MAX22005ALM+ [MAXIM]

12-Channel Factory-Calibrated Configurable Industrial-Analog Input;
MAX22005ALM+
型号: MAX22005ALM+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

12-Channel Factory-Calibrated Configurable Industrial-Analog Input

文件: 总47页 (文件大小:1216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here to ask about the production status of specific part numbers.  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
General Description  
Benefits and Features  
The MAX22005 is a twelve-channel industrial-grade ana-  
log input voltage-mode device that can also be configured  
as analog-input current-mode device using an external  
precision resistor per channel. It can also operate as con-  
figurable analog-input using an external precision resistor  
and low-cost switch per channel. Input channels can be  
used as twelve single-ended inputs, or six differential in-  
puts, or up to eight multichannel configurable differential  
inputs. In total, the device supports up to 26 different con-  
figurations.  
● Enables More Robust and Reliable Systems  
• ±36V High-Voltage Protection for All Input Ports  
• 2kV HBM ESD Protection of All Pins  
• ±2kV Surge Protection (with External 5kΩ Resistor)  
• CRC Detection for Robust Serial Communication  
• Watchdog Timer  
● Software Configurability  
• ±12.5V Analog Input-Voltage Mode  
• ±25mA Analog Input-Current Mode Using External  
Sense Resistor  
The MAX22005 features an integrated 24-bit delta-sigma  
ADC that is shared between all channels. The ADC can  
be used with either an integrated 5ppm/°C precision refer-  
ence or an external reference. Standard industrial analog  
input voltage ranges are converted to the ADC input volt-  
age range using high-voltage, zero-drift input amplifiers.  
All input ports are robustly protected up to ±36V reverse  
polarity and ±2kV surge pulses without the need of TVS  
diodes.  
• Configurable Inputs Using External Sense Resistor  
and Low-Cost Switches  
● Best-in-Class System Accuracy  
• 0.02% FSR at 25°C Factory Calibrated  
• 0.05% FSR over ±50°C from 25°C Factory  
Calibration  
• Maximum of 30nA Input Leakage  
• 5ppm/°C Internal Reference  
● Additional Features  
Eight general-purpose digital I/O (GPIO) ports are avail-  
able for common use, or they can be used to control ex-  
ternal switches for configurable inputs.  
• Internal or External ADC Reference  
• Eight GPIO Ports  
• 48.5mW Low Power Dissipation with ±5V Supply  
• 30MHz SPI/QSPI/DSP-Compatible Serial Interface  
The MAX22005 is factory calibrated with best-in-class sys-  
tem performance of less than 0.05% FSR Total-Unadjust-  
ed-Error (TUE) over temperature.  
● Operating Temperature -40°C to +125°C  
● 7.5mm × 7mm 48-pin LGA package  
The host communicates with the MAX22005 through a  
high-speed 30MHz SPI bus for all configurations and infor-  
mation management, as well as for acquiring conversion  
results. An optional 8-bit CRC enhances the reliability of  
the SPI interface, protecting against all 8-bit bursts, as well  
as all double-bit errors.  
Ordering Information appear at end of datasheet.  
The MAX22005 operates from 2.7V to 3.6V analog and  
digital supplies, and up to ±24V high-voltage supplies.  
The MAX22005 is available in 48-pin LGA package and  
operates over the -40°C to +125°C industrial temperature  
range.  
Applications  
● Programmable Logic Controllers (PLC)  
● Programmable Automation Controllers (PAC)  
● Distributed Control Systems (DCS)  
19-101026; Rev 0; 4/21  
 
 
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Simplified Block Diagram  
DVDD  
AVDD  
GPIO[7:0]  
HVDD  
AI1  
AI2  
5kΩ  
5kΩ  
5kΩ  
5kΩ  
5kΩ  
5kΩ  
5kΩ  
5kΩ  
5kΩ  
5kΩ  
5kΩ  
5kΩ  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
IN8  
IN9  
IN10  
IN11  
IN12  
8
AI3  
AI4  
CS  
AI5  
SCLK  
SDI  
SDO  
INT  
RST  
RDY  
SYNC  
CLK  
AI6  
SPI INTERFACE  
CONTROL-LOGIC  
SIGNAL  
24-BIT Δ-Σ ADC  
AI7  
PROCESSING  
AI8  
AI9  
AI10  
AI11  
AI12  
REF_ADC  
REF_OUT  
NR  
MUX  
2.5V REFERENCE  
1.8V LDO  
BYP_ADC  
AGND  
REF_ADC_EXT  
HVSS  
DGND  
www.maximintegrated.com  
Maxim Integrated | 2  
 
