MAX21000+ [MAXIM]

Analog Circuit, 1 Func, BICMOS, PQCC16;
MAX21000+
型号: MAX21000+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit, 1 Func, BICMOS, PQCC16

信息通信管理
文件: 总26页 (文件大小:881K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
OIS Suitability  
General Description  
•ꢀ MinimumꢀPhaseꢀDelayꢀ(~3ºꢀatꢀ10Hz)  
•ꢀ HighꢀBandwidthꢀ(400Hz)  
•ꢀ HighꢀODRꢀ(10kHz)  
•ꢀ LowꢀNoiseꢀ(9mdps/√Hzꢀtyp)  
• Four Different FS in OIS Mode:  
±31.25/±62.50/±125/±250 dps  
The MAX21000 is a low power, low noise, 3-axis angular  
rate sensor that delivers unprecedented accuracy and  
sensitivity over temperature and time. It operates with  
a supply voltage as low as 1.71V for minimum power  
consumption. It includes a sensing element and an IC  
interface that provides the measured angular rate to the  
2
external world through a digital interface (I C/SPI).  
Unprecedented Accuracy and Stability  
•ꢀ EmbeddedꢀDigital-OutputꢀTemperatureꢀSensor  
• Automatic Temperature Compensation  
• Ultra-Stable Over Temperature and Time  
• Factory Calibrated  
The IC has a full scale of ±31.25/±62.50/±125/±250/  
±500/±1k/±2k degrees per second (dps) and measures  
rates with a finely tunable user-selectable bandwidth. The  
high ODR and the large BW, the low noise at highest FS,  
together with the low phase delay, make the IC suitable  
for both user interface (UI) and optical image stabilization  
(OIS) applications.  
High-SpeedꢀInterface  
2
• I CꢀStandardꢀ(100kHz),ꢀFastꢀ(400kHz),ꢀand  
High-Speedꢀ(3.4MHz)ꢀSerialꢀInterface  
•ꢀ 10MHzꢀSPIꢀInterface  
• Reduces AP Load  
The IC is a highly integrated solution available in a com-  
pact 3mm x 3mm x 0.9mm plastic land grid array (LGA)  
package and does not require any external components  
other than supply bypass capacitors. It can operate over  
the -40ºC to +85ºC temperature range.  
•ꢀ EnablesꢀUI/OISꢀSerialꢀInterfaceꢀMultiplexing  
FlexibleꢀEmbeddedꢀFIFO  
• Size: 512bytes (256 x 16 bits)  
• Single-Byte Reading Available  
• Four Different FIFO Modes Available  
• Reduces AP Load  
Applications  
●ꢀ Motion Control with MMI (Man-Machine Interface)  
●ꢀ NoꢀTouchꢀUI  
●ꢀ GPSꢀNavigationꢀSystems  
HighꢀConfigurability  
• Integrated Digitally Programmable Low- and  
●ꢀ AppliancesꢀandꢀRobotics  
HighpassꢀFilters  
●ꢀ Motion-EnabledꢀGameꢀControllers  
●ꢀ Motion-BasedꢀPortableꢀGaming  
●ꢀ Motion-Basedꢀ3DꢀMouseꢀandꢀ3DꢀRemoteꢀControls  
●ꢀ HealthꢀandꢀSportsꢀMonitoring  
●ꢀ Optical Image Stabilization  
• Independently Selectable Data ODR and Interrupt  
ODR  
• 7 Selectable Full Scales (31.25/62.5/125/250/500/  
1000/2000 dps)  
• 256 Selectable ODR  
Ordering Information appears at end of data sheet.  
Flexible Interrupt Generator  
For related parts and recommended products to use with this part, refer  
to www.maximintegrated.com/MAX21000.related.  
• Two Digital Output Lines  
• 2 Independent Interrupt Generators  
•ꢀ 8ꢀMaskableꢀInterruptꢀSourcesꢀEach  
• Configurable as Latched/Unlatched/Timed  
•ꢀ EmbeddedꢀIndependentꢀAngularꢀRateꢀComparators  
• Independent Threshold and Duration  
• Level/Pulse and OD/PP Options Available  
Benefits and Features  
Minimum Overall Footprint  
• Industry’s Smallest and Thinnest Package for  
Portable Devices (3mm x 3mm x 0.9mm LGA)  
•ꢀ Noꢀexternalꢀcomponents  
Flexible Data Synchronization Pin  
•ꢀ ExternalꢀWakeup  
●ꢀ UniqueꢀLow-PowerꢀCapabilities  
• Low Operating Current Consumption (5.4mA typ)  
•ꢀ EcoꢀModeꢀAvailableꢀatꢀ100Hzꢀwithꢀ3.0mAꢀ(typ)  
• 1.71V (min) Supply Voltage  
• Interrupt Generation  
• Single Data Capture Trigger  
• Multiple Data Capture Trigger  
• LSB Data Mapping  
• Standby Mode Current 2.7mA (typ)  
• 9µA (typ) Power-Down Mode Current  
•ꢀ HighꢀPSRRꢀandꢀDC-DCꢀConverterꢀOperation  
• 45ms Turn-On Time from Power-Down Mode  
• 5ms Turn-On Time from Standby Mode  
Uniqueꢀ48-BitꢀSerialꢀNumberꢀasꢀDieꢀID  
High-ShockꢀSurvivabilityꢀ(10,000ꢀG-Shock)  
19-6567; Rev 1; 2/13  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Absolute Maximum Ratings  
V
.......................................................................-0.3V to +6.0V  
I
Continuous Current..............................................100mA  
DD  
VDDIO  
V
.....................................-0.3V to Min (V  
+ 0.3V, +6.0V)  
Junction Temperature......................................................+150ºC  
Operating Temperature Range............................-40ºC to +85ºC  
Storage Temperature Range.............................-40ºC to +150ºC  
Lead Temperature (soldering, 10s) .................................+260ºC  
DDIO  
DD  
INT1,ꢀINT2,ꢀSDA_SDI_O,ꢀSA0_SDO,ꢀ  
SCL_CLK,ꢀCS,ꢀDSYNC.....................-0.3V to (V  
+ 0.3V)  
DDIO  
I
Continuous Current .................................................100mA  
VDD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Drops onto hard surfaces can cause shocks of greater than 10,000 g and can exceed the absolute maximum rating of the device. Exercise care in handling to avoid damage.  
(Note 1)  
Package Thermal Characteristics  
LGA  
Junction-to-CaseꢀThermalꢀResistanceꢀ(θ )........... 31.8°C/W  
Junction-to-AmbientꢀThermalꢀResistanceꢀ(θ ) ........... 160°C/W  
JA  
JC  
Note 1:ꢀ PackageꢀthermalꢀresistancesꢀwereꢀobtainedꢀusingꢀtheꢀmethodꢀdescribedꢀinꢀJEDECꢀspecificationꢀJESD51-7,ꢀusingꢀaꢀfour-layerꢀ  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= V  
ꢀ=ꢀ2.5V,ꢀINT1,ꢀINT2,ꢀT = -40°C to +85°C, SDA and SCL are unconnected, unless otherwise noted. Typical values are  
DD  
DDIO A  
at T = +25°C).  
A
PARAMETER  
SUPPLY AND CONSUMPTION  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage  
V
1.71  
1.71  
2.5  
2.5  
3.6  
V
V
DD  
DD  
V
+
DD  
0.3V  
V
(Noteꢀ2)  
V
DDIO  
DDIO  
IDD Current Consumption  
NormalꢀMode  
I
5.4  
2.7  
mA  
mA  
VDDN  
IDD Current Consumption Standby  
Modeꢀ(Noteꢀ3)  
I
VDDS  
200HzꢀODR  
100HzꢀODR  
3.3  
3.0  
mA  
mA  
IDD Current Consumption  
EcoꢀModeꢀ(Noteꢀ4)  
I
VDDT  
VDDP  
IDD Current Consumption  
Power Down Mode  
I
8.5  
µA  
TEMPERATURE SENSOR  
8 bit  
1
256  
1
digit/ºC  
digit/ºC  
Hz  
Temperature Sensor Output  
Change vs. Temperature  
T
SDR  
16 bit  
Temperature BW  
T
BW  
At T = +25ºC, 8 bit  
25  
A
Temperature Sensor Bias  
GYROSCOPE  
T
digit  
BIAS  
At T = +25ºC, 16 bit  
A
6400  
±31.25  
±62.5  
±125  
Gyro Full-Scale Range  
G
User selectable  
dps  
FSR  
±250  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Electrical Characteristics (continued)  
(V  
= V  
ꢀ=ꢀ2.5V,ꢀINT1,ꢀINT2,ꢀT = -40°C to +85°C, SDA and SCL are unconnected, unless otherwise noted. Typical values are  
DD  
DDIO A  
at T = +25°C).  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
±500  
MAX  
UNITS  
Gyro Full-Scale Range  
G
User selectable  
±1000  
±2000  
dps  
FSR  
For all the f and over the whole V  
S
including 1.8V  
DD  
GyroꢀRateꢀNoiseꢀDensity  
G
0.009  
0.025  
dps/√Hz  
dps/√Hz  
Hz  
RND  
GyroꢀRateꢀNoiseꢀDensityꢀinꢀ  
EcoꢀMode  
For all the FS and over the whole V  
includingꢀ1.8Vꢀatꢀ200HzꢀODR  
DD  
G
SPRND  
Gyro Bandwidth (Lowpass)  
(Noteꢀ5)  
G
2
400  
100  
BWL  
GyroꢀBandwidthꢀ(Highpass)  
(Noteꢀ6)  
G
0.1  
Hz  
BWH  
Phase Delay  
G
Atꢀ10Hz,ꢀ400Hzꢀbandwidth,ꢀ10kHzꢀODR  
2.9  
deg  
Hz  
%
PDL  
Output Data Rate (Noteꢀ7)  
SensitivityꢀError  
G
5
10k  
ODR  
G
±2  
960  
480  
240  
120  
60  
SE  
SO  
SD  
G
G
G
G
G
G
G
= 31.25  
= 62.5  
= 125  
FSR  
FSR  
FSR  
FSR  
FSR  
FSR  
FSR  
digit/  
dps  
Sensitivity  
G
= 250  
= 500  
= 1000  
= 2000  
30  
15  
Sensitivity Drift Over Temperature  
G
Maximum delta from T = +25ºC  
±2  
%
A
ZeroꢀRateꢀLevelꢀError  
G
G
G
±0.5  
dps  
ZRLE  
ZRLD  
TUPL  
TUPS  
Zero Rate Level Drift Over  
Temperature  
Maximum delta from T = +25ºC  
±2  
45  
2
dps  
ms  
ms  
A
Startup Time from Power Down  
Startup Time from Standby Mode  
G
G
ꢀ=ꢀ10kHz,  
ꢀ=ꢀ400Hz  
ODR  
BWL  
G
Nonlinearity  
G
0.2  
0.45  
4
%f  
S
NLN  
