MAX22502EATC+ [MAXIM]

100Mbps Full-Duplex RS-485/RS-422 Transceiver for Long Cables;
MAX22502EATC+
型号: MAX22502EATC+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

100Mbps Full-Duplex RS-485/RS-422 Transceiver for Long Cables

文件: 总19页 (文件大小:1150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
General Description  
Benefits and Features  
High-Speed Operation Over Long Distances  
The MAX22502E full-duplex, ESD-protected, RS-485/  
RS-422 transceiver is optimized for high-speed (up to  
100Mbps) communication over long cables.This transceiver  
features larger receiver hysteresis for high noise rejection  
and improved signal integrity. Integrated preemphasis  
circuitry extends the distance, and increases the data rate,  
of reliable communication by reducing inter-symbol  
interference (ISI) caused by long cables when supplied with  
5V. Integrated hot-swap protection and a fail-safe receiver  
ensure a logic-high on the receiver output when input signals  
are shorted or open for longer than 10μs (typ).  
• Up to 100Mbps Data Rate  
• Integrated Preemphasis Extends Cable Length  
• High Receiver Sensitivity  
• Wide Receiver Bandwidth  
• Symmetrical Receiver Thresholds  
Integrated Protection Increases Robustness  
• -15V to +15V Common Mode Range  
• ±15kV ESD Protection (Human Body Model)  
• ±7kV IEC61000-4-2 Air-Gap ESD Protection  
• ±6kV IEC61000-4-2 Contact Discharge  
ESD Protection  
The MAX22502E is available in a 12-pin TDFN-EP (3mm  
x 3mm) package and operates over the -40°C to +125°C  
ambient temperature range.  
• Driver Outputs are Short-Circuit Protected  
Flexibility for Many Different Applications  
• 3V to 5.5V Supply Range  
Applications  
Motion Control  
• Low Voltage Logic Supply Down to 1.6V  
• Low 5µA (max) Shutdown Current  
• Available in 12-pin TDFN (3mm x 3mm) Package  
• -40°C to +125°C Operating Temperature Range  
Encoder Interfaces  
Field Bus Networks  
Industrial Control Systems  
Backplane Busses  
Ordering Information appears at end of data sheet.  
Simplified Block Diagram  
VL  
VCC  
B
A
RO  
RE  
R
SHUTDOWN  
D
DE  
DI  
Y
Z
PSET  
MAX22502E  
GND  
19-100135; Rev 1; 4/19  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Absolute Maximum Ratings  
CC  
RE, DE, DI, VL ....................................................-0.3 V to +6 V  
RO .............................................................-0.3 V to (V + 0.3) V  
PSET ......................................................-0.3 V to (V  
A, B, Y, Z ................................................................-15V to +15V  
Short-Circuit Duration (RO, Y, Z) to GND  
V
........................................................................-0.3 V to +6 V  
Continuous Power Dissipation (Multilayer Board (derate  
24.4mW/°C above +70°C))........................................1951mW  
Operating Temperature Range ........................ -40°C to +125°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range ........................... -65°C to +150°C  
Reflow Temperature ........................................................+300°C  
L
+ 0.3) V  
CC  
Continuous Power Dissipation (Single Layer Board  
(derate 15.9mW/°C above +70°C)) ...........................1269mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
12 TDFN-EP  
PACKAGE CODE  
TD1233+1C  
Outline Number  
21-0664  
90-0397  
Land Pattern Number  
Thermal Resistance, Single-Layer Board:  
Junction to Ambient (θ  
)
63°C/W  
8°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
41°C/W  
8°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Electrical Characteristics  
(V  
= 3V to 5.5V, V = 1.6V to V , V ≤ V , T = T  
to T , unless otherwise noted (Notes 1, 2) )  
MAX  
CC  
L
CC  
L
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER  
Preemphasis disabled  
Preemphasis enabled  
3.0  
4.5  
5.5  
5.5  
Supply Voltage  
V
I
V
CC  
5
Supply Current  
12.7  
16.5  
mA  
DE = high, RE = low, no load  