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
TABLE OF CONTENTS  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
48-PIN LGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
MAX22005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Input Range Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Differential-Input Common-Mode Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Input-Voltage Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Supply Voltages and Power-Supply Sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
SPI Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Watchdog Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Product Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Analog Input ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Analog Input Offset and Gain Error Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
System Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
ADC Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
ADC RDY (Data Ready) Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
ADC Conversion Synchronization Using the SYNC Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
MAX22005 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Register Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Power Supply Headroom Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Surge Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
MAX22005 12-Channel Configurable Industrial Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
TABLE OF CONTENTS (CONTINUED)  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
LIST OF FIGURES  
Figure 1. SPI Write Timing (N = 24 when CRC is Disabled and N = 32 when CRC is Enabled) . . . . . . . . . . . . . . . . . . 11  
Figure 2. SPI Read Timing (N = 24 when CRC is Disabled and N = 32 when CRC is Enabled) . . . . . . . . . . . . . . . . . . 11  
Figure 3. Input Port Triplet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 4. Input Ports Pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 5. Input Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 6. Two Point System Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 7. RDY Output Timing, a) Single-Cycle Mode, b) Continuous Single-Cycle Mode, c) Continuous Conversion  
Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 8. SYNC Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
LIST OF TABLES  
Table 1. Input Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 2. SPI Transaction with CRC Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 3. SPI Transaction with CRC Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 4. Product ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 5. Input-Channel Configuration Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 6. Input-Channel Limit Values and Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 7. Selection of Data Rates for Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 8. Selection of Data Rates for Single-Cycle Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 9. Selection of Data Rates for Single-Cycle Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 10. Full-Scale Range of Input Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
www.maximintegrated.com  
Maxim Integrated | 6  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Absolute Maximum Ratings  
AVDD to AGND ..................................................... -0.3V to +3.9V  
DVDD to DGND..................................................... -0.3V to +3.9V  
AGND to DGND..................................................... -0.3V to +0.3V  
BYP_ADC to DGND .............................................. -0.3V to +2.1V  
HVDD to HVSS ...................................................... -0.3V to +52V  
HVDD to AGND...................................................... -0.3V to +40V  
AGND to HVSS ...................................................... -0.3V to +40V  
CS, SCLK, SDI, SDO, RDY, RST, SYNC, CLK, GPIO[7:0] to  
AI_ to HVSS...-0.3V to the lower of (+52V or (V  
- V  
) +  
HVSS  
HVDD  
0.3V)  
INT to DGND ............................................................-0.3V to +6V  
Maximum Current into Any Pin ..........................................±50mA  
Continuous Power Dissipation 48-pin LGA (JEDEC 2S2P PCB)  
(T = +70°C, derate 19.51mW/°C above +70°C.) .....1560.98mW  
A
Operating Temperature Range...........................-40°C to +125°C  
Junction Temperature.......................................................+150°C  
Storage Temperature Range ..............................-65°C to +150°C  
Soldering Temperature (reflow) ........................................+260°C  
DGND.................. -0.3V to the lower of (+3.9V or V  
REF_ADC, REF_ADC_EXT, NR, REF_OUT to AGND....-0.3V to  
+ 0.3V)  
DVDD  
the lower of (+3.9V or VAVDD + 0.3V)  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Package Information  
48-PIN LGA  
Package Code  
L487A7M+1  
21-100448  
90-100160  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction-to-Ambient (θ  
)
51.25°C/W  
23.46°C/W  
JA  
Junction-to-Case Thermal Resistance (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages.  
Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different  
suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a  
four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/  
thermal-tutorial.  
Electrical Characteristics  
(V  
= V  
= 3.3V, V  
= +15V, V  
= -15V, Reference Source = Internal Reference, T = T  
to T  
, unless otherwise  
AVDD  
DVDD  
HVDD  
HVSS  
A
MIN  
MAX  
noted. Typical values are at T = +25ºC.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT-VOLTAGE MODE—SINGLE-ENDED  
From V  
From V  
2.5  
2.5  
HVSS  
HVDD  
Headroom  
V
ADC full-scale range  
±12.5  
V
IN  
Linear range V  
(Note 2)  
= -5V, V  
= +5V  
HVDD  
HVSS  
Input-Voltage Range  
-2.5  
+2.5  
V
Linear range (Note 2)  
-10.5  
+10.5  
±1.3  
Offset Error  
Offset Drift  
Gain Error  
V
T
T
= +25°C  
±0.1  
mV  
µV/°C  
ppm  
OFFSET  
A
= +25°C ± 50°C, with internal  
A
±13.6  
±450  
reference (Note 3)  
T
A
= +25°C  
±200  
www.maximintegrated.com  
Maxim Integrated | 7  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Electrical Characteristics (continued)  
(V  
= V  
= 3.3V, V  
= +15V, V  
= -15V, Reference Source = Internal Reference, T = T  
to T  
, unless otherwise  
AVDD  
DVDD  
HVDD  
HVSS  
A
MIN  
MAX  
noted. Typical values are at T = +25ºC.) (Note 1)  
A
PARAMETER  
Gain Drift  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
±3.4  
UNITS  
T
A
= +25°C ± 50°C, with internal  
reference (Note 3)  
ppm/°C  
INL Error  
INL Drift  
INL  
T
A
T
A
T
A
T
A
= +25°C  
±600  
±4.0  
µV  
= +25°C ± 50°C (Note 3)  
= +25°C (Note 4)  
µV/°C  
±0.02  
±0.05  
Total Unadjusted Error  
TUE  
% FSR  
= +25°C ± 50°C (Note 3 and Note 4)  
ADC sample rate is 11.52ksps, ADC  
mode is Continuous Single-Cycle.  
Input-Voltage Noise  
Input Current  
V
138  
µV  
RMS  
NOISE  
±30  
nA  
dB  
DC, V  
DC, V  
= +5V to +24V  
= -24V to -5V  
100  
100  
2
HVDD  
HVSS  
Supply-Rejection Ratio  
PSRR  
From AI_ to V  
Open Detector  
Resistance  
HVDD  
MΩ  
dB  
From AI_ to AGND  
2
DCHNL_RATE[3:0] = 0b0010, 0b0011,  
0b0100, 0b0101  
87  
75  
50Hz/60Hz Normal-  
Mode Rejection  
DCHNL_RATE[3:0] = 0b0000, 0b0001  
V
IN  
changes from 0V to -10.5V or 0V to  
+10.5V, digital output reaches 1% of final  
value. ADC sample rate is 57.6ksps, ADC  
mode is Continuous.  
Settling Time  
0.2  
ms  
ANALOG INPUT VOLTAGE MODE—DIFFERENTIAL  
ADC full-scale range  
±25  
Input-Voltage Range  
V
IN  
V
linear range (Note 2)  
-21  
+21  
Offset Error  
Offset Drift  
Gain Error  
Gain Drift  
V
T
T
= +25°C  
±0.2  
±2.6  
mV  
µV/°C  
ppm  
OFFSET  
A
= +25°C ± 50°C, with internal  
A
±23.1  
±450  
±4.8  
reference (Note 3)  
T
T
= +25°C  
±200  
A
= +25°C ± 50°C, with internal  
A
ppm/°C  
reference (Note 3)  
INL Error  
INL Drift  
INL  
T
T
T
T
= +25°C  
±1.2  
±5.0  
mV  
A
A
A
A
= +25°C ± 50°C (Note 3)  
= +25°C (Note 4)  
μV/°C  
±0.02  
±0.05  
Total Unadjusted Error  
Input-Voltage Noise  
TUE  
% FSR  
= +25°C ± 50°C (Note 3 and Note 4)  
ADC sample rate is 11.52ksps, ADC  
mode is Continuous Single-Cycle.  
V
275  
µV  
RMS  
NOISE  
Common-Mode  
Rejection Ratio  
V
0V  
= -10V to +10V. Differential input is  
CM  
CMRR  
PSRR  
72  
dB  
DC, V  
DC, V  
= +5V to +24V  
= -24V to -5V  
100  
100  
HVDD  
HVSS  
Supply-Rejection Ratio  
Input Current  
dB  
nA  
I
±30  
IN  
www.maximintegrated.com  
Maxim Integrated | 8  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Electrical Characteristics (continued)  
(V  
= V  
= 3.3V, V  
= +15V, V  
= -15V, Reference Source = Internal Reference, T = T  
to T  
, unless otherwise  
AVDD  
DVDD  
HVDD  
HVSS  
A
MIN  
MAX  
noted. Typical values are at T = +25ºC.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
87  
TYP  
MAX  
UNITS  
DCHNL_RATE[3:0] = 0b0010, 0b0011,  
0b0100, 0b0101  
50Hz/60Hz Normal-  
Mode Rejection  
dB  
DCHNL_RATE[3:0] = 0b0000, 0b0001  
75  
From AI_ to V  
2
2
Open-Detector  
Resistance  
HVDD  
MΩ  
ms  
From AI_ to AGND  
V
IN  
changes from 0V to -10.5V or 0V to  
+10.5V, digital output reaches 1% of final  
value. ADC sample rate is 57.6ksps; ADC  
mode is Continuous.  
Settling Time  
0.2  
ADC REFERENCE (REF_ADC)  
REF_ADC Output  
Voltage  
V
Internal reference  
2.5  
1
V
REF_ADC  
Output-Voltage  
Accuracy  
Referred to V  
, T = +25°C  
A
-0.2  
+0.2  
%
REF_ADC  
Output-Voltage  
Temperature Coefficient  
T
A
= -40°C to +125°C (Note 3)  
5
ppm/°C  
µV/V  
µF  
Line Regulation  
2.7V ≤ V  
≤ 3.6V  
130  
AVDD  
REF_ADC Bypass  
Capacitor  
4.7  
2.5  
V
Input  
REF_ADC_EXT  
External Reference  
V
Range  
DIGITAL INPUTS  
0.3 ×  
Input Logic-Low Voltage  
V
V
V
IL  
V
DVDD  
0.7 ×  
Input Logic-High Voltage  
V
IH  
V
DVDD  
Input Hysteresis  
V
200  
10  
mV  
µA  
pF  
HYS  
Input Leakage Current  
Input Capacitance  
DIGITAL OUTPUTS  
I
-1  
+1  
IN  
C
IN  
Output Logic-Low  
Voltage  
V
I
I
= 4mA  
= 4mA  
0.4  
V
V
OL  
OL  
Output Logic-High  
Voltage (SDO, RDYB,  
GPIO[7:0])  
0.9 ×  
V
OH  
OH  
V
DVDD  
Three-State Leakage  
Current  
-10  
+10  
µA  
pF  
Three-State Output  
Capacitance  
10  
SUPPLIES  
Analog Supply Voltage  
Digital Supply Voltage  
V
V
2.7  
2.7  
3.3  
3.3  
3.6  
3.6  
V
V
AVDD  
DVDD  
www.maximintegrated.com  
Maxim Integrated | 9  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Electrical Characteristics (continued)  
(V  
= V  
= 3.3V, V  
= +15V, V  
= -15V, Reference Source = Internal Reference, T = T  
to T  
, unless otherwise  
AVDD  
DVDD  
HVDD  
HVSS  
A
MIN  
MAX  
noted. Typical values are at T = +25ºC.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
24  
UNITS  
Positive High-Voltage  
Supply  
V
5
V
HVDD  
Negative High-Voltage  
Supply  
V
-24  
10  
-5  
V
HVSS  
High-Voltage Supply  
DVDD POR Threshold  
V
V
- V  
HVSS  
48  
V
V
HV  
HVDD  
V
Voltage rising  
1.5  
1.5  
DVDD_POR  
HVDD-HVSS  
Undervoltage Threshold  
Voltage rising  
V
ADC sample rate is 11.52ksps, ADC  
mode is Continuous Single-Cycle. Single-  
ended AI1–AI12 at AGND  
Analog Supply Current  
Digital Supply Current  
I
4.5  
1.8  
2.5  
mA  
AVDD  
ADC sample rate is 11.52ksps, ADC  
mode is Continuous Single-Cycle. Single-  
ended AI1–AI12 at AGND  
I
mA  
mA  
DVDD  
ADC sample rate is 11.52ksps, ADC  
mode is Continuous Single-Cycle. Single-  
ended AI1–AI12 at AGND  
High-Voltage Supply  
Current  
I
HV  
ADC sample rate is 11.52ksps, ADC  
mode is Continuous Single-Cycle. Single-  
ended AI1–AI12 at AGND  
95.8  
45.8  
Total Power  
mW  
AI1–AI12 at AGND, V  
= 5V and  
HVDD  
V
HVSS  
= -5V, all inputs are on  
TIMING CHARACTERISTICS  
SCLK Frequency  
f
All SPI transactions  
All SPI transactions  
All SPI transactions  
All SPI transactions  
30  
MHz  
ns  
SCLK  
SCLK Clock Period  
t
33  
13  
13  
CP  
CH  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
t
ns  
t
ns  
CL  
CS falling edge to 1st SCLK rising edge  
setup time  
CS Fall Setup Time  
CS Fall Hold Time  
CS Rise Hold Time  
t
7
0
3
ns  
ns  
ns  
CSS0  
CSH0  
CSH1  
SCLK rising edge to CS falling edge hold  
time  
t
t
SCLK falling edge to CS rising edge hold  
time  
CS Pulse-Width High  
SDI Setup Time  
SDI Hold Time  
t
Minimum CS pulse-width high  
150  
5
ns  
ns  
ns  
CSW  
t
SDI setup time to SCLK rising edge  
SDI hold time after SCLK rising edge  
DS  
DH  
t
5
SDO transition valid after SCLK falling  
edge  
SDO Transition Time  
SDO Hold Time  
t
20  
25  
ns  
ns  
ns  
DOT  
DOH  
DOD  
Output remains valid after falling edge of  
SCLK  
t
t
2
CS rising edge to SDO disable, C  
20pF  
=
LOAD  
SDO Disable Time  
Note 1: Limits are 100% tested at T = +25°C, unless otherwise noted. Limits over the operating temperature range and relevant  
A
supply-voltage range are guaranteed by design and characterization.  
www.maximintegrated.com  
Maxim Integrated | 10  
 
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Note 2: Offset error, gain error, INL error, TUE, and settling times are only guaranteed in the linear range. The minimum and maximum  
specification of the linear range are guaranteed through offset, gain, INL error, and TUE.  
Note 3: Guaranteed by design and characterization. Not tested in production.  
Note 4: FSR stands for full-scale range. It is 25V in single-ended mode and 50V in differential mode.  
t
t
t
t
t
t
t
t
t
CSW  
CSH0 CSS0  
CH CL  
CP  
DS  
DH  
CSH1  
CS  
SCLK  
SDI  
1
2
3
4
5
6
7
8
9
10  
11  
N+6  
N+7  
N+8  
W
A
A
A
A
A
A
A
D
D
N-2  
D
D
2
D
1
D
0
6
5
4
3
2
1
0
N-1  
N-3  
HIGH-Z  
SDO  
Figure 1. SPI Write Timing (N = 24 when CRC is Disabled and N = 32 when CRC is Enabled)  
t
t
t
t
t
t
t
t
t
CSW  
CSH0 CSS0  
CH CL  
CP  
DS  
DH  
CSH1  
CS  
SCLK  
SDI  
1
2
3
4
5
6
7
8
9
10  
11  
N+6  
N+7  
N+8  
R
A
A
A
A
A
A
A
0
6
5
4
3
2
1
tDOT  
t
t
DOD  
DOH  
HIGH-Z  
HIGH-Z  
SDO  
D
N-1  
D
N-2  
D
N-3  
D
D
D
0
2
1
Figure 2. SPI Read Timing (N = 24 when CRC is Disabled and N = 32 when CRC is Enabled)  
www.maximintegrated.com  
Maxim Integrated | 11  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Typical Operating Characteristics  
(V  
= V  
= +3.3V, V  
= +15V, V  
= -15V, T = +25°C, unless otherwise noted.)  
AVDD  
DVDD  
HVDD  
HVSS A  
www.maximintegrated.com  
Maxim Integrated | 12  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Typical Operating Characteristics (continued)  
(V  
= V  
= +3.3V, V  
= +15V, V  
= -15V, T = +25°C, unless otherwise noted.)  
HVSS A  
AVDD  
DVDD  
HVDD  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Pin Configuration  
MAX22005  
TOP VIEW  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
+
AI8  
AI7  
1
INT  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
SDI  
AI6  
3
4
5
6
7
8
9
SDO  
SCLK  
CS  
AI5  
AI4  
AI3  
DVDD  
AVDD  
AGND  
I.C.  
MAX22005  
AI2  
AI1  
HVDD  
HVSS 10  
AGND 11  
AVDD 12  
I.C.  
RDY  
CLK  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
LGA  
7.5mm x 7.0mm  
Pin Description  
PIN  
NAME  
FUNCTION  
ANALOG INPUTS  
1
2
3
AI8  
AI7  
AI6  
Analog Input 8  
Analog Input 7  
Analog Input 6  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Pin Description (continued)  
PIN  
NAME  
AI5  
FUNCTION  
4
Analog Input 5  
Analog Input 4  
Analog Input 3  
Analog Input 2  
Analog Input 1  
Analog Input 12  
Analog Input 11  
Analog Input 10  
Analog Input 9  
5
AI4  
6
AI3  
7
AI2  
8
45  
AI1  
AI12  
AI11  
AI10  
AI9  
46  
47  
48  
POWER  
Positive High-Voltage Power Supply for the Input Path, +5V to +24V. Bypass HVDD to AGND  
through a 1µF capacitor.  
9
HVDD  
Negative High-Voltage Power Supply for the Input Path, -5V to -24V. Bypass HVSS to AGND  
through a 1µF capacitor.  
10  
HVSS  
AGND  
AVDD  
11, 13, 29  
12, 30  
Analog Ground. Connect all AGND pins together.  
Analog Power Supply, 2.7V to 3.6V. Connect all AVDD together. Bypass each AVDD through a  
1μF ceramic capacitor to AGND.  
Digital Power Supply, 2.7V to 3.6V. Connect all DVDD together. Bypass each DVDD pin through a  
1μF ceramic capacitor to DGND.  
21, 31  
24  
DVDD  
DGND  
Digital Ground  
REFERENCE AND INTERFACE  
Voltage Reference Noise Reduction. Bypass NR through a 1µF ceramic capacitor to AGND to  
improve wideband noise.  
14  
15, 16, 27, 28  
17  
NR  
I.C.  
Internally Connected. Connect to AGND for proper use.  
REF_ADC_E  
XT  
ADC External Voltage-Reference Input. Connect to AGND if not used.  
Voltage Reference Output. Bypass REF_OUT through a (0.1μF || 1μF) ceramic capacitor to  
AGND.  
18  
19  
REF_OUT  
REF_ADC  
ADC Voltage Reference-Buffered Output. Bypass REF_ADC through a 4.7μF ceramic capacitor to  
AGND.  
ADC Synchronization Input. SYNC resets the ADC modulator and digital filters. Connect SYNC of  
multiple MAX22005s in parallel to synchronize their ADCs to an external trigger and external clock.  
Connect SYNC to DGND if not used.  
20  
SYNC  
22  
23  
25  
BYP_ADC  
RST  
1.8V Sub-Regulator Output. Bypass BYP_ADC through a 220nF or larger capacitor to DGND.  
Active-Low Reset Input. Keep RST high for normal operation.  
CLK  
External Clock Input. Connect to DGND if not used.  
Active-Low Data Ready Output. RDY goes low when a new ADC conversion result is available in  
the data register. When a read operation of a full output word completes, RDY returns high. RDY is  
always driven.  
26  
RDY  
32  
33  
34  
35  
36  
CS  
SCLK  
SDO  
SDI  
Active-Low SPI Chip-Select Input  
SPI Serial Clock Input  
SPI Serial Data Output  
SPI Serial Data Input  
INT  
Interrupt Output. INT is an open-drain active-low output.  
www.maximintegrated.com  
Maxim Integrated | 15  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
GPIO PORTS  
37  
38  
39  
40  
41  
42  
43  
44  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
General Purpose I/O 0  
General Purpose I/O 1  
General Purpose I/O 2  
General Purpose I/O 3  
General Purpose I/O 4  
General Purpose I/O 5  
General Purpose I/O 6  
General Purpose I/O 7  
www.maximintegrated.com  
Maxim Integrated | 16  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Detailed Description  
The MAX22005 is an industrial-grade configurable analog-input solution. The MAX22005 offers twelve single-ended  
inputs, six pairs of adjacent differential inputs, or eight multifunctional differential pairs defined around four triplets of  
inputs. A triplet of inputs is shown in Figure 3. The port INA would be the “common” input, while INC and the middle port,  
INB, would be the other two ports defining the triplet of inputs.  
The pairing of ports are illustrated in Figure 4. The inputs highlighted in yellow are the common inputs (COM).  
The MAX22005 provides a high-performance 24-bit delta-sigma ADC in the receive path. A high-performance decimation  
filter following the ADC provides a minimum of 87dB rejection for 50Hz/60Hz at select ADC data rates. The device  
includes a high-performance 5ppm/°C (max) voltage reference on-chip. However, external references can optionally be  
used.  
5kΩ  
5kΩ  
5kΩ  
LONG CABLE  
LONG CABLE  
INA  
INB  
INC  
INA  
INB  
INC  
ONE TRIPLET  
CHANNEL  
HIGH-VOLTAGE  
SIGNAL  
250Ω  
OUT TO  
ADC  
PROCESSING  
Figure 3. Input Port Triplet  
www.maximintegrated.com  
Maxim Integrated | 17  
 
