MAX2055EUP+TD [MAXIM]

Baseband Circuit, BICMOS, PDSO20, 4.40 MM, ROHS COMPLIANT, MO-153AC, TSSOP-20;
MAX2055EUP+TD
型号: MAX2055EUP+TD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Baseband Circuit, BICMOS, PDSO20, 4.40 MM, ROHS COMPLIANT, MO-153AC, TSSOP-20

电信 信息通信管理 光电二极管 电信集成电路
文件: 总13页 (文件大小:624K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2799; Rev 0; 4/03  
Digitally Controlled, Variable-Gain, Differential  
ADC Driver/Amplifier  
MAX205  
General Description  
Features  
The MAX2055 high-performance, digitally controlled,  
variable-gain, differential analog-to-digital converter  
(ADC) driver/amplifier (DVGA) is designed for use from  
30MHz to 300MHz in base station receivers.  
30MHz to 300MHz Frequency Range  
Single-Ended-to-Differential Conversion  
-3dB to +20dB Variable Gain  
The device integrates a digitally controlled attenuator  
and a high-linearity single-ended-to-differential output  
amplifier, which can either eliminate an external trans-  
former, or can improve the even-order distortion perfor-  
mance of a transformer-coupled circuit, thus relaxing  
the requirements of the anti-alias filter preceding an  
ADC. Targeted for ADC driver applications to adjust  
gain either dynamically or as a one-time channel gain  
setting, the MAX2055 is ideal for applications requiring  
high performance. The attenuator provides 23dB of  
attenuation range with 0.2dB accuracy.  
40dBm Output IP3 (at All Gain States and 70MHz)  
2nd Harmonic -76dBc  
3rd Harmonic -69dBc  
Noise Figure: 5.8dB at Maximum Gain  
Digitally Controlled Gain with 1dB Resolution and  
0.2dB Accuracy  
Adjustable Bias Current  
The MAX2055 is available in a thermally enhanced 20-  
pin TSSOP-EP package and operates over the -40°C to  
+85°C temperature range.  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
Applications  
MAX2055EUP-T  
-40°C to +85°C  
20 TSSOP-EP*  
Cellular Base Stations  
PHS/PAS Infrastructure  
Receiver Gain Control  
Broadband Systems  
*EP = Exposed paddle.  
Automatic Test Equipment  
Terrestrial Links  
Pin Configuration/  
Functional Diagram  
High-Performance ADC Drivers  
TOP VIEW  
20 GND  
V
CC  
1
19  
18  
17  
16  
15  
14  
13  
12  
11  
ATTN  
GND  
RF_IN  
2
3
OUT  
GND  
B4  
MAX2055  
I
4
SET  
5
C
C
B3  
ATTENUATION  
B2  
6
LOGIC  
AMP  
IN  
CONTROL  
L
E
B1  
7
B0  
C
I
8
BP  
V
CC  
9
BIAS  
RF_OUT+  
RF_OUT-  
10  
TSSOP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Digitally Controlled, Variable-Gain, Differential  
ADC Driver/Amplifier  
ABSOLUTE MAXIMUM RATINGS  
All Pins to GND. .....................................-0.3V to +(V  
+ 0.25V)  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +165°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
Input Signal (RF_IN)............................…………………….20dBm  
Output Power (RF_OUT)...................................................24dBm  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin TSSOP (derate 21.7mW/°C above +70°C) ...........2.1W  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
MAX205  
DC ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1; V  
= +4.75V to +5.25V, GND = 0V. No input signals applied, and input and output ports are terminated with  
CC  
50Ω. R1 = 1.13kΩ, T = -40°C to +85°C. Typical values are at V  
= +5V and T = +25°C, unless otherwise noted.) (Notes 1, 2)  
A
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
Supply Voltage  
Supply Current  
V
4.75  
5.0  
240  
1.1  
5.25  
290  
V
CC  
I
mA  
mA  
CC  
I
Current  
I
SET  
SET  
CONTROL INPUTS  
Control Bits  
Parallel  
5
Bits  
V
Input Logic High  
Input Logic Low  
Input Leakage Current  
2
0.6  
V
-1.2  
+1.2  
µA  
AC ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1; V  
