MAX22203ATU+ [MAXIM]

65V, 3.8A Dual Brushed or Single Stepper Motor Driver with Integrated Current Sense;
MAX22203ATU+
型号: MAX22203ATU+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

65V, 3.8A Dual Brushed or Single Stepper Motor Driver with Integrated Current Sense

文件: 总23页 (文件大小:411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here to ask about the production status of specific part numbers.  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper  
Motor Driver with Integrated Current Sense  
General Description  
Benefits and Features  
The MAX22203 is a dual 65V, 3.8A  
H-Bridge with  
● Two H-Bridges with 65V Maximum Operating Voltage  
MAX  
PWM inputs and accurate Current Drive Regulation  
(CDR). Each H-Bridge can be controlled individually and  
• Total R (High-Side + Low-Side): 300mΩ typical  
ON  
(T = 25°C)  
A
has a very low typical R  
(high-side + low-side) of 0.3Ω,  
ON  
● Current Ratings Per H-Bridge (Typical at 25°C):  
resulting in high driving efficiency and low heat generation.  
The MAX22203 can be used to drive two Brushed DC mo-  
tors or a single Stepper Motor.  
• I  
= 3.8A (Impulsive Current for Driving  
MAX  
Capacitive Loads)  
• I  
= 3A (Maximum Current Setting for  
TRIP_MAX  
The integrated CDR can limit the start up or stall the cur-  
rent of a Brushed DC motor or control the phase current  
for stepper operation.  
Internal Current Drive Regulation)  
• I  
= 2A  
RMS  
RMS  
● Integrated Current Drive Regulation (CDR)  
• Internal Current Sensing (ICS) Eliminates External  
Bulky Resistors and Improves Efficiency  
• Current Drive Regulation Monitor Output Pins  
(CDRA and CDRB)  
The bridge output current is sensed by a non-dissipative  
Integrated Current Sensing (ICS) eliminating the bulky ex-  
ternal power resistors (which are normally required for this  
function) and compared with a configurable threshold cur-  
rent (I  
). The I  
threshold can be set independently  
• Multiple Decay Modes (Slow, Mixed, Fast)  
• Fixed Off Time Configurable with External  
Resistance.  
TRIP  
TRIP  
for the two full bridges by connecting the external resistors  
to pins R and R  
.
EFB  
EFA  
The maximum output current per H-Bridge is I  
= 3.8A  
● Current-Sense Output (Current Monitor)  
● Fault Indicator Pin (FAULT)  
● Protections  
MAX  
and is limited by the Overcurrent Protection (OCP) circuit.  
This current can be driven for very short transients and  
is aimed to effectively drive small capacitive loads. The  
maximum user-configurable current regulation threshold is  
• Overcurrent Protection for Each Individual Channel  
(OCP)  
I
= 3A. The maximum RMS current (I  
) per  
• Undervoltage Lockout (UVLO)  
TRIP_MAX  
RMS  
H-Bridge is 2A  
on a standard JEDEC 4-layer board.  
• Thermal Shutdown (TSD) T = +165°C  
RMS  
J
The maximum RMS current can be limited by thermal con-  
siderations and depends on the thermal characteristic of  
the application (PCB ground planes, heat sinks, forced air  
ventilation, etc).  
● TQFN38 5mm x 7mm package (TSSOP38 4.4mm x  
9.7mm available in the future)  
Ordering Information appears at end of data sheet.  
The MAX22203 features Overcurrent Protection (OCP),  
Thermal Shutdown (TSD), and Undervoltage Lockout  
(UVLO). An open-drain active low nFAULT pin is activated  
every time a fault condition is detected. During Thermal  
Shutdown and Undervoltage Lockout, the driver is tristat-  
ed until normal operations are restored.  
The MAX22203 is packaged into a small TQFN38 5mm x  
7mm package.  
Applications  
● Brushed DC Motor Driver  
● Stepper Motor Driver  
● Solenoid Driver  
● Latched Valves  
19-101012; Rev 0; 5/21  
 
 
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Simplified Block Diagram  
C
C
V
V
P1  
P2  
CP  
M
V
ROFF  
SLEEP  
FAULT  
DD  
MAX22203  
PROTECTIONS  
OCP  
CHARGE  
PUMP  
1.8V  
REGULATOR  
UVLO  
THERMAL SHUTDOWN  
V
M
1:N  
VDD  
VCP  
GATE  
DRIVER  
AND OCP  
IREF  
OUT1A  
VREFIN  
CONTROL  
LOGIC AND  
LEVEL  
SHIFTERS  
REFA  
ENA  
V
M
VCP  
DIN2A  
DIN1A  
GATE  
DRIVER  
AND OCP  
OUT2A  
LIMITER PWM  
COMPARATOR  
CURRENT  
SENSE  
PGND  
IREF  
CDRA  
ISENA  
DECAY1  
DECAY2  
DECAY  
DECAY MODE  
SEL  
V
M
1:N  
VDD  
VCP  
IREF  
GATE  
DRIVER  
AND OCP  
OUT1B  
VREFIN  
CONTROL  
LOGIC AND  
LEVEL  
REFB  
ENB  
V
M
SHIFTERS  
VCP  
DIN2B  
DIN1B  
GATE  
DRIVER  
AND OCP  
OUT2B  
LIMITER PWM  
COMPARATOR  
CURRENT  
SENSE  
PGND  
IREF  
CDRB  
ISENB  
AGND  
www.maximintegrated.com  
Maxim Integrated | 2  
 