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
DIFFERENTIAL PAIRS  
MULTIFUNCTIONAL DIFFERENTIAL PAIRS  
AI1  
AI2  
AI3  
AI4  
AI5  
AI6  
AI7  
AI8  
AI9  
AI10  
AI11  
AI12  
Figure 4. Input Ports Pairs  
Modes of Operation  
The MAX22005 offers the following modes of operation:  
● 12 single-ended analog inputs  
● 6 differential analog inputs  
● 8 multifunctional differential analog inputs  
Switching among those modes does not require changing the printed circuit board (PCB). The inputs can be configured  
for analog input-voltage mode (AIVM) or analog input-current mode (AICM). Current measurements by the MAX22005  
rely on an external precision resistor to convert the current to voltage. For current measurements, one can use any odd  
channel input and its sense port. The integrated GPIO port can control an external analog switch to connect or disconnect  
the current-sense resistor electronically (refer to Figure 3). The external switches do not need to be accurate since the  
www.maximintegrated.com  
Maxim Integrated | 18  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
current measurement is performed differentially. We recommend 2.5Ω low voltage CMOS switches.  
The MAX22005 supports two-wire configuration for all single-ended and differential inputs, and three-wire configuration  
for multifunctional differential inputs, which could be used, for example, for a resistance temperature detector (RTD)  
connection. Refer to AN7413 for other possible configuration options.  
Input Range Settings  
To maintain best accuracy, the MAX22005 provides multiple voltage ranges for its inputs.  
Table 1 summarizes available ranges. The nominal range specifies the range for the intended application. The linear  
range encompasses the nominal range, where performance specifications such as gain error, offset error, INL, PSRR,  
and CMRR are still guaranteed. Even wider, the full-scale range sets the conversion limits of the data converter. This  
extended range defines the input-voltage limits that can be converted without clipping the ADC.  
The MAX22005 sets the linear range at 105% of the nominal range, and the full-scale range at 125% of the nominal  
range. For example, for a ±10V nominal range, the MAX22005 provides a linear range of ±10.5V and a full-scale range  
of ±12.5V.  
Table 1. Input Ranges  
MODE  
AIVM  
AICM  
SETTING  
NOMINAL  
±10V  
LINEAR  
±10.5V  
±21mA  
FULL SCALE  
±12.5V  
±12.5V  
±25mA  
±20mA  
±25mA  
Differential-Input Common-Mode Range  
If the signal amplitude is less than the full-scale range of an input, the MAX22005 permits a greater input common-mode  
range.  
The maximum allowed input common-mode range is calculated as follows:  
V
CM  
= 25 - V  
DIFF  
where,  
V
V
= Maximum input common-mode range  
CM  
= Peak-to-peak input voltage  
DIFF  
Input-Voltage Rating  
All high-voltage analog inputs are ±36V tolerant with respect to AGND. In general, the following scenario at an analog  
input is depicted in Figure 5. Every analog input must have a series 5kΩ protection resistor. As long as the supply  
voltages at HVSS and HVDD are actively driven, the voltage at the MAX22005 input pin does not swing more than one  
diode voltage drop above HVDD or below HVSS. Since the series resistor limits the current, the diode voltage drop is  
small.  
If one of the DC-DC converter malfunctions and is no longer capable of sinking or sourcing current, then the resistive  
feedback network around the DC-DC converter can be used to effectively protect the input pin of the MAX22005. It is  
the engineer’s responsibility to design the total resistance R  
of the current path such that the voltages at the analog  
PATH  
input pins of MAX22005 do not exceed their voltage ratings.  
www.maximintegrated.com  
Maxim Integrated | 19  
 
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
MAX22005  
HVDD  
DC-DC  
CONVERTER  
ESD DIODE  
R
PATH  
5kΩ  
EXTERNAL  
INPUT  
ESD DIODE  
DC-DC  
CONVERTER  
HVSS  
Figure 5. Input Protection  
Supply Voltages and Power-Supply Sequencing  
The MAX22005 has three independent supplies: a low-voltage analog supply (AVDD, AGND), a low-voltage digital supply  
(DVDD, DGND), both specified at 2.7V to 3.6V, and an analog bipolar high-voltage supply (HVDD, HVSS for the input  
AFE). For the high-voltage AFE to operate properly, the V  
supply needs to be less than or below -5V and the V  
HVSS  
HVDD  
supply needs to be greater than or equal to 5V. For ±12V inputs, at least V  
= -15V and V  
= 15V are required.  
HVDD  
HVSS  
The three supplies pairs (AVDD/AGND, DVDD/DGND, HVDD/HVSS) can be powered up in any order.  
Power-On Reset  
The AVDD and DVDD supplies are monitored by power-on reset circuitry. The MAX22005 is held in a reset state until  
the AVDD and DVDD supplies have reached a certain threshold that allows safe operations without loss of data. Once  
this threshold is exceeded, the SPI interface and low-voltage circuitry are fully functional. The high-voltage supply is also  
constantly monitored. The MAX22005 needs only the AVDD and DVDD supplies to communicate over the SPI interface.  
With AVDD and DVDD powered, loss of the high-voltage supply is reported through the HVDD_INT bit in the GEN_INT  
register.  
SPI Interface  
An SPI interface allows communication of all important information between a microprocessor and the MAX22005. An  
optional CRC enhances confidence in the data communicated to and from the MAX22005. This feature, disabled by  
default after a hardware reset or power-up (but not a software reset), can be enabled or disabled at any time through the  
SPI interface.  
The SPI transactions are 40-bits long if CRC is enabled as shown in Table 2. If CRC is disabled, the SPI transactions are  
32-bits long, as shown in Table 3.  
Table 2. SPI Transaction with CRC Enabled  
BITS 39:33  
BIT 32  
BITS 31:8  
BITS 7:0  
Register Address  
R/W  
24-bit Payload  
CRC  
www.maximintegrated.com  
Maxim Integrated | 20  
 