= +4.75V to +5.25V, GND = 0V, max gain (B0 = B1 = B2 = B3 = B4 = 0), R = 1.13kΩ, P = 5dBm,  
CC  
1
OUT  
f
IN  
= 70MHz, 50Ω system impedance. Typical values are at V  
= +5V and T = +25°C, unless otherwise noted.) (Notes 1, 2)  
CC A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
dB  
Frequency Range  
Gain  
f
30  
300  
R
G
19.9  
0.06  
0.7  
Amplitude Unbalance  
Phase Unbalance  
Minimum Reverse Isolation  
Noise Figure  
(Note 3)  
(Note 3)  
dB  
Degrees  
dB  
29  
NF  
5.8  
dB  
Output 1dB Compression Point  
P
25.7  
dBm  
1dB  
OIP2  
OIP3  
f + f , f = 70MHz, f = 71MHz, 5dBm/tone  
at RF_OUT  
1
2
1
2
2nd-Order Output Intercept Point  
75  
dBm  
3rd-Order Output Intercept Point  
2nd Harmonic  
All gain conditions, 5dBm/tone at RF_OUT  
40  
-76  
-69  
23  
1
dBm  
dBc  
dBc  
dB  
2f  
3f  
IN  
IN  
3rd Harmonic  
RF Gain-Control Range  
Gain-Control Resolution  
Attenuation Absolute Accuracy  
dB  
Compared to the ideal expected attenuation  
Between adjacent states  
0.2  
dB  
+0.05/  
-0.2  
Attenuation Relative Accuracy  
Gain Drift Over Temperature  
dB  
dB  
T
= -40°C to +85°C  
0.3  
A
2
_______________________________________________________________________________________  
Digitally Controlled, Variable-Gain, Differential  
ADC Driver/Amplifier  
AC ELECTRICAL CHARACTERISTICS (continued)  
MAX205  
(Circuit of Figure 1; V  
= +4.75V to +5.25V, GND = 0V, max gain (B0 = B1 = B2 = B3 = B4 = 0), R = 1.13kΩ, P  
= 5dBm,  
OUT  
CC  
1
f
IN  
= 70MHz, 50Ω system impedance. Typical values are at V = +5V and T = +25°C, unless otherwise noted.) (Notes 1, 2)  
CC A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Gain Flatness Over 50MHz  
Bandwidth  
Peak-to-peak for all settings  
50% control to 90% RF  
0.5  
dB  
Attenuator Switching Time  
Input Return Loss  
40  
15  
15  
12  
ns  
f
f
f
= 30MHz to 300MHz, all gain conditions  
= 30MHz to 250MHz, all gain conditions  
= 250MHz to 300MHz, all gain conditions  
dB  
R
R
R
Output Return Loss  
dB  
Note 1: Guaranteed by design and characterization.  
Note 2: All limits reflect losses of external components. Output measurements are taken at RF_OUT using the application circuit  
shown in Figure 1.  
Note 3: The amplitude and phase unbalance are tested with 50Ω resistors connected from OUT+/OUT- to GND.  
Typical Operating Characteristics  
(Circuit of Figure 1, V  
= 5.0V, R = 1.13kΩ, max gain (B0 = B1 = B2 = B3 = B4 = 0), P  
= 5dBm, T = +25°C, unless other-  
CC  
1
OUT A  
wise noted.)  
INPUT RETURN LOSS vs. RF FREQUENCY  
OUTPUT RETURN LOSS vs. RF FREQUENCY  
(ALL STATES)  
SUPPLY CURRENT vs. TEMPERATURE  
(ALL STATES)  
270  
260  
250  
240  
230  
220  
210  
0
5
0
5
V
= 5.25V  
10  
15  
20  
25  
30  
35  
40  
10  
15  
20  
25  
30  
35  
40  
CC  
V
= 5.0V  
CC  
V
CC  
= 4.75V  
-40  
-15  
10  
35  
60  
85  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
GAIN vs. RF FREQUENCY (ALL STATES)  
GAIN vs. RF FREQUENCY  
GAIN vs. RF FREQUENCY  
25  
20  
15  
10  
5
24  
22  
20  
18  
16  
14  
12  
10  
24  
22  
20  
18  
16  
14  
12  
10  
T
A
= -40°C  
V
CC  
= 4.75V  
T
= +25°C  
A
V
= 5.25V  
CC  
V
CC  
= 5.0V  
T
A
= +85°C  
0
-5  
-10  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
3
Digitally Controlled, Variable-Gain, Differential  
ADC Driver/Amplifier  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5.0V, R = 1.13kΩ, max gain (B0 = B1 = B2 = B3 = B4 = 0), P  
= 5dBm, T = +25°C, unless other-  
A
CC  
1
OUT  
wise noted.)  
ATTENUATION ABSOLUTE ACCURACY  
(ALL STATES)  
ATTENUATION RELATIVE ACCURACY  
(ALL STATES)  
REVERSE ISOLATION vs. RF FREQUENCY  
1.0  
0.8  
1.0  
0.8  
40  
36  
32  
28  
24  
20  
0.6  
