MAX2244-MAX2246 [MAXIM]

2.5GHz, 22dBm/20dBm Power Amplifiers with Analog Closed-Loop Power Control; 为2.5GHz ,是22dBm / 20dBm的功率放大器,带有模拟量闭环功率控制
MAX2244-MAX2246
型号: MAX2244-MAX2246
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.5GHz, 22dBm/20dBm Power Amplifiers with Analog Closed-Loop Power Control
为2.5GHz ,是22dBm / 20dBm的功率放大器,带有模拟量闭环功率控制

放大器 功率控制 功率放大器
文件: 总14页 (文件大小:312K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2204; Rev 2; 8/03  
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
General Description  
Features  
The MAX2244/MAX2245/MAX2246 single-supply, low-  
voltage power amplifiers (PAs) are designed for 20dBm  
Bluetooth™ Class 1 applications in the 2.4GHz to 2.5GHz  
band. The MAX2244/MAX2245 deliver a peak output  
power of 22dBm with greater than 20dB output-power  
control range. The 22dBm output power compensates for  
the filter loss between the PA and the antenna, allowing  
20dBm to be delivered to the antenna. The MAX2246 pro-  
vides a peak output power of 20dBm for a 30% reduction  
in supply current.  
o 2.4GHz to 2.5GHz Operation  
o Accurate Closed-Loop Output Power Control  
Over Full Temperature, Supply, and Input Power  
Range  
o Convenient Analog Power-Control Interface  
o 22dBm Peak Output Power (MAX2244/MAX2245)  
o 20dBm Peak Output with 30% Reduced Supply  
Current (MAX2246)  
The PAs integrate a power detector and closed-loop  
power-control circuitry to provide nearly constant output  
power over the full range of supply voltage, temperature,  
and input power level. The voltage at the analog control  
input precisely controls the output power level.  
o Internal Bandwidth-Limited Power Ramping  
o 50Integrated Input Match  
o 0.5µA Shutdown Supply Current  
The MAX2244/MAX2245/MAX2246 feature a low-current  
shutdown mode through a simple logic input. Internal cir-  
cuitry automatically controls the ramp-up/down of the  
output power level during turn-on and turn-off to meet  
Bluetooth spurious emissions requirements.  
o Ultra Chip-Scale Package (1.56mm 1.56mm)  
Ordering Information  
TEMP  
RANGE  
BUMP  
PACKAGE  
TOP  
MARK  
The devices operate from a 3V to 3.6V single supply.  
The MAX2244/MAX2246 have a power-control voltage  
range of 0.5V to 2V, and the MAX2245 has a control  
voltage range of 0.9V to 2.2V. The devices are pack-  
aged in a miniature ultra chip-scale package (UCSP™),  
significantly reducing the required board area.  
PART  
MAX2244EBL-T -40°C to +85°C 9 UCSP*-9  
MAX2245EBL-T -40°C to +85°C 9 UCSP*-9  
MAX2246EBL-T -40°C to +85°C 9 UCSP*-9  
AAP  
AAQ  
AAY  
*UCSP reliability is integrally linked to the user's assembly  
methods, circuit board material, and environment. See the  
UCSP Reliability Notice in the UCSP Reliability section of this  
data sheet for more information.  
Applications  
Bluetooth Class 1 Radios  
802.11 FHSS/HomeRF™ Radios  
2.4GHz Cordless Phones  
Pin Configuration appears at end of data sheet.  
Functional Diagram  
V
V
CC1  
CC2  
C2  
A2  
SHUTDOWN  
BIAS  
RFIN/  
B1  
SHDN  
B3  
MATCH  
MATCH  
MATCH  
RFOUT  
CONTROL  
AMP  
POWER  
DETECTOR  
MAX2244  
MAX2245  
MAX2246  
A1  
ANALOG  
INTERFACE  
PC  
A3  
GND  
C3  
C1  
B2  
GND  
GND GND  
Bluetooth is a trademark of Ericsson Corp.  
UCSP is a trademark of Maxim Integrated Products, Inc.  
HomeRF is a trademark of The HomeRF Working Group.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
ABSOLUTE MAXIMUM RATINGS  
CC1 CC2  
RFIN/SHDN, PC to GND.............................-0.3V to (V  
RF Input Power (RFIN)....................................................+10dBm  
Load Mismatch (VSWR) Without Damage ..............................6:1  
V
, V  
, RFOUT to GND.................................-0.3V to +6.0V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
+ 0.3V)  
CC  
(T - 65°C)  
A
Continuous Operating Lifetime............10 years x 0.935  
(for operating temperature 65°C < T < 85°C)  
Continuous Power Dissipation (T = +85°C)  
A
A
9-Pin UCSP (derate 8.8mW/°C above T = +85°C).....700mW  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
CAUTION! ESD SENSITIVE DEVICE  
DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, V  
= 3V to 3.6V, no RF signals applied, V  
2V, V = 0, T = -40°C to +85°C, unless otherwise  
SHDN PC A  
CC  
noted. Typical values are at V  
= 3V, T = +25°C, unless otherwise noted.) (Note 1)  
CC  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
65  