Angular Random Walk (ARW)  
In-Run Bias Stability  
Cross Axis  
G
º/√hr  
º/hr  
%
ARW  
G
At 1000s  
IBS  
G
1
XX  
For GFSR = 250, 500, 1000, 2000 dps,  
axes X, Z  
+f /4  
S
Self-Test Output  
STOR  
dps  
For GFSR = 250, 500, 1000, 2000 dps,  
axisꢀY  
-f /4  
S
Maxim Integrated  
3  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Electrical Characteristics (continued)  
(V  
= V  
ꢀ=ꢀ2.5V,ꢀINT1,ꢀINT2,ꢀT = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C).  
DD  
DDIO A A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IO DC SPECIFICATIONS (Note 9)  
+0.3 x  
Input Threshold Low  
V
T
T
T
= +25ºC  
= +25ºC  
= +25ºC  
V
V
V
IL  
A
A
A
V
DDIO  
0.7 x  
InputꢀThresholdꢀHigh  
V
IH  
V
DDIO  
0.05 x  
HysteresisꢀofꢀSchmittꢀTriggerꢀinput  
V
HYS  
V
DDIO  
I2C_CFG[3:2]ꢀ=ꢀ00  
I2C_CFG[3:2]ꢀ=ꢀ01  
I2C_CFG[3:2]ꢀ=ꢀ11  
3
6
mA  
mA  
mA  
Output Current  
(Noteꢀ8)  
I
/I  
OH OL  
12  
SPI SLAVE TIMING VALUES (Note 10)  
CLKꢀFrequency  
F
10  
50  
MHz  
ns  
C_CLK  
CS Setup Time  
t
6
12  
6
SU_CS  
CSꢀHoldꢀTime  
t
ns  
H_CS  
SDI Input Setup Time  
SDIꢀInputꢀHoldꢀTime  
CLKꢀFallꢀtoꢀSDOꢀValidꢀOutputꢀTime  
t
ns  
SU_SI  
t
12  
ns  
H_SI  
t
ns  
V_SDO  
SDOꢀOutputꢀHoldꢀTime  
ESD PROTECTION  
HumanꢀBodyꢀModel  
T
10  
ns  
H_SO  
HBM  
±2  
kV  
Note 2: V  
must be lower or equal than V  
analog.  
DDIO  
DD  
Note 3: In standby mode, only the drive circuit is powered on. In this condition, the outputs are not available. In this condition, the  
startup time depends only on the filters responses.  
Note 4: In eco mode, the sensor has higher rate noise density, but lower current consumption. In this condition, the selectable out-  
putꢀdataꢀrateꢀ(ODR)ꢀisꢀeitherꢀ25Hz,ꢀ50Hz,ꢀ100Hz,ꢀorꢀ200Hz.  
Note 5: User selectable: gyro bandwidth accuracy is ±10%.  
Note 6: Enable/disableꢀwithꢀuserꢀselectableꢀbandwidth.ꢀGyroꢀbandwidthꢀaccuracyꢀisꢀ±10%.  
Note 7: Userꢀselectableꢀwithꢀ256ꢀpossibleꢀvaluesꢀfromꢀ10kHzꢀdownꢀtoꢀ5Hz.ꢀODRꢀaccuracyꢀisꢀ±10%.  
Note 8: User can choose the best output current based on his PCB, interface speed, load, and consumption.  
Note 9: Based on characterization results, not production tested.  
Note 10:Basedꢀonꢀcharacterizationꢀresults,ꢀnotꢀproductionꢀtested.ꢀTestꢀconditionsꢀare:ꢀI2C_CFG[3:0]ꢀ=ꢀ1111.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
SPI Timing Diagrams  
4-WIRE SPI MODE  
t
CSW  
t
SU_CS  
CS  
t
H_CS  
CLK  
1
2
t
8
9
10  
t
C_CLK  
SU_SI  
SDI  
t
t
t
V_SDO  
H_SI  
H_SO  
HI-Z  
HI-Z  
SDO  
3-WIRE SPI MODE  
t
CSW  
t
SU_CS  
CS  
t
H_CS  
CLK  
1
2
8
9
10  
t
C_CLK  
t
SU_SI  
HI-Z  
SDI  
t
H_SI  
HI-Z  
SDO  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Typical Operating Characteristics  
(V  
= V  
= 2.5V, T = +25ºC, unless otherwise noted.)  
DD  
DDIO A  
X-AXIS DIGITAL OUTPUT  
vs. ANGULAR RATE  
30k  
Y-AXIS DIGITAL OUTPUT  
vs. ANGULAR RATE  
Z-AXIS DIGITAL OUTPUT  
vs. ANGULAR RATE  
30k  
30k  
20k  
10k  
0
20k  
10k  
0
20k  
T
A
= -40°C  
10k  
0
T
= +25°C  
T = +25°C  
A
A
T
A
= -40°C  
T = -40°C  
A
-10k  
-20k  
-30k  
-10k  
-20k  
-30k  
-10k  
-20k  
-30k  
T
= +85°C  
0
T
A
= +85°C  
0
T
A
= +85°C  
0
A
T
= +25°C  
A
-2k  
-1k  
1k  
2k  
-2k  
-1k  
1k  
2k  
-2k  
-1k  
1k  
2k  
ANGULAR RATE (dps)  
ANGULAR RATE (dps)  
ANGULAR RATE (dps)  
ZERO-RATE LEVEL vs. POWER SUPPLY  
MAGNITUDE RESPONSE  
PHASE RESPONSE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
BW = 400Hz  
Y
-10  
-20  
-30  
-40  
-50  
X
BW = 10Hz  
BW = 10Hz  
BW = 100Hz  
BW = 100Hz  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
BW = 400Hz  
Z
1.6  
2.1  
2.6  
3.1  
3.6  
1
10  
100  
1000  
0
100  
200  
300  
400  
500  
POWER SUPPLY (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Maxim Integrated  
6
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Pin Configuration  
TOP VIEW  
+
16 15 14  
V
RESERVED  
DSYNC  
INT1  
DDIO  
1
2
3
4
5
13  
12  
11  
10  
9
N.C.  
MAX21000  
N.C.  
SCL_CLK  
GND  
RESERVED  
INT2  
6
7
8
LGA  
(3mm x 3mm)  
Pin Description  
PIN  
1
NAME  
FUNCTION  
V
Interface and Interrupt Pad Supply Voltage  
DD_IO  
N.C.  
2, 3, 16  
NotꢀInternallyꢀConnected  
2
2
SPI and I C Clock. When in I Cꢀmode,ꢀtheꢀIOꢀhasꢀselectableꢀantispikeꢀfilterꢀandꢀdelayꢀtoꢀensureꢀ  
4
5
6
SCL_CLK  
GND  
correct hold time.  
Power-Supply Ground.  
2
2
SPI In/Out Pin and I C Serial Data. When in I Cꢀmode,ꢀtheꢀIOꢀhasꢀselectableꢀantispikeꢀfilterꢀandꢀ  
delay to ensure correct hold time.  
SDA_SDI_O  
2
7
8
SA0_SDO  
CS  
SPI Serial Data Out or I C Slave Address LSB  
SPI Chip Select/Serial Interface Selection  
Second Interrupt Line  
9
INT2  
10  
11  
RESERVED  
INT1  
MustꢀBeꢀConnectedꢀtoꢀGND  
First Interrupt Line  
Data Synchronization Pin. Used to wake up the MAX21000 from power down/standby and  
synchronize data with GPS/camera.  
12  
DSYNC  
13  
14  
15  
RESERVED  
Leave Unconnected  
V
DD  
DD  
AnalogꢀPowerꢀSupply.ꢀBypassꢀtoꢀGNDꢀwithꢀaꢀ0.1µFꢀcapacitorꢀandꢀoneꢀ1µF.ꢀ  
V
Must be tied to V  
in the application.  
DD  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Functional Diagram  
TIMER  
MAX21000  
MEMS  
GYRO  
SENSE  
FILTERING  
SCL_CLK  
SDA_SDI_O  
A
A
AFE  
AFE  
AFE  
2
SPI/I C  
SA0_SDO  
CS  
SLAVE  
REGISTERS  
AND  
A
FIFO  
DSYNC  
GYRO  
DRIVE  
CONTROL  
SYNC  
INT1  
INT2  
INTERRUPTS  
RING  
OSCILLATOR  
GND  
V
DD  
V
DD_IO  
powerꢀtheꢀMEMSꢀgyroscope,ꢀtheꢀMAX21000ꢀcanꢀnotꢀonlyꢀ  
operate at 1.71V but that supply can also be provided by  
a switching regular, to minimize the system power con-  
sumption.  
Detailed Description  
The MAX21000 is a low power, low voltage, small  
package three-axis angular rate sensor able to provide  
unprecedented accuracy and sensitivity over temperature  
and time.  
Power-supply current (mA): This parameter defines the  
typicalcurrentconsumptionwhentheMEMSgyroscopeꢀ  
is operating in normal mode.  
The IC is also the industry’s first gyroscope available in a  
3mm x 3mm package and capable of working with a sup-  
ply voltage as low as 1.71V.  
Power-supply current in standby mode (mA): This  
parameter defines the current consumption when the  
MEMSꢀ gyroscopeꢀ isꢀ inꢀ Standbyꢀ mode.ꢀ Toꢀ reduceꢀ powerꢀ  
consumption and have a faster turn-on time, in Standby  
mode only an appropriate subset of the sensor is turned off.  
It includes a sensing element and an IC interface that  
provides the measured angular rate to the external world  
through a digital interface (I2C/SPI).  
The IC has a full scale of ±250/±500/±1k/±2k dps for UI  
and ±31.25/±62.5/±125/±250 dps for OIS. It measures  
rates with a user-selectable bandwidth.  
Power-supply current in eco mode (mA): This param-  
eterꢀ definesꢀ theꢀ currentꢀ consumptionꢀ whenꢀ theꢀ MEMSꢀ  
gyroscope is in a special mode named eco mode. While  
in eco mode, the MAX21000 reduces significantly the  
power consumption, at the price of a slightly higher rate  
noise density.  
The IC is available in a 3mm x 3mm x 0.9 mm plastic land  
grid array (LGA) package and operates over the -40ºC to  
+85ºC temperature range.  
See the Definitions section for more information.  
Power-supply current in power-down mode (µA):  
This parameter defines the current consumption when  
theꢀ MEMSꢀ gyroscopeꢀ isꢀ poweredꢀ down.ꢀ Inꢀ thisꢀ mode,ꢀ  
both the mechanical sensing structure and reading chain  
are turned off. Users can configure the control register  
Definitions  
Power supply (V): This parameter defines the operating  
DCꢀpower-supplyꢀvoltageꢀrangeꢀofꢀtheꢀMEMSꢀgyroscope.ꢀ  
Although it is always a good practice to keep V  
clean  
2
DD  
through the I C/SPI interface for this mode. Full access  
with minimum ripple, unlike most of the competitors,  
who require an ultra-low noise, low-dropout regulator to  
2
to the control registers through the I C/SPI interface is  
guaranteed also in power-down mode.  
Maxim Integrated  
8  
www.maximintegrated.com  
 