0.6  
MAX205  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
NOISE FIGURE vs. FREQUENCY  
OUTPUT P-1dB vs. FREQUENCY  
OUTPUT P-1dB vs. FREQUENCY  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
27  
26  
25  
24  
23  
22  
21  
27  
26  
25  
24  
23  
22  
21  
T
= +85°C  
= -40°C  
V
= +5.25V  
A
CC  
T
= +85°C  
A
V
= +5V  
T
A
= +25°C  
CC  
T
A
V
= +4.75V  
CC  
T
A
= +25°C  
T
A
= -40°C  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
OUTPUT IP3 vs. FREQUENCY  
OUTPUT IP3 vs. FREQUENCY  
INPUT IP3 vs. ATTENUATION STATE  
44  
42  
40  
38  
36  
34  
32  
30  
44  
42  
40  
38  
36  
34  
32  
30  
55  
50  
45  
40  
35  
30  
25  
20  
15  
P
= P = 5dBm  
RF2  
RF1  
AT OUTPUT, Δf = 1MHz,  
= 70MHz  
V
= +5.25V  
CC  
f
IN  
V
= +5V  
CC  
T
A
= +85°C  
T
A
= +25°C  
V
= +4.75V  
CC  
T
= -40°C  
A
P
RF1  
= P = 5dBm  
P
= P = 5dBm  
RF1 RF2  
AT OUTPUT, Δf = 1MHz  
RF2  
AT OUTPUT, Δf = 1MHz  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
0
4
8
12  
16  
20  
24  
ATTENUATION STATE  
4
_______________________________________________________________________________________  
Digitally Controlled, Variable-Gain, Differential  
ADC Driver/Amplifier  
MAX205  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5.0V, R = 1.13kΩ, max gain (B0 = B1 = B2 = B3 = B4 = 0), P  
= 5dBm, T = +25°C, unless other-  
A
CC  
1
OUT  
wise noted.)  
3RD HARMONIC vs. FREQUENCY  
3RD HARMONIC vs. FREQUENCY  
2ND HARMONIC vs. FREQUENCY  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
T
A
= +85°C  
T
A
= -40°C  
T
A
= -40°C  
V
CC  
= +5.25V  
T
= +25°C  
V
= +5V  
CC  
A
V
CC  
= +4.75V  
T
= +85°C  
A
T
= +25°C  
A
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
2ND HARMONIC vs. FREQUENCY  
OUTPUT IP2 vs. FREQUENCY (f + f )  
OUTPUT IP2 vs. FREQUENCY (f + f )  
1 2  
1
2
-60  
-65  
-70  
-75  
-80  
-85  
-90  
85  
80  
75  
70  
65  
60  
55  
50  
85  
80  
75  
70  
65  
60  
55  
50  
V
CC  
= +4.75V  
T
A
= +25°C  
V
CC  
= +5.0  
V
= +5.25V  
CC  
V
CC  
= +5.25V  
V
= +4.75V  
CC  
T = -40°C  
A
V
= +5V  
T
A
= +85°C  
CC  
P
= P = 5dBm  
RF2  
P = P = 5dBm  
RF1 RF2  
RF1  
AT OUTPUT, Δf = 1MHz  
AT OUTPUT, Δf = 1MHz  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
OUTPUT-PORT AMPLITUDE UNBALANCE  
vs. FREQUENCY  
OUTPUT-PORT PHASE UNBALANCE  
vs. FREQUENCY  
0.25  
0.20  
0.15  
0.10  
0.05  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
5
Digitally Controlled, Variable-Gain, Differential  
ADC Driver/Amplifier  
Typical Operating Characteristics (continued)  
(Circuit of Figure 2, V  
= 5.0V, R = 909Ω, max gain, (B0 = B1 = B2 = B3 = B4 = 0), P  
= 5dBm, T = +25°C, unless otherwise  
A
CC  
1
OUT  
noted.)  
INPUT RETURN LOSS vs. RF FREQUENCY  
OUTPUT RETURN LOSS vs. FREQUENCY  
(ALL STATES)  
(ALL STATES)  
SUPPLY CURRENT vs. TEMPERATURE  
0
10  
20  
30  
40  
50  
60  
0
270  
260  
250  
240  
230  
220  
210  
10  
20  
30  
40  
50  
MAX205  
V
CC  
= 5.25V  
V
= 5.0V  
CC  
V
= 4.75V  
CC  
60  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
-40  
-15  
10  
35  
60  
85  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
GAIN vs. RF FREQUENCY (ALL STATES)  
GAIN vs. RF FREQUENCY  
GAIN vs. RF FREQUENCY  
25  
20  
15  
10  
5
24  
22  
20  
18  
16  
14  
12  
10  
24  
22  
T
A
= -40°C  
V
CC  
= 4.75V  
20  
18  
16  
14  
12  
10  
T
A
= +25°C  
V
= 5.25V  
CC  
V
= 5.0V  
CC  
T
= +85°C  
A
0
-5  
-10  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
ATTENUATION ABSOLUTE ACCURACY  
(ALL STATES)  
ATTENUATION RELATIVE ACCURACY  
(ALL STATES)  
REVERSE ISOLATION vs. RF FREQUENCY  
1.0  
0.8  
1.0  
0.8  
40  
36  
32  
28  
24  
20  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Digitally Controlled, Variable-Gain, Differential  