DE = low, RE = high  
CC  
Shutdown Supply Current  
Logic Supply Voltage  
Logic Supply Current  
DRIVER  
I
5
µA  
V
SHDN  
V
1.6  
V
CC  
L
I
No load on RO  
16.4  
23  
µA  
L
R = 54Ω  
1.5  
2.0  
L
Differential Driver Output  
V
Figure 1, Figure 2  
V
OD  
R = 100Ω  
L
Preemphasis  
enabled, 4.5V ≤ V  
5.5V (Note 3)  
R = 54Ω  
1.33  
1.37  
1.37  
1.41  
1.41  
L
Differential Driver Preemphasis  
Ratio  
D
CC  
V/V  
PRE  
R = 100Ω  
1.33  
L
Change in Magnitude of Differential  
Output Voltage  
ΔV  
R = 54Ω, Figure 1 (Note 4)  
0.2  
3
V
V
V
OD  
L
Driver Common-Mode Output  
Voltage  
R = 54Ω, Normal mode and preemphasis,  
L
V
V
/2  
OC  
CC  
Figure 1  
Change In Magnitude of  
Common-Mode Voltage  
ΔV  
R = 100Ω or 54Ω, Figure 1 (Note 4)  
0.2  
OC  
L
Single-Ended Driver Output High  
Single-Ended Driver Output Low  
Differential Output Capacitance  
V
Y or Z output  
Y or Z output  
I
I
= -20mA  
= +20mA  
2.2  
V
V
OH  
OUT  
V
C
0.8  
OL  
OUT  
50  
pF  
DE = RE = high, f = 4MHz  
OD  
Driver Short-Circuit Output  
Current  
|I  
|
-15V ≤ V  
≤ +15V  
250  
mA  
OST  
OUT  
RECEIVER  
V
V
= +12V  
= -7V  
+1100  
DE = GND, V  
GND, +3.6V or 5.5V  
=
IN  
CC  
Input Current (A and B)  
I
μA  
A,B  
-1000  
IN  
Between A and B, DE = GND,  
f = 2MHz  
Differential Input Capacitance  
C
50  
pF  
V
A,B  
Common Mode Voltage Range  
V
-15  
+15  
CM  
Receiver Differential Threshold  
High  
V
-15V ≤ V  
-15V ≤ V  
≤ +15V  
≤ +15V  
+50  
+200  
mV  
TH_H  
CM  
Receiver Differential Threshold  
Low  
V
-200  
-50  
mV  
TH_L  
CM  
V
< t  
= 0V, time from last transition is  
CM  
Receiver Input Hysteresis  
ΔV  
250  
mV  
mV  
TH  
D_FS  
Differential Input Fail-Safe Level  
V
-15V ≤ V  
≤ +15V  
-50  
+50  
TH_FS  
CM  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Electrical Characteristics (continued)  
(V  
= 3V to 5.5V, V = 1.6V to V , V ≤ V , T = T  
to T , unless otherwise noted (Notes 1, 2) )  
MAX  
CC  
L
CC  
L
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOGIC INTERFACE (RE, RO, DE, DI)  
2/3 x  
Input Voltage High  
V
V
DE, DI, RE  
DE, DI, RE  
IH  
V
L
Input Voltage Low  
Input Current  
V
I
1/3 x V  
+2  
V
IL  
L
-2  
μA  
kΩ  
DI and DE, RE (after first transition)  
DE, RE  
IN  
Input Impedance on First Transition  
RO Output Voltage High  
R
10  
IN_FT  
RE = GND, (V - V ) > 200mV,  
A
B
V
V - 0.4  
L
V
V
OH  
I
= -1mA  
OUT  
RE = GND, (V - V ) < -200mV,  
A
B
RO Output Low Voltage  
V
0.4  
+1  
OL  
I
= +1mA  
OUT  
Three-State Output Current at  
Receiver  
I
-1  
μA  
RE = high, 0 ≤ V  
≤ V  
L
OZR  
RO  
PROTECTION  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
T
+160  
10  
°C  
°C  
SH  
T
SH_HYS  
Human Body Model  
±15  
±7  
ESD Protection (A and B Pins)  
ESD Protection (All Other Pins)  
IEC61000-4-2 Air Gap Discharge to GND  
IEC61000-4-2 Contact Discharge to GND  
Human Body Model  
kV  
kV  
±6  
±2  
Electrical Characteristics - Switching  
(V  
= 3V to 5.5V, V = 1.6V to V , V ≤ V , T = T  
to T  
, unless otherwise noted (Note 1, 2) )  
MAX  
CC  
L
CC  
L
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER (Note 5)  
t
t
R = 54Ω, C = 50pF, Figures 3, 4  
20  
20  
DPLH  
DPHL  
L
L
Driver Propagation Delay  
ns  
R = 54Ω, C = 50pF, Figures 3, 4  
L
L
|t  
– t  
|,  
DPLH  
DPHL  
R = 54Ω, C = 50pF,  
Figure 3, Figure 4  
(Note 6)  
V = V  
,
L
L
L
CC  
1.2  
1.6  
V
≥ 3V  
CC  
Differential Driver Output Skew  
t
ns  
DSKEW  
|t  
- t  
|,  
DPLH DPHL  
R = 54Ω, C = 50pF,  
V does not  
L
equal V  
L
L
Figure 3, Figure 4  
CC  
(Note 6)  
Driver Differential Output Rise  
and Fall Time  
t
, t  
R = 54Ω, C = 50pF, Figure 4 (Note 6)  
3
ns  
HL LH  
L
L
Data Rate  
DR  
100  
Mbps  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Electrical Characteristics - Switching (continued)  
(V  
= 3V to 5.5V, V = 1.6V to V , V ≤ V , T = T  
to T  
, unless otherwise noted (Note 1, 2) )  
CC  
L
CC  
L