MAX  
3.6  
83  
UNITS  
Supply Voltage  
3.0  
V
V
V
V
V
V
V
V
V
V
V
V
V
= 0.5V, T = +25°C  
A
PC  
PC  
PC  
PC  
PC  
PC  
PC  
PC  
PC  
PC  
PC  
PC  
MAX2244  
= 0 to 4dBm,  
2.45GHz  
= 0.5V, T = -40°C to +85°C  
98  
A
P
RFIN  
= 2V, T = +25°C  
172  
65  
200  
205  
87  
A
= 2V, T = -40°C to +85°C  
A
= 0.9V, T = +25°C  
A
MAX2245  
= 0.9V, T = -40°C to +85°C  
93  
A
Supply Current (Note 2)  
P
RFIN  
= 0 to 4dBm,  
mA  
= 2.2V, T = +25°C  
179  
42  
195  
208  
55  
A
2.45GHz  
= 2.2V, T = -40°C to +85°C  
A
= 0.5V, T = +25°C  
A
MAX2246  
= 0.5V, T = -40°C to +85°C  
61  
A
P
= 0 to 4dBm,  
RFIN  
= 2V, T = +25°C  
118  
0.5  
140  
144  
10  
A
2.45GHz  
= 2V, T = -40°C to +85°C  
A
Shutdown Supply Current  
SHDN Input Voltage High  
SHDN Input Voltage Low  
SHDN Input Current  
SHDN = GND  
µA  
V
2.0  
0.6  
1
V
-1  
µA  
MAX2244/MAX2246  
MAX2245  
0.5  
0.9  
-15  
-20  
2.0  
2.5  
5
PC Input Voltage Range  
PC Input Current  
Active control range  
V
MAX2244/MAX2246, V = 0 to 2.5V  
PC  
µA  
MAX2245, V = 0 to 3V  
10  
PC  
2
_______________________________________________________________________________________  
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, V  
noted. Typical values are at V  
= 3V, P  
= 0 to 4dBm, f  
= 2.45GHz, 50system, V  
2V, T = +25°C, unless otherwise  
SHDN A  
CC  
CC  
RFIN  
RFIN  
RFIN  
= 3V, P  
= 2dBm, f  
= 2.45GHz, T = +25°C, unless otherwise noted.)  
RFIN A  
PARAMETER  
Frequency Range (Note 3)  
Input Power  
CONDITIONS  
MIN  
2.4  
0
TYP  
MAX  
2.5  
4
UNITS  
GHz  
dBm  
MAX2244, V = 0.5V  
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
= +25°C  
0
4
7
PC  
= +25°C  
20.5  
20  
22.0  
23.5  
24  
MAX2244, V = 2V  
PC  
= -40°C to +85°C  
= +25°C  
MAX2245, V = 0.9V  
0
4
7
PC  
Output Power (Note 2)  
dBm  
= +25°C  
20.5  
20  
22.0  
23.5  
24  
MAX2245, V = 2.2V  
PC  
= -40°C to +85°C  
= +25°C  
MAX2246, V = 0.5V  
-4.5  
19  
0.5  
20  
5.5  
21  
PC  
= +25°C  
= -40°C to +85°C  
MAX2246, V = 2V  
PC  
17  
21  
MAX2244/MAX2245  
MAX2246  
-7  
-1  
Harmonic Output (Notes 2, 4)  
P
V
at any level  
RFOUT  
dBm  
-16  
-13  
-30  
Shutdown Mode Output (Note 2)  
0.6V, P  
= 4dBm  
RFIN  
dBm  
dBc  
SHDN  
Frequency offset = 500kHz  
Frequency offset = 1.5MHz  
Frequency offset = 2.5MHz  
-20  
-20  
-40  
In-Band Spurious (Notes 2, 3, 5)  
dBm  
dBm  
µs  
Nonharmonic Spurious Output  
(Note 2)  
All power levels, load VSWR 3:1  
-30  
MAX2244/MAX2246, V steps from 0 to 2V  
4
4
PC  
Power Ramp Turn-On Time  
(Notes 2, 6)  
MAX2245/MAX2246, V steps from 0 to 2.5V  
PC  
MAX2244, V steps from 2V to 0  
1.8  
1.8  
1.5:1  
PC  
Power Ramp Turn-Off Time  
(Notes 2, 7)  
µs  
MAX2245, V steps from 2.5V to 0  
PC  
Input VSWR (Note 2)  
R = 50, over full P  
S
range  
RFIN  
2:1  
Note 1: Limits are 100% production tested at T = +25°C. Limits over the entire operating temperature range are guaranteed by  
A
design and characterization, but are not production tested.  
Note 2: Guaranteed by design and characterization.  
Note 3: Assumes the output is optimally matched to cover the 2.4GHz to 2.5GHz band.  
Note 4: Valid for the case in which the output stage is matched with a two-section transmission line, lowpass matching network to  
minimize the 2nd and 3rd harmonics, as shown in the Typical Application Circuit.  
Note 5: Output measured in a 100kHz RBW. Power on/off duty cycle = 50%. Test signal: GFSK, BT = 0.5, 1 bit/symbol, 1Mbps,  
frequency deviation = 175kHz.  
Note 6: The total turn-on and settling time required for the PA output power to settle to within 1dB of the final value.  
Note 7: The total turn-off time for the PA output power to drop to -10dBm.  
_______________________________________________________________________________________  
3
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
Typical Operating Characteristics  
(Typical Application Circuit, V  
= 3V, P  
= 2dBm, f  
= 2.45GHz, SHDN = V , T = +25°C, unless otherwise noted.)  
RFIN CC A  
CC  
RFIN  
MAX2244 SUPPLY CURRENT  
vs. POWER CONTROL (V  
MAX2244  
MAX2244  
OUTPUT POWER vs. POWER CONTROL (V  
)
OUTPUT POWER vs. POWER CONTROL (V  
)
)
PC  
PC  
PC  
200  
150  
100  
50  
20  
10  
20  
10  
V
= 4V  
CC  
T
= +85°C  
A
T
= +85°C  
A
V
= 3V  
CC  
0
0
T
= +25°C  
A
T
= +25°C  
= -40°C  
A
T
= -40°C  
A
-10  
-20  
-10  
-20  
T
A
V
= 5.0V  
CC  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
