STOP condition. Figure 8 illustrates the  
proper format for one frame.  
Read Data Format  
A read from the device includes transmission of a START condition, the slave address with the write bit set to 0, one  
byte of data from a register address, restart condition, the slave address with read bit set to 1, one byte of data to the  
command register, and a STOP condition. Figure 8 illustrates the proper format for one frame.  
www.maximintegrated.com  
Maxim Integrated | 42  
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Write Byte  
Slave  
S
Register  
Address  
0 A  
A
Data Byte  
A P  
Address  
Write Sequential Bytes  
Slave  
Address  
Register  
Address  
S
0 A  
A
Data Byte1  
A
. . .  
Data Byte N A P  
Read Byte  
Slave  
S
Register  
Address  
Slave  
Address  
N
A
0 A  
A Sr  
A Sr  
1 A  
Data Byte  
P
Address  
Read Sequential Bytes  
Slave  
Address  
Register  
Address  
Slave  
Address  
N
A
S
0 A  
1 A Data Byte 1  
. . .  
Data Byte N  
P
2
Figure 8. Data Format of I C Interface  
Fault Detection and Diagnostics  
Fault Detection  
The MAX20461 features advanced device protection features with automatic fault handing and recovery. Table 12  
summarizes the conditions that generate a fault, and the actions taken by the device. For all variants, the FAULT output  
remains asserted as long as a fault condition persists.  
2
For I C variants, the IRQ registers provide detailed information on the source of the fault condition, and the IRQMASK  
2
registers allow selection of the criteria for assertion of the I C Interrupt pin, INT. The IRQ register bits clear when read.  
However, the IRQ bits that represent a present fault condition continue to reassert after they are cleared, so long as the  
fault condition persists. If the IRQMASK registers are configured to assert INT for a present fault, the INT pin deasserts  
when the IRQ register that asserted the interrupt is read. The INT pin subsequently reasserts if the fault condition persists.  
Fault Output Pin (FAULT)  
The MAX20461 features an open-drain, active-low FAULT output. The MAX20461 is designed to eliminate false FAULT  
reporting by using an internal deglitch and fault blanking timer. This ensures FAULT is not incorrectly asserted during  
normal operation such as starting into high-capacitance loads. The FAULT pin can be tied directly to the over-current  
fault input of a hub controller or SoC.  
Table 12. Fault Conditions  
DEBOUNCE  
PRIOR TO  
ACTION  
IRQ REGISTER  
BITS (I C ONLY)  
EVENT  
ACTION TAKEN  
2
Assert FAULT pin and associated IRQ bit, shut down DC-DC converter, open  
Thermal  
Shutdown  
THM_SHD  
Immediate  
data switches, and disable R . When fault resolves and RETRY_TMR expires,  
P
release FAULT pin, enable R and the DC-DC converter.  
P
www.maximintegrated.com  
Maxim Integrated | 43  
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Table 12. Fault Conditions (continued)  
DEBOUNCE  
PRIOR TO  
ACTION  
IRQ REGISTER  
BITS (I C ONLY)  
EVENT  
ACTION TAKEN  
2
Thermal  
Warning/  
Foldback  
Assert associated IRQ bit and reduce Type-C R by one step. When fault  
P
resolves and RETRY_TMR expires, reset Type-C to CC_SRC_CUR.  
THM_WARN  
IN_OV  
20 ms  
Assert FAULT pin and associated IRQ bit, shut down DC-DC converter, open  
IN  
data switches, disable R , and reset BC1.2. When fault resolves and  
P
Immediate  
Overvoltage  
RETRY_TMR expires, release FAULT pin, close data switches, enable R and  
P
the DC-DC converter.  
Assert FAULT pin and associated IRQ bit, shut down DC-DC converter, open  
HVDP/  
HVDM  
Overvoltage  
data switches, disable R , and reset BC1.2. When fault resolves and  
P
DATA_OV  
Immediate  
16 ms  
RETRY_TMR expires, release FAULT pin, close data switches, enable R and  
P
the DC-DC converter.  
Assert FAULT pin and associated IRQ bit after overcurrent condition persists for  