CC  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
R = 500Ω, C = 50pF, Figure 5, Figure 6  
MIN  
TYP  
MAX  
30  
UNITS  
ns  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
t
DZH  
L
L
t
R = 500Ω, C = 50pF, Figure 5, Figure 6  
30  
ns  
DZL  
DLZ  
DHZ  
L
L
t
R = 500Ω, C = 50pF, Figure 5, Figure 6  
30  
ns  
L
L
t
R = 500Ω, C = 50pF, Figure 5, Figure 6  
30  
ns  
L
L
Driver Enable from Shutdown to  
Output High  
t
R = 1kΩ, C = 15pF, Figure 5, Figure 6  
100  
100  
µs  
µs  
DZH(SHDN)  
L
L
Driver Enable from Shutdown to  
Output Low  
t
R = 1kΩ, C = 15pF, Figure 5, Figure 6  
L L  
DZL(SHDN)  
Time to Shutdown  
t
(Note 7, Note 8)  
50  
10  
800  
16  
ns  
ns  
μs  
SHDN  
R
R
= 4kΩ  
13  
1
4.5V ≤ V  
≤ 5.5V,  
PSET  
PSET  
CC  
Driver Preemphasis Interval  
t
PRE  
Figure 2  
= 400kΩ  
0.8  
1.2  
RECEIVER (Note 5)  
Delay to Fail-Safe Operation  
t
10  
µs  
ns  
D_FS  
RPLH  
RPHL  
t
C = 15pF, Figure 7, Figure 8  
20  
20  
L
Receiver Propagation Delay  
Receiver Output Skew  
t
C = 15pF, Figure 7, Figure 8  
L
|t  
- t  
|, C = 15pF, Figure 7,  
RPHL RPLH L  
t
2.5  
ns  
RSKEW  
Figure 8  
Data Rate  
DR  
100  
30  
30  
30  
30  
Mbps  
ns  
Receiver Enable to Output High  
Receiver Enable to Output Low  
Receiver Disable Time from Low  
Receiver Disable Time from High  
t
R = 1kΩ, C = 15pF, Figure 9  
L L  
RZH  
t
R = 1kΩ, C = 15pF, Figure 9  
ns  
RZL  
RLZ  
RHZ  
L
L
t
R = 1kΩ, C = 15pF, Figure 9  
ns  
L
L
t
R = 1kΩ, C = 15pF, Figure 9  
ns  
L
L
Receiver Enable from Shutdown  
to Output High  
t
R = 1kΩ, C = 15pF, Figure 9  
100  
μs  
RZH (SHDN)  
L
L
Receiver Enable from Shutdown  
to Output Low  
t
R = 1kΩ, C = 15pF, Figure 9  
100  
800  
μs  
RZL (SHDN)  
L
L
Time to Shutdown  
t
(Note 7, Note 8)  
50  
ns  
SHDN  
Note 1: All devices are 100% production tested at T = +25°C. Specifications for all temperature limits are guaranteed by design.  
A
Note 2: All currents into the device are positive; all currents out of the device are negative. All voltages are referenced to device  
ground, unless otherwise noted.  
Note 3: V  
is the differential voltage between Y and Z during the preemphasis interval and is the differential voltage when  
ODP  
preemphasis is disabled. V  
= D  
x V  
.
ODP  
PRE  
OD  
Note 4: ΔV  
and ΔV  
are the changes in V  
and V , respectively, when the DI input changes state.  
OD  
OC  
OD OC  
Note 5: Capacitive load includes test probe and fixture capacitance.  
Note 6: Not production tested. Guaranteed by design.  
Note 7: Shutdown is enabled by driving RE high and DE low. The device is guaranteed to have entered shutdown after t  
elapsed.  
has  
SHDN  
Note 8: The timing parameter refers to the driver or receiver enable delay, when the device has exited the initial hot-swap protect  
state and is in normal operating mode.  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Y
Z
RL  
2
VOD  
VODP  
RL  
2
VOC  
Figure 1. Driver DC Test Load  
Y OR Z  
Z OR Y  
VODP  
VOD  
50%  
tPRE  
Preemphasis enabled  
V
ODP = DPRE x VOD  
Figure 2. Driver Preemphasis Timing  
VCC  
DE  
Y
Z
VOD  
VODP  
RL  
CL  
Figure 3. Driver Timing Test Circuit  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
f = 1MHz, tLH = 3ns, tHL = 3ns  
VL  
0
DI  
50%  
tDPLH  
50%  
tDPHL  
Z
Y
VOD  
VOD = (VY - VZ)  
VO  
0
90%  
90%  
10%  
VOD  
10%  
-VO  
tHL  
tLH  
tDSKEW = |tDPLH - tDPHL  
|
Figure 4. Driver Propagation Delays  
Y
DI  
VL  
0V  
GND OR VL  
OUT  
Z
CL  
RL  
50%  
DE  
tDZH, tDZH(SHDN)  
0.25V  
V
OH  
GENERATOR  
50%  
50  
OUT  
0V  
tDHZ  
Figure 5. Driver Enable and Disable Times (t  
, t  
)
DZH DHZ  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
VCC  
RL  
Y
Z
DI  
VL  
GND OR VL  
OUT  
CL  
50%  
DE  
0V  
tDZL, tDZL(SHDN)  
tDLZ  
VL  
50%  
0.25V  
VOL  
GENERATOR  
50Ω  
OUT  
Figure 6. Driver Enable and Disable Times (t  
, t  
)
DZL DLZ  
A
B
RO  
R
ATE  
VID  
Figure 7. Receiver Propagation Delay Test Circuit  