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Full-scale range (dps): This parameter defines the mea-  
surement range of the gyroscope in degrees per second  
(dps). When the applied angular velocity is beyond the  
full-scale range, the gyroscope output signal is saturated.  
Three-Axis MEMS Gyroscope with 16-Bit ADCs  
and Signal Conditioning  
The IC consistsꢀ ofꢀ aꢀ single-driveꢀ vibratoryꢀ MEMSꢀ gyro-  
scopeꢀthatꢀdetectsꢀrotationsꢀaroundꢀtheꢀX,ꢀY,ꢀandꢀZꢀaxes.ꢀ  
When the gyroscope rotates around any of the sensing  
axes, the Coriolis Force determines a displacement, which  
can be detected as a capacitive variation. The resulting  
signal is then processed to produce a digital stream pro-  
portional to the angular rate. The analog-to-digital con-  
version uses 16-bit ADC converters. The gyro full-scale  
range can be digitally programmed to ±250, ±500, ±1000  
or ±2000 dps in UI mode and ±31.25/±62.5/±125/±250  
dps in OIS mode.  
Zero-rate level (dps): This parameter defines the zero-  
rate level when there is no angular velocity applied to the  
gyroscope.  
Sensitivity (digit/dps): Sensitivity (digit/dps) is the rela-  
tionship between 1 LSB and dps. It can be used to  
convert a digital gyroscope’s measurement in LSBs to  
angular velocity.  
Sensitivity change vs. temperature (%): This parameter  
defines the sensitivity change in percentage (%) over the  
operating temperature range specified in the data sheet.  
Interrupt Generators  
The MAX21000 offers two completely independent inter-  
rupt generators to ease the SW management of the inter-  
rupt generated. For instance, one line could be used to  
signalaDATA_READYeventwhilsttheotherlinemightꢀ  
be used, for instance, to notify the completion of the inter-  
nal startup sequence.  
Zero-rate level change vs. temperature (dps): This  
parameter defines the zero-rate level change in dps over  
the operating temperature range.  
Non-linearity (% FS): This parameter defines the maxi-  
mum error between the gyroscope‘s outputs and the best-  
fit straight line in percentage with respect to the full-scale  
(FS) range.  
Interrupt functionality can be configured through the  
Interrupt Configuration registers. Configurable items  
includeꢀ theꢀ INTꢀ pinꢀ levelꢀ andꢀ duration,ꢀ theꢀ clearingꢀ  
method, as well as the required triggers for the interrupts.  
System bandwidth (Hz): This parameter defines the  
frequency of the angular velocity signal from DC to the  
built-in bandwidth (BW) that the gyroscopes can measure.  
A dedicated register can be modified to adjust the gyro-  
scope’s bandwidth.  
The interrupt status can be read from the Interrupt Status  
Registers. The event that has generated an interrupt is  
available in two forms: latched and unlatched.  
Rate noise density (dps/√Hz): This parameter defines  
the standard resolution that users can get from the gyro-  
scopes outputs together with the BW parameter.  
Interrupt sources can be enabled/disabled and cleared indi-  
vidually. The list of possible interrupt sources includes the  
followingꢀconditions:ꢀDATA_READY,ꢀFIFO_READY,ꢀFIFO_  
THRESHOLD,ꢀFIFO_OVERRUN,ꢀRESTART,ꢀDSYNC.  
MAX21000 Architecture  
The MAX21000 comprises the following key blocks and  
functions:  
The interrupt generation can also be configured as  
latched, unlatched, or timed with programmable length.  
When configured as latched, the interrupt can be cleared  
by reading the corresponding status register (clear-on-  
read) or by writing an appropriate mask to the status  
register (clear-on-write).  
Three-axisꢀMEMSꢀrateꢀgyroscopeꢀsensorꢀwithꢀ16-bitꢀ  
ADCs and signal conditioning  
2
Primary I C and SPI serial communications interfaces  
Sensor data registers  
FIFO  
Digital-Output Temperature Sensor  
A digital output temperature sensor is used to measure  
the IC die temperature. The readings from the ADC can  
be accessed from the Sensor Data registers.  
Synchronization  
Interrupt generators  
The temperature data is split over 2 bytes. For faster and  
less accurate reading, accessing the MSB allows to read  
the temperature data as an absolute value expressed in  
Celsius degrees (ºC). By reading the LSB, the accuracy  
is greatly increased, up to 256 digit/ºC.  
Digital output temperature sensor  
Self-test  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Power Modes  
Table 1. Power Modes  
The IC features four power modes, allowing selecting the  
appropriate tradeoff between power consumption, accu-  
racy, and turn-on time.  
NAME  
DESCRIPTION  
Device is operational with maximum  
performances.  
Normal  
The transition between power modes can be controlled  
by software, by explicitly setting a power mode in the  
Configuration register, or by enabling the automatic power  
modeꢀtransitionꢀbasedꢀonꢀtheꢀDSYNCꢀpin.  
Device operates to reduce the average  
current consumption.  
Eco  
In standby mode, the current consumption is  
reduced by 50%, with a shorter turn-on time  
of 5ms.  
Standby  
Power-Down  
Normal Mode  
In normal mode, the IC is operational with minimum noise  
level.  
This is the minimum power consumption  
mode, at the price of a longer turn-on time.  
Eco Mode  
The eco mode reduces power consumption with the same  
sensor accuracy at the price of a higher rate noise density.  
Table 2. Digital Interface Pin Description  
NAME  
DESCRIPTION  
This unique feature can be activated with four ODRs:  
25Hz,ꢀ50Hz,ꢀ100Hz,ꢀandꢀ200Hz.  
2
SPI enable and I C/SPI mode selection  
CS  
2
(1: I C mode, 0: SPI enabled)  
Standby Mode  
2
2
SPI and I C clock. When in I C mode, the IO  
hasꢀselectableꢀanti-spikeꢀfilterꢀandꢀdelayꢀtoꢀ  
ensure correct hold time.  
To reduce power consumption and have a shorter turn-on  
time, the IC features a standby mode. In standby mode,  
the IC does not generate data, as a significant portion of  
the signal processing resources is turned off to save power.  
Still, this mode enables a much quicker turn-on time.  
SCL/CLK  
2
SPI in/out pin and I C serial data. When in  
I C mode, the IO has selectable anti-spike  
filterꢀandꢀdelayꢀtoꢀensureꢀcorrectꢀholdꢀtime.  
SDA/SDI/  
SDO  
2
Power-Down Mode  
2
SPI serial data out or I C slave address LSB  
SDO/SA0  
In power-down mode, the IC is configured to minimize the  
power consumption. In power-down mode, registers can still  
be read and written, but the gyroscope cannot generate new  
data. Compared to the standby mode, it takes longer to acti-  
vate the IC and to start collecting data from the gyroscope.  
2
Table 3. I C Address  
2
I C BASE  
SA0/SDO  
RESULTING  
ADDRESS  
R/W BIT  
ADDRESS  
0x2C (6 bit)  
0x2C  
PIN  
Digital Interfaces  
0
0
1
1
0
1
0
1
0xB0  
0xB1  
0xB2  
0xB3  
The registers embedded inside the IC can be accessed  
2
through both the I C and SPI serial interfaces. The latter  
0x2C  
can be SW-configured to operate either in 3-wire or 4-wire  
interface mode.  
0x2C  
The serial interfaces are mapped onto the same pins. To  
select/exploit the I C interface, CS line must be tied high  
The IC always operates as a slave device when commu-  
nicating to the system processor, which thus acts as the  
master. SDA and SCL lines typically need pullup resistors  
2
(i.e., connected to V  
).  
DDIO  
2
to V  
.ꢀTheꢀmaximumꢀbusꢀspeedꢀisꢀ3.4MHzꢀ(I2CꢀHS);ꢀ  
I C Interface  
DDIO  
I2C is a two-wire interface comprised of the signals  
serial data (SDA) and serial clock (SCL). In general, the  
lines are open-drain and bidirectional. In a generalized  
I2C interface implementation, attached devices can be  
a master or a slave. The master device puts the slave  
address on the bus, and the slave device with the match-  
ing address acknowledges the master.  
this reduces the amount of time the system processor is  
kept busy in supporting the exchange of data.  
The slave address of the IC is b101100X, which is 7 bits  