16ms. When overcurrent resolves and RETRY_TMR expires, release FAULT  
pin.  
USB DC  
Overcurrent  
VBUS_ILIM  
ILIM_ITRIP = 0:  
Assert FAULT pin and associated IRQ bit, shut down DC-DC converter, and  
disable R after overcurrent and undervoltage condition persists for 16ms.  
P
USB DC  
Release FAULT pin, enable R and DC-DC converter once RETRY_TMR  
P
Overcurrent  
and SENSN  
< 4.38V  
expires after shutdown.  
VBUS_ILIM_UV  
16 ms  
2
I C variant and ILIM_ITRIP = 1:  
Assert FAULT pin and associated IRQ bit after overcurrent condition persists for  
16ms. When overcurrent resolves and RETRY_TMR expires, release FAULT  
pin.  
Assert FAULT pin and associated IRQ bit after undervoltage condition persists  
for 16ms. When undervoltage resolves and RETRY_TMR expires, release  
FAULT pin.  
SENSN <  
4.38V  
VBUS_UV  
16 ms  
USB DC  
Overcurrent  
and SENSN  
< 2V  
Assert FAULT pin and associated IRQ bit, shut down DC-DC converter, open  
VBUS_SHT_GND  
Immediate  
data switches, and disable R . Release FAULT pin, enable R and DC-DC  
P
P
converter once RETRY_TMR expires after shutdown.  
LX  
Overcurrent  
for 4  
Assert FAULT pin and associated IRQ bit, shut down DC-DC converter, open  
Consecutive VBUS_SHT_GND  
Immediate  
data switches, and disable R . Release FAULT pin, enable R and DC-DC  
P
P
Cycles  
converter once RETRY_TMR expires after shutdown.  
and SENSN  
< 2V  
Assert FAULT pin and associated IRQ bit, shut down DC-DC converter, open  
data switches, and disable R . When fault resolves and RETRY_TMR expires,  
SENSN  
VBUS_OV  
Overvoltage  
Immediate  
1 ms  
P
release FAULT pin, enable R , DC-DC converter, and data switches.  
P
Assert FAULT pin and associated IRQ bit, open V  
FET. After overcurrent  
CONN  
V
CONN  
VCONN_ILIM  
no longer exists and RETRY_TMR expires, release FAULT pin. V  
can only  
CONN  
Overcurrent  
be re-enabled by passing through the unattached state.  
V
on  
Pre-  
Assert FAULT pin and associated IRQ bit after overvoltage condition persists for  
16ms. After overvoltage no longer exists and RETRY_TMR has expired, release  
FAULT pin.  
BUS  
VBUS_PRE_OV  
16 ms  
Overvoltage  
www.maximintegrated.com  
Maxim Integrated | 44  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Register Map  
Summary Table  
ADDRESS  
NAME  
MSB  
LSB  
USER_CMDS  
THM_FL EN_DCD  
SYNC_D  
IR  
0x00  
0x01  
0x02  
SETUP_0[7:0]  
SETUP_1[7:0]  
SETUP_2[7:0]  
VOUT[2:0]  
SS_EN  
DBK_EN  
C
FSW[2:0]  
GAIN[4:0]  
ILIM_ITR  
IP  
ILIM[2:0]  
CC_VCO  
NN_EN  
0x03  
0x04  
0x05  
0x06  
SETUP_3[7:0]  
RETRY_TMR[1:0]  
CD[1:0]  
CC_ENB  
CC_SRC_CUR[1:0]  
CONFIG  
URED  
SETUP_4[7:0]  
ADC_RE  
ADC_REQUEST[7:0]  
CC_REQUEST[7:0]  
Q
CC_FOR CC_SRC  
CE_ERR  
_RST  
EN_CC_ EN_CC_ EN_BC_ EN_CC_ EN_BC_  
STATE_ ATTACH ATTACH ATTACH ATTACH  
IRQ_AU  
TOCLR  
EN_ADC  
_DONE  
0x07  
0x08  
0x09  
0x0A  
IRQ_MASK_0[7:0]  
IRQ_MASK_1[7:0]  
IRQ_MASK_2[7:0]  
IRQ_0[7:0]  
EV  
_IRQ  
_IRQ  
_EV  
_EV  
EN_VBU EN_VBU  
S_PRE_ S_ILIM_  
EN_VBU  
S_SHT_  
GND  
EN_VBU EN_VBU EN_VBU  
S_ILIM S_OV S_UV  
EN_THM  
_SHD  
OV  
UV  
EN_VBU  
S_PREB  
IAS  
EN_VCO EN_THM EN_IN_ EN_DAT EN_VCO  
NN_ERR _WARN  
OV  
A_OV  
NN_ILIM  
UNCON  
FIGURE  
D
CC_ATT BC_ATT  
CC_STA  
TE_EV  
CC_ATT BC_ATT ADC_DO  
ACH_EV ACH_EV NE  
ACH_IR  
Q
ACH_IR  
Q
VBUS_P VBUS_IL VBUS_IL VBUS_O VBUS_U VBUS_S THM_SH  
0x0B  
0x0C  
0x0D  
0x0E  
IRQ_1[7:0]  
RE_OV  
IM_UV  
IM  
V
V
HT_GND  
DATA_O VCONN_  
ILIM  
D
VBUS_P VCONN_ THM_W  
IRQ_2[7:0]  
IN_OV  
REBIAS  
ERR  
ARN  
V
CC_ATT BC_ATT VBMON VCONN_ VBUS_S  
ACH ACH _SAFE READY TAT  
STATUS_0[7:0]  
STATUS_1[7:0]  
CC_PIN_STATE[1:0  
]
CC_STATE[3:0]  
0x10  
0x11  
0x12  
ADC_0[7:0]  
ADC_1[7:0]  
ADC_2[7:0]  
ADC_USBI[7:0]  
ADC_USBV[7:0]  
ADC_TEMP[7:0]  
Register Details  
SETUP_0 (0x0)  
www.maximintegrated.com  
Maxim Integrated | 45  
 