V
(V)  
V
V
PC  
PC  
PC  
MAX2244  
OUTPUT POWER vs. INPUT POWER  
MAX2244  
HARMONIC OUTPUT SPECTRUM  
MAX2244  
OUTPUT POWER vs. FREQUENCY  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
V
= 2V  
PC  
V
= 2.0V  
= 1.0V  
PC  
V
= 2V  
PC  
V
0dBm  
PC  
V
= 1V  
PC  
10dB/div  
5f  
O
f
2f  
3f  
4f  
O
O
O
O
V
= 0.5V  
-5  
V
= 0.5V  
2.42  
PC  
PC  
0
0
-15  
-10  
0
5
0.1  
13  
2.40  
2.44  
2.46  
2.48  
2.50  
FREQUENCY (GHz)  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
MAX2244  
FSK MODULATED OUTPUT SPECTRUM  
MAX2244  
POWER-ON/OFF CHARACTERISTICS  
MAX2244-46 toc08  
30  
20  
10  
0
V
= 2V  
PC  
P
RFOUT  
5
4
3
2
1
0
0dBm  
V
SHDN  
10dB/div  
V
(V)  
SHDN  
-10  
-20  
-30  
-40  
2.45GHz  
0.5MHz/div  
TIME (2µs/div)  
4
_______________________________________________________________________________________  
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 3V, P  
= 2dBm, f  
= 2.45GHz, SHDN = V , T = +25°C, unless otherwise noted.)  
RFIN CC A  
CC  
RFIN  
MAX2245  
MAX2245  
MAX2245  
OUTPUT POWER vs. POWER CONTROL (V  
SUPPLY CURRENT vs. POWER CONTROL (V  
)
PC  
OUTPUT POWER vs. POWER CONTROL (V  
)
)
PC  
PC  
200  
150  
100  
50  
20  
20  
10  
T
= +85°C  
A
V
= 4V  
CC  
V
= 5V  
CC  
10  
0
V
= 3V  
CC  
T
= +25°C  
A
T
= +85°C  
A
0
T
= -40°C  
A
T
= +25°C  
-10  
-20  
-10  
-20  
A
T
= -40°C  
A
0
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
V
PC  
V
(V)  
V
PC  
PC  
MAX2245  
OUTPUT POWER vs. FREQUENCY  
MAX2245  
OUTPUT POWER vs. INPUT POWER  
MAX2245  
HARMONIC OUTPUT SPECTRUM  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
V
V
= 2.5V  
= 1.5V  
V
PC  
= 2.2V  
PC  
V
= 2.5V  
PC  
PC  
V
= 1.5V  
PC  
0dBm  
10dB/div  
5f  
O
f
2f  
3f  
4f  
O
O
O
O
V
= 1V  
2.42  
PC  
V
= 1V  
-5  
PC  
0
0
2.40  
2.44  
2.46  
2.48  
2.50  
0.1  
13  
-15  
-10  
0
5
FREQUENCY (GHz)  
FREQUENCY (GHz)  
INPUT POWER (dBm)  
MAX2245  
FSK MODULATED OUTPUT SPECTRUM  
SHUTDOWN CURRENT vs. TEMPERATURE  
800  
600  
400  
200  
0
V
= 2.2V  
PC  
0dBm  
10dB/div  
2.45GHz  
0.5MHz/div  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 3V, P  
= 2dBm, f  
= 2.45GHz, SHDN = V , T = +25°C, unless otherwise noted.)  
RFIN CC A  
CC  
RFIN  
MAX2246  
MAX2246  
OUTPUT POWER vs. POWER CONTROL (V  
MAX2246 SUPPLY CURRENT  
vs. POWER CONTROL (V  
OUTPUT POWER vs. POWER CONTROL (V  
)
)
)
PC  
PC  
PC  
200  
150  
100  
50  
20  
10  
20  
T
= +85°C  
A
V
= 5V  
V
= 4V  
CC  
CC  
10  
0
V
= 3V  
CC  
T
= +85°C  
A
0
T
= +25°C  
A
-10  
-20  
-10  
-20  
T
= +25°C  
A
T
= -40°C  
A
T
= -40°C  
A
0
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
V
V
V
PC  
PC  
PC  
MAX2246  
OUTPUT POWER vs. FREQUENCY  
MAX2246  
OUTPUT POWER vs. INPUT POWER  
MAX2246  
HARMONIC OUTPUT SPECTRUM  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
V
= 2V  
PC  
V
V
= 2V  
= 1V  
PC  
PC  
V
= 2V  
PC  
0dBm  
V
= 1V  
PC  
10dB/div  
5f  
O
f
2f  
3f  
4f  
O
O
O
O
V
= 0.5V  
2.42  
V
= 0.5V  
-5  
PC  
PC  
0
0
2.40  
2.44  
2.46  
2.48  
2.50  
-15  
-10  
0
5
0.1  
13  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
INPUT POWER (dBm)  
MAX2246  
FSK MODULATED OUTPUT SPECTRUM  
S11 OF RFIN  
0
-5  
V
= 2V  
PC  
1: -20.322dB AT 2.4GHz  
2: -13.482dB AT 2.5GHz  
0dBm  
2
-10  
-15  
-20  
-25  
-30  
10dB/div  
1
2.45GHz  
0.5MHz/div  
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0  
FREQUENCY (GHz)  
6
_______________________________________________________________________________________  
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
Pin Description  
PIN  
NAME  
DESCRIPTION  
Power-Control Voltage Input. Adjust PC between 0.5V and 2V (MAX2244/MAX2246) or 0.9V to  
2.2V (MAX2245) to adjust output power. Drive PC below 0.3V to shut down the control loop  
and put the device in standby mode.  
A1  
PC  
A2  
V
DC Supply-Voltage Connection for the 2nd Stage  
CC2  
Ground Connection. Connect to the PC board ground plane. Provide inductance connection  
as low as is practical to the ground plane.  
A3, B2, C1, C3  
GND  
RFIN/SHDN  
RFOUT  
RF Input and Digital Shutdown Control Input. RF path internally DC-blocked and matched to  
50. Digital shutdown path is connected to the bias circuitry through a resistor.  
B1  
PA Open-Collector Output. Requires external pullup inductance for V  
matching network for optimum output power and efficiency.  
bias and external  
CC  
B3  
C2  
V