A
B
+1V  
-1V  
VOH  
tRPLH  
tRPHL  
RO  
50%  
50%  
VOL  
tRSKEW = |tRPHL – tRPLH|  
Figure 8. Receiver Propagation Delays  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
RL  
S1  
S3  
+1.5V  
-1.5V  
1kΩ  
VL  
RO  
VIO  
R
S2  
CL  
15pF  
GENERATOR  
50Ω  
VL  
VL  
0V  
RE  
RO  
RE  
50%  
50%  
0V  
tRZH, tRZH(SHDN)  
t
RZL, tRZL(SHDN)  
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
S1 CLOSED  
S2 OPEN  
S3 = -1.5V  
VOH  
0V  
VOH  
VOL  
50%  
RO  
50%  
VL  
0V  
VL  
0V  
RE  
RE  
50%  
50%  
S1 CLOSED  
S2 OPEN  
S3 = -1.5V  
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
tRHZ  
tRLZ  
VOH  
0V  
VL  
0.25V  
RO  
RO  
0.25V  
VOL  
Figure 9. Receiver Enable and Disable Times  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Typical Operating Characteristics  
V
= 5V, VL = V , 60Ω termination between Y and Z, T = 25°C, unless otherwise noted.  
CC A  
CC  
SUPPLY CURRENT vs. DATA RATE  
(PREEMPHASIS ENABLED)  
SUPPLY CURRENT vs. DATA RATE  
(PREEMPHASIS DISABLED)  
toc01  
toc02  
150  
150  
SQUARE WAVE ON DI (50% DUTY CYCLE)  
PSET RESISTOR ADJUSTED FOR EACH  
DATA RATE  
SQUARE WAVE ON DI (50% DUTY CYCLE)  
125  
100  
75  
50  
25  
0
125  
VCC = 5V, 54Ω Load  
100  
54Ω Load  
75  
VCC = 3.3V, 54Ω Load  
50  
VCC = 5V, No Load  
VCC = 3.3V, No Load  
25  
No Load  
0
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
RO OUTPUT VOLTAGE HIGH  
vs. LOAD CURRENT  
RO OUTPUT VOLTAGE LOW  
vs. LOAD CURRENT  
toc03  
toc04  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
(VA - VB) > +200mV  
(VA - VB) < -200mV  
VCC = 3.3V  
VCC = 5V  
VCC = 3.3V  
VCC = 5V  
0
10  
20  
30  
40  
50  
0
-10  
-20  
-30  
-40  
-50  
SINK CURRENT (mA)  
SOURCE CURRENT (mA)  
DRIVER OUTPUT VOLTAGE LOW  
vs. LOAD CURRENT  
toc07  
DIFFERENTIAL DRIVER OUTPUT VOLTAGE  
DIFFERENTIAL DRIVER OUTPUT VOLTAGE  
vs. LOAD CURRENT  
vs. TEMPERATURE  
toc05  
toc06  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6
5
4
3
2
1
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
DI = GND  
VCC = 5V  
VCC = 5V  
VCC = 3.3V  
VCC = 3.3V  
VCC = 3.3V  
VCC = 5V  
RL = 54Ω  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (ºC)  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
125  
150  
LOAD CURRENT (mA)  
SINK CURRENT (mA)  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Typical Operating Characteristics (continued)  
V
= 5V, VL = V , 60Ω termination between Y and Z, T = 25°C, unless otherwise noted.  
CC  
CC A  
DRIVER OUTPUT VOLTAGE HIGH  
vs. LOAD CURRENT  
DRIVER OUTPUT LEAKAGE CURRENT  
vs. OUTPUT VOLTAGE  
toc08  
toc09  
5.0  
400  
DI = VCC  
DE = GND  
300  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
200  
VCC = 5V  
VCC = 3.3V  
100  
0
-100  
-200  
-300  
-400  
VCC = 3.3V  
VCC = 5V  
0
-25  
-50  
-75  
-100  
-125  
-150  
-15  
-10  
-5  
0
5
10  
15  
SOURCE CURRENT (mA)  
SOURCE CURRENT (mA)  
DRIVER PROPAGATION DELAY  
vs. TEMPERATURE  
DRIVER PROPAGATION DELAY SKEW  
vs. TEMPERATURE  
toc11  
toc10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
20  
18  
16  
14  
12  
10  
8
RL = 54Ω  
RL = 54Ω  
CL = 50pF  
CL = 50pF  
VCC = 3.3V, tDPHL  
VCC = 3.3V, tDPLH  
VCC = 3.3V  
6
4
VCC = 5V, tDPHL  
2
VCC = 5V, tDPLH  
-40 -25 -10  
VCC = 5V  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (ºC)  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (ºC)  
RECEIVER PROPAGATION DELAY  
vs. TEMPERATURE  
DRIVER PREMPHASIS  
toc13  
toc12  
20  
18  
16  
14  
12  
10  
8
VCC = 3.3V, tRPHL  
VCC = 3.3V, tRPLH  
DI  
5V/div  
VCC = 5V, tRPHL  
VCC = 5V, tRPLH  
VY-VZ  
2V/div  
6
4
2
RL = 54Ω, CL = 10pF, RPSET = 8kΩ  
CL = 15pF  
0
0
1
0
1
1
0
1
0
0
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (ºC)  
20ns/div  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Pin Configuration  
TOP VIEW  
12 11 10  
9
8
7
MAX22502E  
+
1
2
3
4
5
6
TDFN-EP  
3mm x 3mm  
Pin Description  
MAX22502E  
PIN  
