MAX2047EVKIT [MAXIM]

Fully Assembled and Tested;
MAX2047EVKIT
型号: MAX2047EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Fully Assembled and Tested

文件: 总10页 (文件大小:571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2793; Rev 0a; 4/03  
MAX2045/MAX2046/MAX2047 Evaluation Kits  
General Description  
Features  
Easy Evaluation of the MAX2045/MAX2046/  
The MAX2045/MAX2046/MAX2047 evaluation kits  
(EV kits) simplify evaluation of the MAX2045/MAX2046/  
MAX2047 vector multipliers. Each kit enables testing of  
the device’s RF performance and requires no additional  
support circuitry. The EV kit input and output use SMA  
connectors and baluns (for single-ended-to-differential  
conversions) to facilitate the connection to RF test  
equipment.  
MAX2047  
+4.75V to +5.25V Single-Supply Operation  
Include RF Input and Output Matching  
2040MHz to 2240MHz (MAX2045)  
1740MHz to 2060MHz (MAX2046)  
790MHz to 1005MHz (MAX2047)  
Each EV kit is assembled with either the MAX2045,  
MAX2046, or MAX2047 and incorporates all matching  
components optimized for the corresponding band of  
frequency operation.  
Configurable for Current-Control Mode and  
Single-Ended and Differential Voltage-Control  
Mode  
Fully Assembled and Tested  
Ordering Information  
Component Suppliers  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
IC PACKAGE  
32 QFN-EP*  
32 QFN-EP*  
32 QFN-EP*  
SUPPLIER  
Murata  
Toko  
PHONE  
FAX  
814-238-0490  
MAX2045EVKIT  
MAX2046EVKIT  
MAX2047EVKIT  
800-831-9172  
800-745-8656  
Note: When contacting these suppliers, please indicate that  
you are using the MAX2045/MAX2046/MAX2047.  
*EP = Exposed paddle.  
MAX2045 Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
1.5pF 0.1pF, 50V C0G ceramic  
capacitor (0402)  
Murata GRP1555C1H1R5B  
22pF 5%, 50V C0G ceramic  
capacitors (0402)  
Murata GRP1555C1H220J  
L1  
L2  
1
1
C1, C4C16  
C2, C3  
14  
2
8.2nH 5% chip inductor (0402)  
Toko LL1005-FH8N2J  
220pF 10%, 50V X7R ceramic  
capacitors (0402)  
Murata GRP155R71H221K  
2801% resistor (0402)  
Any  
R1  
1
0
2
0.01µF 10%, 25V X7R ceramic  
capacitor (0402)  
Murata GRP155R71E103K  
R2, R4, R6  
R3, R5  
Not installed  
C17  
1
0resistors (0402)  
Any  
PC board edge-mount SMA RF  
connectors (flat-tab launch)  
EFJohnson 142-0741-856  
1:1 balun (50:50)  
Murata LDB15C500A1900  
J1, J2  
J3  
2
1
T1  
1
4:1 balun (200:50)  
Murata LDB15C201A1900  
Header, 10 x 2, 0.100in spacing  
Molex 10-89-1201  
T2  
1
1
U1  
MAX2045ETJ-T (32-pin QFN)  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
MAX2045/MAX2046/MAX2047 Evaluation Kits  
MAX2046 Component List  
MAX2047 Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
47pF 5%, 50V C0G ceramic  
capacitors (0402)  
Murata GRP1555C1H470J  
3.9pF 0.1pF, 50V C0G ceramic  
capacitor (0402)  
Murata GRP1555C1H3R9B  
C1C16  
C17  
16  
1
C1  
1
2
0.01µF 10%, 25V X7R ceramic  
capacitor (0402)  
220pF 10%, 50V X7R ceramic  
capacitors (0402)  
C2, C3  
Murata GRP155R71E103K  
Murata GRP155R71H221K  
PC board edge-mount SMA RF  
connectors (flat-tab launch)  
EFJohnson 142-0741-856  
22pF 5%, 50V C0G ceramic  
capacitors (0402)  
Murata GRP1555C1H220J  
C4C13,  
C15, C16  
J1, J2  
2
12  
1
Header 10 x 2, 0.100in spacing  
Molex 10-89-1201  
6.2pF 0.25pF, 50V C0G ceramic  
capacitor (0402)  
Murata GRP1555C1H6R2C  
J3  
L1  
L2  
1
1
1
C14  
C17  
15nH 5% chip inductor (0402)  
Toko LL1005-FH15NJ  
0.01µF 10%, 25V X7R ceramic  
capacitor (0402)  
Murata GRP155R71E103K  
1
39nH 5% chip inductor (0402)  
Toko LL1005-FH39NJ  
2801% resistor (0402)  
Any  
PC board edge-mount SMA RF  
connectors (flat-tab launch)  
EFJohnson 142-0741-856  
R1  
1
0
2
J1, J2  
J3  
2
1
1
1
R2, R4, R6  
R3, R5  
Not installed  