DC Supply-Voltage Connection for the 1st Stage, Bias, and Control Circuitry  
CC1  
Detailed Description  
Applications Information  
The MAX2244/MAX2245/MAX2246 are nonlinear PAs  
guaranteed to operate over a 2.4GHz to 2.5GHz fre-  
quency range from a 3V to 3.6V single supply. The  
MAX2244/MAX2245 provide 22dBm output power, and  
the MAX2246 provides 20dBm output power at the  
highest power setting. The signal path consists of three  
amplifier stages: an input amplifier stage with  
adjustable gain, and two fixed-gain amplifier stages.  
Power-Supply Connections  
The MAX2244/MAX2245/MAX2246 are designed to oper-  
ate from a single, positive supply voltage (V ) with three  
CC  
connections made to V : V  
, V  
, and RFOUT bias.  
traces together using a star layout, which  
CC CC1 CC2  
Join the V  
CC  
reduces crosstalk and promotes stable operation. At the  
common point of the star, connect 10µF and 10nF de-  
coupling capacitors to ground to reduce noise and handle  
current transients. Additionally, each leg requires a high-  
frequency bypass capacitor and a 1nF power-supply  
decoupling capacitor near the IC.  
The PAs have a dual-function input (RFIN/SHDN) for  
the RF input signal and shutdown control. The shut-  
down function is controlled with CMOS level signals,  
with a logic low putting the PA into low-current shut-  
down. The RF input is internally matched to 50, elimi-  
nating the need for external matching.  
High-frequency bypass capacitors are required close  
to the IC. For V  
, connect a capacitor approximately  
pad. The distance of the capacitor  
CC1  
1mm from the V  
CC1  
The MAX2244/MAX2245/MAX2246 have interstage  
matching to optimize output power and efficiency. The last  
amplifier stage is open collector using an external pullup  
inductor or RF choke. The output match for the PAs also  
acts as a lowpass filter that attenuates harmonics.  
from the pad affects the impedance at V  
, which  
CC1  
affects output power of the first stage. For optimal out-  
put power from stage 1, V  
inductance.  
requires 0.3nH to 0.4nH  
CC1  
The output power of the second stage is affected by the  
impedance presented to V , which is controlled by  
These PAs provide closed-loop power control to pro-  
vide a stable output power with variations in tempera-  
ture, V , and RF input power. The control amplifier  
CC  
CC2  
the distance between the V  
pad and its bypass  
CC2  
capacitor. For optimal electrical distance, see Figure 1  
and Table 1.  
varies the gain of the first stage to equalize the power-  
control voltage and the internal power-detector output.  
The MAX2244/MAX2246 have a 0.5V to 2V power-con-  
trol voltage range, and the MAX2245 has a 0.9V to 2.2V  
power-control voltage range.  
The internal bias circuit provides separate bias volt-  
ages and currents to the amplifier stages. An internal  
lowpass RC filter isolates the bias currents, preventing  
them from being corrupted by the RF signals. The bias  
circuit design also ensures the stability of the PA when  
connected to high VSWR loads over all power levels.  
RFOUT must be pulled up to V  
through an inductor  
CC  
or an inductive transmission line. If using a transmission  
line, a high-frequency bypass capacitor from V to  
CC  
ground is necessary to terminate the transmission line  
and set its electrical length. The inductance formed by  
the length of the transmission line is part of the output-  
matching network, and therefore is critical. See the  
Output Matching section for more information on  
RFOUT requirements.  
_______________________________________________________________________________________  
7
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
V
CC  
C1  
10µF  
C2  
10nF  
C4  
27pF  
C3  
1nF  
TRANSCEIVER IC  
DAC  
T4  
T1  
V
PC  
A1  
GND  
A3  
R2  
CC2  
A2  
2.5kΩ  
C11  
1nF  
C10  
RFIN/  
SHDN  
GND  
B2  
RFOUT  
B3  
C6  
T2  
B1  
RFOUT  
RFIN  
C5  
10pF  
R2  
1kΩ  
C7  
GND  
C1  
V
GND  
C3  
CC1  
C2  
SHDN  
MAX2244  
MAX2245  
MAX2246  
T3  
C9  
1nF  
C8  
Figure 1. MAX2244/MAX2245/MAX2246 Typical Application Circuit  
Table 1. Typical Application Circuit  
Component Values  
Place the 1nF power-supply decoupling capacitors  
between the star connection and the smaller bypass  
capacitors and close to the IC. Larger trace lengths  
between the decoupling capacitors and the IC increase  
the parasitic trace inductance, which, when combined  