NAME  
FUNCTION  
to ground with a 0.1μF ceramic capacitor as close to the device as possible.  
1
V
Supply Input. Bypass V  
CC  
CC  
Logic Supply Input. V defines the interface logic levels on DE, DI, and RO. Apply a voltage between  
L
2
V
1.6V to 5.5V to V . Ensure that V ≤ V  
for normal operation. Bypass V to ground with a 0.1μF  
L
L
L
CC L  
capacitor as close to the device as possible.  
3
4
RO  
Receiver Output. See the Receiving Function Table for more information.  
Receiver Enable. Set RE high to disable the receiver and tri-state RO. The device is in low-power  
shutdown when RE = high and DE = low.  
RE  
5
6
DE  
DI  
Driver Output Enable. Set DE high to enable driver. Set DE low to three-state the driver output.  
Driver Input. See the Transmitting Function Table for more information.  
Preemphasis Select Control Input. Connect a resistor from PSET to GND to select the preemphasis  
7
PSET  
duration. See the Layout Recommendations in the Applications Information section for more information.  
To disable preemphasis, connect PSET to GND or V  
.
CC  
8
GND  
Y
Ground  
9
Noninverting Driver Output  
Inverting Driver Output  
10  
11  
12  
Z
B
Inverting Receiver Input  
A
Noninverting Receiver Input  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Functional Diagrams  
Transmitting Function Table  
INPUTS  
OUTPUTS  
DE  
1
DI  
1
Y
Z
RE  
X
1
0
X
1
0
0
1
0
0
X
X
High Impedance  
High Impedance  
1
0
Shutdown. Y and Z are high-impedance  
X = Don't care  
Receiving Function Table  
INPUTS  
OUTPUTS  
DE  
(V - V )  
Time from Last A-B Transition  
RO  
RE  
A
B
0
X
X
≥ V  
Always  
1
TH_H  
Indeterminate  
RO is latched to previous value  
0
V
< (V - V ) < V  
< t  
> t  
TH_L  
A
B
TH_H  
D_FS  
0
X
X
X
1
-50mV < (V - V ) < +50mV  
1
A
B
D_FS  
0
≤ V  
Always  
0
TH_L  
0
Open/Shorted  
> t  
D_FS  
X
1
1
X
X
High Impedance  
1
0
X
Shutdown. RO is high-impedance  
X = Don’t care  
Full-Duplex Point-to-Point Application Circuit  
5V  
5V  
3.3V  
3.3V  
VL  
VCC  
VCC  
VL  
DE  
RE  
RO  
B
A
Z
Y
DI  
R
120Ω  
120Ω  
120Ω  
120Ω  
D
PSET  
DE  
DI  
Y
Z
A
B
RO  
D
R
RE  
PSET  
MAX22502E  
MAX22502E  
GND  
GND  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
If DI switches back to a logic-low state before the  
preemphasis interval ends, the differential output switches  
Detailed Description  
The MAX22502E ESD-protected RS-485/RS-422  
transceiver is optimized for high-speed, full-duplex  
communications over long cables. This transceiver  
features integrated hot-swap functionality to eliminate  
false transitions on the driver during power-up or during  
a hot-plug event. Fail-safe receiver inputs guarantee a  
logic-high on the receiver output when inputs are shorted  
or open for longer than 10µs (typ).  
directly from the 'strong' V  
high to a 'strong' low  
ODP  
(-V  
).  
ODP  
Driver behavior is similar when the DI input changes from a  
logic-high to a logic-low. When this occurs, the differential  
output is pulled low to -V  
until the end of the preemphasis  
ODP  
interval, at which point V - V = -V  
.
Y
Z
ODP  
Preemphasis Setting  
Receiver Threshold Voltages  
Connect a resistor (R  
) between PSET and GND to  
PSET  
set the preemphasis time interval on the MAX22502E.  
An optimum preemphasis interval ranges from 1 to 1.5  
unit intervals (bit time). Use the following equation to  
calculate the resistance needed on PSET to achieve a 1.2  
preemphasis interval:  
The MAX22502E receiver features a large threshold  
hysteresis of 250mV (typ) for increased differential noise  
rejection.  
Additionally, the receiver features symmetrical threshold  
voltages. Symmetric thresholds have the advantage that  
recovered data at the RO output does not have duty cycle  
distortion.Typically, fail-safereceivers, whichhaveunipolar  
(non-symmetric)thresholds,showsomedutycycledistortion  
at high signal attenuation due to long cable lengths.  
9