0resistors (0402)  
Any  
Header 10 x 2, 0.100in spacing  
Molex 10-89-1201  
1:1 balun (50:50)  
Murata LDB20C500A900  
1.5pF 0.1pF, 50V C0G ceramic  
capacitor (0402)  
T1  
1
L1  
Murata GRP1555C1H1R5B  
4:1 balun (200:50)  
Murata LDB20C201A900  
T2  
1
1
12nH 5% chip inductor (0402)  
Toko LL1005-FH12NJ  
L2  
U1  
MAX2047ETJ-T (32-pin QFN)  
2801% resistor (0402)  
Any  
R1  
1
0
2
Quick Start  
The MAX2045/MAX2046/MAX2047 EV kits are fully  
assembled and factory tested. Follow the instructions  
in the Connections and Setup section for proper  
device evaluation. The EV kits come configured for sin-  
gle-ended, voltage-control operation. For differential  
voltage- or current-mode operation, see the Detailed  
Description section.  
R2, R4, R6  
R3, R5  
Not installed  
0resistors (0402)  
Any  
1:1 balun (50:50)  
Murata LDB15C500A1900  
T1  
1
4:1 balun (200:50)  
Murata LDB15C201A1900  
T2  
1
1
Test Equipment Required  
Table 1 lists the required test equipment to verify the  
MAX2045/MAX2046/MAX2047 operation. It is intended  
as a guide only, and some substitutions are possible.  
U1  
MAX2046ETJ-T (32-pin QFN)  
Connections and Setup  
This section provides a step-by-step guide to operat-  
ing the EV kits and testing the devicesfunctions. Do  
not turn on DC power or RF signal generators until all  
connections are made.  
2
_______________________________________________________________________________________  
MAX2045/MAX2046/MAX2047 Evaluation Kits  
4) Configure the network analyzer to measure S21. The  
Table 1. Required Test Equipment  
analyzer should read approximately 6.2dB gain at f  
IN  
=
EQUIPMENT  
QTY  
DESCRIPTION  
= 2140MHz (MAX2045), 6.6dB gain at f  
1900MHz (MAX2046), and 8.1dB gain at f  
915MHz (MAX2047).  
IN  
Capable of delivering up to  
250mA at 4.75V to 5.25V  
=
IN  
Power supply  
1
5) Changing the current source value changes the  
magnitude of the gain. To adjust the phase, use sep-  
arate current sources on the II1 and IQ1 terminals.  
Capable of swinging from 0  
to +5.5V  
Power supplies  
2
2
2
Current sources  
(optional)  
Capable of delivering 5mA of  
current  
Detailed Description  
The EV kits come with all necessary components for  
easy testing. For each kit, make sure all ground pins on  
the 20-lead header are connected to ground. The  
REFOUT voltage can be monitored from pins 17 and 18  
on the 20-lead header by installing a 0resistor for R6.  
Low-noise RF signal  
generators  
HP 8648B or equivalent  
Network analyzer  
Ammeter/voltmeters  
50SMA cables  
1
2
2
HP 8753ES or equivalent  
To operate the device in differential voltage-control  
mode, remove R5 and R3, and install 0resistors for  
R2 and R4. Figure 1 shows the connections on the 20-  
pin header corresponding to the voltage- and current-  
control inputs. Using this configuration, an external DC  
source can also be applied to VI2 and VQ2 for single-  
ended operation using an external regulated voltage.  
Testing the Supply Current  
1) If available, set the current limit of the power supply  
to 250mA. Do not turn on the supply. Connect the  
DC supply set to 5V, through an ammeter, to the  
VCC and GND terminals on the EV kit. Use a volt-  
meter to verify that the voltage is at V  
= 5V.  
CC  
For current-mode operation, leave the VI and VQ (header  
pins 1, 2, 5, and 6) open, and remove R3 and R5.  
2) Turn on the DC supply; the supply current should  
read approximately 160mA.  
Bias Resistor  
The bias resistor value (280) was optimized during  
characterization at the factory. This value should not be  
adjusted. If the 280( 1%) resistor is not readily avail-  
able, substitute a standard 280( 5%) resistor.  
Testing the Gain (Single-Ended Voltage Mode)  