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Table 3. SPI Transaction with CRC Disabled  
BITS 31:25  
BIT 24  
BITS 23:0  
Register Address  
R/W  
24-bit Payload  
8
5
4
0
The MAX22005 implements the CRC-8/MAXIM algorithm with an 0x31 polynomial (x + x + x + x ), the same  
polynomial that is used in Maxim’s 1-wire® products. This CRC algorithm uses reflected input and output bytes (i.e., LSB  
first instead of MSB first on a byte basis; the byte order of the input sequence is not changed). The initial value is 0x00,  
and the output is reported as is without any XOR operation.  
This CRC can detect the following types of errors:  
● Any odd number of errors anywhere within the 32-bit number  
● All double-bit errors anywhere within the 32-bit number  
● Any cluster of errors that can be contained within an 8-bit window (1–8 bits incorrect)  
● Most large clusters of errors  
For write transactions, the CRC is calculated on the 32 bits that precede it, namely the 7-bit register address, 1-bit read  
or write control, and the 24-bit payload.  
Here are two examples of write operations:  
Write 0x00_0F00 to register GEN_CHNL_CTRL: 0x06_000F_0011  
Write 0x34_0000 to register CHNL_CMD: 0x40_3400_00A0  
For read transactions, the CRC sent by the MAX22005 back to the host is calculated on 32 bits made of the 8-bit header  
received from the host (register address and read control) and the 24 bits of payload.  
Here are two examples of read operations:  
Read the default value from register GEN_CNFG: 0x05_1000_00CB  
Read the default value from register DCHNL_STA: 0x43_0000_08AA  
CRC is disabled by default. Refer to AN27 for more details.  
Watchdog Timer  
The MAX22005 features a watchdog timer for additional security of losing communication with the host controller.  
The watchdog can be enabled in the GEN_CNFG register (0x02) by setting the TMOUT_EN bit and setting up the  
TMOUT_CNFG, and TMOUT_SEL[3:0] bits for a desired interrupt behavior and timeout duration. The interrupt is  
asserted on the INT pin and in TMOUT_INT bit in the GEN_INT register (0x07) if the duration between two properly  
formatted SPI transactions exceeds the timeout period. A properly formatted transaction is a transaction that has a  
minimum of 32 bits (if CRC is disabled) or 40 bits (if CRC is enabled). A properly formatted transaction is always  
accounted for at the end of the transaction. Refer to the Register Map descriptions for more information.  
Product Tracking  
The MAX22005 includes a 32-bit wide unique serial number used for device tracking (SERIAL[32:0] in registers  
GEN_PROD and GEN_REV).  
In addition, an eight-bit product ID that helps to distinguish different parts of the industrial I/O family (PROD_ID[7:0] in  
register GEN_PROD). The product ID can be decoded as follows:  
Table 4. Product ID  
BIT 7  
6
5
4
3
2
1
0
Number of output Channels  
Number of Input Channels  
RTD/TC Support  
The MAX22005 can accept up to 12 input channels; the product ID is 0x18.  
The revision of the silicon is reflected in the eight-bit revision ID (REV_ID[7:0] in register GEN_REV).  
Analog Input ADC  
The analog input channels share one high-performance 24-bit delta-sigma analog-to-digital converter (ADC). The data  
www.maximintegrated.com  
Maxim Integrated | 21  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
rate is programmable from 1sps (samples per second) to 115.2ksps. The ADC can utilize either the internal 2.5V  
reference or an external reference. The ADC services a total of 26 input configurations, which are selectable through bits  
AI_DCHNL_SEL[4:0] in register GEN_CHNL_CTRL. Table 5 summarizes the channel selection options.  
Table 5. Input-Channel Configuration Selection  
AI_DCHNL_SEL[4:0]  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
INPUT CONFIGURATION  
Input AI1 in single-ended mode (-12.5V to +12.5V range)  
Input AI2 in single-ended mode (-12.5V to +12.5V range)  
Input AI3 in single-ended mode (-12.5V to +12.5V range)  
Input AI4 in single-ended mode (-12.5V to +12.5V range)  
Input AI5 in single-ended mode (-12.5V to +12.5V range)  
Input AI6 in single-ended mode (-12.5V to +12.5V range)  
Input AI7 in single-ended mode (-12.5V to +12.5V range)  
Input AI8 in single-ended mode (-12.5V to +12.5V range)  
Input AI9 in single-ended mode (-12.5V to +12.5V range)  
Input AI10 in single-ended mode (-12.5V to +12.5V range)  
Input AI11 in single-ended mode (-12.5V to +12.5V range)  
Input AI12 in single-ended mode (-12.5V to +12.5V range)  
Inputs AI1–AI2 in differential mode (-25.0V to +25.0V range)  
Inputs AI3–AI4 in differential mode (-25.0V to +25.0V range)  
Inputs AI5–AI6 in differential mode (-25.0V to +25.0V range)  
Inputs AI7–AI8 in differential mode (-25.0V to +25.0V range)  
Inputs AI9–AI10 in differential mode (-25.0V to +25.0V range)  
Inputs AI11–AI12 in differential mode (-25.0V to +25.0V range)  
Inputs AI1(COM)–AI2 in multifunctional differential mode (-25.0V to +25.0V range)  
Inputs AI1(COM)–AI3 in multifunctional differential mode (-25.0V to +25.0V range)  
Inputs AI4(COM)–AI5 in multifunctional differential mode (-25.0V to +25.0V range)  
Inputs AI4(COM)–AI6 in multifunctional differential mode (-25.0V to +25.0V range)  
Inputs AI7(COM)–AI8 in multifunctional differential mode (-25.0V to +25.0V range)  
Inputs AI7(COM)–AI9 in multifunctional differential mode (-25.0V to +25.0V range)  
Inputs AI10(COM)–AI11 in multifunctional differential mode (-25.0V to +25.0V range)  
Inputs AI10(COM)–AI12 in multifunctional differential mode (-25.0V to +25.0V range)  
The ADC results are stored in register DCHNL_DATA in two’s complement format. Table 6 summarizes the ADC output  
codes and corresponding input voltages.  
Table 6. Input-Channel Limit Values and Codes  
AI_DCHNL_SEL[4:0]  
INPUT CHANNEL  
ADC CODE  
0x800000  
(-8388608) (V)  
ADC CODE  
0x000000  
(0) (V)  
ADC CODE  
0x7FFFFF  
(+8388607) (V)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
AI1 single-ended  
AI2 single-ended  
AI3 single-ended  
AI4 single-ended  
AI5 single-ended  
AI6 single-ended  
AI7 single-ended  
-12.5  
-12.5  
-12.5  
-12.5  
-12.5  
-12.5  
-12.5  
0
0
0
0
0
0
0
+12.5  
+12.5  
+12.5  
+12.5  
+12.5  
+12.5  
+12.5  
www.maximintegrated.com  
Maxim Integrated | 22  
 
 
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Table 6. Input-Channel Limit Values and Codes (continued)  
AI_DCHNL_SEL[4:0]  
INPUT CHANNEL  
ADC CODE  
0x800000  
(-8388608) (V)  
ADC CODE  
0x000000  
(0) (V)  
ADC CODE  
0x7FFFFF  
(+8388607) (V)  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
AI8 single-ended  
AI9 single-ended  
-12.5  
-12.5  
-12.5  
-12.5  
-12.5  
-25.0  
-25.0  
-25.0  
-25.0  
-25.0  
-25.0  
-25.0  
-25.0  
-25.0  
-25.0  
-25.0  
-25.0  
-25.0  
-25.0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+12.5  
+12.5  
+12.5  
+12.5  
+12.5  
+25.0  
+25.0  
+25.0  
+25.0  
+25.0  
+25.0  
+25.0  
+25.0  
+25.0  
+25.0  
+25.0  
+25.0  
+25.0  
+25.0  
AI10 single-ended  
AI11 single-ended  
AI12 single-ended  
AI1–AI2 differential  
AI3–AI4 differential  
AI5–AI6 differential  
AI7–AI8 differential  
AI9–AI10 differential  
AI11–AI12 differential  
AI1(COM)–AI2 multifunctional differential  
AI1(COM)–AI3 multifunctional differential  
AI4(COM)–AI5 multifunctional differential  
AI4(COM)–AI6 multifunctional differential  
AI7(COM)–AI8 multifunctional differential  
AI7(COM)–AI9 multifunctional differential  
AI10(COM)–AI11 multifunctional differential  
AI10(COM)–AI12 multifunctional differential  
The mode of operation is selected using the DCHNL_MODE[1:0] bits in register DCHNL_CMD. By default, the ADC is in  
standby mode to reduce the overall power consumption.  
The delta-sigma modulator is followed by a chain of high-performance digital filters, consisting of a fifth-order SINC filter,  
an averaging filter, and a fourth-order SINC filter, depending on the data rate chosen. Several data rates offer at least  
75dB of 50Hz or 60Hz suppression.  
The ADC offers three conversion modes of operation: continuous mode, single-cycle mode, and continuous single-cycle  
mode.  
In continuous mode, the ADC operates continuously at the selected sample rate. Based on the data rate, the digital  
filter requires up to five output samples to settle. This mode is used when data from a single channel is collected, and a  
high sample rate is desired.  
Single-cycle mode offers a single-cycle no-latency conversion, after which the ADC goes back into standby mode. This  
mode is used when single measurements on several channels are made, and a moderate sample rate is required.  
In continuous single-cycle mode the ADC performs continuous no-latency conversions at the selected rate. This mode  
is used if continuous monitoring of one channel is required, but settling of the digital filters should be masked. This is  
useful in the case if a quick settling after a change in the input is desired, but the increased data rate in continuous mode  
is not required.  
The modes of operation are selected using bits SCYCLE and CONTSC in register DCHNL_CTRL1. Continuous mode  
and continuous single-cycle mode can be exited by changing the DCHNL_MODE[1:0] bits in register DCHNL_CMD  
to standby mode. In addition, any change to the input channel selection (bits AI_DCHNL_SEL[4:0] in register  
GEN_CHNL_CTRL), the ADC control registers (DCHNL_CTRL1, DCHNL_CTRL2) also abort any ongoing continuous  
conversion and return the ADC to standby mode.  
The available data rates are selected by setting bits DCHNL_RATE[3:0] in register DCHNL_CMD. Table 7 summarizes  
the data rates that are available in continuous mode. The data rates in bold offer 50Hz and/or 60Hz suppression in excess  
www.maximintegrated.com  
Maxim Integrated | 23  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
of 75dB. Note that system calibration correction cannot be selected for the highest data rate.  
Table 7. Selection of Data Rates for Continuous Conversion  
DCHNL_RATE[3:0]  
DATA RATE (SPS)  
EFFECTIVE NUMBER OF BITS  
0000  
5
10  
21  
21  
21  
20  
20  
20  
19  
19  
19  
18  
18  
18  
17  
17  
17  
16  
0001  
0010  
15  
0011  
30  
0100  
50  
0101  
60  
0110  
225  
0111  
450  
1000  
900  
1001  
1800  
3600  
7200  
14400  
28800  
57600  
115200 (Note)  
1010  
1011  
1100  
1101  
1110  
1111  
Note: System calibration is not supported with the highest data rate.  
Table 8 shows the data rates available in single-cycle mode. Operation in single-cycle mode requires an overhead at  
the beginning of a conversion to allow the analog front-end of the ADC to settle. In addition, time is required to process  
the raw modulator output. The nominal data rate is shown in Table 8, as it is an indication of the sampling period of the  
input signal. The actual data rate depends on whether system calibration is used or not, as the computational overhead  
is different in the two cases. The data rates in bold offer 50Hz and/or 60Hz suppression in excess of 75dB.  
Table 8. Selection of Data Rates for Single-Cycle Conversion  
DCHNL_RATE[3:0]  
NOMINAL DATA  
RATE (sps)  
ACTUAL DATA  
RATE (sps)  
ACTUAL DATA RATE PLUS SYSTEM  
CALIBRATION (sps)  
EFFECTIVE  
NUMBER OF BITS  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1 (0.9955)  
2.5  
1 (0.9955)  
2.5  
1 (0.9955)  
2.5  
21  
21  
21  
20  
20  
20  
19  
19  
19  
18  
18  
18  
17  
17  
17  
16  
5
5
5
10  
10  
10  
12.5  
15  
12.5  
15  
12.5  
15  
50  
50  
50  
60  
60  
60  
150  
150  
150  
300  
299  
298  
900  
891  
886  
1800  
2880  
5760  
11520  
23040  
1772  
2810  
5486  
10473  
19200  
1752  
2759  
5297  
9804  
17067  
www.maximintegrated.com  
Maxim Integrated | 24  
 