R
= 400x10 /DR  
PSET  
where DR is the data rate and 1Mbps ≤ DR ≤ 100Mbps.  
Preemphasis only minimally degrades the jitter on the eye  
diagram when using short cables, making it reasonable to  
permanently enable preemphasis on systems where cable  
lengths may vary or change. Figure 10 and Figure 11  
are eye diagrams taken at 100Mbps over a 10m cat5e  
cable. Note that the eye varies only slightly as preemphasis  
is enabled or disabled.  
Preemphasis  
When powered by 5V, the MAX22502E features integrated  
driver preemphasis circuitry, which strongly improves  
signal integrity at high data rates over long distances  
by reducing intersymbol interference (ISI) caused by  
long cables. Preemphasis is set by connecting a resistor  
Figure 12 and Figure 13 show the driver eye diagrams  
over a long cable length. The MAX22502E was used as  
the driver and the eye diagrams were taken at the receiver  
input after a length of 100m cat5e cable. Figure 12  
showsthesignalatthereceiverwhenthedriverpreemphasis  
is disabled. Figure 13 shows the receiver signal when  
preemphasis is enabled.  
(R  
) between PSET and ground.  
PSET  
Long cables attenuate the high-frequency content of  
transmitted signals due to the cable's limited bandwidth.  
This causes signal/pulse distortion at the receiving end,  
resulting in ISI. ISI causes jitter in data and clock recovery  
circuits. ISI can be visualized by considering the following  
cases: If a series of ones (1s) is transmitted, followed by a  
zero (0), the transmission-line voltage has risen to a high  
value by the end of the string of ones. It takes longer for  
the signal to move toward the '0' state because the starting  
voltage on the line is so far from the zero crossing.  
Similarly, if a data pattern has a string of zeros followed  
by a one and then another zero, the one-to-zero transition  
starts from a voltage that is much closer to the zero crossing  
Fail-Safe Functionality  
The MAX22502E features fail-safe receiver inputs,  
guaranteeing a logic-high on the receiver output (RO)  
when the receiver inputs are shorted or open for longer  
than 10μs (typ). When the differential receiver input  
voltage is less than 50mV for more than 10μs (typ), RO is  
logic-high. For example, in the case of a terminated bus  
with all transmitters disabled, the receiver’s differential  
input voltage is pulled to 0V by the termination resistor,  
(V - V = 0) and it takes much less time for the signal to  
Y
Z
reach the zero crossing.  
so (V - V = 0V) > -50mV and RO is guaranteed to be a  
A
B
Preemphasis reduces ISI by boosting the differential  
signal amplitude at every transition edge, counteracting the  
high frequency attenuation of the cable. When the DI input  
changes from a logic low to a logic high, the differential  
logic-high after 10μs (typ).  
Driver Single-Ended Operation  
The Y and Z outputs on the MAX22502E can be used  
in the standard differential operating mode or as single-  
ended outputs. Because the driver outputs swing rail-to-  
rail, they can also be used as individual standard TTL  
logic outputs.  
output (V - V ) is driven high to V . At the end of  
Y
Z
ODP  
the preemphasis interval, the differential voltage returns  
to a lower level (V ). The preemphasis differential high  
OD  
voltage (V  
) is typically 1.37 times the V  
voltage.  
ODP  
OD  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Figure 11. Eye Diagram, 100Mbps Over 10m Cat5e Cable,  
Figure 10. Eye Diagram, 100Mbps Over 10m Cat5e Cable,  
Preemphasis Enabled, V  
= V = 5V  
Preemphasis Disabled, V  
= V = 5V  
CC  
L
CC  
L
Figure 12. Eye Diagram, 50Mbps Over 100m Cat5e Cable,  
Figure 13. Eye Diagram, 50Mbps Over 100m Cat5e Cable,  
Preemphasis Enabled, V = V = 5V  
Preemphasis Disabled, V  
= V = 5V  
CC  
L
CC  
L
Maxim Integrated  
15  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Hot-Swap Capability  
Driver Output Protection  