COMPONENT  
MAX2244  
10pF  
MAX2245  
5.6pF  
MAX2246  
10pF  
C6  
C7  
C8  
C10  
T1  
with the capacitors on V  
and V  
, can form an LC  
CC2  
CC1  
1.2pF  
1.2pF  
1.3pF  
tank and introduce instability in the MHz range. If this  
happens, you can add a small-value resistor (~10),  
between the 1nF capacitor and ground to de-Q the  
capacitor and dampen the oscillation.  
5pF  
5pF  
27pF  
100pF  
100pF  
27pF  
50, 17.6°  
50, 50°  
50, 5.3°  
50, 5.3°  
50, 18°  
50, 53°  
50, 5.3°  
50, 5.9°  
50, 25°  
50, 50°  
50, 5.3°  
50, 8.9°  
T2  
T3  
T4  
Note: Electrical lengths given for 2.4GHz.  
8
_______________________________________________________________________________________  
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
RF Input/SHDN  
MATCHING IMPEDANCE FOR RFOUT PIN  
RFIN/SHDN is a dual-function input for a 2.4GHz to  
SMITH CHART  
2.5GHz RF signal and a DC-coupled shutdown function.  
The input port is internally matched to 50, making it  
simple to interface the PAs to a 50source without  
external matching components. The PAs are designed to  
amplify input signal levels of 0 to 4dBm and, although  
the PAs function for input signals outside this range, out-  
put power and efficiency degrade. Note: Ensure that the  
RF signal is present at the input when the PA is enabled.  
If the RF signal is not present at startup, the PA functions  
like any closed-loop control system and automatically  
goes into a high-gain state, amplifying and transmitting  
noise. Avoid this mode of operation.  
MAX2244: 6.26+ j13.56AT 2.45GHz  
The second function of the RFIN/SHDN is shutdown con-  
MAX2245: 6.35+ j13.25AT 2.45GHz  
trol. A DC voltage at the input port digitally controls the  
MAX2246: 5.50+ j13.50AT 2.45GHz  
on/off state with standard CMOS levels. The PA is in low-  
current shutdown when the DC voltage is a valid logic  
low and is active for a valid logic high. Connect the  
SHDN signal to the RFIN/SHDN through a 1kresistor.  
Connect the RF signal to the RFIN/SHDN with a 10pF  
capacitor in series to block any DC from corrupting the  
SHDN signal.  
Figure 2. Impedance of Matching Network at RFOUT Pin  
Table 2. Matching Network Impedance  
MAX2244  
MAX2245  
MAX2246  
FREQUENCY  
GHz  
REAL IMAG REAL IMAG REAL IMAG  
()  
()  
13.2  
13.5  
13.9  
()  
()  
()  
()  
Output Matching  
The output structure of these nonlinear PAs is an open-  
collector transistor that requires external impedance  
matching and pullup inductance for biasing. The recom-  
mended output matching network is shown in the Typical  
Application Circuits (Figure 1). The impedance presented  
to the RFOUT pin is shown in Figure 2 and Table 2. This  
impedance is specified relative to a reference plane at  
the amplifier output into the matching network and load.  
2.40  
2.45  
2.50  
6.47  
6.26  
6.06  
6.61 12.94 5.73 13.01  
6.35 13.25 5.50 13.50  
6.11 13.59 5.27 14.02  
Analog Power Control (PC)  
The PAs use a closed-loop power-control system for  
consistent output power across input power, supply volt-  
age, and temperature. Output power is internally moni-  
tored and compared to the desired setting on PC. The  
control amplifier then adjusts the first-stage variable-gain  
amplifier until the output power matches the desired set-  
ting. The result is that the output power is controlled by  
the voltage applied to PC.  
The matching network is for impedance transformation  
that transforms 6to 50with the specified maximum  
output power. The network also forms a lowpass filter that  
provides attenuation for the 2nd and 3rd harmonics. A  
shunt capacitor (C7) is needed to perform the transforma-  
tion, and the inductive 50transmission line (T2) is need-  
ed to match that capacitance. A larger capacitor can be  
used to increase the maximum output power, but the  
transmission line also must be increased to maintain a  
match with C7. A DC-blocking capacitor (C6) of 5pF to  
10pF is necessary between the PA output and the trans-  
mission line.  
The power-control voltage range at PC for the  
MAX2244/MAX2246 is 0 to 2V. Output power remains at  
its minimum for V  
between 0 and 0.4V. At approxi-  
PC  
mately 0.4V, output power increases exponentially until  
= 2V, where output power is 22dBm (MAX2244) or  
V
PC  
20dBm (MAX2246). See Figures 3a and 3c for the rela-  
tionship between V  
and output power for the  
PC  