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
BIT  
Field  
7
6
5
4
3
2
1
0
THM_FLDB  
K_EN  
EN_DCDC  
0b1  
VOUT[2:0]  
0b000  
SYNC_DIR  
SS_EN  
Reset  
0b0  
Access  
Type  
Write, Read Write, Read  
Write, Read  
Write, Read Write, Read  
DECODE  
BITFIELD  
BITS  
DESCRIPTION  
THM_FLDBK  
_EN  
Lowers the Type-C advertised current  
capability when thermal warning is tripped.  
0 = Disable Thermal Foldback  
1 = Enable Thermal Foldback  
6
DC/DC Converter Enable. Internally AND'ed  
with the ENBUCK pin.  
0 = Disable V  
1 = Enable V  
Buck Converter  
Buck Converter  
BUS  
BUS  
EN_DCDC  
5
0b000 = 5V  
0b001 = 9V  
0b010 = 12V  
0b011 = 15V  
VOUT  
4:2  
V
BUS  
Output Level Selection  
0b100 = 18V (protected battery pass-through)  
0b101 = 5V  
0b110 = 5V  
0b111 = 5V  
SYNC Pin Direction Selection  
Initial value set by CONFIG1 resistor.  
0 = Output  
1 = Input  
SYNC_DIR  
SS_EN  
1
0
Spread Spectrum Enable  
Initial value set by CONFIG1 resistor.  
0 = Disable Spread Spectrum Function  
1 = Enable Spread Spectrum Function  
SETUP_1 (0x1)  
BIT  
Field  
7
6
5
4
3
2
1
0
FSW[2:0]  
0b000  
GAIN[4:0]  
0b00000  
Reset  
Access  
Type  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b000 = 2200 kHz  
0b001 = 1200 kHz  
0b010 = 790 kHz  
0b011 = 600 kHz  
0b100 = 488 kHz  
0b101 = 410 kHz  
0b110 = 350 kHz  
0b111 = 310 kHz  
DC/DC Convertor Switching Frequency  
Selection  
FSW  
7:5  
www.maximintegrated.com  
Maxim Integrated | 46  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0: 0mΩ  
1: 18mΩ  
2: 36mΩ  
3: 54mΩ  
4: 72mΩ  
5: 90mΩ  
6: 108mΩ  
7: 126mΩ  
8: 144mΩ  
9: 162mΩ  
10: 180mΩ  
11: 198mΩ  
12: 216mΩ  
13: 234mΩ  
14: 252mΩ  
15: 270mΩ  
16: 288mΩ  
17: 306mΩ  
18: 324mΩ  
19: 342mΩ  
20: 360mΩ  
21: 378mΩ  
22: 396mΩ  
23: 414mΩ  
24: 432mΩ  
25: 450mΩ  
26: 468mΩ  
27: 486mΩ  
28: 504mΩ  
29: 522mΩ  
30: 540mΩ  
31: 558mΩ  
The gain of the voltage correction applied to  
the buck converter output (based on DC load  
GAIN  
4:0  
sensed by current sense amp). R  
33mΩ.  
=
SENSE  
SETUP_2 (0x2)  
BIT  
Field  
7
6
5
4
3
2
1
0
ILIM_ITRIP  
0b0  
ILIM[2:0]  
0b111  
Reset  
Access  
Type  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Determines the buck's retry behavior under  
USB DC current limit conditions.  
0 = VBUS_ILIM_UV fault enabled.  
1 = VBUS_ILIM_UV fault disabled.  
ILIM_ITRIP  
4
USB DC Current-Limit Threshold (min in Amps)  
0b000 = 0.3  
0b001 = 0.55  
0b010 = 0.8  
0b011 = 1.05  
0b100 = 1.62  
0b101 = 2.1  
0b110 = 2.6  
0b111 = 3.04  
USB DC Current-Limit Threshold, R  
33mΩ.  
=
SENSE  
ILIM  
2:0  
www.maximintegrated.com  
Maxim Integrated | 47  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
SETUP_3 (0x3)  
BIT  
7
6
5
4
3
2
1
0
CC_VCON  
N_EN  
Field  
RETRY_TMR[1:0]  
0b00  
CD[1:0]  
CC_ENB  
0b0  
CC_SRC_CUR[1:0]  
0b01  
Reset  
0b1  
Access  
Type  
Write, Read  
Write, Read  
Write, Read Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b00 = 2.0s  
0b01= 1.0s  
0b10 = 0.5s  
0b11= 16ms  
RETRY_TM  
R
Determines the length of the RETRY timer  
after a fault condition.  
7:6  
5:4  
BC1.2 Charge Detection Configuration  
Selection.  
0b00 = High Speed Pass Through (SDP)  
0b01 = Auto-CDP  
0b10 = Reserved  
CD  
This register is pre-loaded based on the part  
number variant and the status of the  
BCMODE pin.  
0b11 = Reserved  
0 = Enable  
1 = Disable  
CC_ENB  
3
2
Disable Type-C Detection  
MAX20461A: Not Used  
CC_VCONN  
_EN  
0 = Disable V  
1 = Enable V  
pass-through.  
pass-through.  
CONN  
CONN  
MAX20461: Enable V  
pass-through  
CONN  
00 = 0.5A  
01 = 1.5A  
10 = 3.0A  
11 = 0.5A  
CC_SRC_C  
UR  
Type-C DFP source pullup current  
advertisement (R )  
1:0  
P
SETUP_4 (0x4)  
BIT  
7
6
5
4
3
2
1
0
CONFIGUR  
ED  
Field  
Reset  
0b0  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
2
I C configuration complete indicator  
2
CONFIGURE  
D
Upon power-up, the buck converter is  
prevented from turning on until this bit is  
written to a one, indicating the part is fully  
configured for its intended mode of operation.  
0 = I C Configuration Pending  
0
2
1 = I C Configuration Complete  
ADC_REQUEST (0x5)  
BIT  
Field  
7
6
5
4
3
2
1
0
ADC_REQ  
0b0  
Reset  
Access  
Type  
Write, Read  
www.maximintegrated.com  
Maxim Integrated | 48  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
ADC V/I Sample Request  
When a one is written, ADC V/I sampling is  
initiated. This bit is cleared once the  
requested sampling is complete and the ADC 1 = ADC Sample Requested  
results are updated. The status of the ADC  
conversion (data ready) can be monitored in  
the IRQ0 register.  
0 = No ADC Sample Requested  
ADC_REQ  
0
CC_REQUEST (0x6)  
BIT  
7
6
5
4
3
2
1
0
CC_FORCE CC_SRC_R  
Field  
_ERR  
ST  
Reset  
0b0  
0b0  
Access  
Type  
Write, Read Write, Read  
DECODE  
BITFIELD  
BITS  
DESCRIPTION  
Type-C Force Error Request  
CC_FORCE_  
ERR  
0 = No change to current operating state.  
1 = Force transition to error recovery state.  
1
This is a request bit (write-only). Forces the  
Type-C state machine to go through error  
recovery. This bit will always read back zero.  
Type-C Force Source Reset Request  
CC_SRC_RS  
T
This is a request bit (write-only). The Type-C  
state machine will be forced back to the  
UnAttached.SRC state, restarting Type-C  
detection. This bit will always read back zero.  
0 = No change to current operating state  
1 = Force transition to UnAttached.SRC state  
0
IRQ_MASK_0 (0x7)  
A Read-Write register that configures which of the conditions in the IRQ_0 register will assert an Interrupt. See the  
IRQ_0 register for condition descriptions.  
BIT  
Field  
7
6
5
4
3
2
1
0
IRQ_AUTO  
CLR  
EN_CC_ST EN_CC_AT EN_BC_AT EN_CC_AT EN_BC_AT EN_ADC_D  
ATE_EV  
TACH_IRQ TACH_IRQ  
TACH_EV  
TACH_EV  
ONE  
Reset  
0b0  
0b0  
0b0 0b0  
0b0  
0b0  
0b0  
Access  
Type  
Write, Read  
Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0 = IRQ register flags are latched on until read.  
1 = IRQ register flags are automatically cleared  
when the error condition is removed.  
IRQ_AUTOC  
LR  
7
IRQ Auto Clear  
EN_CC_STA  
TE_EV  
0 = Not included in Interrupt  
1 = Included in Interrupt  
5
4
3
CC_STATE Interrupt Enable  
EN_CC_ATT  
ACH_IRQ  
0 = Not included in Interrupt  
1 = Included in Interrupt  
Type-C ATTACH STATUS Interrupt Enable  
BC1.2 ATTACH STATUS Interrupt Enable  
EN_BC_ATT  
ACH_IRQ  
0 = Not included in Interrupt  
1 = Included in Interrupt  
www.maximintegrated.com  