ADC Driver/Amplifier  
MAX205  
Typical Operating Characteristics (continued)  
(Circuit of Figure 2, V  
= 5.0V, R = 909Ω, max gain, (B0 = B1 = B2 = B3 = B4 = 0), P  
= 5dBm, T = +25°C, unless otherwise  
A
OUT  
CC  
1
noted.)  
NOISE FIGURE vs. FREQUENCY  
OUTPUT P-1dB vs. FREQUENCY  
OUTPUT P-1dB vs. FREQUENCY  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
27  
26  
25  
24  
23  
22  
21  
27  
T
A
= +85°C  
26  
T
A
= +85°C  
V
= +5.25V  
CC  
25  
24  
23  
22  
21  
V = +5V  
CC  
T
= +25°C  
V
= +4.75V  
A
CC  
T
A
= -40°C  
T
A
= +25°C  
T
= -40°C  
A
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
OUTPUT IP3 vs. FREQUENCY  
OUTPUT IP3 vs. FREQUENCY  
INPUT IP3 vs. ATTENUATION STATE  
44  
42  
40  
38  
36  
34  
32  
30  
44  
42  
40  
38  
36  
34  
32  
30  
55  
50  
45  
40  
35  
30  
25  
20  
15  
P
= P = 5dBm  
RF2  
RF1  
AT OUTPUT, Δf = 1MHz,  
= 70MHz  
V
= +5.25V  
CC  
f
IN  
T
A
= +25°C  
V
CC  
= +4.75V  
V
= +5V  
T
A
= +85°C  
CC  
T
= -40°C  
A
P
RF1  
= P = 5dBm  
P
= P = 5dBm  
RF1 RF2  
RF2  
AT OUTPUT, Δf = 1MHz  
AT OUTPUT, Δf = 1MHz  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
0
4
8
12  
16  
20  
24  
ATTENUATION STATE  
3RD HARMONIC vs. FREQUENCY  
3RD HARMONIC vs. FREQUENCY  
2ND HARMONIC vs. FREQUENCY  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
T
= +25°C  
A
T
= -40°C  
A
T
A
= -40°C  
V
= +5.25V  
CC  
V
= +5V  
CC  
T
A
= +85°C  
T
= +25°C  
T = +85°C  
A
A
V
= +4.75V  
CC  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Digitally Controlled, Variable-Gain, Differential  
ADC Driver/Amplifier  
Typical Operating Characteristics (continued)  
(Circuit of Figure 2, V  
= 5.0V, R = 909Ω, max gain, (B0 = B1 = B2 = B3 = B4 = 0), P  
= 5dBm, T = +25°C, unless otherwise  
CC  
1
OUT A  
noted.)  
2ND HARMONIC vs. FREQUENCY  
OUTPUT IP2 vs. FREQUENCY (f + f )  
OUTPUT IP2 vs. FREQUENCY (f + f )  
1
2
1
2
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
85  
80  
75  
70  
65  
60  
55  
50  
80  
75  
70  
65  
60  
55  
50  
T
A
= +85°C  
V
CC  
= +5.0V  
V
= +4.75V  
CC  
MAX205  
V
= +5.25V  
CC  
V
= +5.25V  
CC  
V
= +5V  
CC  
T = +25°C  
A
V
= +4.75V  
CC  
T
A
= -40°C  
P
= P = 5dBm  
RF2  
P = P = 5dBm  
RF1 RF2  
RF1  
AT OUTPUT, Δf = 1MHz  
AT OUTPUT, Δf = 1MHz  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
OUTPUT-PORT AMPLITUDE UNBALANCE  
vs. FREQUENCY  
OUTPUT-PORT PHASE UNBALANCE  
vs. FREQUENCY  
0.25  
0.20  
0.15  
0.10  
0.05  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (MHz)  
8
_______________________________________________________________________________________  
Digitally Controlled, Variable-Gain, Differential  
ADC Driver/Amplifier  
MAX205  
Pin Description  
PIN  
NAME  
FUNCTION  
Power Supply. Bypass to GND with capacitors as close to the pin as possible as shown in the typical  
application circuits (Figures 1 and 2).  
1, 9  
V
CC  
Signal Input. Internally matched to 50Ω over the operating frequency. See the typical application  
circuit for recommended component values.  
2
RF_IN  
Ground. Use low-inductance layout techniques on the PC board. Solder the exposed paddle to the  
board ground plane.  
3, 18, 20, EP  
GND  
B4–B0  
4–8  
10  
Attenuation Control Bits. Digital input for attenuation control. See Table 3 for attenuation setting.  
Inverted Differential Signal Output. Requires an external pullup choke inductor (120mA typical  
RF_OUT-  
current) to V  
along with a DC-blocking capacitor; see Figures 1 and 2.  
CC  
Noninverted Differential Signal Output. Requires an external pullup choke inductor (120mA typical  
current) to V along with a DC-blocking capacitor; see Figures 1 and 2.  