The pullup inductance from RFOUT to V  
serves three  
CC  
MAX2244 and MAX2246, respectively.  
main purposes: it resonates out the capacitive PA output,  
provides biasing for the output stage, and becomes a  
high-frequency choke to reduce RF energy from coupling  
Likewise, the MAX2245 output power is controlled by  
V
, but with a different power-control range. The power-  
PC  
into V . The pullup inductance normally is a 50trans-  
CC  
control voltage range of the MAX2245 is 0 to 2.2V, with  
output power beginning to increase when V = 0.9V.  
mission line (T1); however, chip inductors can be used  
instead. The typical application circuit terminates the  
transmission line with a capacitor (C6).  
PC  
Figure 3b shows the V  
for the MAX2245.  
and output power relationship  
PC  
_______________________________________________________________________________________  
9
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
MAX2244 TYPICAL OUTPUT POWER  
P
vs. V  
OUT  
PC  
25  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
0
0.50  
1.00  
1.50  
2.00  
2.50  
V
(V)  
PC  
P
P
P
P
P
OUT  
(dBm)  
OUT  
OUT  
OUT  
OUT  
V
(V)  
V
(V)  
PC  
V
(V)  
V
(V)  
V
(V)  
PC  
PC  
PC  
PC  
(dBm)  
(dBm)  
(dBm)  
(dBm)  
0
-9.45  
-9.45  
-9.45  
-9.50  
-9.55  
-10.79  
-15.60  
-8.65  
-5.41  
0.42  
0.43  
0.44  
0.45  
0.46  
0.47  
0.48  
0.50  
0.52  
-3.24  
-1.85  
-0.64  
0.43  
1.24  
1.97  
2.62  
3.79  
4.75  
0.54  
0.56  
0.58  
0.60  
0.65  
0.70  
0.75  
0.80  
0.85  
5.59  
6.35  
0.90  
0.95  
1.00  
1.10  
1.20  
1.30  
1.40  
1.50  
1.60  
13.76  
14.45  
15.10  
16.25  
17.26  
18.16  
18.95  
19.65  
20.26  
1.70  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
20.79  
21.24  
21.63  
21.91  
22.07  
22.08  
22.09  
22.10  
22.11  
0.30  
0.32  
0.36  
0.37  
0.38  
0.39  
0.40  
0.41  
7.04  
7.67  
9.05  
10.22  
11.26  
12.19  
13.01  
Figure 3a. MAX2244 Typical Output Power vs. Power-Control Voltage  
10 ______________________________________________________________________________________  
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
MAX2245 TYPICAL OUTPUT POWER  
P
vs. V  
OUT  
PC  
25  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
0
0.50  
1.00  
1.50  
2.00  
2.50  
V
(V)  
PC  
P
P
P
P
OUT  
(dBm)  
OUT  
OUT  
OUT  
V
(V)  
V
(V)  
PC  
V
(V)  
V
(V)  
PC  
PC  
PC  
(dBm)  
(dBm)  
(dBm)  
0
-8.00  
-8.00  
-8.14  
-8.46  
-17.51  
-8.00  
-4.13  
-1.90  
-0.35  
0.90  
0.91  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.91  
1.91  
2.78  
3.50  
4.20  
4.83  
5.39  
5.93  
6.44  
0.99  
1.00  
1.10  
1.20  
1.30  
1.40  
1.50  
1.60  
1.70  
6.90  
7.33  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
20.27  
20.79  
21.22  
21.59  
21.91  
22.15  
22.20  
22.20  
0.82  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
10.64  
12.99  
14.84  
16.33  
17.61  
18.70  
19.59  
Figure 3b. MAX2245 Typical Output Power vs. Power-Control Voltage  
______________________________________________________________________________________ 11  
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
MAX2246 TYPICAL OUTPUT POWER  
P
vs. V  
OUT  
PC  
25  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
0
0.50  
1.00  
1.50  
2.00  
2.50  
V
(V)  
PC  
P
OUT  
P
P
P
P
OUT  
(dBm)  
OUT  
OUT  
OUT  
V
(V)  
V
(V)  
PC  
V
(V)  
V
(V)  
PC  
PC  
PC  
V
(V)  
(dBm)  
PC  
(dBm)  
(dBm)  
(dBm)  
1.00  
1.10  
1.20  
1.30  
1.40  
1.50  
1.60  
1.70  
1.80  
12.26  
13.43  
14.60  
15.39  
16.21  
16.97  
17.67  
18.31  
18.93  
0
-17.80  
-17.80  
-17.80  
-17.78  
-17.65  
-17.60  
-17.53  
-17.44  
-17.49  
0.40  
0.41  
0.42  
0.43  
0.44  
0.45  
0.46  
0.47  
0.48  
-16.00  
-11.80  
-8.74  
-6.65  
-5.02  
-3.67  
-2.65  
-1.78  
-1.02  
0.49  
0.50  
0.51  
0.52  
0.53  
0.54  
0.55  
0.56  
0.57  
-0.31  
0.30  
2.75  
4.75  
6.03  
7.26  
8.35  
9.28  
10.89  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
19.48  
19.95  
20.33  
20.66  
20.81  
20.82  
20.82  
0.10  
0.20  
0.30  
0.35  
0.36  
0.37  
0.38  
0.39  
Figure 3c. MAX2246 Typical Output Power vs. Power-Control Voltage  
12 ______________________________________________________________________________________  
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
Layout  
Marking Information  
A good layout is necessary to achieve high-output power  
Pin 1 ID  
AAA: Product ID Code  
with good efficiency. A solid ground plane must be used,  
