MAX22702D [MAXIM]

Ultra-High CMTI Isolated Gate Drivers;
MAX22702D
型号: MAX22702D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-High CMTI Isolated Gate Drivers

文件: 总30页 (文件大小:1195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
General Description  
Benefits and Features  
Matching Propagation Delay  
The MAX22700–MAX22702 are a family of single-chan-  
nel isolated gate drivers with ultra-high common-mode  
transient immunity (CMTI) of 300kV/µs (typ). The devices  
are designed to drive silicon-carbide (SiC) or gallium-  
nitride (GaN) transistors in various inverter or motor  
control applications. All devices have integrated digital  
galvanic isolation using Maxim’s proprietary process tech-  
nology. The devices feature variants with output options  
for gate driver common pin GNDB (MAX22700), Miller  
clamp (MAX22701), and adjustable undervoltage-lockout  
UVLO (MAX22702). In addition, variants are offered as  
differential (D versions) or single-ended (E versions)  
inputs. These devices transfer digital signals between  
circuits with different power domains. All of the devices in  
the family feature isolation for a withstand voltage rating  
• 20ns Minimum Pulse Width  
• 35ns Propagation Delay at Room Temperature  
• 2ns Part-to-Part Propagation Delay Matching at  
Room Temperature  
• 5ns Part-to-Part Propagation Delay Matching over  
-40°C to +125°C Temperature Range  
High CMTI (300kV/µs, typ)  
Robust Galvanic Isolation  
• Withstands 3kV  
for 60s (V  
)
RMS  
ISO  
• Continuously Withstands 848V  
• Withstands ±5kV Surge Between GNDA and V  
(V  
)
RMS IOWM  
SSB  
with 1.2/50μs Waveform  
Precision UVLO  
Options to Support a Broad Range of Applications  
• 3 Output Options: GNDB, Miller Clamp, or  
Adjustable UVLO  
of 3kV  
for 60 seconds.  
RMS  
All devices support a minimum pulse width of 20ns with a  
maximum pulse width distortion of 2ns. The part-to-part  
propagation delay is matched within 2ns (max) at +25°C  
ambient temperature, and 5ns (max) over the -40°C  
to +125°C operating temperature range. This feature  
reduces the power transistor’s dead time, thus improving  
overall efficiency.  
2 Input Configurations: Single-Ended with Enable  
(E versions) or Differential (D versions)  
Applications  
Isolated Gate Driver for Inverters  
Motor Drives  
The MAX22700 and the MAX22702 have a maximum  
UPS and PV Inverters  
R
of 1.25Ω for the low-side driver, and the MAX22701  
DSON  
has an R  
have a maximum R  
See the Ordering Information for suffixes associated with  
of 2.5Ω for the low-side driver. All devices  
DSON  
Safety Regulatory Approvals  
UL According to UL1577  
of 4.5Ω for the high-side driver.  
DSON  
cUL According to CSA Bulletin 5A  
each option.  
The MAX22700–MAX22702 can be used to drive SiC or  
GaN FETs with different output gate drive circuitry and  
B-side supply voltages. See the Typical Operating Circuits  
for details.  
Ordering Information appears at end of data sheet.  
All of the devices in the MAX22700–MAX22702 family  
are available in an 8-pin, narrow-body SOIC package with  
4mm of creepage and clearance. The package material  
has a minimum comparative tracking index (CTI) of 600V,  
which gives it a group I rating in creepage tables. All  
devices are rated for operation at ambient temperatures  
of -40°C to +125°C.  