Maxim Integrated | 49  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0 = Not included in Interrupt  
EN_CC_ATT  
ACH_EV  
2
Type-C ATTACH EVENT Interrupt Enable  
BC1.2 ATTACH EVENT Interrupt Enable  
ADC_DONE Interrupt Enable  
1 = Included in Interrupt  
EN_BC_ATT  
ACH_EV  
0 = Not included in Interrupt  
1 = Included in Interrupt  
1
0
EN_ADC_D  
ONE  
0 = Not included in Interrupt  
1 = Included in Interrupt  
IRQ_MASK_1 (0x8)  
A Read-Write register that configures which of the conditions in the IRQ_1 register will assert an Interrupt. See the  
IRQ_1 register for condition descriptions.  
BIT  
Field  
7
6
5
4
3
2
1
0
EN_VBUS_ EN_VBUS_I EN_VBUS_I EN_VBUS_ EN_VBUS_ EN_VBUS_ EN_THM_S  
PRE_OV  
LIM_UV  
LIM  
OV  
UV  
SHT_GND  
HD  
Reset  
0x0  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
Access  
Type  
Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0 = Not included in Interrupt  
EN_VBUS_P  
RE_OV  
6
VBUS_PRE_OV Interrupt Enable  
1 = Included in Interrupt  
EN_VBUS_IL  
IM_UV  
0 = Not included in Interrupt  
1 = Included in Interrupt  
5
4
3
2
1
0
VBUS_ILIM_UV Interrupt Enable  
VBUS_ILIM Interrupt Enable  
VBUS_OV Interrupt Enable  
VBUS_UV Interrupt Enable  
VBUS_SHT_GND Interrupt Enable  
THM_SHD Interrupt Enable  
EN_VBUS_IL  
IM  
0 = Not included in Interrupt  
1 = Included in Interrupt  
EN_VBUS_O  
V
0 = Not included in Interrupt  
1 = Included in Interrupt  
EN_VBUS_U  
V
0 = Not included in Interrupt  
1 = Included in Interrupt  
EN_VBUS_S  
HT_GND  
0 = Not included in Interrupt  
1 = Included in Interrupt  
EN_THM_SH  
D
0 = Not included in Interrupt  
1 = Included in Interrupt  
IRQ_MASK_2 (0x9)  
A Read-Write register that configures which of the conditions in the IRQ_2 register will assert an Interrupt. See the  
IRQ_2 register for condition descriptions.  
BIT  
Field  
7
6
5
4
3
2
1
0
EN_VBUS_ EN_VCON  
PREBIAS  
EN_THM_  
WARN  
EN_DATA_  
OV  
EN_VCON  
N_ILIM  
EN_IN_OV  
0b0  
N_ERR  
Reset  
0b0  
0b0  
0b0  
0b0  
0x0  
Access  
Type  
Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
VBUS_PREBIAS Interrupt Enable  
DECODE  
0 = Not included in Interrupt  
1 = Included in Interrupt  
EN_VBUS_P  
REBIAS  
5
www.maximintegrated.com  
Maxim Integrated | 50  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0 = Not included in Interrupt  
MAX20461A: Not Used  
EN_VCONN  
_ERR  
4
1 = Included in Interrupt  
MAX20461: VCONN_ERR Interrupt Enable  
THM_WARN Interrupt Enable  
EN_THM_W  
ARN  
0 = Not included in Interrupt  
1 = Included in Interrupt  
3
2
1
0 = Not included in Interrupt  
1 = Included in Interrupt  
EN_IN_OV  
IN_OV Interrupt Enable  
EN_DATA_O  
V
0 = Not included in Interrupt  
1 = Included in Interrupt  
DATA_OV Interrupt Enable  
MAX20461A: Not Used  
EN_VCONN  
_ILIM  
0 = Not included in Interrupt  
1 = Included in Interrupt  
0
MAX20461: VCONN_ILIM Interrupt Enable  
IRQ_0 (0xA)  
A read only register that includes flags which indicate a number of operating conditions. These flags can assert an  
interrupt by setting the corresponding bit in the MASK register.  
IRQ_0 holds notifications of expected operations rather than error/fault conditions.  
BIT  
Field  
7
6
5
4
3
2
1
0
UNCONFIG  
URED  
CC_STATE CC_ATTAC BC_ATTAC CC_ATTAC BC_ATTAC ADC_DON  
_EV  
H_IRQ  
H_IRQ  
H_EV  
H_EV  
E
Reset  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
0b0  
Access  
Type  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0 = Device is fully configured  
(CONFIGURED written to 1)  
1 = Device is not fully configured  
UNCONFIGU  
RED  
2
7
I C Unconfigured Indicator Bit  
Type-C State Change Indicator  
(CONFIGURED has not been written to 1)  
CC_STATE_  
EV  
0 = No change in Type-C state since last read  
1 = Type-C state has changed since last read  
5
4
3
Clear on Read. Not affected by  
IRQ_AUTOCLR.  
Type-C ATTACH Indicator  
CC_ATTACH  
_IRQ  
This bit indicates a Type-C device attach is  
observed via the CC Pins. Applies to  
Attached.SRC states. Further attach details  
can be read in the STATUS registers.  
0 = No Type-C device attached  
1 = Type-C device attached  
BC1.2 ATTACH Indicator  
BC_ATTACH  
_IRQ  
0 = No device attached  
1 = Device attached  
This bit indicates a BC1.2 device attach is  
observed via the HVDP/HVDM pins.  
www.maximintegrated.com  
Maxim Integrated | 51  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Type-C ATTACH Event Detected  
This bit indicates a Type-C device attach was  
initiated and/or terminated as observed via  
the CC Pins.This bit differs from  
CC_ATTACH (which indicates the current  
Type-C attach status in real time) in that it is  
issued only when the status changes from  
unattached to attached or vice-versa.  
0 = No attach or detach event detected since least  
read  
1 = New attach and/or detach event detected  
CC_ATTACH  
_EV  
2
Clear on Read. Not affected by  
IRQ_AUTOCLR.  
BC1.2 ATTACH Event Detected  
This bit indicates a BC1.2 device attach was  
initiated and/or terminated as observed via  
the HVDP/HVDM pins.This bit differs from  
BC_ATTACH (which indicates the current  
BC1.2 attach status in real time) in that it is  
issued only when the status changes from  
unattached to attached or vice-versa.  
0 = No attach or detach event detected since least  
read  
1 = New attach and/or detach event detected  
BC_ATTACH  
_EV  
1
0
Clear on Read. Not affected by  
IRQ_AUTOCLR.  
ADC Meaurement Complete Indicator.  
Clear on Read.  
0 = No new data available since least read  
1 = New data available  
ADC_DONE  
IRQ_1 (0xB)  
A read only register that includes flags which indicate a number of error conditions. These flags can assert an interrupt  
by setting the corresponding bit in the MASK register.  
BIT  
Field  
7
6
5
4
3
2
1
0
VBUS_PRE VBUS_ILIM  
VBUS_SHT  
_GND  
VBUS_ILIM  
0b0  
VBUS_OV  
0b0  
VBUS_UV  
0b0  
THM_SHD  
0b0  
_OV  
_UV  
Reset  
0b0  
0b0  
0b0  
Access  
Type  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
VBUS Pre-Overvoltage Fault Detected  
Asserts if overvoltage exists on VBMON  
when Type-C is enabled and no Type-C  
device is attached.  
VBUS_PRE_  
OV  
0 = No event  
1 = Event detected  
6
Clear on Read if condition is resolved.  
V
BUS  
Current Limit and SENSN UV Fault  
VBUS_ILIM_  
UV  
Detected  
0 = No event  
1 = Event detected  
5
Disabled when ILIM_ITRIP = 1. Clear on  
Read if condition is resolved.  
www.maximintegrated.com  
Maxim Integrated | 52  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
BITFIELD  