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
TABLE OF CONTENTS  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
TQFN 38 - 5x7mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Sleep Mode (SLEEP Pin). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PWM Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Current-Sense Output (CSO) - Current Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Current Drive Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Integrated Current Sense (ICS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Setting the Current Regulation Threshold – Pin REF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Setting the Fixed OFF_TIME (t  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
OFF  
CDR Open-Drain Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Setting the Decay Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Overcurrent Protection (OCP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Thermal Shutdown Protection (TSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Undervoltage Lockout Protection (UVLO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Recommended Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
LIST OF FIGURES  
Figure 1. ISEN Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 2. CDR Monitor Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 3. Current Flow During ON and Decay Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 4. Recommended Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
LIST OF TABLES  
Table 1. MAX22203 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 2. Decay Mode Truth Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Absolute Maximum Ratings  
M
V
to GND ............................................................. -0.3V to +70V  
ROFF to GND ........................... -0.3V to min(+2.2V, V  
ISEN_ to GND..............................-0.3 to min(+2.2V, V  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
V
DD  
to GND.................................-0.3V to min(+2.2V, V + 0.3V)  
M
PGND to GND ....................................................... -0.3V to +0.3V  
DIN_ to GND............................................................... -0.3V to 6V  
EN_ to GND................................................................ -0.3V to 6V  
DECAY_ to GND......................................................... -0.3V to 6V  
OUT_.............................................................. -0.3V to V + 0.3V  
M
V
CP  
to GND............................. V - 0.3V to min(+74V, V + 6V)  
M M  
C
P2  
to GND........................................... V - 0.3V to V + 0.3V  
CP  
SLEEP to GND ............................ -0.3V to Min(+70V, V + 0.3V)  
M
M
C
to GND.................................................... -0.3V to V + 0.3V  
Operating Temperature Range.............................-40°C to 125°C  
Junction Temperature.......................................................+150°C  
Storage Temperature Range ..............................-65°C to +150°C  
Soldering Temperature (reflow) ..........................................260°C  
P1  
M
FAULT to GND ........................................................... -0.3V to 6V  
CDR_ to GND............................................................. -0.3V to 6V  
REF_ to GND ............................-0.3V to min(+2.2V, V  
+ 0.3V)  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Package Information  
TQFN 38 - 5x7mm  
Package Code  
T3857-1C  
21-0172  
90-0076  
Outline Number  
Land Pattern Number  
Thermal Resistance, Single-Layer Board:  
Junction to Ambient (θ  
)
38°C/W  
1°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
28°C/W  
1°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates  
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal  
considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V = +36V, R  
= from 15kΩ to 120kΩ , R  
= from 12kΩ to 72kΩ , Limits are 100% tested at T = +25°C. Limits over the  
REF_ A  
M
ROFF  
operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked  
"GBD" are guaranteed by design and not production tested.)  
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
V
4.5  
65  
20  
V
M
Sleep Mode Current  
consumption  
I
I
SLEEP = logic low  
SLEEP = logic high  
μA  
VM  
VM  
Quiescent Current  
Consumption  
5
mA  
V
1.8V Regulator Output  
Voltage  
V
VDD  
V
V
= +4.5V, I = 20mA  
LOAD  
1.8  
M
V
DD  
Current Limit  
I
shorted to GND  
18  
mA  
V
VDD(LIM)  
DD  
Charge Pump Voltage  
V
CP  
V
+ 2.7  
M
www.maximintegrated.com  
Maxim Integrated | 6  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Electrical Characteristics (continued)  
(V = +36V, R  
M
= from 15kΩ to 120kΩ , R  
= from 12kΩ to 72kΩ , Limits are 100% tested at T = +25°C. Limits over the  
REF_ A  
ROFF  
operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked  
"GBD" are guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOGIC LEVEL INPUTS-OUTPUTS  
Input Voltage Level -  
High  
V
1.2  
V
V
IH  
Input Voltage Level -  
Low  
V
0.65  
IL  
Input Hysteresis  
Pulldown Current  
V
110  
34  
mV  
μA  
HYS  
I
Logic supply (V ) = +3.3V  
16  
60  
PD  
L
Open-Drain Output  
Logic-Low Voltage  
V
OL  
I
= 5mA  
0.4  
V
LOAD  
Open-Drain Output  
Logic-High Leakage  
Current  
I
V
PIN  
= +3.3V  
-1  
1
μA  
OH  
SLEEP Voltage Level  
High  
V
0.9  
V
V
IH(SLEEP)  
SLEEP Voltage Level  
Low  
V
0.6  
IL(SLEEP)  
SLEEP Pulldown Input  
Resistance  
R
0.8  
1.5  
MΩ  
PD(SLEEP)  
OUTPUT SPECIFICATIONS  
Output ON-Resistance  
Low Side  
R
150  
150  
270  
mΩ  
mΩ  
ON(LS)  
Output ON-Resistance  
High Side  
R
300  
12  
ON(HS)  
Output Leakage  
I
Driver OFF  
-12  
μA  
ns  
LEAK  
Dead Time  
t
100  
300  
DEAD  
SR  
Output Slew Rate  
PROTECTION CIRCUITS  
V/μs  
Overcurrent Protection  
Threshold  
OCP  
3.8  
A
Overcurrent Protection  
Blanking Time  
t
2.2  
3.5  
μs  
OCP  
Autoretry OCP Time  
t
3
4
ms  
V
RETRY  
UVLO Threshold on V  
UVLO  
V
M
rising  
3.75  
4.25  
M
UVLO Threshold on VM  
Hysteris  
UVLO  
0.12  
155  
20  
V
HYS  
Thermal Protection  
Threshold Temperature  
T
SD  
°C  
°C  
Thermal Protection  
Temperature Hysteresis  
T
SD_HYST  
CURRENT REGULATION  
REF_ Pin Resistor  
Range  
R
REF  
12  
72  
KΩ  
www.maximintegrated.com  
Maxim Integrated | 7  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Electrical Characteristics (continued)  
(V = +36V, R  
M
= from 15kΩ to 120kΩ , R  
= from 12kΩ to 72kΩ , Limits are 100% tested at T = +25°C. Limits over the  
REF_ A  
ROFF  
operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked  
"GBD" are guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
REF Output Voltage  
V
REF  
900  
mV  
ITRIP Current  
Regulation Constant  
KI  
36  
KV  
%
DITRIP1  
DITRIP2  
I
I
from 1.75A to 3A  
-5  
5
Current Trip Regulation  
Accuracy (Note 1)  
TRIP  
from 500mA to 1.75A  
-10  
+10  
TRIP  
Fixed OFF – Time  
Internal  
t
ROFF shorted to V  
16  
20  
24  
μs  
OFF  
DD  
Fixed OFF – Time  
Constant  
KTOFF  
R
ROFF  
from 15KΩ to 120KΩ  
0.667  
2.5  
μs/kΩ  
μs  
PWM Blanking time  
t
BLK  
CURRENT SENSE MONITOR  
ISEN_ Voltage Range  
ISEN  
Voltage Range at Pin ISEN  
0
1.1  
V
Refer to the ISEN Output Current  
Equation in the Current Sense Output  
(CSO) - Current Monitor Section  
Current Monitor Scaling  
Factor  
KISEN  
7500  
A/A  
DKISEN1  
DKISEN2  
I
I
from 1.1A to 3A  
-5  
+5  
Current Monitor  
Accuracy (Note 1)  
OUT  
%
from 500mA to 1.1A  
-10  
+10  
OUT  
Current Monitor  
Accuracy  
DKISEN3  
I
I
from 250mA to 500mA  
-15  
+15  
%
OUT  
Settling Time  
t
S
= I  
0.5  
40  
μs  
FS  
MAX  
FUNCTIONAL TIMINGS  
Sleep Time  
t
SLEEP = 1 to OUT_ tristate  
μs  
SLEEP  
Wakeup Time From  
Sleep  
t
SLEEP = 0 to normal operation  
2.7  
ms  
WAKE  
Enable Time  
Disable Time  
t
Time from EN pin rising edge to driver on  
Time from EN pin falling edge to driver off  
0.6  
1.4  
μs  
μs  
EN  
t
DIS  
Note 1: Guaranteed by design, not production tested.  
www.maximintegrated.com  
Maxim Integrated | 8  
 