19-100581; Rev 2; 9/19  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Absolute Maximum Ratings  
V
to GNDA........................................................-0.3V to +6V  
OUT to V  
..........................................-0.3V to (V  
+ 0.3V)  
DDA  
SSB  
DDB  
V
to GNDB......................................................-0.3V to +40V  
Continuous Power Dissipation (T = +70°C)  
DDB  
A
GNDB to V  
......................................................-0.3V to +40V  
.......................................................-0.3V to +40V  
Narrow SOIC (derate 9.39mW/°C above +70°C)......750.89mW  
Operating Temperature Range......................... -40°C to +125°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range............................ -60°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
SSB  
V
to V  
DDB  
SSB  
INP, INN, IN, EN to GNDA.......................................-0.3V to +6V  
V
to ADJ............................................................-0.3V to +6V  
DDB  
CLAMP to V  
.....................................-0.3V to (V  
+ 0.3V)  
SSB  
DDB  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 8 NARROW SOIC  
Package Code  
S8MS+23  
21-0041  
90-0096  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
106.54°C/W  
44.91°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
DC Electrical Characteristics  
(V  
- V  
= 5V, V  
- V  
= 20V, V  
= V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
DDA  
GNDA  
DDB  
SSB  
GNDA  
SSB A  
T
= +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
Supply Voltage  
V
V
Relative to GNDA  
3
13  
5.5  
36  
DDA  
DDB  
Relative to GNDB, MAX22700  
Relative to V  
Relative to V  
, MAX22701  
, MAX22702  
13  
36  
SSB  
V
6
36  
SSB  
V
Relative to GNDB, MAX22700  
-16  
13  
0
SSB  
Differential Supply  
V
V
V
V
- V , MAX22700  
SSB  
36  
DIFF  
DDB  
DDA  
DDA  
V
V
rising  
falling  
2.69  
2.59  
2.82  
2.72  
2.95  
2.85  
V
V
Undervoltage-Lockout  
Threshold  
UVLOAP  
UVLOAN  
Undervoltage-Lockout  
Threshold Hysteresis  
V
100  
mV  
UVLOA_HYST  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
DC Electrical Characteristics (continued)  
(V  
- V  
= 5V, V  
- V  
= 20V, V  
= V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
DDA  
GNDA  
DDB  
SSB  
GNDA  
SSB A  
T
= +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
11.6  
11.6  
1.79  
TYP  
13  
MAX  
UNITS  
V
V
V
V
V
V
V
V
V
V
V
V
rising, relative to GNDB, MAX22700  
falling, relative to GNDB, MAX22700  
13.3  
UVLOBP  
UVLOBN  
UVLOBP  
UVLOBN  
UVLOBP  
UVLOBN  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
12  
rising, relative to V  
falling, relative to V  
, MAX22701  
, MAX22701  
13  
13.3  
2.05  
Undervoltage-Lockout  
Threshold  
SSB  
V
12  
SSB  
rising, relative to ADJ, MAX22702  
falling, relative to ADJ, MAX22702  
2
1.84  
1
MAX22700, MAX22701  
MAX22702  
Undervoltage-Lockout  
Threshold Hysteresis  
V
V
UVLOB_HYST  
0.16  
SUPPLY CURRENT  
V
V
V
V
= 5V, INN/EN = V  
DDA  
5
3
5
3
6.5  
4
A-Side Quiescent  
Supply Current  
DDA  
DDA  
DDA  
DDA  
I
mA  
DDA  
DDA  
= 3.3V, INN/EN = V  
DDA  
= 5V, f  
= 1MHz  
6.5  
4
PWM  
A-Side Active Supply Current  
I
I
mA  
mA  
= 3.3V, f  
= 1MHz  
PWM  
B-Side Quiescent  
Positive Supply Current  
INN/EN = V  
= 1MHz (Note 2)  
3.5  
6
6
DDB  
DDA  
B-Side Active  
Positive Supply Current  
I
f
10  
mA  
µA  
DDB  
PWM  
B-Side Ground Current  
I
MAX22700  
-25  
GNDB  
LOGIC INTERFACE (INP, INN, IN, EN)  
0.7 x  
Input High Voltage  
V
V
V
IH  
V
DDA  
0.3 x  
Input Low Voltage  
Input Hysteresis  
V
IL  
V
DDA  
0.1 x  
V
mV  
HYS  
V
DDA  
-5  
Input Pullup Current (Note 3)  