long. The LSb of the 7-bit address is determined by the  
logic level on pin SA0. This allows two MAX21000s to be  
connected on the same I2C bus. When used in this con-  
figuration, the address of one of the two devices should  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
beb1011000(pinSA0_SD0issettologic-low)andtheꢀ  
addressꢀofꢀtheꢀotherꢀshouldꢀbeꢀb1011001ꢀ(pinꢀSA0_SD0ꢀ  
is set to logic-high).  
Full-Duplex Operation  
The IC is put into full-duplex mode at power-up, or when  
theꢀSPIꢀmasterꢀclearsꢀtheꢀSPI_3_WIREꢀbit,ꢀtheꢀSPIꢀinter-  
face uses separate data pins, SDI and SDO to transfer  
data. Because of the separate data pins, bits can be  
simultaneously clocked into and out of the IC. The IC  
makes use of this feature by clocking out 8 output data  
bits as the command byte is clocked in.  
SPI Interface  
TheIC’sSPIcanoperateupto10MHz,inboth3-wiresꢀ  
(half duplex) and 4-wires mode (full duplex).  
ItꢀisꢀrecommendedꢀtoꢀsetꢀtheꢀI2C_DISABLEꢀbitꢀatꢀaddressꢀ  
0x15 if the IC is used together with other SPI devices to  
2
Reading from the SPI Slave Interface (SDO)  
avoid the possibility to switch inadvertently into I C mode  
when traffic is detected with the CS unasserted.  
The SPI master reads data from the IC slave interface  
using the following steps:  
The IC operates as an SPI slave device. Both the read  
register and write register commands are completed in 16  
clock pulses, or in multiples of 8 in case of multiple read/  
write bytes. Bit duration is the time between two falling  
edgesꢀofꢀCLK.  
1) When CS is high, the IC is unselected and three-states  
the SDO output.  
2)ꢀꢀAfterꢀ drivingꢀ SCL_CLKꢀ toꢀ itsꢀ inactiveꢀ state,ꢀ theꢀ SPIꢀ  
master selects the IC by driving CS low.  
Thefirstbit(bit0)startsatthefirstfallingedgeofCLKꢀ  
after the falling edge of CS while the last bit (bit 15, bit 23,  
etc.)ꢀstartsꢀatꢀtheꢀlastꢀfallingꢀedgeꢀofꢀCLKꢀjustꢀbeforeꢀtheꢀ  
rising edge of CS.  
3) The SPI master simultaneously clocks the command  
byte into the MAX21000. The SPI Read command  
is performed with 16 clock pulses. Multiple byte read  
command is performed adding blocks of 8 clock pulses  
at the previous one.  
Bit 0: RWꢀbit.ꢀWhenꢀ0,ꢀtheꢀdataꢀDI[7:0]ꢀisꢀwrittenꢀtoꢀtheꢀ  
IC.ꢀWhenꢀ1,ꢀtheꢀdataꢀDO[7:0]ꢀfromꢀtheꢀdeviceꢀisꢀread.ꢀInꢀ  
the latter case, the chip drives SDO at the start of bit 8.  
Bit 0: READꢀbit.ꢀTheꢀvalueꢀisꢀ1.  
Bit 1: MS bit. When 1, do not increment address.  
When 0, increment address in multiple reading.  
Bit 1: MS bit. Depending on the configuration of  
IF_PARITY,thisbitcaneitherbeusedtooperateinꢀ  
multi-addressing standard mode or to check the parity  
with the register address.  
Bits 2–7:ꢀaddressꢀAD[5:0].ꢀThisꢀisꢀtheꢀaddressꢀfieldꢀofꢀ  
the indexed register.  
Bits 8–15:ꢀdataꢀDO[7:0]ꢀ(readꢀmode).ꢀThisꢀisꢀtheꢀdataꢀ  
that is read from the device (MSb first).  
If used as MS bit, when 1, the address remains  
unchanged in multiple read/write commands. When 0,  
the address is autoincremented in multiple read/write  
commands.  
Bits 16–... :ꢀ dataꢀ DO[...–8].ꢀ Furtherꢀ dataꢀ inꢀ multipleꢀ  
byte reading.  
4) After 16 clock cycles, the master can drive CS high to  
deselect the IC, causing it to three-state its SDO out-  
put. The falling edge of the clock puts the MSB of the  
next data byte in the sequence on the SDO output.  
Bits 2–7:ꢀAddressꢀAD[5:0].ꢀThisꢀisꢀtheꢀaddressꢀfieldꢀofꢀ  
the indexed register.  
Bits 8–15:ꢀDataꢀDI[7:0]ꢀ(writeꢀmode).ꢀThisꢀisꢀtheꢀdataꢀ  
that is written to the device (MSb first).  
5) By keeping CS low, the master clocks register data  
bytesꢀoutꢀofꢀtheꢀICꢀbyꢀcontinuingꢀtoꢀsupplyꢀSCL_CLKꢀ  
pulses (burst mode). The master terminates the trans-  
fer by driving CS high. The master must ensure that  
SCL_CLKꢀisꢀinꢀitsꢀinactiveꢀstateꢀatꢀtheꢀbeginningꢀofꢀtheꢀ  
next access (when it drives CS low).  
Bits 8–15:ꢀDataꢀDO[7:0]ꢀ(readꢀmode).ꢀThisꢀisꢀtheꢀdataꢀ  
that is read from the device (MSb first).  
SPI Half- and Full-Duplex Operation  
The IC can be programmed to operate in half-duplex (a  
bidirectional data pin) or full-duplex (one data-in and one  
data-out pin) mode. The SPI master sets a register bit  
calledꢀSPI_3_WIREꢀintoꢀITF_OTPꢀtoꢀ0ꢀforꢀfull-duplex,ꢀandꢀ  
1 for half-duplex operation. Full duplex is the power-on  
default.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Bit 0:ꢀREADꢀbit.ꢀTheꢀvalueꢀisꢀ1.  
Writing to the SPI Slave Interface (SDI)  
The SPI master writes data to the IC slave interface  
through the following steps:  
Bit 1: MS bit. When 1, do not increment address.  
When 0, increment address in multiple readings.  
1) The SPI master sets the clock to its inactive state.  
When CS is high, the master can drive the SDI input.  
Bit 2–7:ꢀAddressꢀAD[5:0].ꢀThisꢀisꢀtheꢀaddressꢀfieldꢀofꢀ  
the indexed register.  
2) The SPI master selects the MAX21000 by driving CS low.  
Bit 8–15:dataDO[7:0](readmode).ꢀThisꢀisꢀtheꢀdataꢀ  
that is read from the device (MSb first). Multiple read  
command is also available in 3-wire mode.  
3) The SPI master simultaneously clocks the command  
byte into the IC. The SPI write command is performed  
with 16 clock pulses. Multiple byte write command is  
performed adding blocks of 8 clock pulses at the previ-  
ous one.  
Sensor Data Registers  
The sensor data registers contain the latest gyroscope  
and temperature measurement data.  
Bit 0:ꢀWRITEꢀbit.ꢀTheꢀvalueꢀisꢀ0.  
They are read-only registers and are accessed through  
the serial interface. Data from these registers can be read  
anytime.However,theinterruptfunctioncanbeusedtoꢀ  
determine when new data is available.  
Bit 1: MS bit. When 1, do not increment address,  
when 0, increment address in multiple writing.  
Bits 2–7:ꢀaddressꢀAD[5:0].ꢀThisꢀisꢀtheꢀaddressꢀfieldꢀofꢀ  
the indexed register.  
FIFO  
Bits 8–15:ꢀdataꢀDI[7:0]ꢀ(writeꢀmode).ꢀThisꢀisꢀtheꢀdataꢀ  
The IC embeds a 256-slot of a 16-bit data FIFO for each  
of the three output channels: yaw, pitch, and roll. This  
allows a consistent power saving for the system since the  
host processor does not need to continuously poll data  
from the sensor, but it can wake up only when needed  
and burst the significant data out from the FIFO. When  
configured in Snapshot mode, it offers the ideal mecha-  
nism to capture the data following a Rate Interrupt event.  
that is written inside the device (MSb first).  
Bits 16–... :ꢀdataꢀDI[...–8].ꢀFurtherꢀdataꢀinꢀmultipleꢀbyteꢀ  
writing.  
4) By keeping CS low, the master clocks data bytes into  
theꢀICꢀbyꢀcontinuingꢀtoꢀsupplyꢀSCL_CLKꢀpulsesꢀ(burstꢀ  
mode). The master terminates the transfer by driving  
CSꢀ high.ꢀ Theꢀ masterꢀ mustꢀ ensureꢀ thatꢀ SCL_CLKꢀ isꢀ  
inactive at the beginning of the next access (when it  
drives CS low). In full-duplex mode, the IC outputs  
data bits on SDO during the first 8 bits (the command  
byte), and subsequently outputs zeros on SDO as the  
SPI master clocks bytes into SDI.  
This buffer can work according to four main modes: off,  
normal, interrupt, and snapshot.  
Bothꢀ Normalꢀ andꢀ Interruptꢀ modesꢀ canꢀ beꢀ optionallyꢀ  
configured to operate in overrun mode, depending on  
whether, in case of buffer under-run, newer or older data  
are lost.  
Half-Duplex Operation  
WhenꢀtheꢀSPIꢀmasterꢀsetsꢀSPI_3_WIREꢀ=ꢀ1,ꢀtheꢀICꢀisꢀputꢀ  
into half-duplex mode. In half-duplex mode, the IC three-  
states its SDO pin and makes the SDI pin bidirectional,  
saving a pin in the SPI interface. The SDO pin can be left  
unconnected in half-duplex operation. The SPI master  
must operate the SDI pin as bidirectional. It accesses a  
IC register as follows: the SPI master sets the clock to its  
inactive state. While CS is high, the master can drive the  
SDI pin to any value.  
Various FIFO status flags can be enabled to generate  
interruptꢀeventsꢀonꢀINT1/INT2ꢀpin.  
FIFO Off Mode  
Inꢀthisꢀmode,ꢀtheꢀFIFOꢀisꢀturnedꢀoff;ꢀdataꢀareꢀstoredꢀonlyꢀ  