BITS  
DESCRIPTION  
Current Limit Condition Detected  
DECODE  
V
BUS  
0 = No event  
1 = Event detected  
VBUS_ILIM  
4
Disabled when ILIM_ITRIP = 0. Clear on  
Read if condition is resolved.  
V
Overvoltage Fault Detected  
BUS  
0 = No event  
1 = Event detected  
VBUS_OV  
VBUS_UV  
3
2
1
Detected on SENSN pin. Clear on Read if  
condition is resolved.  
V
Under Voltage Fault Detected  
BUS  
0 = No event  
1 = Event detected  
Detected on SENSN pin. Clear on Read if  
condition is resolved.  
V
BUS  
Short to Ground Fault Detected  
VBUS_SHT_  
GND  
0 = No event  
1 = Event detected  
Detected on SENSN pin. Clear on Read if  
condition is resolved.  
Over Temperature Fault Detected  
Asserts when the die temperature exceeds  
165°C (typ). Clear on Read if condition is  
resolved.  
0 = No event  
1 = Event detected  
THM_SHD  
0
IRQ_2 (0xC)  
A read only register that includes flags which indicate a number of error conditions. These flags can assert an interrupt  
by setting the corresponding bit in the MASK register.  
BIT  
7
6
5
4
3
2
1
0
VBUS_PRE VCONN_E  
THM_WAR  
N
VCONN_ILI  
M
Field  
IN_OV  
0b0  
DATA_OV  
0b0  
BIAS  
RR  
Reset  
0b0  
0b0  
0b0  
0b0  
Access  
Type  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
V
BUS  
Pre-Bias  
VBUS_PREB  
IAS  
0 = No event  
1 = Event detected  
5
Asserts if Type-C is enabled and VBMON >  
when no Type-C device is attached.  
V
SAFE0V  
MAX20461A: Not Used  
VCONN_ER  
R
0 = No event  
1 = Event detected  
4
3
MAX20461: V input requested and the  
CONN  
V
CONN  
source is not within operating range.  
Thermal Warning Condition Detected  
Asserts when the temperature has reached  
140°C (typ).  
If thermal foldback is enabled, the Type-C  
current advertisement is lowered one step  
while this bit is asserted.  
0 = No event  
1 = Event detected  
THM_WARN  
Clear on Read if condition is resolved.  
IN Pin Overvoltage Fault Detected  
Clear on Read if condition is resolved.  
0 = No event  
1 = Event detected  
IN_OV  
2
1
DATA Pin Overvoltage Fault Detected  
Clear on Read if condition is resolved.  
0 = No event  
1 = Event detected  
DATA_OV  
www.maximintegrated.com  
Maxim Integrated | 53  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
BITFIELD  
BITS  
DESCRIPTION  
MAX20461A: Not Used  
DECODE  
MAX20461: V  
Detected  
Overcurrent Fault  
0 = No event  
overcurrent monitor is only active 1 = Event detected  
CONN  
VCONN_ILI  
M
0
The V  
CONN  
when V  
is being sourced to a CC pin. It  
CONN  
is not active on the opposite CC pin.  
Clear on Read if condition is resolved.  
STATUS_0 (0xD)  
A read only register that includes information on the current status of the IC.  
BIT  
Field  
7
6
5
4
3
2
1
0
CC_ATTAC BC_ATTAC VBMON_S  
VCONN_R VBUS_STA  
EADY  
H
H
AFE  
T
Reset  
0b0  
0b0  
0b0  
0b0  
0b0  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Type-C ATTACH Status Indicator  
This bit indicates the current Type-C attach  
status via the CC pins. More details can be  
read in the STATUS_1 register.  
0 = No Type-C device currently attached  
1 = Type-C device currently attached  
CC_ATTACH  
4
BC1.2 ATTACH Status Indicator  
This bit indicates the current device attach  
status via the HVDP/HVDM pins. More details 1 = Device currently attached  
can be read in the STATUS_1 register.  
0 = No device currently attached  
BC_ATTACH  
3
2
VBMON (V  
) Safe Status Indicator  
BUS  
VBMON_SA  
FE  
Determines if the DC-DC converter can be  
turned on after a Type-C attach. Only  
applicable with Type-C enabled.  
0 = V  
1 = V  
> V  
< V  
BUS  
BUS  
SAFE0V  
SAFE0V  
MAX20461A: Not Used  
VCONN_RE  
ADY  
0 = V  
1 = V  
not observed  
CONN  
CONN  
1
0
MAX20461: V  
Asserts when Type-C is enabled and a  
Detect Status Indicator  
CONN  
> V  
VCONN_DET  
V
CONN  
source is detected on the V  
pin.  
CONN  
0 = V  
1 = V  
not applied to receptacle  
applied to receptacle (Attached.SRC)  
BUS  
BUS  
VBUS_STAT  
Type-C V  
Status Indicator  
BUS  
STATUS_1 (0xE)  
A read only register that includes information on the current status of the IC.  
BIT  
7
6
5
4
3
2
1
0
Field  
CC_PIN_STATE[1:0]  
0b00  
CC_STATE[3:0]  
0b0000  
Reset  
Access  
Type  
Read Only  
Read Only  
www.maximintegrated.com  
Maxim Integrated | 54  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b00 = No Attach  
0b01 = R detected on CC1  
CC_PIN_ST  
ATE  
D
5:4  
Type-C Active CC Pin/Orientation Indicator  
Type-C Functional Status/State Indicator  
0b10 = R detected on CC2  
D
0b11 = Not used  
0b0000 = Disabled  
0b0010 = ErrorRecovery  
0b0011 = Unattached.SRC  
0b0110 = AttachWait.SRC  
0b1000 = Attached.SRC (CC2)  
0b1100 = Attached.SRC (CC1)  
CC_STATE  
3:0  
ADC_0 (0x10)  
BIT  
Field  
7
6
5
4
3
2
1
0
ADC_USBI[7:0]  
0x00  
Reset  
Access  
Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
= ((116mV/256) * ADC_USBI)/R  
I
LOAD  
SENSE  
ADC_USBI  
7:0  
USB Load Current ADC Measurement Result  
(amperes)  
ADC_1 (0x11)  
BIT  
Field  
7
6
5
4
3
2
1
0
ADC_USBV[7:0]  
0x00  
Reset  
Access  
Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
= (19.8V/256) * ADC_USBV (volts), when  
V
SENSP  
ADC_USBV  
7:0  
USB Voltage ADC Measurement Result  
VOUT[2:0] = 0b000  
ADC_2 (0x12)  
BIT  
Field  
7
6
5
4
3
2
1
0
ADC_TEMP[7:0]  
0x00  
Reset  
Access  
Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Die Temp = 3.5°C * ADC_TEMP - 270 (°C)  
ADC_TEMP  
7:0  
Die Temp ADC Measurement Result  
www.maximintegrated.com  
Maxim Integrated | 55  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Applications Information  
DC-DC Switching Frequency Selection  
The switching frequency (f ) for MAX20461 is programmable via the CONFIG1 resistor (on standalone variants) or by  
SW  
2
I C register writes.  
Higher switching frequencies allow for smaller PCB area designs with lower inductor values and less output capacitance.  
2
Consequently, peak currents and I R losses are lower at higher switching frequencies, but core losses, gate charge  
currents, and switching losses increase.  
To avoid AM band interference, operation between 500kHz and 1.8MHz is not recommended.  
DC-DC Input Capacitor Selection  
The input capacitor supplies the instantaneous current needs of the buck converter and reduces the peak currents drawn  
from the upstream power source. The input bypass capacitor is a determining factor in the input voltage ripple.  
The input capacitor RMS current rating requirement (I  
) is defined by the following equation:  
IN(RMS)  