Input Pulldown Current (Note 3)  
Input Capacitance  
I
INN, EN  
-10  
1.5  
-1.5  
10  
µA  
µA  
pF  
PU  
I
INP, IN  
5
2
PD  
C
f
= 1MHz  
PWM  
IN  
ADJ (MAX22702 ONLY)  
Input Leakage Current  
GATE DRIVER  
I
V
- V = 3V  
ADJ  
-100  
100  
4.7  
nA  
ADJ  
DDB  
High-Side Transistor  
On-Resistance  
R
I
I
= -100mA (Note 3)  
Ω
DSON_H  
OUT  
OUT  
MAX22700/MAX22702  
MAX22701  
1.25  
2.5  
Ω
Ω
Low-Side Transistor  
On-Resistance  
= 100mA  
R
DSON_L  
(Note 3)  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
DC Electrical Characteristics (continued)  
(V  
- V  
= 5V, V  
- V  
= 20V, V  
= V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
DDA  
GNDA  
DDB  
SSB  
GNDA  
SSB A  
T
= +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= -10mA (Note 3)  
MIN  
TYP  
MAX  
UNITS  
Output-Voltage High  
V
I
I
19.95  
V
OH  
OUT  
MAX22700/MAX22702  
0.01  
0.02  
= 10mA  
OUT  
Output-Voltage Low  
V
V
A
OL  
(Note 3)  
C = 10nF, f = 1kHz (Note 2)  
PWM  
MAX22701  
High-Side Transistor  
Peak Output Current  
I
2.35  
4
OH  
L
C = 10nF,  
L
MAX22700/MAX22702  
MAX22701  
3.7  
1.9  
5.7  
Low-Side Transistor  
Peak Output Current  
I
f
= 1kHz  
A
V
OL  
PWM  
2.85  
(Note 2)  
Active Pulldown Voltage  
V
I
= 150mA (Note 3)  
2.2  
OUTSD  
OUT  
MILLER CLAMP (MAX22701 ONLY)  
Miller Clamp Transistor  
On-Resistance  
R
I
= 100mA (Note 3)  
2.5  
2.3  
Ω
DSON_CLMP  
CLAMP  
Miller Clamp Threshold  
Miller Clamp Turn-On Time  
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
V
1.7  
2
V
TH_CLMP  
t
See Figure 4  
20  
ns  
ON  
T
160  
25  
°C  
°C  
SHDN  
T
SHDN_HYS  
Dynamic Characteristics  
(V  
- V  
= 5V, V  
- V  
= 20V, V  
= V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
DDA  
GNDA  
DDB  
SSB  
GNDA  
SSB A  
T
= +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
SYMBOL  
CMTI  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kV/µs  
ns  
Common-Mode Transient Immunity  
Minimum Pulse Width  
(Note 5)  
C = 200pF  
300  
PW  
20  
MIN  
L
Maximum PWM Frequency  
f
1
MHz  
PWM  
T
T
T
T
T
T
T
T
= +25°C to +125°C  
= +25°C  
34  
34  
31  
34  
34  
31  
39  
36  
36  
39  
36  
36  
2
A
A
A
A
A
A
A
A
C = 200pF,  
L
t
35  
35  
PLH  
output is not  
connected to  
CLAMP pin  
(MAX22701)  
(Note 4)  
= -40°C to +25°C  
= +25°C to +125°C  
= +25°C  
Propagation Delay  
(Figure 3)  
ns  
ns  
t
PHL  
= -40°C to +25°C  
= +25°C  
Part-to-Part Propagation Delay  
Matching (Figure 3)  
C = 200pF  
L
(Note 4)  
= -40°C to +125°C,  
t
PM  
parts at the same  
5
temperature  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Dynamic Characteristics (continued)  
(V  
- V  
= 5V, V  
- V  
= 20V, V  
= V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
DDA  
GNDA  
DDB  
SSB  
GNDA  
SSB A  
T
= +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
C = 200pF, |t - t  
MIN  
TYP  
MAX  
UNITS  
ns  
Pulse Width Distortion  
Peak Eye Diagram Jitter  
PWD  
|
PLH PHL  
2
L
T
1MHz square wave, C = 200pF  
60  
ps  
JIT(PK)  
L
Rise Time  
(Figure 3)  
t
C = 200pF, 20% to 80% (Note 2)  
L
3.6  
ns  
R
MAX22700/  
MAX22702  
C = 200pF,  
L
80% to 20%  
(Note 2)  
1.8  
2.5  
ns  
ns  
Fall Time  
(Figure 3)  
t
F
MAX22701  
Note 1: All devices are 100% production tested at T = +25°C. Specifications over temperature are guaranteed by design and char-  
A
acterization.  
Note 2: Not production tested. Guaranteed by design and characterization.  
Note 3: All currents into the device are positive. All currents out of the device are negative. All voltages are referenced to their  
respective ground (GNDA or V  
Note 4: Propagation delay is measured from 50% of the input to 2V at the output.  
), unless otherwise noted.  