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Table 9 shows the data rates available in single-cycle continuous mode. The single-cycle continuous mode operation is  
similar to single-cycle mode, but the overhead is slightly different, and therefore the actual data rates differ slightly as  
well. Again, the data rates in bold offer 50Hz and/or 60Hz suppression in excess of 75dB.  
Table 9. Selection of Data Rates for Single-Cycle Continuous Conversion  
DCHNL_RATE[3:0]  
NOMINAL DATA  
RATE (sps)  
ACTUAL DATA  
RATE (sps)  
ACTUAL DATA RATE PLUS SYSTEM  
CALIBRATION (sps)  
EFFECTIVE  
NUMBER OF BITS  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1 (0.9955)  
2.5  
1 (0.9955)  
2.5  
1 (0.9955)  
2.5  
21  
21  
21  
20  
20  
20  
19  
19  
19  
18  
18  
18  
17  
17  
17  
16  
5
5
5
10  
10  
10  
12.5  
15  
12.5  
15  
12.5  
15  
50  
50  
50  
60  
60  
60  
150  
150  
150  
300  
299  
299  
900  
892  
887  
1800  
2880  
5760  
11520  
23040  
1776  
2818  
5519  
10593  
19609  
1755  
2768  
5327  
9910  
17389  
The ADC offers a status bit to signal an overrange condition. If the output of the digital filter overflows, bit DOR in register  
DCHNL_STA is set to logic high. In this case, the digital output is set to 0x7FFFFF if a positive overflow occurs, or to  
0x800000 if a negative overflow occurs.  
Analog Input Offset and Gain Error Calibration  
System Calibration  
The MAX22005 is factory calibrated to satisfy its TUE specification. However, the user is able to perform their own  
system-level calibration to eliminate gain and offset errors of the entire analog input signal chain, including board level  
components. A two-point measurement algorithm can be used to calculate and correct the system level offset and gain  
error. Separate pairs of offset and gain correction registers are provided in the MAX22005 for each of the 26 input  
configurations. The two-point calibration to calculate both gain and offset coefficients is depicted in Figure 6. Refer to  
AN7449 "MAX22005 User Calibration Guide" for more information.  
Before attempting a user/system calibration, the offset and gain calibration registers (DCHNL_N_SOC and  
DCHNL_N_SGC) of the respective channel should be set to 0x00_0000 and 0xC0_0000, respectively.  
Two input voltages V and V that are close to the application full-scale range must be applied, and the corresponding  
1
2
digital output codes C and C , respectively, are recorded.  
1
2
www.maximintegrated.com  
Maxim Integrated | 25  
 
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
OUTPUT CODE  
IDEAL TRANSFER  
CHARACTERISTIC  
C
1
V
2
INPUT VOLTAGE  
V
1
C
2
Figure 6. Two Point System Calibration  
The gain A of the input channel can then be calculated as follows:  
C C  
1
2
(
) × V  
FSR  
24  
2
A =  
(V V )  
1
2
where V  
10.  
is the full-scale range of the input channel selected. The full-scale range for each channel is shown in Table  
FSR  
Table 10. Full-Scale Range of Input Channels  
AI_DCHNL_SEL[4:0]  
INPUT CHANNEL  
FULL_SCALE  
DIGITAL GAIN  
DIGITAL SIGN  
RANGE V  
A
S
FSR  
DIG  
DIG  
(V)  
00000  
00001  
00010  
00011  
00100  
00101  
AI1 single-ended  
AI2 single-ended  
AI3 single-ended  
AI4 single-ended  
AI5 single-ended  
AI6 single-ended  
25  
2
2
2
2
2
2
+1  
-1  
25  
25  
25  
25  
25  
-1  
+1  
+1  
-1  
www.maximintegrated.com  
Maxim Integrated | 26  
 
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Table 10. Full-Scale Range of Input Channels (continued)  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
AI7 single-ended  
25  
25  
25  
25  
25  
25  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
+1  
-1  
AI8 single-ended  
AI9 single-ended  
-1  
AI10 single-ended  
+1  
+1  
-1  
AI11 single-ended  
AI12 single-ended  
AI1–AI2 differential  
+1  
-1  
AI3–AI4 differential  
AI5–AI6 differential  
+1  
+1  
-1  
AI7–AI8 differential  
AI9–AI10 differential  
AI11–AI12 differential  
+1  
+1  
+1  
+1  
+1  
+1  
+1  
+1  
AI1(COM)–AI2 multifunctional differential  
AI1(COM)–AI3 multifunctional differential  
AI4(COM)–AI5 multifunctional differential  
AI4(COM)–AI6 multifunctional differential  
AI7(COM)–AI8 multifunctional differential  
AI7(COM)–AI9 multifunctional differential  
AI10(COM)–AI11 multifunctional  
differential  
11000  
11001  
AI10(COM)–AI12 multifunctional  
differential  
50  
2
+1  
The gain calibration coefficient can now be calculated by dividing the default gain calibration coefficient by the calculated  
gain:  
gain calibration coefficient = 1.5/A.  
The result is expressed in unsigned binary format with a fraction length of 23 bits and loaded into the appropriate  
DCHNL_N_SGC register.  
The input-referred offset can be calculated as  
C × V  
1
FSR  
V
=
A × V  
1
OFFSET  
24  
2
In order to calculate the offset calibration coefficient, the digital gain A  
and the sign S  
of the signal chain needs  
DIG  
DIG  
to be taken into account. Both gain and sign are summarized in Table 9. With this information the offset calibration  
coefficient DCHNL_N_SOC can be calculated as follows:  
V
S
1
DIG  
×
1.5 × A  
24  
DCHNL_N_SOC = C A ×  
× 2  
1
(
V
)
FSR  
DIG  
The resulting value of DCHNL_N_SOC must be expressed in two's complement format.  
The calculated calibration coefficients are stored in registers DCHNL_N_SOC for the offset calibration coefficient, and  
DCHNL_N_SGC for the gain calibration coefficient, respectively. These registers are selectable using indirect addressing  
(see the DCHNL_N_SEL register).  
By default, the raw ADC output data is corrected using the system gain and offset calibration coefficients. However, the  
correction can be disabled using bits NOSYSG and NOSYSO bits in register DCHNL_CTRL2.  
www.maximintegrated.com  
Maxim Integrated | 27  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
ADC Software Reset  
The host can issue a software reset to restore the default state of the ADC. A software reset sets the DCHNL_ registers  
back into their default states and resets the internal state machines. However, a software reset does not execute the  
complete power-on reset or hardware reset sequence. A software reset is, thus, not effective if e.g., the SPI interface  
does not respond.  
Two SPI transactions are required to issue a software reset: first, bit DCHNL_PD in register DCHNL_CTRL1 must be set  
to logic high (reset). Then a write transaction to register DCHNL_CMD must be issued with DCHNL_MODE[1:0] set to  
‘01’.  
To confirm the completion of the reset operation, bits PDSTAT[1:0] in register DCHNL_STA must be monitored. While  
the ADC is in its reset phase, PDSTAT[1:0] is set to ‘11’ (reset). After the reset operation is complete, PDSTAT[1:0] is set  
to ‘10’ (standby). It is usually not required to monitor the reset (‘11’) state. Polling for standby mode (‘10’) is sufficient.  
ADC RDY (Data Ready) Output  
RDY indicates the ADC conversion status and the availability of the conversion result. When RDY is low, a conversion  
result is available. When RDY is high, a conversion is in progress, and the data for the current conversion is not available.  
RDY is driven high after a complete read of the DCHNL_DATA register. If the data is read after each sample becomes  
available, RDY transitions from high-to-low at the output data rate. If the previous data was not read, then RDY transitions  
from low-to-high approximately 0.5µs before new data becomes available. A falling edge on RDY then indicates the  
availability of new data. In continuous mode, RDY remains high for the first four conversion results and on the 5th result,  
RDY goes low to indicate valid data.  
CONVERT COMMANDS  
CS/SCLK/SDI  
t
CNV  
tCNV  
a)  
RDY  
DATA NOT RETRIEVED  
t
CNV  
DATA  
RETRIEVED  
b)  
c)  
RDY  
RDY  
t
CNV  
5 tCNV  
Figure 7. RDY Output Timing, a) Single-Cycle Mode, b) Continuous Single-Cycle Mode, c) Continuous Conversion Mode  
ADC Conversion Synchronization Using the SYNC Pin  
The MAX22005 incorporates a highly stable internal oscillator, providing a nominal system clock of 7.3728MHz  
(8.192MHz x 0.9) for both analog and digital timing. Optionally, a highly stable external clock can be used. The SYNC  
pin, ideally in conjunction with an external clock, can be used to synchronize the data conversions to external events.  
Although the synchronization method also works with an internal clock, resynchronization is inevitable due to local  
oscillators with limited frequency accuracy. A highly stable external clock that can be shared by multiple MAX22005s  
allows for much longer time intervals without the requirement of resynchronization.  
Set bit SYNC_MODE in register DCHNL_CTRL2 to logic high to enable external synchronization mode. Also, SCYCLE  
in register DCHNL_CTRL1 must be set to logic zero, as SYNC_MODE is operational only for the continuous conversion  
mode. Optionally, set bit EXTCLK in register DCHNL_CTRL2 to logic high to use a highly accurate external clock signal.  
www.maximintegrated.com  
Maxim Integrated | 28  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
The synchronization mode is used to detect if the current conversions are synchronized to a continuous-pulse signal  
with a period greater than the data rate. The pulse-width of the synchronization signal is not critical, as only the rising  
edge of the synchronization pulse is used as a timing reference. The pulse-width, however, must be longer than 300ns if  
the internal clock source is used, and longer than twice the clock period if an external clock source is used. In addition,  
the low time of the SYNC signal between consecutive SYNC pulses must be longer than 300ns if the internal clock  
source is used, and longer than twice the clock period if an external clock source is used. Ideally, the frequency of the  
synchronization signal is an integer multiple of the conversion rate. The synchronization mode records the number of  
ADC clock cycles between a falling edge of RDY and the rising edge of the next SYNC pulse. At the following SYNC  
pulse, the number of ADC clock cycles between a falling edge of RDY and the rising edge of the SYNC pulse is evaluated  
again and compared to the recorded value. If the new number of ADC clock cycles differs by more than one from the  
recorded value, the conversion in progress is stopped, the digital filter contents are reset, and a new conversion starts.  
As the digital filter is reset, the full digital filter latency is required before valid results are available. If the new ADC clock  
count is within the ±1 count limit, the conversions continue uninterrupted.  
Figure 8 shows the timing relationship between the MAX22005 ADC clock and the SYNC signal. Due to startup delays,  
any SYNC pulses before the first falling edge of RDY are ignored. The first rising edge on the SYNC pin after a falling  
edge of RDY establishes the relationship between the SYNC signal and the conversion timing.  
FIRST VALID  
SYNC  
> 2xt  
> 2xt  
CLK  
IGNORED  
CLK  
SYNC SIGNAL  
RDY  
FIRST  
CONVERSION  
READY  
N
N’  
CLK  
...  
t
CLK  
PART INITIATES A RESET AND RESTARTS CONVERSIONS WHEN N AND NDIFFER BY  
MORE THAN ±1 CLK COUNT. OTHERWISE, CONVERSIONS CONTINUE UNINTERRUPTED.  
Figure 8. SYNC Input Timing  
Hardware Reset  
The MAX22005 features an active-low RST pin to perform a hardware reset. Pulling the RST pin low reconfigures all  
registers to the power-on reset state. All analog inputs are disconnected. Any ADC conversion in progress is stopped,  
and the digital filters are reset. When RST goes back to logic “1,” the part behaves the same way as when power is first  
applied.  
www.maximintegrated.com  
Maxim Integrated | 29  
 