with any free board space also being grounded.  
Connect any ground planes using multiple vias and low-  
inductance connections. Parasitic inductance reduces  
output power and efficiency, so place the ground return  
of the chip components as close to the IC as possible.  
The MAX2244 EV kit and MAX2246 EV kit PC boards use  
via-on-pad for low-inductance connections.  
A
X
A
X
A
X
XXX: Lot Code  
UCSP Reliability  
The UCSP is a unique package that greatly reduces  
board space compared to other packages. UCSP relia-  
bility is integrally linked to the users assembly methods,  
circuit board material, and usage environment. Closely  
review these areas when considering using a UCSP.  
Use a star connection for the power-supply traces that  
connect to V , V  
CC1 CC2  
, and RFOUT. At a common point  
of the power-supply traces, connect 10nF and 10µF  
decoupling capacitors to ground. Place 1nF capacitors  
Performance through Operating Life Test and Moisture  
Resistance remains uncompromised as they are primari-  
ly determined by the wafer-fabrication process.  
Mechanical stress performance is a greater considera-  
tion for a UCSP. UCSP solder-joint contact integrity must  
be considered because the package is attached through  
direct solder contact to the users PC board. Testing to  
characterize the UCSP reliability performance shows that  
it is capable of performing reliably through environmental  
stresses. Results of environmental stress tests and addi-  
tional usage data and recommendations are detailed in  
the UCSP application note, available on Maxims web-  
site, www.maxim-ic.com.  
closer to the IC on each V  
trace with the small value  
CC  
matching capacitors closest to the IC. The distance of  
the matching capacitors from the IC is critical. See the  
Power Supply Connections section for more information.  
The layout of the output section is important because  
50traces are used as part of the matching. See the  
Output Matching section for component information.  
The 50traces can be bent, but be aware of how the  
characteristics of the transmission line change, and  
compensate for them accordingly.  
Use a 50line to directly connect to the input. Place  
one pad of the 1kresistor for the SHDN signal directly  
on the 50line or as close to the line as possible. Any  
trace connected to the 50line changes the lines  
characteristic impedance, causing power loss. The lay-  
out of the trace connecting PC is noncritical.  
Users should also be aware that, as with any intercon-  
nect system there are electromigration-based current  
limits that, in this case, apply to the maximum allowable  
current in the bumps. Reliability is a function of this cur-  
rent, the duty cycle, lifetime, and bump temperature. See  
the Absolute Maximum Ratings section for any specific  
limitations, listed under Continuous Operating Lifetime.  
The chip-scale IC package uses a bump pitch of 0.5mm  
(19.7 mil) and a bump diameter of 0.3mm (~12 mil).  
Therefore, lay out the solder pad spacing on 0.5mm  
(19.7 mil) centers. Use a pad size of 0.25mm (~10 mil)  
and a solder mask opening of 0.33mm (13 mil). Round  
or square pads are permissible. Refer to the Maxim  
document, Wafer Level Ultra-Chipscale Packaging, for  
detailed information on UCSP layout and handling.  
Chip Information  
TRANSISTOR COUNT: 727  
PROCESS: Bipolar  
Pin Configuration  
TOP VIEW  
(BUMPS AT THE BOTTOM)  
Prototype Chip Installation  
Alignment keys on the PC board around the chip are  
helpful in prototype assembly. The MAX2244 and  
MAX2246 EV kit PC boards have L-shaped alignment  
keys at the diagonal corners of the chip. Align the chip  
on the board before any other components are placed,  
and place the board on a hotplate or hot surface until  
the solder starts melting. Remove the board from the  
hotplate without disturbing the position of the chip. Let  
it cool to room temperature before further processing  
the board.  
1
2
3
PC  
A1  
V
GND  
CC2  
A2  
A
A3  
RFIN/  
SHDN  
GND  
B2  
RFOUT  
B3  
B
B1  
V
GND  
C1  
CC1  
GND  
C3  
C
C2  
UCSP  
______________________________________________________________________________________ 13  
2.5GHz, 22dBm/20dBm Power Amplifiers with  
Analog Closed-Loop Power Control  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 3x3 UCSP  
1
21-0093  
I
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX22444