1) Connect a DC supply set to +3.2V to the VI1 and  
VQ1 terminals (Figure 1).  
2) Using a calibrated network analyzer, connect port 1  
to the RF_IN terminal (SMA J1) and port 2 to the  
RF_OUT terminal (SMA J2).  
On-Chip Reference Voltage  
An on-chip, 2.5V reference voltage is provided for sin-  
gle-ended control mode. REFOUT is connected,  
through R3 and R5, to VI2 and VQ2 to provide a stable  
reference voltage. The equivalent output resistance of  
the REFOUT pin is approximately 80. REFOUT is  
capable of sourcing 1mA of current with <10mV drop  
in voltage.  
3) Configure the network analyzer to measure S21. The  
analyzer should read approximately 7dB gain at f  
IN  
=
=
= 2140MHz (MAX2045), 7.4dB gain at f  
IN  
1900MHz (MAX2046), and 8.4dB gain at f  
915MHz (MAX2047).  
IN  
4) Changing the DC supply on the VI1 and VQ1 termi-  
nals changes the magnitude of the gain. To adjust  
the phase, use separate DC supplies on the VI1 and  
VQ1 terminals.  
Capacitors  
Ceramic capacitors C16 and C17 provide bypass on  
the supply. Place C16 as close to the part as possible  
for high-frequency bypassing. C4C11 are bypass  
capacitors for the control inputs. C1 and C14 are DC-  
blocking capacitors for the on-board baluns. DC-block-  
ing capacitors prevent DC current from flowing into the  
transformers and can be used as part of the matching  
circuit. Capacitors C13 and C15 are used to provide an  
RF ground for transformer T2. Capacitor C12 is used to  
bypass the 2.5V reference in case the reference is  
used. As the differential RF outputs are relatively high  
Testing the Gain (Current Mode)  
1) Configure the evaluation kits for current mode (see  
the Detailed Description section).  
2) Connect a current source set to 4mA to the II1 and  
IQ1 terminals. Leave II2, IQ2, and all voltage-control  
pins open (Figure 1).  
3) Using a calibrated network analyzer, connect port 1  
to the RF_IN terminal (SMA J1) and port 2 to the  
RF_OUT terminal (SMA J2).  
_______________________________________________________________________________________  
3
MAX2045/MAX2046/MAX2047 Evaluation Kits  
impedance, they are more susceptible to component  
parasitics. It is often good practice to relieve the  
ground plane directly underneath large components to  
reduce associated shunt-C parasitics.  
er and of the same length to ensure signal balance. The  
PC board layout should provide a large ground pad  
under the device for proper RF grounding and thermal  
performance. This pad should be connected to the  
ground plane of the board by using multiple vias. To  
minimize inductance, route the ground pins of the  
device to the large ground pad. Solder the exposed pad  
on the bottom of the device package to the PC board  
exposed pad (refer to the MAX2045/MAX2046/  
MAX2047 data sheet).  
Layout  
The EV kits PC board can serve as a guide for laying  
out a board using the MAX2045/MAX2046/MAX2047.  
Keep RF signal lines as short as possible to minimize  
losses and radiation. Always use controlled-impedance  
lines on all high-frequency inputs and outputs and use  
low-inductance connections to ground on all GND pins.  
At all differential ports, keep the differential lines togeth-  
The MAX2045/MAX2046/MAX2047 EV kits can be used  
as a reference for board layout. Gerber files are avail-  
able upon request at www.maxim-ic.com.  
C1  
J1  
RF_IN  
L1  
T1  
C2  
C3  
J3  
GND  
GND  
VI1  
24  
23  
22  
1
1
3
2
C4  
C5  
R2  
90°  
OPEN  
CONTROL  
VI2  
VQ1  
VQ2  
II1  
PHASE  
SHIFTER  
AMPLIFIER I  
2
3
U1  
RBIAS  
GND  
MAX2045  
MAX2046  
MAX2047  
C6  
R4  
OPEN  
R1  
280Ω  
21  
20  
4
5
VECTOR  
MULTIPLIER  
C7  
CONTROL  
AMPLIFIER Q  
GND  
GND  
C8  
II2  
19  
18  
17  
6
7
C9  