11  
RF_OUT+  
CC  
12  
13  
I
Amplifier Bias Input. See Figures 1 and 2 for detailed connection.  
Bypass Capacitor. See Figures 1 and 2 for detailed connection.  
BIAS  
C
BP  
Amplifier DC Ground. Requires choke inductor that can handle supply current. DC resistance of  
inductor should be less than 0.2Ω.  
14  
L
E
15  
16  
17  
19  
AMP  
Amplifier Input. Requires DC-coupling to allow biasing.  
IN  
C
Compensation Capacitor. Requires connection to AMP (pin 15) for stability.  
IN  
C
I
Connect R1 from I  
to GND (see Table 1 or Table 2 for values).  
SET  
SET  
ATTN  
Attenuator Output. Requires external DC-blocking capacitor.  
OUT  
Table 1. Suggested Components of  
Circuit of Figure 1  
Table 2. Suggested Components of  
Circuit of Figure 2  
COMPONENT  
VALUE  
1nF  
SIZE  
0603  
0603  
0603  
0603  
1008  
0603  
0603  
COMPONENT  
VALUE  
1nF  
SIZE  
0603  
0603  
0603  
1008  
0603  
0603  
C1, C3–C6, C8, C9, C10, C12  
C1, C3, C4, C5, C7–C10, C12  
C2, C11  
L1, L3  
L2  
100pF  
330nH  
100nH  
680nH  
1.13kΩ  
10Ω  
C2, C11  
L1, L2, L3  
L4, L5  
R1  
100pF  
330nH  
680nH  
909Ω  
10Ω  
L4, L5  
R1  
R7  
R7  
T2  
1:1  
T1, T2  
1:1  
_______________________________________________________________________________________  
9
Digitally Controlled, Variable-Gain, Differential  
ADC Driver/Amplifier  
V
CC  
C3  
C2  
C4  
C6  
T1  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
GND  
CC  
RF_IN  
ATTN  
2
3
4
5
6
7
8
9
OUT  
RF_IN  
MAX205  
C1  
GND  
B4  
GND  
R1  
I
SET  
C5  
B3  
B2  
B1  
B0  
C
C
1
ATTENUATION  
LOGIC  
CONTROL  
CONTROL  
INPUTS  
AMP  
IN  
L2  
L
E
C
BP  
L1  
R7  
V
V
MAX2055  
I
BIAS  
CC  
CC  
L3  
C12  
C11  
RF_OUT+  
L4  
10  
RF_OUT-  
V
CC  
L5  
C10  
C8  
C9  
1
T2  
RF_OUT  
Figure 1. Typical Application Circuit  
feedback to achieve high gain and linearity over a wide  
bandwidth.  
Detailed Description  
The MAX2055 is a high-dynamic-range, digitally con-  
trolled, variable-gain differential ADC driver/amplifier  
(DVGA) for use in applications from 30MHz to 300MHz.  
The amplifier is designed for 50Ω single-ended input  
and 50Ω differential output systems.  
Applications Information  
Digitally Controlled Attenuator  
The digital attenuator is controlled through five logic  
lines: B0, B1, B2, B3, and B4. Table 3 lists the attenua-  
tion settings. The input and output of this attenuator  
require external DC blocking capacitors. The attenua-  
tor’s insertion loss is approximately 2dB, when the con-  
trol bits are set to 0dB (B0 = B1 = B2 = B3 = B4 = 0).  
The MAX2055 integrates a digital attenuator with a  
23dB selectable attenuation range and a high-linearity,  
single-ended-to-differential output amplifier. The attenu-  
ator is digitally controlled through five logic lines:  
B0–B4. The on-chip attenuator provides up to 23dB of  
attenuation with 0.2dB accuracy. The single-ended  
input to differential output amplifier utilizes negative  
Single-Ended-to-Differential Amplifier  
The MAX2055 integrates a single-ended-to-differential  
amplifier with a nominal gain of 22dB in a negative  
10 ______________________________________________________________________________________  
Digitally Controlled, Variable-Gain, Differential  
ADC Driver/Amplifier  
MAX205  
V
CC  
C3  
C2  
1
20  
19  
18  
17  
16  
15  
14  
GND  
V
CC  
RF_IN  
ATTN  
OUT  
2
3
4
5
6
7
8
9
RF_IN  
C1  
GND  
GND  
B4  
R1  
C4  
I
SET  
C5  
B3  
B2  
B1  
B0  
C
C
ATTENUATION  
LOGIC  
CONTROL  
CONTROL  
INPUTS  
AMP  
IN  
L2  
L
E
C
BP  
13  
12  
L1  
R7  
V
CC  
V
C7  
CC  
MAX2055  
I
BIAS  
11  
L3  
C12  
C11  
RF_OUT-  
10  
RF_OUT+  
L4  
V
CC  
L5  
C10  
C8  
C9  
1
T2  
RF_OUT  