SSB  
Note 5: CMTI is the maximum sustainable common-mode voltage slew rate while maintaining the correct output. CMTI applies to  
both rising and falling common-mode voltage edges. CMTI is tested with the transient generator connected between GNDA  
and V  
(V  
= 1000V).  
SSB CM  
ESD Protection  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ESD  
Human Body Model, All Pins  
±4  
kV  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Table 1. Insulation Characteristics  
PARAMETER  
SYMBOL  
CONDITIONS  
Method B1 = V x 1.875  
VALUE  
UNITS  
IORM  
Partial Discharge Test Voltage  
V
2250  
V
V
PR  
P
P
(t = 1s, partial discharge < 5pC)  
Maximum Repetitive Peak Isolation Voltage  
Maximum Working Isolation Voltage  
Maximum Transient Isolation Voltage  
Maximum Withstand Isolation Voltage  
V
(Note 6)  
1200  
848  
IORM  
V
Continuous RMS voltage (Note 6)  
t = 1s (Note 6)  
V
V
IOWM  
RMS  
V
4242  
3000  
V
P
IOTM  
V
f
= 60Hz, duration = 60s (Note 6, 7)  
ISO  
SW  
RMS  
kV  
Basic insulation, 1.2/50µs pulse per  
IEC 61000-4-5 (Note 6)  
Maximum Surge Isolation Voltage  
V
5
IOSM  
12  
V
V
V
= 500V, T = 25°C  
>10  
IO  
IO  
A
11  
Insulation Resistance  
RIO  
= 500V, 100°C ≤ T ≤ 125°C  
>10  
A
9
= 500V at T = 150°C  
S
>10  
IO  
Barrier Capacitance Side A to Side B  
Minimum Creepage Distance  
Minimum Clearance Distance  
Internal Clearance  
CIO  
CPG  
CLR  
f
= 1MHz (Note 8)  
1
4
pF  
SW  
Narrow SOIC  
mm  
mm  
mm  
Narrow SOIC  
4
Distance through insulation  
Material Group I (IEC 60112)  
0.015  
>600  
40/125/21  
Comparative Tracking Index  
Climate Category  
CTI  
Pollution Degree  
(DIN VDE 0110, Table 1)  
2
Note 6: V  
, V  
, V  
, V  
, and V  
are defined by the IEC 60747-5-5 standard.  
ISO IOTM IOSM IOWM  
IORM  
Note 7: Product is qualified at V  
for 60s and 100% production tested at 120% of V  
for 1s.  
ISO  
ISO  
Note 8: Capacitance is measured with all pins on side A and side B tied together.  
Safety Regulatory Approvals  
UL  
The MAX22700–MAX22702 are certified under UL1577. For more details, refer to file E351759.  
Rated up to 3000V isolation voltage for single protection.  
RMS  
cUL (Equivalent to CSA notice 5A)  
The MAX22700–MAX22702 are certified up to 3000V  
for single protection. For more details, refer to file E351759.  
RMS  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
determine the junction temperature. Thermal imped-  
Safety Limits  
ance values (θ and θ ) are available in the Package  
JA  
JC  
Damage to the IC can result in a low-resistance path  
to ground or to the supply and, without current limiting,  
the MAX22700–MAX22702 could dissipate excessive  
amounts of power. Excessive power dissipation can dam-  
age the die and result in damage to the isolation barrier,  
potentially causing long-term reliability issues. Table 2  
shows the safety limits for the MAX22700–MAX22702.  
Information section of the data sheet and power dissipa-  
tion calculations are discussed in the Calculating Power  
Dissipation section. Calculate the junction temperature  
(T ) as:  
J
T = T + (P × θ )  
JA  
J
A
D
Figure 1 and Figure 2 show the thermal derating curve  
for safety limiting the power and the current of the device.  
Ensure that the junction temperature does not exceed  
+150°C.  