V
CC  
2.5V  
REFERENCE  
V
OUTPUT  
STAGE  
CC  
IQ1  
IQ2  
C16  
C17  
C10  
C11  
V
CC  
8
VREF  
5V  
R5  
0Ω  
R3  
0Ω  
R6  
OPEN  
19  
20  
C12  
C14  
J2  
L2  
V
CC  
RF_OUT  
C15  
NOTE:  
PLEASE SEE THE PART-SPECIFIC  
COMPONENT LIST FOR COMPONENT VALUES.  
C13  
T2  
Figure 1. MAX2045/MAX2046/MAX2047 EV Kit Schematic  
_______________________________________________________________________________________  
4
MAX2045/MAX2046/MAX2047 Evaluation Kits  
1.0"  
1.0"  
Figure 2. MAX2045 EV Kit Component Placement Guide—Top  
Silkscreen  
Figure 3. MAX2045 EV Kit Component Placement Guide—  
Bottom Silkscreen  
1.0"  
1.0"  
Figure 5. MAX2045 EV Kit PC Board Layout —Ground Layer  
(Layer 2)  
Figure 4. MAX2045 EV Kit PC Board Layout—Primary  
Component Side  
_______________________________________________________________________________________  
5
MAX2045/MAX2046/MAX2047 Evaluation Kits  
1.0"  
1.0"  
Figure 6. MAX2045 EV Kit PC Board Layout—Route Layer  
(Layer 3)  
Figure 7. MAX2045 EV Kit PC Board Layout—Secondary Side  
1.0"  
1.0"  
Figure 9. MAX2045 EV Kit PC Board Layout—Bottom Solder  
Mask  
Figure 8. MAX2045 EV Kit PC Board Layout—Top Solder Mask  
6
_______________________________________________________________________________________  
MAX2045/MAX2046/MAX2047 Evaluation Kits  
1.0"  
Figure 10. MAX2046 EV Kit Component Placement Guide—  
Top Silkscreen  
Figure 11. MAX2046 EV Kit Component Placement Guide—  
Bottom Silkscreen  
1.0"  
1.0"  
Figure 13. MAX2046 EV Kit PC Board Layout—Ground Layer  
(Layer 2)  
Figure 12. MAX2046 EV Kit PC Board Layout—Primary  
Component Side  
_______________________________________________________________________________________  
7
MAX2045/MAX2046/MAX2047 Evaluation Kits  
1.0"  
1.0"  
Figure 14. MAX2046 EV Kit PC Board Layout—Route Layer  
(Layer 3)  
Figure 15. MAX2046 EV Kit PC Board Layout—Secondary Side  
1.0"  
1.0"  
Figure 17. MAX2046 EV Kit PC Board Layout—Bottom Solder  
Mask  
Figure 16. MAX2046 EV Kit PC Board Layout—Top Solder  
Mask  
8
_______________________________________________________________________________________  
MAX2045/MAX2046/MAX2047 Evaluation Kits  
1.0"  
1.0"  
Figure 18. MAX2047 EV Kit Component Placement Guide—  
Top Silkscreen  
Figure 19. MAX2047 EV Kit Component Placement Guide—  
Bottom Silkscreen  
1.0"  
1.0"  
Figure 21. MAX2047 EV Kit PC Board Layout—Ground Layer  
(Layer 2)  
Figure 20. MAX2047 EV Kit PC Board Layout—Primary  
Component Side  
_______________________________________________________________________________________  
9
MAX2045/MAX2046/MAX2047 Evaluation Kits  
1.0"  
1.0"  
Figure 22. MAX2047 EV Kit PC Board Layout—Route Layer  
(Layer 3)  
Figure 23. MAX2047 EV Kit PC Board Layout—Secondary Side  
1.0"  
1.0"  
Figure 24. MAX2047 EV Kit PC Board Layout—Top Solder  
Mask  
Figure 25. MAX2047 EV Kit PC Board Layout—Bottom Solder  
Mask  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
10 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX204C/D

+5V RS-232 Transceivers with 0.1uF External Capacitors
MAXIM

MAX204CPE

+5V RS-232 Transceivers with 0.1uF External Capacitors
MAXIM

MAX204CPE+

Line Transceiver, 4 Func, 4 Driver, CMOS, PDIP16, PLASTIC, DIP-16
MAXIM

MAX204CWE

+5V RS-232 Transceivers with 0.1uF External Capacitors
MAXIM

MAX204CWE+

暂无描述
MAXIM

MAX204CWE+T

Line Transceiver, 4 Func, 4 Driver, CMOS, PDSO16, SO-16
MAXIM

MAX204EPE

+5V RS-232 Transceivers with 0.1uF External Capacitors
MAXIM

MAX204EPE+

暂无描述
MAXIM

MAX204EWE

+5V RS-232 Transceivers with 0.1uF External Capacitors
MAXIM

MAX204EWE+

Line Transceiver, 4 Func, 4 Driver, CMOS, PDSO16, SO-16
MAXIM

MAX204EWE+T

暂无描述
MAXIM

MAX204EWE-T

Line Transceiver, 4 Func, 4 Driver, CMOS, PDSO16, SO-16
MAXIM