Figure 2. Low-Cost Application Circuit  
feedback topology. This amplifier is optimized for a fre-  
quency range of operation from 30MHz to 300MHz with  
a high-output third-order intercept point (OIP3). The  
bias current is chosen to optimize the IP3 of the amplifi-  
er. When R1 is 1.13kΩ (909Ω if using the circuit of  
Figure 2), the current consumption is 240mA while  
exhibiting a 40dBm typical output IP3 at 70MHz. The  
common-mode inductor, L2, provides a high common-  
mode rejection with excellent amplitude and phase bal-  
ance at the output. L2 must handle the supply current  
and have DC resistance less than 0.2Ω.  
Choke Inductor  
The single-ended amplifier input and differential output  
ports require external choke inductors. At the input,  
connect a 330nH bias inductor from AMP (pin 15) to  
IN  
I
(pin 12). Connect 680nH choke inductors from  
BIAS  
RF_OUT+ (pin 11) and RF_OUT- (pin 10) to V . These  
CC  
connections provide bias current to the amplifier.  
Layout Considerations  
A properly designed PC board is an essential part of  
any RF/microwave circuit. Keep RF signal lines as short  
as possible to reduce losses, radiation, and induc-  
tance. For best performance, route the ground-pin  
traces directly to the exposed pad underneath the  
______________________________________________________________________________________ 11  
Digitally Controlled, Variable-Gain, Differential  
ADC Driver/Amplifier  
package. This pad should be connected to the ground  
Table 3. Attenuation Setting vs. Gain-  
Control Bits  
plane of the board by using multiple vias under the  
device to provide the best RF/thermal conduction path.  
Solder the exposed pad on the bottom of the device  
package to a PC board exposed pad.  
ATTENUATION  
B4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
B3*  
0
B2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
B1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
B0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
The MAX2055 Evaluation Kit can be used as a refer-  
ence for board layout. Gerber files are available upon  
request at www.maxim-ic.com.  
0
2
0
3
0
MAX205  
Power-Supply Bypassing  
4
0
Proper voltage-supply bypassing is essential for high-  
5
0
frequency circuit stability. Bypass each V  
pin with a  
CC  
6
0
1000pF and 100pF capacitor. Connect the 100pF  
capacitor as close to the device as possible. Resistor  
R7 helps reduce switching transients. If switching tran-  
sients are not a concern, R7 is not required. Therefore,  
7
0
8
1
9
1
connect pin 9 directly to V  
.
CC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
Exposed Paddle RF Thermal  
Considerations  
1
1
The EP of the MAX2055’s 20-pin TSSOP-EP package  
provides a low thermal-resistance path to the die. It is  
important that the PC board on which the IC is mounted  
be designed to conduct heat from this contact. In addi-  
tion, the EP provides a low-inductance RF ground path  
for the device.  
1
1
1
X
X
X
X
X
X
X
X
It is recommended that the EP be soldered to a ground  
plane on the PC board, either directly or through an  
array of plated via holes.  
Soldering the pad to ground is also critical for efficient  
heat transfer. Use a solid ground plane wherever  
possible.  
*Enabling B4 disables B3 and the minimum attenuation is  
16dB.  
Chip Information  
TRANSISTOR COUNT: 325  
PROCESS: BiCMOS  
12 ______________________________________________________________________________________  
Digitally Controlled, Variable-Gain, Differential  
ADC Driver/Amplifier  
MAX205  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, TSSOP 4.40mm BODY  
1
21-0066  
I
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX2055EUP-D