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Register Map  
MAX22005 Register Map  
ADDRESS  
NAME  
MSB  
LSB  
GEN Registers  
GEN_PROD[23:16]  
GEN_PROD[15:8]  
GEN_PROD[7:0]  
GEN_REV[23:16]  
GEN_REV[15:8]  
GEN_REV[7:0]  
PROD_ID[7:0]  
SERIAL_MSB[15:8]  
SERIAL_MSB[7:0]  
REV_ID[7:0]  
0x00  
0x01  
SERIAL_LSB[15:8]  
SERIAL_LSB[7:0]  
ADCREF  
_SEL  
GEN_CNFG[23:16]  
GEN_CNFG[15:8]  
GEN_CNFG[7:0]  
CRC_EN  
0x02  
0x03  
0x04  
TMOUT_ TMOUT_  
EN CNFG  
TMOUT_SEL[3:0]  
GEN_CHNL_CTRL[23:1  
6]  
AIP_TEST[1:0]  
AIN_TEST[1:0]  
GEN_CHNL_CTRL[15:8  
]
AI_DCHNL_SEL[4:0]  
GEN_CHNL_CTRL[7:0]  
GEN_GPIO_CTRL[23:1  
6]  
GPIO_EN[7:0]  
GPIO_DIR[7:0]  
GEN_GPIO_CTRL[15:8  
]
GEN_GPIO_CTRL[7:0]  
GEN_GPI_INT[23:16]  
GEN_GPI_INT[15:8]  
GEN_GPI_INT[7:0]  
GPO_DATA[7:0]  
GPI_POS_EDGE_INT[7:0]  
GPI_NEG_EDGE_INT[7:0]  
0x05  
0x06  
GEN_GPI_DATA[23:16]  
GEN_GPI_DATA[15:8]  
GEN_GPI_DATA[7:0]  
GEN_INT[23:16]  
GPI_POS_EDGE_INT_STA[7:0]  
GPI_NEG_EDGE_INT_STA[7:0]  
GPI_DATA[7:0]  
TMOUT_  
INT  
GEN_INT[15:8]  
0x07  
HVDD_I  
NT  
CNFG_I CRC_IN  
GEN_INT[7:0]  
GPI_INT  
NT  
T
GEN_INTEN[23:16]  
GEN_INTEN[15:8]  
TMOUT_  
INTEN  
0x08  
0x09  
HVDD_I  
NTEN  
CNFG_I CRC_IN GPI_INT  
GEN_INTEN[7:0]  
NTEN  
TEN  
EN  
GEN_PWR_CTRL[23:1  
6]  
GEN_RS  
T
GEN_PD  
GEN_PWR_CTRL[15:8]  
GEN_PWR_CTRL[7:0]  
www.maximintegrated.com  
Maxim Integrated | 30  
 