V
× V  
V  
(
)
SENSP  
SUPSW  
SENSP  
I
= I  
LOAD  
IN RMS  
(
)
V
SUPSW  
I
I
has a maximum value when the input voltage equals twice the output voltage (V  
= 2 · V  
), so  
IN(RMS)  
SUPSW  
SENSP  
1
=
· I  
. I  
is the measured operating load current, while I  
refers to the maximum load  
LOAD(MAX)  
IN(MAX)  
LOAD(MAX) LOAD  
2
current.  
Choose an input capacitor that exhibits less than 10ºC self-heating temperature rise at the RMS input current for optimal  
long-term reliability.  
The input voltage ripple is composed of V (caused by the capacitor discharge) and V  
(caused by the ESR of the  
ESR  
Q
capacitor). Use low-ESR ceramic capacitors with high ripple current capability at the input. Assume the contribution from  
the ESR and capacitor discharge is equal to 50%. Calculate the input capacitance and ESR required for a specified input  
voltage ripple using the following equations:  
ΔV  
ESR  
ESR  
=
IN  
ΔI  
L
I
+
LOAD MAX  
(
)
2
where:  
V
V  
× V  
(
)
SUPSW  
V
SENSP  
SENSP  
× L  
ΔI =  
L
× f  
SUPSW SW  
and:  
I
× D 1 − D  
V
V
(
)
LOAD MAX  
(
)
SENSP  
C
=
where D =  
IN  
ΔV × f  
Q
SW  
SUPSW  
Where D is the buck converter duty cycle.  
Bypass SUPSW with 0.1μF parallel to 10μF of ceramic capacitance close to the SUPSW and PGND pins. The ceramic  
di  
dt  
input capacitor of a buck converter has a high , minimize the PCB current-loop area to reduce EMI. Bypass SUPSW  
with 47μF of bulk electrolytic capacitance to dampen line transients.  
DC-DC Output Capacitor Selection  
To ensure stability and compliance with the USB and Apple specifications, follow the recommended output filters listed in  
Table 13. For proper functionality, a minimum amount of ceramic capacitance must be used regardless of f . Additional  
SW  
www.maximintegrated.com  
Maxim Integrated | 56  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
capacitance for lower switching frequencies can be low-ESR electrolytic types (< 0.25Ω).  
DC-DC Output Inductor Selection  
Three key inductor parameters must be considered when selecting an inductor: inductance value (L), inductor saturation  
current (I  
), and DC resistance (R  
). To select the proper inductance value, the ratio of inductor peak-to-peak AC  
SAT  
DCR  
current to DC average current (LIR) must be selected. A small LIR will reduce the RMS current in the output capacitor  
and results in small output ripple voltage, but this requires a larger inductor. A good compromise between size and loss  
is LIR = 0.35 (35%). Determine the inductor value using the equation below,  
V
× V  
V  
(
)
SENSP  
SUPSW  
SENSP  
L =  
V
× f  
× I  
× LIR  
SUPSW SW  
LOAD MAX  
(
)
where V  
and V  
are typical values (such that efficiency is optimum for nominal operating conditions). Ensure  
SENSP  
SUPSW  
the inductor I  
is above the buck converter's cycle-by-cycle peak current limit.  
SAT  
Table 13. Recommended Output Filters For I  
of 3A  
LOAD  
f
(kHz)  
L
OUT  
(μH)  
RECOMMENDED C  
OUT  
SW  
2200  
1.5  
22μF ceramic  
488  
488  
248  
8.2  
8.2  
20  
3 x 22μF ceramic  
22μF ceramic + low-ESR 68μF electrolytic (< 0.25Ω)  
22μF ceramic + low-ESR 68μF electrolytic (< 0.25Ω)  
Layout Considerations  
Proper PCB layout is critical for robust system performance. See the MAX20461 EV kit datasheet for a recommended  
layout. Minimize the current-loop area and the parasitics of the DC-DC conversion circuitry to reduce EMI. The input  
di  
dt  
capacitor placement should be prioritized because in a buck converter, the ceramic input capacitor has high . Place  
the input capacitor, power inductor, and output capacitor as close as possible to the IC SUPSW and PGND pins. Shorter  
traces should be prioritized over wider traces.  
A low-impedance ground connection between the input and output capacitor is required (route through the ground pour  
on the exposed pad). Connect the exposed pad to ground. Place multiple vias in the pad to connect to all other ground  
layers for proper heat dissipation. Failure to do so can result in the IC repeatedly reaching thermal shutdown. Do not  
use separate power and analog ground planes. Instead, use a single common ground and manage currents through  
component placement. High-frequency return current flows through the path of least impedance (through the ground pour  
directly underneath the corresponding traces).  
USB traces must be routed as a 90Ω differential pair with an appropriate keep-out area. Avoid routing USB traces near  
clocks and high-frequency switching nodes. The length of the routing should be minimized and avoid 90° turns, excessive  
vias, and RF stubs.  
Determining USB System Requirements  
The nominal cable resistance (with tolerance) for both the USB power wire (BUS) and return GND should be determined  
from the cable manufacturer. In addition, be sure to include the resistance from any inline or PCB connectors. Determine  
the desired operating temperature range for the application, and consider the change in resistance over temperature.  
A typical application presents a 200mΩ BUS resistance with a matching 200mΩ resistance in the ground path. In this  
application, the voltage drop at the far end of the captive cable is 800mV when the load current is 2A. This voltage  
drop requires the voltage-adjustment circuitry of the IC to increase the output voltage to comply with the USB and Apple  
specifications.  
USB Loads  
MAX20461 is compatible with both USB-compliant and non-compliant loads. A compliant USB device is not allowed to  
www.maximintegrated.com  
Maxim Integrated | 57  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
sink more than 30mA and must not present more than 10μF of capacitance when initially attached to the port. The device  
then begins its HVD+/HVD- connection and enumeration process. After completion of the connect process, the device  
can pull 100mA/150mA and must not present a capacitance greater than 10μF. This is considered the hot-inserted, USB-  
compliant load of 44Ω in parallel with 10μF.  
For non-compliant USB loads, the ICs can also support both a hot insertion and soft-start into a USB load of 2Ω in parallel  
with 330μF.  
USB Output Current Limit  
The USB load current is monitored by an internal current-sense amplifier through the voltage created across R  
.
SENSE  
MAX20461 offers a digitally adjustable USB current-limit threshold. See SETUP_2 or Table 10 to select an appropriate  
register or resistor value for the desired current limit.  