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Typical Operating Characteristics  
(V = +4.5V TO +60V; T = 25°C unless otherwise noted.)  
M
A
www.maximintegrated.com  
Maxim Integrated | 9  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Typical Operating Characteristics (continued)  
(V = +4.5V TO +60V; T = 25°C unless otherwise noted.)  
M
A
Pin Configuration  
Pin Configuration  
TOP VIEW  
31 30 29 28 27 26 25 24 23 22 21 20  
PGNDA  
32  
19 PGNDB  
18  
ISENB 33  
ISENA 34  
REFB 35  
GND  
17 SLEEP  
MAX22203  
16  
15  
14  
13  
V
V
C
C
M
REFA  
ROFF  
AGND  
36  
37  
38  
CP  
P2  
P1  
+
1
2
3
4
5
6
7
8
9 10 11 12  
TQFN  
www.maximintegrated.com  
Maxim Integrated | 10  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Pin Description  
PIN  
NAME  
FUNCTION  
TYPE  
Supply Voltage Input. Connect at least 1μF SMD plus 10μF electrolytic bypass  
capacitors to GND. Higher values can be considered depending on application  
requirements.  
16, 22, 23,  
28, 29  
V
M
Supply  
Charge Pump Output. Connect a 5V, 1μF capacitor between V  
as possible to the device  
and V as close  
M
CP  
15  
13  
14  
1
V
Output  
Output  
Output  
CP  
Charge Pump Flying Capacitor Pin1. Connect a V -rated 22nF capacitor between  
M
C
C
P1  
P2  
DD  
C
C
as close as possible to the device.  
P1 P2  
Charge Pump Flying Capacitor Pin 2. Connect a V -rated 22nF capacitor  
M
between C  
C
as close as possible to the device.  
P1 P2  
Analog  
Output  
V
1.8V LDO Output. Connect a 5V, 2.2μF to GND close to the device  
17  
SLEEP  
OUT_  
Active Low Sleep Pin  
Driver Output Pins.  
Logic Input  
Output  
21, 24, 27, 30  
Open Drain Output Active Low Fault Indicator. Connect a 2KΩ resistor to the  
controller supply voltage.  
Open Drain  
Output  
12  
FAULT  
ISEN_  
Current Sense Output Monitor. Connect a resistor to GND (ref. Current sense  
Output Detailed Description)  
33, 34  
Output  
2,3  
4, 5, 6, 7  
8, 9  
EN_  
DIN_  
Logic Input Pin. Enable Pin  
CMOS PWM Input  
Logic Input  
Logic Input  
Logic Input  
DECAY_  
Logic Input. Set the Decay Mode  
Open-Drain Output - Current Drive Regulator. Add a pullup resistor to the  
controller supply voltage. The pullup resistor value depends on the application  
requirements. Values between 1KΩ to 5KΩ meet the requirements for a majority  
of applications.  
Open Drain  
Output  
10, 11  
CDR_  
Programmable Current Analog Input. Connect a resistor from R  
the current regulation threshold for Full Bridge A.  
to GND to set  
EFA  
36  
35  
REFA  
REFB  
Analog Input  
Analog Input  
Programmable Current Analog Input. Connect a resistor from REFB to GND to set  
the current regulation threshold for Full Bridge B.  
t
t
Programmable Off Time Pin. Connect R  
to V  
to use the internal fixed  
DD  
OFF  
OFF  
OFF  
37  
ROFF  
time. Connect a resistor from R  
to GND to set the fixed OFF time to a  
Analog Input  
OFF  
desired value.  
18, 38  
GND  
PGND  
EP  
Analog Ground. Connect to Ground Plane.  
GND  
GND  
GND  
19, 20, 25,  
26, 31, 32  
Power GND. Connect to GND ground plane.  
Exposed PAD. Connect to GND.  
EP  
www.maximintegrated.com  
Maxim Integrated | 11  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Detailed Description  
The MAX22203 is a Dual 65V, 3.8A  
H-Bridge. It can be used to drive two Brushed DC motors or a Single Stepper  
MAX  
Motor. The H-Bridge FETs have very low impedance, resulting in high driving efficiency and low heat generated. The  
typical total R (high-side + lowpside) is 0.3Ω. Each H-Bridge can be individually PWM controlled by means of three  
ON  
logic inputs (DIN1, DIN2, and EN).  
The MAX22203 features an accurate Current Drive Regulation (CDR), which can be used to limit the start up current  
of a Brushed DC motor or to control the phase current for stepper operation. The bridge output current is sensed by a  
non-dissipative Integrated Current Sensing (ICS) and it is then compared with the desired threshold current. As soon as  
the bridge current exceeds the threshold I  
, the device enforces the decay for a fixed OFF time (t  
).  
TRIP  
OFF  
The non-dissipative ICS eliminates the bulky external power resistors, which are normally required for this function,  
resulting in a dramatic space and power saving compared with mainstream applications based on the external sense  
resistor.  
A current proportional to the internally sensed motor current is output to an external pin (ISEN). By connecting an external  
resistor to this pin, a voltage proportional to the motor current is generated. The voltage built up on such external resistor  
can be input into the controller ADC whenever the motor control algorithm requires the current/torque information.  
Also, two open-drain output pins (C  
, C  
DRA DRB  
) are asserted every time the internal current regulation takes control of  
the driver. This allows the external controller to monitor the activity of the internal current loop.  
The maximum output current per H-Bridge is I = 3.8A and is limited by the Overcurrent Protection (OCP) circuit.  
MAX  
MAX  
This current can be driven for very short transients and is aimed to effectively drive small capacitive loads.  
The maximum user configurable current regulation threshold is I = 3A. Current thresholds can be set  
TRIP_MAX  
independently for the two full bridges by connecting the external resistors to pins R  
and R  
.
EFB  
EFA  
The maximum RMS current per H-Bridge is I  
= 2A  
on a standard JEDEC 4-layer board. Since this current  
RMS  
RMS  
is limited by thermal considerations, the actual maximum RMS current depends on the thermal characteristic of the  
application (PCB ground planes, heatsinks, forced air ventilation, etc).  
The MAX22203 features Overcurrent Protection (OCP), Thermal Shutdown (TSD), and Undervoltage Lockout (UVLO).  
An open-drain active low FAULT pin is activated every time a fault condition is detected.  
During Thermal shutdown and Undervoltage Lockout, the driver is tristated until normal operations are restored.  
Sleep Mode (SLEEP Pin)  
Drive this pin low to enter in the lowest power mode. All outputs are tristated and the internal circuits are biased off. The  
charge pump is also disabled. A pulldown resistor is connected between SLEEP and GND to ensure the part is disabled  
whenever this pin is not actively driven. This mode corresponds to the lowest power consumption possible. Waking up  
from Sleep Mode to Normal Mode takes up to 2.7ms max.  
PWM Control  
When an H-Bridge is Enabled (EN_ = Logic High) and the H-Bridge current is below the configured current limit, the  
average output voltage can be controlled by DIN1_ and DIN1_ logic input pins using PWM techniques. Setting Enable  
logic low causes the Output to enter a high impedance mode and the motor to coast. The Enable input pin frequency  
must not exceed 1KHz and cannot be used for PWM control.  
Table 1 shows the control Truth Table.  
Table 1. MAX22203 Truth Table  
EN_  
DIN1_  
DIN2_  
OUT1  
OUT2  
DESCRIPTION  
0
1
1
1
X
0
1
0
X
0
0
1
High-Z  
High-Z  
H bridge disabled. High impedance (HiZ)  
Brake Low; Slow decay  
L
H
L
L
L
H
Reverse (Current from OUT2 to OUT1)  
Forward (Current from OUT1 to OUT2)  
www.maximintegrated.com  
Maxim Integrated | 12  
 