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
ADDRESS  
NAME  
MSB  
LSB  
DCHNL Registers  
DCHNL_CMD[23:16]  
DCHNL_CMD[15:8]  
DCHNL_CMD[7:0]  
DCHNL_STA[23:16]  
DCHNL_STA[15:8]  
DCHNL_STA[7:0]  
DCHNL_MODE[1:0]  
DCHNL_RATE[3:0]  
0x20  
0x21  
REFDET  
DOR  
MSTAT  
RATE[3:0]  
PDSTAT[1:0]  
RDY  
DCHNL_  
PD  
CONTS  
C
DCHNL_CTRL1[23:16]  
SCYCLE  
0x22  
DCHNL_CTRL1[15:8]  
DCHNL_CTRL1[7:0]  
SYNC_M  
ODE  
NOSYS  
G
NOSYS  
O
DCHNL_CTRL2[23:16]  
EXTCLK  
0x23  
0x24  
DCHNL_CTRL2[15:8]  
DCHNL_CTRL2[7:0]  
DCHNL_DATA[23:16]  
DCHNL_DATA[15:8]  
DCHNL_DATA[7:0]  
DCHNL_N_SEL[23:16]  
DCHNL_N_SEL[15:8]  
DCHNL_DATA[23:16]  
DCHNL_DATA[15:8]  
DCHNL_DATA[7:0]  
0x25  
DCHNL_  
OTP_SE  
L
DCHNL_N_SEL[7:0]  
DCHNL_N_SEL[4:0]  
DCHNL_N_SOC[23:16]  
DCHNL_N_SOC[15:8]  
DCHNL_N_SOC[7:0]  
DCHNL_N_SGC[23:16]  
DCHNL_N_SGC[15:8]  
DCHNL_N_SGC[7:0]  
DCHNL_N_SOC[23:16]  
DCHNL_N_SOC[15:8]  
DCHNL_N_SOC[7:0]  
DCHNL_N_SGC[23:16]  
DCHNL_N_SGC[15:8]  
DCHNL_N_SGC[7:0]  
0x26  
0x27  
Register Details  
GEN_PROD (0x0)  
BIT  
Field  
23  
15  
22  
14  
21  
13  
20  
19  
18  
10  
17  
16  
PROD_ID[7:0]  
Reset  
0x18  
Access  
Type  
Read Only  
BIT  
Field  
12  
11  
9
8
SERIAL_MSB[15:8]  
0xXX  
Reset  
Access  
Type  
Read Only  
www.maximintegrated.com  
Maxim Integrated | 31  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
BIT  
Field  
7
6
5
4
3
2
1
0
SERIAL_MSB[7:0]  
0xXX  
Reset  
Access  
Type  
Read Only  
BITFIELD  
PROD_ID  
BITS  
23:16  
15:0  
DESCRIPTION  
8-bit product ID code  
The most significant 16-bits of a 32-bit code unique to each MAX22005.  
SERIAL_MSB  
GEN_REV (0x1)  
BIT  
Field  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
17  
16  
REV_ID[7:0]  
Reset  
0x00  
Access  
Type  
Read Only  
BIT  
Field  
12  
11  
10  
9
8
SERIAL_LSB[15:8]  
0xXX  
Reset  
Access  
Type  
Read Only  
BIT  
Field  
4
3
2
1
0
SERIAL_LSB[7:0]  
0xXX  
Reset  
Access  
Type  
Read Only  
BITFIELD  
REV_ID  
BITS  
23:16  
15:0  
DESCRIPTION  
8-bit revision ID code  
The least significant 16-bits of a 32-bit code unique to each MAX22005.  
SERIAL_LSB  
GEN_CNFG (0x2)  
If an ADC conversion is in progress, every write to bit ADCREF_SEL aborts the ADC conversion unless the write  
transaction does not result in a change of the content of ADCREF_SEL.  
BIT  
23  
22  
21  
20  
19  
18  
17  
16  
ADCREF_S  
EL  
Field  
CRC_EN  
0b0  
Reset  
0b0  
Access  
Type  
Write, Read  
Write, Read  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access  
Type  
www.maximintegrated.com  
Maxim Integrated | 32  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
BIT  
Field  
7
6
5
4
3
2
1
0
TMOUT_C  
NFG  
TMOUT_EN  
0b0  
TMOUT_SEL[3:0]  
0x0  
Reset  
0b0  
Access  
Type  
Write, Read Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0: CRC checker disabled  
0b1: CRC checker enabled  
CRC_EN  
23  
CRC checker enable  
ADC voltage reference  
Timeout enable  
ADCREF_SE  
L
0b0: Internal voltage reference  
0b1: External voltage reference  
21  
5
0b0: Timeout disabled  
0b1: Timeout enabled  
TMOUT_EN  
0b0: When the timeout period expires,  
TMOUT_INT is asserted.  
TMOUT_CN  
FG  
0b1: When the timeout period expires,  
4
Timeout configuration  
TMOUT_INT is asserted, and the register field  
GPIO_EN[7:0] is reset, which disables all GPIO  
ports.  
0x0: 100ms  
0x1: 200ms  
0x2: 300ms  
0x3: 400ms  
0x4: 500ms  
0x5: 600ms  
0x6: 700ms  
0x7: 800ms  
0x8: 900ms  
0x9: 1.0s  
TMOUT_SEL  
3:0  
Timeout duration selection  
0xA: 1.1s  
0xB: 1.2s  
0xC: 1.3s  
0xD: 1.4s  
0xE: 1.5s  
0xF: 1.6s  
GEN_CHNL_CTRL (0x3)  
If an ADC conversion is in progress, every write to bits AI_DCHNL_SEL[4:0] aborts the ADC conversion unless the  
write transaction does not result in a change of the content of AI_DCHNL_SEL[4:0].  
BIT  
23  
22  
21  
20  
19  
18  
17  
16  
Field  
AIP_TEST[1:0]  
AIN_TEST[1:0]  
Reset  
0x0  
0x0  
Access  
Type  
Write, Read  
Write, Read  
BIT  
Field  
15  
14  
13  
12  
11  
10  
AI_DCHNL_SEL[4:0]  
0x00  
9
8
Reset  
Access  
Type  
Write, Read  
www.maximintegrated.com  
Maxim Integrated | 33  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
BIT  
Field  
7
6
5
4
3
2
1
0
Reset  
Access  
Type  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: Diagnostic disabled  
0x1: 2MΩ resistor to AGND  
0x2: 2MΩ resistor to HVDD  
Diagnostic switches for AI1, AI4, AI5, AI7,  
AI10, and AI11  
AIP_TEST  
23:22  
21:20  
0x3: 2MΩ resistor to both HVDD and AGND  
0x0: Diagnostic disabled  
0x1: 2MΩ resistor to AGND  
0x2: 2MΩ resistor to HVDD  
Diagnostic switches for AI2, AI3, AI6, AI8,  
AI9, and AI12  
AIN_TEST  
0x3: 2MΩ resistor to both HVDD and AGND  
0x0: AI1 single-ended  
0x1: AI2 single-ended  
0x2: AI3 single-ended  
0x3: AI4 single-ended  
0x4: AI5 single-ended  
0x5: AI6 single-ended  
0x6: AI7 single-ended  
0x7: AI8 single-ended  
0x8: AI9 single-ended  
0x9: AI10 single-ended  
0xA: AI11 single-ended  
0xB: AI12 single-ended  
0xC: AI1–AI2 differential  
0xD: AI3–AI4 differential  
0xE: AI5–AI6 differential  
0xF: AI7–AI8 differential  
0x10: AI9–AI10 differential  
0x11: AI11–AI12 differential  
0x12: AI1(COM)–AI2 multifunctional differential  
0x13: AI1(COM)–AI3 multifunctional differential  
0x14: AI4(COM)–AI5 multifunctional differential  
0x15: AI4(COM)–AI6 multifunctional differential  
0x16: AI7(COM)–AI8 multifunctionall differential  
0x17: AI7(COM)–AI9 multifunctional differential  
0x18: AI10(COM)–AI11 multifunctional differential  
0x19: AI10(COM)–AI12 multifunctional differential  
0x1A: reserved  
Analog-input configuration selection  
If the host attempts to write a reserve state to  
this field, a configuration interrupt is issued  
(CNFG_INT) and the register field remains  
unchanged; thus, reflecting the last valid  
configuration selection.  
AI_DCHNL_  
SEL  
12:8  
0x1B: reserved  
0x1C: reserved  
0x1D: reserved  
0x1E: reserved  
0x1F: reserved  
GEN_GPIO_CTRL (0x4)  
BIT  
Field  
23  
22  
21  
20  
19  
18  
17  
16  
GPIO_EN[7:0]  
Reset  
0x00  
Access  
Type  
Write, Read  
www.maximintegrated.com  
Maxim Integrated | 34  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
GPIO_DIR[7:0]  
Reset  
0x00  
Access  
Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
GPO_DATA[7:0]  
0x00  
Reset  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
GPIO ports enable control. The MSB  
corresponds to GPIO7 and the LSB to  
GPIO0.  
0: The corresponding GPIO is disabled (default)  
1: The corresponding GPIO is enabled  
GPIO_EN  
23:16  
0: The corresponding GPIO is configured as an  
input port (default)  
1: The corresponding GPIO is configured as output  
port  
GPIO ports direction control. The MSB  
corresponds to GPIO7 and the LSB to  
GPIO0.  
GPIO_DIR  
15:8  
7:0  
Data bits sent to the GPO-configured ports.  
0: The corresponding GPO set as logic low  
GPO_DATA  
The MSB corresponds to GPIO7 and the LSB (default)  
to GPIO0.  
1: The corresponding GPO set as logic high  
GEN_GPI_INT (0x5)  
BIT  
Field  
23  
22  
21  
13  
20  
19  
18  
10  
17  
16  
GPI_POS_EDGE_INT[7:0]  
0x00  
Reset  
Access  
Type  
Write, Read  
BIT  
Field  
15  
14  
12  
11  
9
8
GPI_NEG_EDGE_INT[7:0]  
0x00  
Reset  
Access  
Type  
Write, Read  
BIT  
Field  
7
6
5
4
3
2
1
0
Reset  
Access  
Type  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Positive-edge detection control for signals  
received on GPI-configured ports. The MSB  
corresponds to GPIO7 and the LSB to  
GPIO0.  
0: Positive-edge detection disabled on the  
corresponding GPI port (default)  
1: Positive-edge detection enabled on the  
corresponding GPI port  
GPI_POS_E  
DGE_INT  
23:16  
15:8  
Negative-edge detection control for signals  
received on GPI-configured ports. The MSB  
corresponds to GPIO7 and the LSB to  
GPIO0.  
0: Negative-edge detection disabled on  
corresponding GPI port (default)  
1: Negative-edge detection enabled on  
corresponding GPI port  
GPI_NEG_E  
DGE_INT  
www.maximintegrated.com  
Maxim Integrated | 35  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
GEN_GPI_DATA (0x6)  
BIT  
Field  
23  
15  
7
22  
14  
6
21  
20  
19  
18  
10  
2
17  
16  
GPI_POS_EDGE_INT_STA[7:0]  
0x00  
Reset  
Access  
Type  
Read Clears All  
BIT  
Field  
13  
12  
11  
9
8
GPI_NEG_EDGE_INT_STA[7:0]  
0x00  
Reset  
Access  
Type  
Read Clears All  
BIT  
Field  
5
4
3
1
0
GPI_DATA[7:0]  
0x00  
Reset  
Access  
Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0: No positive edge was detected on the  
configured port has detected a positive edge. corresponding GPI port (default)  
The MSB corresponds to GPIO7 and the LSB 1: At least one positive edge was detected on the  
Each bit indicates if its corresponding GPI-  
GPI_POS_E  
DGE_INT_S  
TA  
23:16  
to GPIO0.  
corresponding GPI port  
Each bit indicates if its corresponding GPI-  
configured port has detected a negative  
edge. The MSB corresponds to GPIO7 and  
the LSB to GPIO0.  
0: No negative edge was detected on the  
corresponding GPI port (default)  
1: At least one negative edge was detected on the  
corresponding GPI port  
GPI_NEG_E  
DGE_INT_S  
TA  
15:8  
7:0  
Each bit contains the logic level applied to its 0: Logic-level low detected at the GPI-configured  
corresponding GPI-configured port. The MSB port  
corresponds to GPIO7 and the LSB to  
GPIO0.  
GPI_DATA  
1: Logic-level high detected at the GPI-configured  
port  
GEN_INT (0x7)  
BIT  
Field  
23  
22  
21  
20  
19  
18  
17  
16  
Reset  
Access  
Type  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
TMOUT_IN  
T
Reset  
0b0  
Access  
Type  
Read  
Clears All  
www.maximintegrated.com  
Maxim Integrated | 36  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
BIT  
Field  
7
6
5
4
3
2
1
0
HVDD_INT  
0b0  
CNFG_INT  
0b0  
CRC_INT  
0b0  
GPI_INT  
0b0  
Reset  
Access  
Type  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Asserted when the timeout duration expires if  
the timeout function is enabled.  
Cleared when read.  
0b0: Timeout duration not expired  
0b1: Timeout duration expired  
TMOUT_INT  
9
Asserted when the high-voltage supply  
HVDD/HVSS falls below a preset threshold,  
indicating that the functionality of the  
amplifiers is not guaranteed.  
0b0: HVDD supply is above the preset threshold  
0b1: HVDD supply is below the preset threshold  
HVDD_INT  
7
Cleared when the high-voltage supply  
exceeds the threshold again.  
Asserted when the host selects states 0x1A  
to 0x1F for AI_DCHNL_SEL or  
DCHNL_N_SEL.  
0b0: No configuration error detected  
0b1: Configuration error detected  
CNFG_INT  
CRC_INT  
GPI_INT  
2
1
0
Cleared when read.  
Asserted when a CRC error is detected when  
the CRC mode is enabled.  
Cleared when read.  
0b0: No CRC error detected  
0b1: CRC error detected  
Asserted when at least one positive or  
negative edge was detected at the input of at  
least one GPI-configured port.  
0b0: No edge detected on any GPI-configured port  
0b1: At least one edge detected on at least one  
GPI-configured port  
Cleared when read.  
GEN_INTEN (0x8)  
BIT  
Field  
23  
22  
21  
20  
19  
18  
17  
16  
Reset  
Access  
Type  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
TMOUT_IN  
TEN  
Reset  
0b0  
Access  
Type  
Write, Read  
BIT  
7
6
5
4
3
2
1
0
HVDD_INT  
EN  
CNFG_INT  
EN  
CRC_INTE  
N
Field  
GPI_INTEN  
0b0  
Reset  
0b0  
0b0  
0b0  
Access  
Type  
Write, Read  
Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
TMOUT_INT  
EN  
0b0: The corresponding interrupt cannot assert INT  
0b1: The corresponding interrupt can assert INT  
9
TMOUT interrupt enable  
www.maximintegrated.com  
Maxim Integrated | 37  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
BITFIELD  
BITS  
DESCRIPTION  
HVDD interrupt enable  
DECODE  
HVDD_INTE  
N
0b0: The corresponding interrupt cannot assert INT  
0b1: The corresponding interrupt can assert INT  
7
CNFG_INTE  
N
0b0: The corresponding interrupt cannot assert INT  
0b1: The corresponding interrupt can assert INT  
2
1
0
CNFG interrupt enable  
CRC interrupt enable  
GPI interrupt enable  
0b0: The corresponding interrupt cannot assert INT  
0b1: The corresponding interrupt can assert INT  
CRC_INTEN  
GPI_INTEN  
0b0: The corresponding interrupt cannot assert INT  
0b1: The corresponding interrupt can assert INT  
GEN_PWR_CTRL (0x9)  
BIT  
Field  
23  
22  
21  
20  
19  
GEN_PD  
0b0  
18  
17  
GEN_RST  
0b0  
16  
Reset  
Access  
Type  
Write, Read  
Write, Read  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access  
Type  
BIT  
Field  
7
6
5
4
3
2
1
0
Reset  
Access  
Type  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0: Normal operation  
0b1:  
Power-down: Setting GEN_PD to logic high has an  
effect equivalent to powering down all input paths.  
When GEN_PD is set to logic low, the channels  
recover the configuration they had before GEN_PD  
was set to logic high. Therefore, no register needs  
to be reprogrammed after exiting power-down  
mode. Additionally, register contents can be  
modified while in power-down mode if desired.  
Power-down control for the register  
GEN_CHNL_CTRL that controls the analog  
path settings  
GEN_PD  
19  
0b0: Normal operation  
0b1: Reset mode: Setting GEN_RST is equivalent  
to clearing GEN_CHNL_CTRL register. Also, any  
on-going conversion is aborted. If a conversion  
was aborted, it needs to be restarted using  
DCHNL_CMD register.  
Soft-reset control for the register  
GEN_CHNL_CTRL that controls the analog  
path settings.  
GEN_RST  
17  
DCHNL_CMD (0x20)  