Some systems require the need to supply up to 160% of I  
MAX20461 current limit beyond 3.04A (min) by decreasing R  
for brief periods. It is possible to increase the  
using this scaling factor:  
LOAD(MAX)  
SENSE  
3.04A  
R
= 33mΩ ·  
.
SENSE  
1.6 · I  
LOAD MAX  
(
)
USB Voltage Adjustment  
Figure 9 shows a DC model of the voltage-correction function of MAX20461. Without voltage adjustment (V  
= 0,  
ADJ  
GAIN[4:0] = 0), the voltage seen by the device at the end of the cable will decrease linearly as load current increases.  
To compensate for this, the output voltage of the buck converter should increase linearly with load current. The slope of  
R
SENSE  
SENSP is called R  
such that V  
= R  
· I  
and R  
= GAIN 4 : 0 · R ·  
LSB  
(see Figure 10).  
[
]
COMP  
ADJ  
COMP LOAD  
COMP  
33mΩ  
The R  
adjustment values available on MAX20461 are listed in the GAIN[4:0] register description and are based on  
COMP  
a 33mΩ sense resistor.  
For V = V  
; 0 ≤ I , R  
LOAD  
must equal the sum of the system resistances. Calculate the minimum  
COMP  
DUT  
NO _ LOAD  
R
for the system so that V  
stays constant:  
DUT  
COMP  
R
= R + R  
+ R  
+ R  
+ R  
CABLE _ VBUS CABLE _ GND  
COMP _ SYS  
LR  
SENSE  
PCB  
Where R  
+ R  
is the round-trip resistance of the USB cable (including the effect from the cable  
CABLE_VBUS  
CABLE_GND  
LR  
shield, if it conducts current), R is the buck converter’s load regulation expressed in mΩ (51mΩ typ.), and R  
is  
PCB  
the resistance of any additional V  
parasitics (the V  
FET, PCB trace, ferrites, and the USB connectors). Find the  
BUS  
BUS  
setting for GAIN[4:0] using the minimum R  
.
COMP  
R
COMP_SYS  
33mΩ  
GAIN[4:0] = ceiling  
·
R
R
(
)
LSB  
SENSE  
The nominal DUT voltage can then be estimated at any load current by:  
R
SENSE  
V
= V  
+ R  
· GAIN 4 : 0 ·  
· I  
R · I  
COMP _ SYS LOAD  
DUT  
NO _ LOAD  
LSB  
LOAD  
33mΩ  
[
]
www.maximintegrated.com  
Maxim Integrated | 58  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
R
LR  
R
SENSE  
R
PCB  
R
CABLE_VBUS  
V
ADJ  
+
-
+
+
V
I
V
DUT  
SENSP  
LOAD  
-
-
+
-
V
NO_LOAD  
R
CABLE_GND  
Figure 9. DC Voltage Adjustment Model  
GAIN[4:0]  
31  
6.8  
VSUPSW=14V  
6.6  
6.4  
6.2  
6
RSENSE = 33mΩ  
24  
18  
12  
6
5.8  
5.6  
5.4  
5.2  
5
0
4.8  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
ILIM_SET = 3.14A (typ)  
ILOAD(A)  
Figure 10. Increase in SENSP vs. USB Current  
Tuning of USB Data Lines  
USB Hi-Speed mode requires careful PCB layout with 90Ω controlled differential impedance, with matched traces of  
equal length and with no stubs or test points. MAX20461 includes high-bandwidth USB data switches (>1GHz). This  
means data-line tuning is generally not required. However, all designs are recommended to include pads that would  
allow LC components to be mounted on the data lines so that tuning can easily be performed later, if necessary. Tuning  
components should be placed as close as possible to the IC data pins, on the same layer of the PCB as the IC. The  
proper configuration of the tuning components is shown in Figure 11. Figure 12 shows the reference eye diagram used  
in the test setup. Figure 13 shows the MAX20461 high-voltage eye diagram on the standard EVKIT with no tuning  
components. Tuning inductors should be high-Q wire-wound inductors. Contact Maxim’s application team for assistance  
with the tuning process for your specific application.  
www.maximintegrated.com  
Maxim Integrated | 59  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
12nH  
12nH  
4.7nH  
HVD-  
D-  
6pF  
6pF  
2pF  
2pF  
HVD+  
D+  
4.7nH  
Figure 11. Tuning of Data Lines  
TIME(ns)  
Figure 12. Near-Eye Diagram (with No Switch)  
TIME(ns)  
Figure 13. Untuned Near-Eye Diagram (with MAX20461)  
USB Data Line Common-Mode Choke Placement  
Most automotive applications use a USB-optimized common-mode choke to mitigate EMI signals from both leaving and  
entering the module. Optimal placement for this EMI choke is at the module’s USB connector. This common-mode choke  
does not replace the need for the tuning inductors previously mentioned.  
ESD Protection  
The high-voltage MAX20461 requires no external ESD protection. All Maxim devices incorporate ESD protection  
structures to protect against electrostatic discharges encountered during handling and assembly. While competing  
www.maximintegrated.com  
Maxim Integrated | 60  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
solutions can latch-up and require the power to be cycled after an ESD event, the MAX20461 continues to work without  
latch-up. When used with the configuration shown in the Typical Application Circuit, the MAX20461 is characterized for  
protection to the following limits:  
● ±25kV ISO 10605 (330pF, 2kΩ) Air Gap  
● ±8kV ISO 10605 (330pF, 2kΩ) Contact  
● ±15kV IEC 61000-4-2 (150pF, 330Ω) Air Gap  
● ±8kV IEC 61000-4-2 (150pF, 330Ω) Contact  
● ±15kV ISO 10605 (330pF, 330Ω) Air Gap  
● ±8kV ISO 10605 (330pF, 330Ω) Contact  
Note: All application-level ESD testing is performed on the standard evaluation kit with 1m captive cable.  
ESD Test Conditions  
ESD performance depends on a variety of conditions. Contact Maxim for test setup, test methodology, and test results.  
Human Body Model  
Figure 14 shows the Human Body Model, and Figure 16 shows the current waveform it generates when discharged  
into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then  
discharged into the device through a 1.5kΩ resistor.  
IEC 61000-4-2  
The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. MAX20461 helps users design  
equipment that meets Level 4 of IEC 61000-4-2. The main difference between tests done using the Human Body  
Model and IEC 61000-4-2 is a higher peak current in IEC 61000-4-2. Because the series resistance is lower in the IEC  
61000-4-2 ESD test model Figure 15, the ESD withstand-voltage measured to this standard is generally lower than that  
measured using the Human Body Model. Figure 17 shows the current waveform for the 8kV, IEC 61000-4-2 Level 4 ESD  
Contact Discharge test. The Air Gap Discharge test involves approaching the device with a charged probe. The Contact  
Discharge method connects the probe to the device before the probe is energized.  
RC  
RD  
1MΩ  
1500Ω  
CHARGE-CURRENT-LIMIT  
RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
CS  
STORAGE  
CAPACITOR  
100pF  
SOURCE  
Figure 14. Human Body ESD Test Model  
www.maximintegrated.com  
Maxim Integrated | 61  
 