The maximum safety temperature (T ) for the device is  
S
the +150°C maximum junction temperature specified in  
the Absolute Maximum Ratings. The power dissipation  
(P ) and junction-to-ambient thermal impedance (θ  
D
)
JA  
THERMAL DERATING CURVE  
FOR SAFETY POWER LIMITING  
THERMAL DERATING CURVE  
FOR SAFETY CURRENT LIMITING  
fig01  
fig02  
1400  
350  
MULTILAYER BOARD  
1200  
MULTILAYER BOARD  
300  
1000  
800  
600  
400  
200  
0
250  
200  
150  
100  
50  
0
0
25  
50  
75 100 125 150 175 200  
0
25  
50  
75 100 125 150 175 200  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 1. Thermal Derating Curve for Safety Power Limiting  
Figure 2. Thermal Derating Curve for Safety Current Limiting  
Table 2. Safety Limiting Values for the MAX22700–MAX22702  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MAX  
UNIT  
T = 150°C, T = 25°C, IN = Low,  
J
A
V
V
= 36V  
= 20V  
32  
mA  
DDB  
DDB  
Safety Operating Current on  
B-Side Pins  
I
OUT = V  
, OUT = Low during  
OUT  
DDB  
57  
mA  
mA  
thermal shutdown  
Safety Current on Any Pins (No  
Damage to Isolation Barrier)  
I
T = 150°C, T = 25°C  
300  
S
J
A
Total Safety Power Dissipation  
Maximum Safety Temperature  
P
T
T = 150°C, T = 25°C  
1173  
150  
mW  
°C  
S
J
A
S
Maxim Integrated  
7  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Test Circuits and Timing Diagrams  
V
V
DDB  
DDA  
V
V
DDB  
DDA  
MAX2270_E  
V
IN  
DDA  
IN  
OUT1  
IN  
50%  
50%  
OUT  
TEST  
SOURCE  
C
200pF  
L
EN  
GNDA  
GNDA  
t
t
PHL  
PLH  
V
SSB  
V
DDB  
OUT1  
OUT2  
2V  
2V  
V
SSB  
t
t
PM  
PM  
V
V
DDB  
DDA  
V
DDB  
80%  
20%  
MAX2270_E  
IN  
2V  
2V  
OUT2  
V
SSB  
OUT  
C
200pF  
L
EN  
GNDA  
t
t
F
R
V
SSB  
(A)  
(B)  
Figure 3. Test Circuit (A) and Timing Diagram (B)  
V
DDA  
INPUT  
SOURCE  
GNDA  
V
V
DDB  
DDA  
V
V
DDB  
DDA  
V
DDB  
MAX22701E  
CLAMP  
TEST  
SOURCE  
50Ω  
IN  
C
200pF  
L
INPUT  
SOURCE  
V
SSB  
TEST  
SOURCE  
EN  
V
DDB  
GNDA  
V
SSB  
V
= 2V  
TH_CLMP  
CLAMP  
V
SSB  
t
= 20ns  
ON  
(A)  
(B)  
Figure 4. MAX22701 Miller Clamp Test Circuit (A) and Timing Diagram (B)  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Typical Operating Characteristics  
(V  
- V  
= 5V, V  
- V  
= 20V, V  
= V  
, T = +25°C, unless otherwise noted.)  
DDA  
GNDA  
DDB  
SSB  
GNDA  
SSB A  
HIGH-SIDE PEAK OUTPUT CURRENT  
vs. VDDB SUPPLY VOLTAGE  
LOW-SIDE PEAK OUTPUT CURRENT  
vs. VDDB SUPPLY VOLTAGE  
HIGH-SIDE TRANSISTOR RDSON  
vs. TEMPERATURE  
toc01  
toc02  
toc03  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
8
7
6
5
4
3
2
1
5
4
3
2
1
0
CL = 0.1µF, SERIES RESISTOR RS = 0.5Ω  
CL = 0.1µF, SERIES RESISTOR RS = 0.5Ω  
MAX22700/MAX22701, IOUT = 100mA  
MAX22700/2  
VDDB = 13V  
VDDB = 20V  
MAX22701  
V
= 36V  
DDB  
12  
16  
20  
24  
28  
32  
36  
6
12  
18  
24  
30  
36  
-50  
-25  
0
25  
50  
75  
100 125  
VDDB SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
VDDB SUPPLY VOLTAGE (V)  
HIGH-SIDE TRANSISTOR RDSON  
vs. TEMPERATURE  
LOW-SIDE TRANSISTOR RDSON  
vs. TEMPERATURE  
LOW-SIDE TRANSISTOR RDSON  
vs. TEMPERATURE  
toc04  
toc05  
toc06  
5
4
3
2
1
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
MAX22700/MAX22702, IOUT = 100mA  
VDDB = 6V ONLY APPLIES TO MAX22702  
MAX22702, IOUT = 100mA  
MAX22701, IOUT = 100mA  
VDDB = 6V  
VDDB = 6V  
VDDB = 13V  
V
VDDB = 13V  
VDDB = 20V  
VDDB = 36V  
VDDB = 13V  
VDDB = 20V  
VDDB = 36V  
VDDB = 20V  
VDDB = 36V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
VDDB SUPPLY CURRENT  
vs. TEMPERATURE  
VDDB SUPPLY CURRENT  
vs. TEMPERATURE  
toc08  
toc07  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
MAX22702  
INP/IN = GNDA, INN/EN = VDDA, CL = 0pF  
MAX22700/MAX22701  
INP/IN = GNDA, INN/EN = VDDA, CL = 0pF  
VDDB = 13V  
V
= 6V  
DDB  
VDDB = 20V  
V=13V  
DDB  
V=25V  
DDB  
V=20V  
DDB  
V
= 36V  
DDB  
V=36V  
DDB  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Typical Operating Characteristics (continued)  
(V  
- V  
= 5V, V  
- V  
= 20V, V  
= V , T = +25°C, unless otherwise noted.)  