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Table 1. MAX22203 Truth Table (continued)  
1
1
1
H
H
Brake High; Slow Decay  
PWM techniques can be used to control the output duty cycle and hence to implement motor speed control. Typically, for  
brushed DC motor drivers, Slow Decay is preferred as it results in less ripple and higher efficiency. With this approach,  
during the OFF phase, both the low side FETs are activated effectively grounding the motor winding terminals. The  
current built up into the motor winding slowly decays. This decay is often referred to as Slow Decay. Alternatively, Fast  
Decay can also be implemented by reversing the bridge during the OFF phase.  
Current-Sense Output (CSO) - Current Monitor  
Currents proportional to the internally sensed motor currents are output to pins ISENA and ISENB for H-bridge A and  
B respectively. The current is sensed when one of the two low side FETs sinks the output current and it is therefore  
meaningful for both during the energizing (t ) phase and during the Slow Decay phase (Brake). In Fast Decay, the  
ON  
current is not monitored and ISEN outputs a zero current. The following equation shows the relationship between the  
current sourced at ISEN and the output current.  
I
(A)  
OUT  
IISEN(A) =  
K
ISEN  
Equation - ISEN Output Current  
in which K  
represents the current scaling factor between the output current and its replica at pin ISEN. K  
is  
ISEN  
ISEN  
typically 7500 A/A. For instance, if the instantaneous output current is 2A, the current sourced at ISEN is 266µA.  
Figure Figure 1 shows an idealized behavior of the ISEN current when Slow or Fast Decay are used. Blanking times,  
delays, and rise/fall edges have been ignored.  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
V
M
V
V
M
V
M
V
V
M
V
M
V
M
M
M
I
OUT  
K
x I  
ISEN  
ISEN  
ON  
FAST  
ON  
FAST  
V
M
V
V
M
V
M
V
V
M
V
M
V
M
M
M
I
OUT  
K
x I  
ISEN  
ISEN  
ON  
SLOW  
ON  
SLOW  
Figure 1. ISEN Current  
By connecting an external signal resistor, R  
, between ISEN and GND a voltage proportional to the motor current  
ISEN  
is generated. The voltage built up on R  
can be input into the ADC of an external controller in applications in which  
ISEN  
the motor control algorithm requires the current/torque information. The following equation shows the design formula to  
calculate R once the ADC full scale voltage (V ) and the maximum operating current (I ) is known.  
ISEN  
FS  
MAX  
V
(V)  
(A)  
FS  
RISEN(Ω) = KISEN  
×
I
MAX  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Equation - RISEN Setting  
For example, if the ADC operates up to 1V FS and the maximum operating output current is 2A, then R  
1V/2A = 3.75KΩ.  
is 7500 x  
ISEN  
The R  
value also sets the output impedance of the Current-Sense Output circuit (ISEN output impedance). Normally,  
ISEN  
the input impedance of the ADC is much higher than R  
enabling a direct connection to the ISEN pin without  
ISEN  
attenuation. In case a low input impedance ADC is used, a preamplifier (buffer) is required.  
The Current-Sense Output circuit bandwidth and step response performances (see Specifications) ensure the current  
monitor tracks the driver current in motor drive applications.  
Current Drive Regulation  
The MAX22203 features embedded Current Drive Regulation (CDR).  
The embedded current drive regulation provides an accurate control of the current flowing into the motor windings.  
The bridge current is sensed by a non-dissipative Integrated Current Sensing circuit (ICS) and it is then compared with  
the threshold current (I  
). As soon as the bridge current exceeds the threshold, the device enforces the decay for a  
TRIP  
fixed OFF-time (t  
). The device supports different decay modes as described in the following paragraphs.  
OFF  
Once t  
has elapsed, the driver is re-enabled for the next PWM cycle. During current regulation, the PWM duty cycle  
OFF  
and frequency depend on the supply voltage, on the motor inductance, and on motor speed and load conditions.  
The t duration can be configured with an external resistor connected to the ROFF pin.  
OFF  
Integrated Current Sense (ICS)  
A non-dissipative Current Sensing is integrated. This feature eliminates the bulky external power resistors normally  
required for this function. This feature results in a dramatic space and power saving compared with mainstream  
applications based on the external sense resistor.  
Setting the Current Regulation Threshold – Pin REF  
Connect resistors from REFA and REFB to GND to set the current regulation thresholds for Full Bridge A and Full Bridge  
B respectively (I  
, I  
) .  
TRIPA TRIPB  
The equation below shows the typical I  
current as a function of the R  
shunt resistor connected to pin REF_.  
REF_  
TRIP  
The proportionality constant K is typically 36KV. The external resistor R  
_ can range between 12KΩ and 72KΩ, which  
I
REF  
correspondents to I  
setting ranging from about 3A down to 0.5A.  
TRIP  
K (KV)  
I
I
=
R
TRIP  
(KΩ)  
REF  
Setting the Fixed OFF_TIME (t  