in the data registers and no data are available from the  
FIFO if read.  
When the FIFO is turned off, there are essentially two  
options to use the device: synchronous and asynchro-  
nous reading.  
1) The SPI master selects the IC by driving CS low and  
placing the first data bit (MSB) to write on the SDI  
input.  
Synchronous Reading  
In this mode, the processor reads the data set (e.g., 6  
bytes for a 3 axes configuration) generated by the IC  
everyꢀtimeꢀthatꢀDATA_READYꢀisꢀset.ꢀTheꢀprocessorꢀmustꢀ  
read once and only once the data set in order to avoid  
data inconsistencies.  
2) The SPI master turns on its output driver and clocks the  
command byte into the IC. The SPI read command is  
performed with 16 clock pulses:  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Benefits of using this approach include the perfect recon-  
struction of the signal coming the gyroscope and mini-  
mum data traffic.  
data rate (ODR).  
When FIFO is full, an interrupt can be generated.  
When FIFO is full, all the new incoming data is dis-  
charged. Reading only a subset of the data already  
stored into the FIFO keeps locked the possibility  
for new data to be written.  
Asynchronous Reading  
In this mode, the processor reads the data generated by  
theꢀICꢀregardlessꢀtheꢀstatusꢀofꢀtheꢀDATA_READYꢀflag.ꢀToꢀ  
minimize the error caused by different samples being read  
a different number of times, the access frequency to be  
used must be much higher than the selected ODR (e.g.,  
10x). This approach normally requires a much higher BW.  
Only if all the data are read, the FIFO restarts sav-  
ing data.  
If communication speed is high, data loss can be  
prevented.  
FIFO Normal Mode  
To prevent a FIFO-FULL condition, the required  
condition is to complete the reading of the data set  
beforeꢀtheꢀnextꢀDATA_READYꢀoccurs.  
Overrun = false  
FIFO is turned on.  
If this condition is not guaranteed, data can be lost.  
FIFO is filled with the data at the selected output  
255  
255  
255  
(WP-RP)  
=
LEVEL  
(WP-RP)  
=
LEVEL  
(WP-RP)  
=
LEVEL  
THRESHOLD  
THRESHOLD  
THRESHOLD  
0
0
0
LEVEL INCREMENTS WITH NEW  
SAMPLES STORED AND DECREMENTS  
WITH NEW READINGS.  
FIFO_FULL INTERRUPT GENERATED.  
NO NEW DATA STORED UNTIL  
THE ENTIRE FIFO IS READ.  
FIFO_OVTHOLD INTERRUPT  
GENERATED.  
Figure 1. FIFO Normal Mode, Overrun = False  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Overrun = true  
Interrupt Mode  
Overrun = false  
FIFO is turned on.  
FIFO is initially disabled. Data are stored only in  
FIFO is filled with the data at the selected ODR.  
When FIFO is full, an interrupt can be generated.  
the data registers.  
Whenꢀaꢀrateꢀinterruptꢀ(eitherꢀORꢀorꢀAND)ꢀisꢀgener-  
ated, the FIFO is turned on automatically. It stores  
the data at the selected ODR.  
When FIFO is full, the oldest data is overwritten-  
with the new ones.  
If communication speed is high, data integrity can  
When FIFO is full, all the new incoming data is dis-  
charged. Reading only a subset of the data already  
stored into the FIFO keeps locked the possibility  
for new data to be written.  
be preserved.  
ToꢀpreventꢀaꢀDATA_LOSTꢀcondition,ꢀtheꢀrequiredꢀ  
condition is to complete the reading of the data set  
beforeꢀtheꢀnextꢀDATA_READYꢀoccurs.  
Only if all the data are read, the FIFO restarts sav-  
If this condition is not guaranteed, data can be  
ing data.  
overwritten.  
If communication speed is high, data loss can be  
When an overrun condition occurs the reading  
pointer is forced to writing pointer -1 to ensure only  
older data are discarded and newer data have a  
chance to be read.  
prevented.  
To prevent a FIFO-FULL condition, the required  
condition is to complete the reading of the data set  
beforeꢀtheꢀnextꢀDATA_READYꢀoccurs.  
If this condition is not guaranteed, data can be lost.  
FIFO USED AS  
CIRCULAR BUFFER  
FIFO USED AS  
CIRCULAR BUFFER  
FIFO USED AS  
CIRCULAR BUFFER  
RP  
WP  
WP  
RP  
THRESHOLD  
THRESHOLD  
THRESHOLD  
WP  
RP  
WP-RP INCREMENTS WITH NEW  
SAMPLES STORED AND DECREMENTS  
WITH NEW READINGS.  
FIFO_FULL INTERRUPT GENERATED.  
NEW INCOMING DATA WOULD  
OVERWRITE THE OLDER ONES.  
FIFO_OVTHOLD INTERRUPT  
GENERATED.  
Figure 2. FIFO Normal Mode, Overrun = True  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
MAX  
FIFO INITIALLY OFF.  
WHEN THE  
PROGRAMMED RATE  
INTERRUPT OCCURS,  
TURN FIFO ON.  
LEVEL  
0
MAX  
MAX  
MAX  
(WP-RP)  
=
LEVEL  
(WP-RP)  
=
LEVEL  
THRESHOLD  
THRESHOLD  
THRESHOLD  
(WP-RP)  
=
LEVEL  
0
0
0
LEVEL INCREMENTS WITH NEW  
SAMPLES STORED AND DECREMENTS  
WITH NEW READINGS.  
FIFO_FULL INTERRUPT GENERATED.  
NO NEW DATA STORED UNTIL THE  
ENTIRE FIFO IS READ.  
FIFO_OVTHOLD INTERRUPT  
GENERATED.  
Figure 3. FIFO Interrupt Mode, Overrun = False  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Overrun = true  
InꢀorderꢀtoꢀpreventꢀaꢀDATA_LOSTꢀcondition,ꢀtheꢀ  
required condition is to complete the reading of the  
dataꢀsetꢀbeforeꢀtheꢀnextꢀDATA_READYꢀoccurs.  
FIFO is initially disabled. Data are stored only in  
the data registers.  
If this condition is not guaranteed, data can be  
WhenꢀaꢀRateꢀInterruptꢀ(eitherꢀORꢀorꢀAND)ꢀisꢀ  
generated, the FIFO is turned on automatically. It  
stores the data at the selected ODR.  
overwritten.  
When an overrun condition occurs, the reading  
pointer is forced to writing pointer -1 to ensure only  
older data are discarded and newer data have a  
chance to be read.  
When FIFO is full, an interrupt can be generated.  
When FIFO is full, the oldest data is overwritten  
with the new ones.  
If communication speed is high, data integrity can  
be preserved.  
MAX  
FIFO INITIALLY OFF.  
WHEN THE  
PROGRAMMED RATE  
INTERRUPT OCCURS,  
TURN FIFO ON.  
LEVEL  
0
RP  
WP  
WP  
THRESHOLD  
THRESHOLD  
THRESHOLD  
RP  
WP = RP  
WP-RP INCREMENTS WITH NEW  
SAMPLES STORED AND DECREMENTS  
WITH NEW READINGS.  
FIFO_FULL INTERRUPT GENERATED.  
NEW INCOMING DATA WOULD  
OVERWRITE THE OLDER ONES.  
FIFO_OVTHOLD INTERRUPT  
GENERATED.  
Figure 4. FIFO Interrupt Mode, Overrun = True  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
stored into the FIFO keeps locked the possibility  
for new data to be written.  
Snapshot Mode  
FIFO is initially in normal mode with overrun  
enabled.  
Only if all the data are read the FIFO restarts sav-  
ing data.  
WhenꢀaꢀRateꢀInterruptꢀ(eitherꢀORꢀorꢀAND)ꢀisꢀgen-  
erated, the FIFO switches automatically to not-  
overrun mode. It stores the data at the selected  
ODR until the FIFO becomes full.  
If communication speed is high, data loss can be  
prevented.  
ToꢀpreventꢀaꢀFIFO_FULLꢀcondition,ꢀtheꢀrequiredꢀ  
condition is to complete the reading of the data set  
beforeꢀtheꢀnextꢀDATA_READYꢀoccurs.  
When FIFO is full, an interrupt can be generated.  
When FIFO is full, all the new incoming data is dis-  
charged. Reading only a subset of the data already  
If this condition is not guaranteed, data can be lost.  
FIFO USED AS  
CIRCULAR BUFFER  
FIFO USED AS  
CIRCULAR BUFFER  
FIFO USED AS  
CIRCULAR BUFFER  
RP  
WP  
WP  
RP  
THRESHOLD  
THRESHOLD  
THRESHOLD  
WP  
RP  
RATE INTERRUPT  
MAX  
SNAPSHOT CAPTURED  
MAX  
MAX  
(WP-RP)  
=
LEVEL  
(WP-RP)  
=
LEVEL  
(WP-RP)  
THRESHOLD  
THRESHOLD  
THRESHOLD  
=
LEVEL  
0
0
0
Figure 5. FIFO Snapshot Mode  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
DSYNC Interrupt Generation  
Bias Instability and Angular Random Walk  
TheꢀDSYNCꢀpinꢀcanꢀalsoꢀbeꢀusedꢀasꢀanꢀinterruptꢀsourceꢀ  
to determine a different kind of data synchronization  
based on the software management performed by an  
external processor.  
Bias instability is a critical performance parameter for  
gyroscopes. The IC provides a typical bias instability of 4º/  
hourꢀonꢀeachꢀaxisꢀandꢀanꢀARWꢀofꢀ0.45º/√hour,ꢀmeasuredꢀ  
using the Allan Variance method.  
Theꢀ DSYNC-basedꢀ wake-up,ꢀ dataꢀ capture,ꢀ dataꢀ map-  