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
RC  
RD  
50MΩ to 100MΩ  
330Ω  
CHARGE-CURRENT-LIMIT  
RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
CS  
STORAGE  
CAPACITOR  
150pF  
SOURCE  
Figure 15. IEC 61000-4-2 ESD Test Model  
I
(AMPS)  
PEAK  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
100%  
90%  
r
36.8%  
10%  
0
TIME  
0
t
RL  
t
DL  
Figure 16. Human Body Current Waveform  
I
(AMPS)  
PEAK  
100%  
90%  
10%  
t
t
R
= 0.7ns TO 1ns  
30ns  
60ns  
Figure 17. IEC 61000-4-2 Current Waveform  
www.maximintegrated.com  
Maxim Integrated | 62  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Typical Application Circuits  
Typical Application Circuit  
4
4
+3.3V  
USB I/O  
VOLTAGE  
+VDD  
11  
4
IN  
MAX20461  
RX/TX  
1µF  
4
RX/TX  
1kΩ  
100kΩ  
100kΩ  
USB-C RECEPTACLE  
3V3  
USB3 MUX  
A11  
SBU1  
SBU2  
8
1kΩ  
100kΩ  
CC_POL (SHIELD)  
A10  
15  
16  
12  
14  
4
4
SCL (CONFIG3)  
SCL  
A2  
1Optional  
TX1+  
TX1-  
RX1+  
RX1-  
A3  
SDA (CONFIG2)  
INT (ATTACH)  
FAULT  
SDA  
INT  
4
1
B11  
B10  
RX1/TX1  
AGND  
GPIO  
GPIO  
B2  
18  
25  
ENBUCK  
HVEN  
TX2+  
TX2-  
RX2+  
RX2-  
B3  
4
1kΩ  
24  
4
CONFIG1  
FROM ACC OR GPIO  
A11  
A10  
RX2/TX2  
17  
13  
3
BCMODE  
SYNC  
GPIO  
R
CONFIG1  
SYNC  
IN/OUT  
LOW  
VOLTAGE  
MCU OR  
1Optional  
+VCONN  
2
4
A5  
B5  
CC1  
CC2  
CC1  
CC2  
VCONN  
ASIC WITH  
INTEGRATED  
USB PHY  
1µF  
6
7
10  
9
A7  
B7  
HVD-  
D-  
D+  
D-  
D-  
D-  
2Tuning  
2Tuning  
A6  
B6  
HVD+  
D+  
D+  
D+  
28  
31  
30  
29  
5
VBMON  
G_DMOS  
SENSN  
SENSP  
AGND  
BIAS  
32  
2.2µF  
19  
BST  
0.1µF  
1.5µH  
33mΩ  
20  
21  
26  
27  
LX  
LX  
SUPSW  
SUPSW  
VBUS  
VBAT  
22µF  
0.1µF  
10µF  
47µF  
SHIELD  
22  
23  
PGND  
PGND  
EP  
3OPTIONAL  
1DEPENDENT ON THE TYPE-C SOURCE VCONN AND USB3 DESIGN REQUIREMENTS.  
2SEE “TUNING OF USB DATA LINES” FOR MORE INFORMATION.  
3OPTIONAL EXTERNAL ISOLATION FET.  
www.maximintegrated.com  
Maxim Integrated | 63  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Ordering Information  
STARTUP MODE  
2
PART NUMBER  
TEMP RANGE  
PIN-PACKAGE  
I C  
V
CONN  
(BCMODE PIN = 0)  
MAX20461ATJA/V+  
MAX20461ATJD/V+  
MAX20461AATJA/V+  
MAX20461AATJD/V+  
Yes  
No  
Yes  
-40ºC to +125ºC  
32 TQFN-EP*  
SDP Mode  
Yes  
No  
No  
/V Denotes Automotive Qualified Parts  
+ Denotes a lead(Pb)-free/RoHS-compliant package.  
* Denotes Exposed Pad.  
www.maximintegrated.com  
Maxim Integrated | 64  
MAX20461  
Automotive High-Current Step-Down Converter  
with USB-C Protection/Host Charger  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
7/18  
Initial release  
Updated General Description, Simplified Block Diagram, Absolute Maximum  
Ratings, Package Information, TOCs 4, 7–10, 13, 17, 18, 25, Pin Configuration, Pin  
Description, Figure 1, CC Attachment and VBUS Discharge diagram, Detailed  
Description, USB Type-C, VCONN, Figure 2, VBUS, External FET Gate Drive  
(G_DMOS Pin), System Enable (HVEN), Linear Regulator Output (BIAS), Maximum  
Duty-Cycle Operation, Reset Behavior, Output Short-Circuit Protection, Figure 3,  
USB Host Adapter Emulator, I2C Configuration (CONFIG1 and I2C), I2C  
Diagnostics and Event Handling, Interrupt and Attach Output (INT(ATTACH)), Fault  
Output Pin (FAULT), Table 11, Register Map, SETUP_3 (0x3), SETUP_4 (0x04),  
CC_REQUEST (0x06), IRQ_MASK_0 (0x07), IRQ_0 (0xA), STATUS_0 (0xD),  
STATUS_1 (0xE), DC-DC Input Capacitor Selection, DC-DC Output Capacitor  
Selection, USB Voltage Adjustment, Tuning of USB Data Lines, Figure 9, Figure 10,  
Typical Application Circuit, and Ordering Information.  
1, 21, 23, 25, 26,  
27, 29–31, 33,  
35, 38–41, 44,  
45, 46, 48, 49,  
52, 53, 55, 57,  
60, 61  
1
8/18  
Updated General Description, Benefits and Features, Absolute Maximum Ratings,  
Package Information, Electrical Characteristics, Typical Operating Characteristics,  
Functional Diagrams, Detailed Description, Register Details, and Applications  
Information.  
1, 6, 7, 9, 10, 12,  
14, 15, 19, 21,  
27–30, 38, 41,  
44, 51, 57  
2
4/20  
Added MAX20461A. Updated Benefits and Features, Simplified Block Diagram,  
Absolute Maximum Ratings, Electrical Characteristics, Pin Configuration, Pin  
Description, DCP Reset Behavior and Timing Diagram, ENBUCK Reset Behavior  
and Timing Diagram, ATTACH Logic Diagram, CC Attachment and VBUS  
Discharge, Detailed Block Diagram, CC Pulldown Response, VCONN, External FET  
Gate Drive (G_DMOS Pin), Power-On Sequencing, Switching Frequency  
Configuration, Switching Frequency Synchronization (SYNC Pin), CONFIG2 and  
CONFIG3 Pin Table (Standalone Variants), Fault Conditions, SYNC_DIR bit, SS_EN  
bit, CD bit, Ordering Information.  
3
4
6/20  
1–63  
1–65  
Updated USB Type-C functionality to meet latest specifications (search for  
12/20  
t
). Improved SYNC pin logic for multi-port applications (search for SYNC).  
DIS_DET  
Expanded design methods for overcurrent flexibility (search for I  
).  
LOAD(MAX)  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2021 Maxim Integrated Products, Inc.  

相关型号:

MAX20461ATJD

Automotive High-Current Step-Down Converter with USB-C Protection/Host Charger
MAXIM

MAX2046ETJ+

Baseband Circuit, 5 X 5 MM, 0.80 MM HEIGHT, TQFN-32
MAXIM

MAX2046ETJ+T

Baseband Circuit, 5 X 5 MM, 0.80 MM HEIGHT, TQFN-32
MAXIM

MAX2046ETJ-T

High-Gain Vector Multipliers
MAXIM

MAX2046EVKIT

Fully Assembled and Tested
MAXIM

MAX2047

High-Gain Vector Multipliers
MAXIM

MAX20471

3.0V to 4.0V Operating Supply Voltage
MAXIM

MAX20471ASAA/V+

Switching Regulator/Controller,
MAXIM

MAX20471ATCB/V+

Switching Regulator/Controller,
MAXIM

MAX20471EVKIT

3.0V to 4.0V Operating Supply Voltage
MAXIM

MAX20472ATCA/V+

Switching Regulator/Controller,
MAXIM

MAX20472ATCA/VY+

Switching Regulator/Controller,
MAXIM