)
OFF  
The current regulation circuit is based on a constant t  
PWM control. When the bridge current exceeds the target I  
OFF  
TRIP  
current, an OFF phase begins and Decay modes are activated. The OFF phase has a fixed time duration (t  
). t  
OFF OFF  
can be configured to a desired value by connecting an external resistor (R  
) to pin ROFF. When the ROFF pin is  
ROFF  
shorted to V , the t  
time is internally set at a fixed value (20μs typical).  
DD  
OFF  
By connecting an external resistor to the pin R  
, the user can configure t  
as shown in the equation below in which  
OFF  
OFF  
R
is an external resistor connected to the R  
pin (in KΩ) and KT  
is an internal constant equal to 0.667μs/KΩ.  
ROFF  
OFF  
OFF  
× K  
ROFF TOFF  
t
(μs) = R  
OFF  
t
can be programmed from a range of 10μs to 80μs.  
OFF  
CDR Open-Drain Output  
The CDR_ pins are active-low open-drain outputs, which are asserted during the fixed t  
decay interval enforced by  
OFF  
the integrated current drive regulation loop. An external controller monitoring the CDR_ pins can determine whether the  
integrated current drive regulation loop has taken control of the driver overwriting the status of the PWM logic inputs  
(DIN1, DIN2).  
www.maximintegrated.com  
Maxim Integrated | 15  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
The CDR_ signals can be used by an external controller for a variety of reasons and provides information about the  
actual load during current regulation. For example, in the use case where the PWM are permanently held in Forward or  
Reverse mode, control of the motor current is entrusted to the internal Current Drive Regulation loop and the CDR_ pin  
status directly reflects the driver output status. In this example, the duty cycle of the CDR_ pin can be used to detect stall  
conditions.  
A pullup resistor must be connected from the CDR_ pins to the controller voltage supply. The pullup resistor choice  
depends on the PCB line capacitance, PWM frequency, and power consumption. Values between 1KΩ to 5KΩ satisfy  
the requirement for most applications.  
The time diagram in Figure 2 shows the behavior of this function when the motor spins in forward direction respectively  
with DIN2 held firmly High (Case A) or when DIN2 is toggling (Case B and C).  
The CDR output is asserted only when the slow decay mode is forced by the internal CDR.  
Notice that any PWM transitions resets the fixed OFF Time of the CDR circuit. In Case B, the actual Slow Decay Interval  
is longer than t  
whereas in Case C, the actual Slow Decay OFF interval is shorter.  
OFF  
www.maximintegrated.com  
Maxim Integrated | 16  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
DIN1  
DIN2  
ITRIP  
IPHASE  
CDR ASSERTED  
CDR ASSERTED  
CDR  
FIXED t  
OFF  
FIXED t  
OFF  
OUT1  
OUT2  
FWD  
CASE A) CDR OUTPUT FWD MODE No PWM  
FWD  
DIN1  
DIN2  
ITRIP  
IPHASE  
CDR ASSERTED  
CDR ASSERTED  
CDR  
FIXED t  
FIXED t  
OFF  
OFF  
OUT1  
OUT2  
FWD  
FWD  
CASE B) CDR OUTPUT WITH PWM  
DIN1  
DIN2  
ITRIP  
IPHASE  
CDR  
ASSERTED  
CDR  
ASSERTED  
CDR  
ASSERTED  
CDR  
FIXED t  
OFF  
FIXED t  
OFF  
OUT1  
OUT2  
FWD  
FWD  
FWD  
CASE C) CDR OUTPUT WITH PWM INTERRUP  
Figure 2. CDR Monitor Timing Diagram  
Operating Modes  
During PWM chopping, the driver output alternates Energizing (ON) and Decay phases. The MAX22203 supports  
different Decay modes. Slow Decay, Fast Decay, and different combination between Slow and Fast are supported.  
Figure 3 shows the current path in the three different modes of operation.  
www.maximintegrated.com  
Maxim Integrated | 17  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
V
V
M
M
V
M
ON PHASE  
V
M
V
M
V
V
M
M
V
M
V
M
FAST DECAY  
SLOW DECAY  
Figure 3. Current Flow During ON and Decay Modes  
Setting the Decay Mode  
Two logic input pins allow the user to set the Decay Mode during t  
Decay modes.  
. The MAX22203 supports Slow, Fast, and Mixed  
OFF  
Table 2 shows the Truth Table for the Decay selection.  
Table 2. Decay Mode Truth Table  
DECAY2  
DECAY1  
DECAY MODE  
SLOW  
0
0
1
1
0
1
0
1
MIXED 30% FAST* / 70% SLOW  
MIXED 60% FAST* / 40% SLOW  
FAST*  
* To prevent reversal of current during fast decay, outputs go to the high-impedance state as the current approaches 0A.  
Protections  
Overcurrent Protection (OCP)  
An Overcurrent Protection (OCP) protects the device against short circuits to the rails (supply voltage and ground) and  
across the load terminals. The OCP threshold is set at 3.8A minimum. If the output current is larger than the OCP  
threshold for longer than the OCP blanking time, then an OCP event is detected.  
When an OCP event is detected, the H-Bridge is immediately disabled, and a fault indication is output on the pin FAULT.  
The H-Bridge is kept in a high impedance mode for 3ms (see t  
specification). After that, the H-Bridge is re-enabled  
RETRY  
according to the current state. If the short circuit is still present, this cycle repeats. Otherwise, normal operation resumes.  
www.maximintegrated.com  
Maxim Integrated | 18  
 