ping, and interrupt generation features can be combined  
together.  
Data Synchronization  
Theꢀ DSYNCꢀ pinꢀ enablesꢀ aꢀ numberꢀ ofꢀ synchronizationꢀ  
options.  
Unique Serial Number  
Wake-Up Feature  
EachꢀICꢀisꢀuniquelyꢀidentifiedꢀbyꢀ48ꢀbitsꢀthatꢀcanꢀbeꢀusedꢀ  
to track the history of the sample, including manufactur-  
ing, assembly, and testing information.  
TheꢀDSYNCꢀpinꢀcanꢀbeꢀusedꢀtoꢀwake-upꢀtheꢀICꢀfromꢀtheꢀ  
power-down or suspend mode. Repeatedly changing  
DSYNCfromactivetonotactiveandvice-versacanbeꢀ  
used to control the power mode of the MAX21000 using  
an external controlling device, be it a microprocessor,  
another sensor or a different kind of device.  
Self-Test  
For digital gyroscopes, there are two dedicated bits in a  
control register to enable the self-test. This feature can be  
used to verify if the gyroscope is working properly with-  
out physically rotating the gyroscope. That may be used  
either before or after it is assembled on a PCB. If the gyro-  
scope’s outputs are within the specified self-test values in  
the data sheet, then the gyroscope is working properly.  
Therefore, the self-test feature is an important consider-  
ation in a user’s end-product mass production line.  
DSYNCcanbeconfiguredtoactiveeitherHighorLowꢀ  
and on either edge or level. This feature is controlled by a  
specificꢀbitꢀinꢀtheꢀDSYNC_CFGꢀregister.  
Data Capture Feature  
AnotherꢀwayꢀtoꢀuseꢀtheꢀDSYNCꢀpinꢀisꢀasꢀdataꢀcaptureꢀtrig-  
ger. The IC can be configured to stop generating data until  
aꢀ givenꢀ edgeꢀ occurꢀ onꢀ DSYNC.ꢀ Onceꢀ theꢀ programmedꢀ  
active edge occurs, the IC collects as many data as speci-  
fiedꢀinꢀtheꢀDSYNC_CNTꢀregister.  
The embedded self-test in Maxim’s 3-axis digital gyro-  
scope is an additional key feature that allows the gyro-  
scope to be tested during final product assembly without  
requiring physical device movement.  
DSYNC Mapping on Data  
DSYNCcanalsobeoptionallymappedontotheLSBofꢀ  
the sensor data to perform synchronization afterwards.  
The mapping occurs on every enabled axis of the gyro-  
scope. This feature is controlled by a specific bit in the  
DSYNC_CFGꢀregister.  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
addresses in the 0x00 to 0x3F range even though the  
number of physical registers is in excess of 64.  
Register File  
The register file is organized per banks. On the common  
bank are mapped addresses from 0x20 to 0x3F and  
these registers are always available. It is possible to map  
on addresses 0x00 to 0x1F two different user banks by  
properly programming address 0x21. The purpose of this  
structure is to limit the management of the register map  
Common Bank  
The common is the bank whose locations are always  
available regardless the register bank selection.  
This bank contains all the registers most commonly used,  
including data registers and the FIFO data.  
Table 4. Common Bank  
REGISTER  
NAME  
TYPE  
DEFAULT VALUE  
COMMENT  
ADDRESS  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
WHO_AM_I  
R
1011 0001  
0000 0000  
0000 0000  
Data  
Device ID  
BANK_SELECT  
SYSTEM_STATUS  
GYRO_X_H  
GYRO_X_L  
GYRO_Y_H  
GYRO_Y_L  
GYRO_Z_H  
GYRO_Z_L  
TEMP_H  
TEMP_L  
RFU  
RW  
Register bank selection  
R
System Status register  
R
Bitsꢀ[15:8]ꢀofꢀXꢀmeasurement  
Bitsꢀ[07:0]ꢀofꢀXꢀmeasurement  
Bitsꢀ[15:8]ꢀofꢀYꢀmeasurement  
Bitsꢀ[07:0]ꢀofꢀYꢀmeasurement  
Bitsꢀ[15:8]ꢀofꢀZꢀmeasurement  
Bitsꢀ[07:8]ꢀofꢀZꢀmeasurement  
Bitsꢀ[15:8]ꢀofꢀTꢀmeasurement  
Bitsꢀ[07:8]ꢀofꢀTꢀmeasurement  
R
Data  
R
Data  
R
Data  
R
Data  
R
Data  
R
Data  
R
Data  
R
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Data  
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
HP_RST  
FIFO_COUNT  
FIFO_STATUS  
FIFO_DATA  
PAR_RST  
RW  
Highpassꢀfilterꢀreset  
R
Available FIFO samples for data set  
FIFOꢀstatusꢀflags  
R
R
FIFO data to be read in burst mode  
Parity reset (reset on write)  
W and reset  
0000 0000  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
User Bank 0  
User bank 0 is the register used to configure most of the features of the IC, with the exception of the interrupts, which  
are part of the user bank 1.  
Table 5. User Bank 0  
REGISTER  
NAME  
TYPE  
DEFAULT VALUE  
COMMENT  
ADDRESS  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
POWER_CFG  
SENSE_CFG1  
SENSE_CFG2  
SENSE_CFG3  
RFU  
RW  
RW  
RW  
RW  
R
0000 0111  
0010 1000  
0010 0011  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0001  
0000 0000  
0000 0100  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Powerꢀmodeꢀconfiguration  
Senseꢀconfiguration:ꢀLPꢀandꢀOIS  
Senseꢀconfiguration:ꢀODR  
Senseꢀconfiguration:ꢀHP  
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
DR_CFG  
IO_CFG  
I2C_CFG  
ITF_OTP  
FIFO_TH  
FIFO_CFG  
RFU  
RW  
RW  
RW  
RW  
RW  
RW  
R
Dataꢀreadyꢀconfiguration  
Input/outputꢀconfiguration  
I2Cꢀconfiguration  
InterfaceꢀandꢀOTPꢀconfiguration  
FIFOꢀthresholdꢀconfiguration  
FIFOꢀmodeꢀconfiguration  
DSYNC_CFG  
DSYNC_CNT  
RFU  
R
DATA_SYNCꢀconfiguration  
DATA_SYNCꢀcounter  
R
R
RFU  
R
RFU  
R
RFU  
R
Maxim Integrated  
20  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
User Bank 1  
User Bank 1 is primarily devoted to the configuration of the interrupts. It also contains the unique serial number.  
Table 6. User Bank 1  
REGISTER  
NAME  
INT_REF_X  
TYPE  
DEFAULT VALUE  
COMMENT  
ADDRESS  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0010 0100  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
1000 0000  
0000 0010  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Variable  
Interrupt reference for X axis  
InterruptꢀreferenceꢀforꢀYꢀaxis  
Interrupt reference for Z axis  
Interrupt debounce, X  
INT_REF_Y  
INT_REF_Z  
INT_DEB_X  
INT_DEB_Y  
INT_DEB_Z  
INT_MSK_X  
INT_MSK_Y  
INT_MSK_Z  
INT_MASK_AO  
INT_CFG1  
INT_CFG2  
INT_TMO  
INT_STS_UL  
INT1_STS  
INT2_STS  
INT1_MSK  
INT2_MSK  
RFU  
Interruptꢀdebounce,ꢀY  
Interrupt debounce, Z  
Interrupt mask, X axis zones  
Interruptꢀmask,ꢀYꢀaxisꢀzones  
Interrupt mask, Z axis zones  
Interruptꢀmasks,ꢀAND/OR  
Interruptꢀconfigurationꢀ1  
Interruptꢀconfigurationꢀ2  
Interrupt timeout  
Interrupt sources, unlatched  
Interrupt 1 status, latched  
Interrupt 2 status, latched  
Interrupt 1 mask  
R
R
RW  
RW  
R
Interrupt 2 mask  
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
RFU  
R
SERIAL_0  
SERIAL_1  
SERIAL_2  
SERIAL_3  
SERIAL_4  
SERIAL_5  
R
Unique serial number, byte 0  
Unique serial number, byte 1  
Unique serial number, byte 2  
Unique serial number, byte 3  
Unique serial number, byte 4  
Unique serial number, byte 5  
R
Variable  
R
Variable  
R
Variable  
R
Variable  
R
Variable  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Depending on the specific application, add at least one  
Orientation of Axes  
bulk 1µF decoupling capacitor to V  
and V  
per  
DD  
DDIO  
The diagram below shows the orientation of the axes of  
sensitivityꢀandꢀtheꢀpolarityꢀofꢀrotation.ꢀNoteꢀtheꢀpinꢀ1ꢀiden-  
tifier (U) in Figure 6.  
PCB. For best performance, bring a V  
power line in on  
DD  
the analog interface side of the IC and an V  
power  
DDIO  
line from the digital interface side of the device.  
Soldering Information  
Visit www.maximintegrated.com/MAX21000.related for  
Table 7. Bill of Materials for External  
Components  
soldering recommendations.  
COMPONENT  
LABEL SPECIFICATION QUANTITY  
Application Notes  
Bypass V  
and V  
to the ground plane with 0.1µF  
V
/V  
Ceramic, X7R,  
0.1µF ±10%, 4V  
DD  
DDIO  
DD DDIO  
C1  
C2  
1
1
ceramic chip capacitors on each pin as close as possible  
to the IC to minimize parasitic inductance.  
bypass capacitor  
V
/V  
Ceramic, X7R,  
1µF ±10%, 4V  
DD DDIO  
bypass capacitor  
ΩZ  
ΩY  
ΩX  
Figure 6. Orientation of Axes  
Maxim Integrated  
22  
www.maximintegrated.com  
 