The DE and RE enable inputs feature hot-swap functionality.  
Two mechanisms prevent excessive output current and  
power dissipation caused by faults or by bus contention. The  
first, a current limit on the output stage provides immediate  
protection against short circuits over the whole common-  
mode voltage range. The second, a thermal-shutdown  
circuit, forces the driver outputs into a high-impedance  
state if the die temperature exceeds +160°C (typ).  
At each input there are two NMOS devices, M1 and M2  
(Figure 14). When V  
ramps from zero, an internal  
CC  
10ms timer turns on M2 and sets the SR latch, which also  
turns on M1. Transistors M2, a 500μA current sink, and  
M1, a 100μA current sink, pull DE to GND through a 5kΩ  
resistor. M2 is designed to pull DE to the disabled state  
against an external parasitic capacitance up to 100pF that  
can drive DE high. After 10μs, the timer deactivates M2  
while M1 remains on, holding DE low against three-state  
leakages that can drive DE high. M1 remains on until an  
external source overcomes the required input current.  
At this time, the SR latch resets and M1 turns off. When  
M1 turns off, DE reverts to a standard, high-impedance  
Low-Power Shutdown Mode  
The MAX22502E features low-power shutdown mode to  
reduce supply current when the transceiver is not needed.  
Pull the RE input high and the DE input low to put the  
device in low-power shutdown mode. If the inputs are  
in this state for at least 800ns, the part is guaranteed to  
enter shutdown. The MAX22502E draws 5μA (max) of  
supply current when the device is in shutdown.  
CMOS input. Whenever V  
swap input is reset.  
drops below 1V, the hot-  
CC  
The RE and DE inputs can be driven simultaneously. The  
MAX22502E is guaranteed not to enter shutdown if RE is  
high and DE is low for less than 50ns.  
There is a complimentary circuit for RE that uses two  
PMOS devices to pull RE to V  
.
CC  
V
CC  
10µs  
TIMER  
TIMER  
5k  
DE  
DE  
(HOT-SWAP)  
100µA  
500µA  
Figure 14. Simplified Structure of the Driver Enable (DE) Pin  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Network Topology  
Applications Information  
The MAX22502E transceiver is designed for high-speed  
bidirectional RS-485/RS-422 data communications.  
Multidrop networks can cause impedance discontinuities  
which affect signal integrity. Maxim recommends using  
a point-to-point network topology, instead of a multidrop  
topology, when communicating with high data rates.  
Terminate the transmission line at both ends with the  
cable’s characteristic impedance to reduce reflections.  
Powering the MAX22502E  
No particular power supply sequencing is required for  
the MAX22502 V  
and V supplies during power-up.  
CC  
L
However, ensure that V ≤ V  
for normal operation.  
L
CC  
Layout Recommendations  
Ensurethatthepreemphasissetresistor(R  
close to the PSET and GND pins in order to minimize  
interference by other signals. Minimize the trace length  
to the PSET resistor. Additionally, place a ground plane  
)islocated  
PSET  
under R  
and surround it with ground connections/  
PSET  
traces to minimize interference from the A and B switching  
signals. See Figure 15.  
Figure 15. Sample PSET Resistor Placement  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Ordering Information  
PACKAGE  
CODE  
PART  
PREEMPHASIS  
LOGIC SUPPLY  
PIN-PACKAGE  
MAX22502EATC+  
Y
Y
Y
Y
TDFN12-EP*  
TDFN12-EP*  
TD1233+1C  
TD1233+1C  
MAX22502EATC+T  
+Denotes a lead (Pb)-free/RoHS-compliant package.  
*EP = Exposed Pad  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX22502E  
100Mbps Full-Duplex RS-485/RS-422  
Transceiver for Long Cables  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
8/17  
Initial release  
14, 17  
8
4/19  
Corrected part references in the text  
Corrected typo in Figure 8  
.1  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
19  