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
It is recommended to avoid prolonged operation under the short-circuit failure mode since a prolonged OCP auto-retry  
could affect the device reliability.  
Thermal Shutdown Protection (TSD)  
If the die temperature exceeds 155°C (typical value), a fault indication is output on pin FAULT and the driver is tri-stated  
until the junction temperature drops below 135°C. After that, the driver is re-enabled.  
Undervoltage Lockout Protection (UVLO)  
The device features Undervoltage Lockout Protection (UVLO). UVLO on V is set at 4.25V maximum. When an UVLO  
M
event occurs, a fault indication is output on pin FAULT and the driver outputs are tristated. Normal operation is then  
resumed (and the FAULT pin deasserted) as soon as the supply voltages are back in the nominal operating range.  
www.maximintegrated.com  
Maxim Integrated | 19  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Applications Information  
Recommended Layout  
VIA  
VIA  
VIA  
VIA  
VIA  
VIA  
VIA  
VIA  
0805  
0805  
(2012)  
(2012)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
PGNDA  
32  
33  
34  
35  
36  
37  
38  
19  
18  
17  
16  
15  
14  
13  
PGNDB  
VIA  
VIA  
VIA  
VIA  
VIA  
VIA  
VIA  
VIA  
ISENB  
ISENA  
REFB  
REFA  
ROFF  
GND  
VIA  
VIA  
VIA  
VIA  
SLEEP  
VIA  
VIA  
VIA  
VIA  
MAX22203  
TQFN38 5x7  
V
M
VIA  
VIA  
VIA  
VIA  
VCP  
CP2  
CP1  
0402  
(1005)  
VIA  
GND  
+
1
2
3
4
5
6
7
8
9
10  
11  
12  
VIA  
0402  
(1005)  
Figure 4. Recommended Layout  
www.maximintegrated.com  
Maxim Integrated | 20  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Typical Application Circuits  
Application Diagram  
V
V
L
M
V
DD  
CF  
CVDD  
V
L
CBULK  
CVM1  
CVM2  
RPU  
CT  
ROFF  
SLEEP  
FAULT  
ROFF  
C
C
V
P2  
CP  
P1  
PROTECTIONS  
OCP  
UVLO  
CHARGE  
PUMP  
MAX22203  
1.8V  
REGULATOR  
THERMAL SHUTDOWN  
DECAY1  
DECAY2  
V
M
1:N  
VDD  
VCP  
GATE  
DRIVER  
AND OCP  
OUT1A  
IREF  
VREFIN  
CONTROL  
LOGIC  
AND  
LEVEL  
SHIFTERS  
RREFA  
REFA  
BDC  
V
M
ENA  
VCP  
DIN2A  
DIN1A  
GATE  
DRIVER  
AND OCP  
OUT2A  
V
L
LIMITER PWM  
COMPARATOR  
CURRENT  
SENSE  
RPUA  
ROTOR  
PGND  
IREF  
CDRA  
ISENA  
MICROCONTROLLER  
DECAY1  
DECAY2  
DECAY  
DECAY MODE  
SEL  
V
M
RISENA  
1:N  
VDD  
VCP  
IREF  
OUT1B  
GATE  
VREFIN  
DRIVER  
AND OCP  
CONTROL  
LOGIC AND  
LEVEL  
RREFB  
REFB  
ENB  
BDC  
V
M
SHIFTERS  
VCP  
DIN2B  
DIN1B  
GATE  
DRIVER  
AND OCP  
OUT2B  
V
L
CURRENT  
SENSE  
LIMITER PWM  
COMPARATOR  
RPUB  
PGND  
IREF  
CDRB  
ISENB  
AGND  
RISENB  
www.maximintegrated.com  
Maxim Integrated | 21  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Ordering Information  
PART NUMBER  
TEMPERATURE RANGE  
PIN-PACKAGE  
MAX22203ATU+  
-40°C to +125°C  
38 TQFN  
MAX22203AHU+* -40°C to +125°C  
38 TSSOP  
+ Denotes a lead(Pb)-free/RoHS-compliant package.  
T Denotes tape-and-reel.  
* Denotes future product. Contact factory for availability.  
www.maximintegrated.com  
Maxim Integrated | 22  
MAX22203  
65V, 3.8A Dual Brushed or Single Stepper Motor  
Driver with Integrated Current Sense  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
5/21  
Initial release  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2021 Maxim Integrated Products, Inc.  