Baseband Circuit, BICMOS, PDSO20, 4.40 MM, MO-153AC, TSSOP-20
MAXIM

MAX2055EUP-T

Digitally Controlled, Variable-Gain, Differential ADC Driver/Amplifier
MAXIM

MAX2055EUP-TD

Baseband Circuit, BICMOS, PDSO20, 4.40 MM, MO-153AC, TSSOP-20
MAXIM

MAX2055EVKIT

Evaluation Kit for the MAX2055
MAXIM

MAX2055_1

Evaluation Kit
MAXIM

MAX2056

800MHz to 1000MHz Variable-Gain Amplifier with Analog Gain Control
MAXIM

MAX2056ETX

800MHz to 1000MHz Variable-Gain Amplifier with Analog Gain Control
MAXIM

MAX2056ETX+

Analog Circuit, 1 Func, BICMOS, PQCC36,
MAXIM

MAX2056ETX+TD

Wide Band Medium Power Amplifier, 800MHz Min, 1000MHz Max, 6 X 6 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-36
MAXIM

MAX2056ETX-T

800MHz to 1000MHz Variable-Gain Amplifier with Analog Gain Control
MAXIM

MAX2056EVKIT

Evaluation Kit
MAXIM

MAX2056_1

Evaluation Kit
MAXIM