If an ADC conversion is in progress, every write transaction to the DCHNL_CMD register is ignored unless the write  
transaction puts the ADC in a power-down mode.  
www.maximintegrated.com  
Maxim Integrated | 38  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
BIT  
Field  
23  
22  
21  
20  
19  
18  
17  
16  
DCHNL_MODE[1:0]  
0x0  
DCHNL_RATE[3:0]  
0x0  
Reset  
Access  
Type  
Write, Read  
Write, Read  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access  
Type  
BIT  
Field  
7
6
5
4
3
2
1
0
Reset  
Access  
Type  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: Reserved  
0x1: Power down performed based on the  
DCHNL_PD setting  
0x2: Reserved  
DCHNL_MO  
DE  
21:20  
19:16  
Analog Input ADC mode  
ADC data rates.  
0x3: Conversion mode  
DCHNL_RAT  
E
DCHNL_STA (0x21)  
BIT  
Field  
23  
22  
21  
20  
19  
18  
17  
16  
Reset  
Access  
Type  
BIT  
Field  
15  
14  
REFDET  
0b0  
13  
12  
11  
10  
9
8
DOR  
0b0  
Reset  
Access  
Type  
Read Only  
Read Only  
BIT  
Field  
7
6
5
4
3
2
1
0
RATE[3:0]  
PDSTAT[1:0]  
MSTAT  
0b0  
RDY  
0b0  
Reset  
0x0  
0x2  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
www.maximintegrated.com  
Maxim Integrated | 39  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Reference voltage detection (internal or  
external reference).  
0b0: No reference voltage detected (reference  
voltage < 0.35V)  
0b1: Reference voltage detected (reference  
voltage > 0.35V)  
This bit does not inhibit normal operation and  
is intended for status only. The value of the  
REFDET bit is valid within 30μs after a  
conversion start command and is invalid  
when not in conversion.  
REFDET  
14  
0b0: The conversion result is within the digital  
operating range of the ADC  
0b1: The conversion result has exceeded the  
maximum or minimum value of the converter and  
the result has been set to the maximum or  
minimum value.  
DOR  
9
Digital overrange  
RATE[3:0] indicates the conversion rate that  
corresponds to the results in the  
DCHNL_DATA register or the rate that was  
used for the calibration coefficient calculation.  
The corresponding RATE[3:0] is only valid  
until the DCHNL_DATA register is read.  
RATE  
7:4  
3:2  
Refer to Table 7, Table 8 and Table 9.  
0x0: Conversion mode  
0x1: Reserved  
0x2: Standby  
PDSTAT  
Power states of the analog input ADC  
0x3: Reset  
ADC Status. Due to internal timing, the status  
update of MSTAT might be delayed up to 2µs  
after start or completion of a conversion. This  
delay should be taken into account if MSTAT  
is polled immediately after a status change.  
0b0: The delta-sigma modulator is not converting  
0b1: Conversion is in progress  
MSTAT  
RDY  
1
0
A new conversion is result ready.  
A complete read of the DCHNL_DATA  
register deasserts this bit.  
0b0: No new conversion result available  
0b1: A new conversion result available  
DCHNL_CTRL1 (0x22)  
If an ADC conversion is in progress, every write transaction to the DCHNL_CTRL1 register aborts the ADC conversion  
unless the write transaction does not result in a change of the content of the register.  
BIT  
23  
22  
21  
20  
DCHNL_PD  
0b0  
19  
18  
17  
SCYCLE  
0b1  
16  
CONTSC  
0b0  
Field  
Reset  
Access  
Type  
Write, Read  
Write, Read Write, Read  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access  
Type  
BIT  
Field  
7
6
5
4
3
2
1
0
Reset  
Access  
Type  
www.maximintegrated.com  
Maxim Integrated | 40  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0: Standby  
0b1: Reset  
DCHNL_PD  
20  
Analog input ADC power-down state  
0b0: Continuous conversion mode (latency due to  
digital filtering)  
SCYCLE  
CONTSC  
17  
16  
Single-cycle conversion mode  
Continuous single-cycle mode  
0b1: Single-Cycle mode where a no-latency  
conversion is followed by a power-down to standby  
mode  
0b0: Single conversion  
0b1: Continuous single-cycle conversions  
DCHNL_CTRL2 (0x23)  
If an ADC conversion is in progress, every write transaction to the DCHNL_CTRL2 register aborts the ADC conversion  
unless the write transaction does not result in a change of the content of the register.  
BIT  
23  
EXTCLK  
0b0  
22  
21  
20  
19  
NOSYSG  
0b0  
18  
NOSYSO  
0b0  
17  
16  
SYNC_MO  
DE  
Field  
Reset  
0b0  
Access  
Type  
Write, Read  
Write, Read  
Write, Read Write, Read  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access  
Type  
BIT  
Field  
7
6
5
4
3
2
1
0
Reset  
Access  
Type  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0: Internal oscillator  
0b1: External clock  
EXTCLK  
23  
External clock selection  
SYNC_MOD  
E
0b0: Disabled  
0b1: Enabled  
21  
19  
External synchronization mode  
0b0: System calibration gain coefficient SGC is  
used to compute the final output data  
0b1: System calibration gain coefficient SGC is not  
used to compute the final output data  
NOSYSG  
NOSYSO  
No system calibration gain correction  
No system calibration offset correction  
0b0: System calibration offset coefficient SOC is  
used to compute the final output data  
0b1: System calibration offset coefficient SOC is  
not used to compute the final output data  
18  
www.maximintegrated.com  
Maxim Integrated | 41  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
DCHNL_DATA (0x24)  
BIT  
Field  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
17  
16  
DCHNL_DATA[23:16]  
0x000000  
Reset  
Access  
Type  
Read Only  
BIT  
Field  
12  
11  
10  
9
8
DCHNL_DATA[15:8]  
0x000000  
Reset  
Access  
Type  
Read Only  
BIT  
Field  
4
3
2
1
0
DCHNL_DATA[7:0]  
0x000000  
Reset  
Access  
Type  
Read Only  
BITFIELD  
DCHNL_DATA  
BITS  
23:0  
DESCRIPTION  
Analog input configuration conversion result in two’s complement  
DCHNL_N_SEL (0x25)  
BIT  
Field  
23  
22  
21  
20  
19  
18  
17  
16  
Reset  
Access  
Type  
BIT  
Field  
15  
14  
13  
12  
11  
10  
9
8
Reset  
Access  
Type  
BIT  
Field  
7
6
5
4
3
2
1
0
DCHNL_OT  
P_SEL  
DCHNL_N_SEL[4:0]  
0x00  
Reset  
0b0  
Access  
Type  
Write, Read  
Write, Read  
www.maximintegrated.com  
Maxim Integrated | 42  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0b0: The DCHNL_N_SOC and DCHNL_N_SGC  
registers for the channel selected by  
DCHNL_N_SEL[4:0] can be modified through SPI  
transactions.  
DCHNL_OTP  
_SEL  
5
Calibration coefficient selection  
0b1: The SOC and SGC registers for the channel  
selected by DCHNL_N_SEL[4:0] are loaded with  
the corresponding factory calibrated coefficients,  
overwriting the current content of the selected SOC  
and SGC registers.  
The value written in this register corresponds  
to the input configuration as defined for  
AI_DCHNL_SEL[4:0]. Once this register is  
written with the desired input configuration,  
the DCHNL_N_SOC and DCHNL_N_SGC  
registers for the selected input configuration  
can be modified through SPI transactions.  
If the host attempts to write a reserve state to  
this field (0x1A to 0x1F), a configuration  
interrupt is issued (CNFG_INT) and  
DCHNL_N_S  
EL  
4:0  
DCHNL_N_SEL remains unchanged; thus,  
reflecting the last valid entry.  
DCHNL_N_SOC (0x26)  
If an ADC conversion is in progress, every write transaction to the DCHNL_N_SOC register is ignored if  
DCHNL_N_SEL[4:0] corresponds to the channel currently selected for conversion, and the register retains its current  
value. Write transactions to the DCHNL_N_SOC register if DCHNL_N_SEL[4:0] does not correspond to the channel  
currently selected for conversion are allowed, and the register is updated with the new value.  
BIT  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
17  
16  
Field  
DCHNL_N_SOC[23:16]  
0x000000  
Reset  
Access  
Type  
Write, Read  
BIT  
Field  
12  
11  
10  
9
8
DCHNL_N_SOC[15:8]  
0x000000  
Reset  
Access  
Type  
Write, Read  
BIT  
Field  
4
3
2
1
0
DCHNL_N_SOC[7:0]  
0x000000  
Reset  
Access  
Type  
Write, Read  
BITFIELD  
DCHNL_N_SOC  
BITS  
23:0  
DESCRIPTION  
System offset calibration value for the input configuration selected by  
DCHNL_N_SEL[4:0] in two’s complement format.  
DCHNL_N_SGC (0x27)  
If an ADC conversion is in progress, every write transaction to the DCHNL_N_SGC register is ignored if  
www.maximintegrated.com  
Maxim Integrated | 43  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
DCHNL_N_SEL[4:0] corresponds to the channel currently selected for conversion, and the register retains its current  
value. Write transactions to the DCHNL_N_SGC register if DCHNL_N_SEL[4:0] does not correspond to the channel  
currently selected for conversion are allowed, and the register is updated with the new value.  
BIT  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
17  
16  
Field  
DCHNL_N_SGC[23:16]  
0xC00000  
Reset  
Access  
Type  
Write, Read  
BIT  
Field  
12  
11  
10  
9
8
DCHNL_N_SGC[15:8]  
0xC00000  
Reset  
Access  
Type  
Write, Read  
BIT  
Field  
4
3
2
1
0
DCHNL_N_SGC[7:0]  
0xC00000  
Reset  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
System gain calibration value for the input configuration selected by  
DCHNL_N_SEL[4:0] in unsigned binary format with a fraction length of 23  
bits, i.e., only the MSB is an integer bit.  
Examples:  
0x80_0000 Gain of 1.0  
0xC0_0000 Gain of 1.5  
0xA0_0000 Gain of 1.25  
DCHNL_N_SGC  
23:0  
0x60_0000 Gain of 0.75  
Once the OTP outputs are stable after the deassertion of the power-on reset  
or the external reset, the corresponding OTP bank content is loaded into each  
DCHNL_N_SGC register. The register content value is approximately 1.5  
(0xC0_0000) to counter the inherent signal-chain gain of 0.67, which is  
required by the delta-sigma modulator.  
www.maximintegrated.com  
Maxim Integrated | 44  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Applications Information  
Power Supply Headroom Requirements  
Analog inputs power from HVDD and HVSS, and generally need 2.5V of headroom to meet all linearity specifications. To  
accept ±10V inputs, whose full-scale range is ±12.5V, supply the MAX22005 with at least ±15V on HVDD/HVSS.  
Any external reference voltage on the REF_ADC_EXT pin must never exceed V  
between REF_ADC_EXT and AVDD can help satisfy this requirement.  
. A schottky diode connected  
AVDD  
Power Supply Sequencing  
The four supplies, AVDD, DVDD, HVDD and HVSS can power up in any order. Add a 1μF bypass capacitor between  
each supply pin and respected return (AGND or DGND) pin. It is recommended to supply HVDD and HVSS  
simultaneously.  
Board Layout  
Use proper grounding techniques such as a multilayer board with a low-inductance ground plane.  
● Keep DGND separate from AGND, connecting the two at one point.  
● Use a ground plane shielding to improve noise immunity.  
● Keep analog signal traces away from digital signal traces, especially clock traces.  
For a detailed recommended layout, refer to the MAX22005 EV kit data sheet.  
Surge Protection  
With external circuitry, the input ports are protected against ±2kV/42Ω surge pulses as per IEC61000-4-5. Place a  
minimum 4.7kΩ surge tolerant resistor in series with each analog input port.  
The other MAX22005 pins are rated for a Human Body Model (HBM). If surge voltages can couple from the high voltage  
supplies (HVDD, HVSS) to the low-voltage supplies (DVDD or AVDD), place additional TVS suppressors on these power  
rails, or place TVS suppressors on the digital signal traces.  
Each external sense resistor for current input mode (AICM) should be protected separately by an external TVS  
suppressor.  
www.maximintegrated.com  
Maxim Integrated | 45  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Typical Application Circuits  
MAX22005 12-Channel Configurable Industrial Analog Input  
3.3V  
3.3V  
15V  
1µF  
1µF  
1µF  
SINGLE-  
ENDED  
VOLTAGE  
SENSOR  
HVDD  
DVDD  
AVDD  
5kΩ  
5kΩ  
5kΩ  
5kΩ  
5kΩ  
AI1  
AI2  
SINGLE-  
ENDED  
VOLTAGE  
SENSOR  
3.3V  
AI3  
AI4  
AI5  
AI6  
AI7  
AI8  
INT  
DIFFERENTIAL  
VOLTAGE  
SENSOR  
RDY  
CLK  
RST  
SDO  
SYNC  
SDI  
CURRENT  
SENSOR  
SPI INTERFACE  
CONTROL-LOGIC  
SIGNAL  
5kΩ  
5kΩ  
5kΩ  
24-BIT Δ-Σ ADC  
PROCESSING  
CURRENT  
OR  
VOLTAGE  
SENSOR  
SCLK  
CS  
5kΩ  
5kΩ  
5kΩ  
AI9  
REF_ADC  
REF_OUT  
AI10  
CURRENT  
OR  
VOLTAGE  
SENSOR  
MUX  
AI11  
AI12  
NR  
2.5V REFERENCE  
5kΩ  
4.7µF  
1µF  
0.1µF  
0.1µF  
1.8V LDO  
GPIO[2:0]  
BYP_ADC  
220nF  
REF_ADC_EXT  
AGND  
HVSS  
DGND  
¼ MAX14757  
1µF  
-15V  
Ordering Information  
PART NUMBER  
MAX22005ALM+  
MAX22005ALM+T  
TEMP. RANGE  
-40°C to +125°C  
-40°C to +125°C  
PACKAGE  
LEAD PITCH  
0.5mm  
ADC RESOLUTION  
48-Pin LGA (7.5mm x 7.0mm)  
48-Pin LGA (7.5mm x 7.0mm)  
24 bit  
24 bit  
0.5mm  
+Denotes lead(Pb)-free/RoHS compliance.  
T = Tape and reel.  
www.maximintegrated.com  
Maxim Integrated | 46  
MAX22005  
12-Channel Factory-Calibrated  
Configurable Industrial-Analog Input  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
4/21  
Release for Market Intro  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2021 Maxim Integrated Products, Inc.  

相关型号:

MAX22005ALM+T

12-Channel Factory-Calibrated Configurable Industrial-Analog Input
MAXIM

MAX22005EVKIT

Access to Eight GPIO Channels
MAXIM

MAX22005_V01

12-Channel Factory-Calibrated Configurable Industrial-Analog Input
MAXIM

MAX2202

RMS Power Detector
MAXIM

MAX22028AWA+

Line Transceiver,
MAXIM

MAX2202EWTT10

RMS Power Detector
MAXIM

MAX2203

RMS Power Detector
MAXIM

MAX2203EWT+T10

RMS Power Detector
MAXIM

MAX2204

RF Power Detector
MAXIM

MAX2204EVKIT

Evaluation Kit
MAXIM

MAX2204EXK

RF Power Detector
MAXIM

MAX2204EXK+

暂无描述
MAXIM