相关型号:

MAX22245

Broad Range of Data Transfer Rates (from DC to 200Mbps)
MAXIM

MAX22246

Broad Range of Data Transfer Rates (from DC to 200Mbps)
MAXIM

MAX22246CWEVKIT

Broad Range of Data Transfer Rates (from DC to 200Mbps)
MAXIM

MAX22288

Home Bus System (HBS) Compatible Transceiver
MAXIM

MAX22288_V01

Home Bus System (HBS) Compatible Transceiver
MAXIM

MAX222C

+5V-Powered, Multichannel RS-232 Drivers/Receivers
MAXIM

MAX222C/D

Transceiver
MAXIM

MAX222CD

MAX220–MAX249 5V-Powered, Multichannel RS-232 Drivers/Receivers
MAXIM

MAX222CDW

5-V DUAL RS-232 LINE DRIVER/RECEIVER WITH +-15-kV ESD PROTECTION
TI

MAX222CDWG4

5-V DUAL RS-232 LINE DRIVER/RECEIVER WITH +-15-kV ESD PROTECTION
TI

MAX222CDWR

5-V DUAL RS-232 LINE DRIVER/RECEIVER WITH +-15-kV ESD PROTECTION
TI

MAX222CDWRG4

5-V DUAL RS-232 LINE DRIVER/RECEIVER WITH +-15-kV ESD PROTECTION
TI