相关型号:

MAX22502EATC+T

100Mbps Full-Duplex RS-485/RS-422 Transceiver for Long Cables
MAXIM

MAX22502E_V01

100Mbps Full-Duplex RS-485/RS-422 Transceiver for Long Cables
MAXIM

MAX22503E

100Mbps Full-Duplex 3V/5V RS-485/RS-422 Transceiver with High EFT Immunity
MAXIM

MAX22503EASD+

100Mbps Full-Duplex 3V/5V RS-485/RS-422 Transceiver with High EFT Immunity
MAXIM

MAX22503EASD+T

100Mbps Full-Duplex 3V/5V RS-485/RS-422 Transceiver with High EFT Immunity
MAXIM

MAX22505

Derives Power From a USB Host
MAXIM

MAX22505EVKIT

Derives Power From a USB Host
MAXIM

MAX22505GTG+

Interface Circuit,
MAXIM

MAX22507E

Operates from a Single 3V to 5V Supply
MAXIM

MAX22507EEVKIT

Operates from a Single 3V to 5V Supply
MAXIM

MAX22508E

Operates from a Single 3V to 5V Supply
MAXIM

MAX2251

+5V Single-Supply.1Msps.16-Bit Self-Calibrating ADC[MAX1200/MAX1200ACMH/MAX1200ACMH-T/MAX1200AEMH/MAX1200AEMH-T/MAX1200BCMH/MAX1200BCMH-T/MAX1200BEMH/MAX1200BEMH-T/MAX1200EVKIT-MQFP ]
MAXIM