Broad Range of Data Transfer Rates (from DC to 200Mbps)
MAXIM

MAX22445

Reinforced, Fast, Low-Power, Four-Channel Digital Isolators
MAXIM

MAX22445FAWE+

Interface Circuit,
MAXIM

MAX22445FWEVKIT

Broad Range of Data Transfer Rates (from DC to 200Mbps)
MAXIM

MAX22446

Broad Range of Data Transfer Rates (from DC to 200Mbps)
MAXIM

MAX2244EBL

2400MHz - 2500MHz RF/MICROWAVE NARROW BAND LOW POWER AMPLIFIER, 3 X 3 MM, UCSP-9
ROCHESTER

MAX2244EBL-T

2.5GHz, 22dBm/20dBm Power Amplifiers with Analog Closed-Loop Power Control
MAXIM

MAX2244EVKIT

Evaluation Kit for the MAX2244/MAX2245/MAX2246
MAXIM

MAX2245

2.5GHz.22dBm/20dBm Power Amplifiers with Analog Closed-Loop Power Control
MAXIM

MAX2245EBL

2400MHz - 2500MHz RF/MICROWAVE NARROW BAND LOW POWER AMPLIFIER, UCSP-9
ROCHESTER

MAX2245EBL-T

2.5GHz, 22dBm/20dBm Power Amplifiers with Analog Closed-Loop Power Control
MAXIM

MAX2245EBL-T

2400MHz - 2500MHz RF/MICROWAVE NARROW BAND LOW POWER AMPLIFIER, 3 X 3 MM, UCSP-9
ROCHESTER