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Typical Application Circuit  
TIMER  
MAX21000  
MEMS  
GYRO  
SENSE  
FILTERING  
SCL_CLK  
SDA_SDI_O  
A
A
AFE  
AFE  
AFE  
2
SPI/I C  
SA0_SDO  
CS  
SLAVE  
REGISTERS  
AND  
AP  
A
FIFO  
DSYNC  
GYRO  
DRIVE  
CONTROL  
SYNC  
INT1  
INT2  
INTERRUPTS  
RING  
OSCILLATOR  
V
DD  
V
DD_IO  
GND  
PMIC  
100nF  
1µF  
Chip Information  
PROCESS:ꢀBiCMOS  
Ordering Information  
PART  
MAX21000+  
MAX21000+T  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 LGA  
16 LGA  
+Denotes lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
Maxim Integrated  
23  
www.maximintegrated.com  
 
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages.ꢀNoteꢀthatꢀaꢀ“+”,ꢀ  
“#”,ꢀorꢀ“-”ꢀinꢀtheꢀpackageꢀcodeꢀindicatesꢀRoHSꢀstatusꢀonly.ꢀPackageꢀdrawingsꢀmayꢀshowꢀaꢀdifferentꢀsuffixꢀcharacter,ꢀbutꢀtheꢀdrawingꢀ  
pertainsꢀtoꢀtheꢀpackageꢀregardlessꢀofꢀRoHSꢀstatus.  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages.ꢀNoteꢀthatꢀaꢀ“+”,ꢀ  
“#”,ꢀorꢀ“-”ꢀinꢀtheꢀpackageꢀcodeꢀindicatesꢀRoHSꢀstatusꢀonly.ꢀPackageꢀdrawingsꢀmayꢀshowꢀaꢀdifferentꢀsuffixꢀcharacter,ꢀbutꢀtheꢀdrawingꢀ  
pertainsꢀtoꢀtheꢀpackageꢀregardlessꢀofꢀRoHSꢀstatus.  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX21000  
Ultra-Accurate, Low Power,  
3-Axis Digital Output Gyroscope  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
12/12  
Initial release  
Updated Benefits and Features section, updated gyro full-scale range typ values,  
updated phase delay conditions, updated sensitivity conditions, updated sensitivity  
driftꢀoverꢀtemperatureꢀconditions,ꢀupdatedꢀSPIꢀlimits,ꢀaddedꢀNotesꢀ9ꢀandꢀ10,ꢀupdatedꢀ  
SPI Timing Diagrams, removed I2C Timing Diagrams, updated TOC 4, updated Pin  
Description,ꢀupdatedꢀDefinitionsꢀsection,ꢀupdatedꢀSPIꢀInterfaceꢀsection,ꢀremovedꢀ  
Revision ID, Clocking, and Layout, Grounding, and Bypassing sections, and added  
Soldering Information section  
1,ꢀ3–10,  
12, 19, 23  
1
2/13  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2013 Maxim Integrated Products, Inc.  
26  

相关型号:

MAX21000+T

Analog Circuit, 1 Func, BICMOS, PQCC16
MAXIM

MAX21003+T

Analog Circuit, 1 Func, BICMOS, PBGA16, 3 X 3 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, PLASTIC, LGA-16
MAXIM

MAX2101

6-Bit Quadrature Digitizer
MAXIM

MAX2101CMQ

6-Bit Quadrature Digitizer
MAXIM

MAX2101CMQ-T

Consumer Circuit, PQFP100, METRIC, QFP-100
MAXIM

MAX2102

Direct-Conversion Tuner ICs for Digital DBS Applications
MAXIM

MAX2102-MAX2105

Direct-Conversion Tuner ICs for Digital DBS Applications
MAXIM

MAX2102/MAX2105

Direct-Conversion Tuner ICs for Digital DBS Applications
MAXIM

MAX2102CWI

Direct-Conversion Tuner ICs for Digital DBS Applications
MAXIM

MAX2102CWI+

Consumer Circuit, Bipolar, PDSO28, SOIC-28
MAXIM

MAX2102CWI+T

Consumer Circuit, Bipolar, PDSO28, SOIC-28
MAXIM

MAX2102CWI-T

Consumer Circuit, Bipolar, PDSO28, SOIC-28
MAXIM