SSB A  
DDA  
GNDA  
DDB  
SSB  
GNDA  
VDDB SUPPLY CURRENT  
vs. PWM FREQUENCY  
VDDB SUPPLY CURRENT  
vs. LOAD CAPACITANCE  
VDDA SUPPLY CURRENT  
vs. TEMPERATURE  
toc09  
toc10  
toc11  
10  
9
5.0  
8
7
6
5
4
3
2
1
VDDB = 3V  
VDDB = 3.3V  
VDDB = 5V  
INP/IN = GNDA,  
CL = 200pF, VDDB = 20V  
INPUT = 100kHz SQUARE WAVE, VDDB = 20V  
INN/EN = VDDA  
,
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
CL = 0pF  
8
VDDB = 5.5V  
7
6
5
4
3
2
0
200  
400  
600  
800  
1000  
0
40  
80  
120  
160  
200  
-50  
-25  
0
25  
50  
75  
100 125  
PWM FREQUENCY (kHz)  
LOAD CAPACITANCE (pF)  
TEMPERATURE (°C)  
VDDA SUPPLY CURRENT  
vs. PWM FREQUENCY  
RISE TIME AND FALL TIME  
vs. LOAD CAPACITANCE  
RISE TIME AND FALL TIME  
vs. LOAD CAPACITANCE  
toc12  
toc13  
toc14  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
25  
20  
15  
10  
5
50  
SERIES RESISTOR RS = 5Ω  
SERIES RESISTOR RS = 0Ω  
tF  
40  
30  
20  
10  
0
tR  
tR  
tF  
0
0
200  
400  
600  
800  
1000  
0
1
2
3
4
5
0
1
2
3
4
5
LOAD CAPACITANCE (nF)  
LOAD CAPACITANCE (nF)  
PWM FREQUENCY (kHz)  
PROPAGATION DELAY  
vs. TEMPERATURE  
PROPAGATION DELAY  
vs. TEMPERATURE  
toc16  
toc15  
38  
37  
36  
35  
34  
33  
38  
37  
36  
35  
34  
33  
SERIES RESISTOR RS = 0,  
CL = 200pF, tPHL  
VDDB = 6V ONLY APPLIES TO MAX22702  
SERIES RESISTOR RS = 0,  
CL = 200pF, tPLH  
VDDB = 6V ONLY APPLIES TO MAX22702  
VDDB = 6V  
VDDB = 6V  
VDDB = 15V  
VDDB = 15V  
V= 20V  
DDB  
V=20V
DDB  
V
= 36V  
DDB  
V
= 36V  
DDB  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Typical Operating Characteristics (continued)  
(V  
- V  
= 5V, V  
- V  
= 20V, V  
= V , T = +25°C, unless otherwise noted.)  
SSB A  
DDA  
GNDA  
DDB  
SSB  
GNDA  
PART-TO-PART  
PROPAGATION DELAY MATCHING  
vs. VDDB SUPPLY VOLTAGE  
PART-TO-PART  
PROPAGATION DELAY MATCHING  
vs. VDDA SUPPLY VOLTAGE  
PART-TO-PART  
PROPAGATION DELAY MATCHING  
vs. TEMPERATURE  
toc17  
toc18  
toc19  
1.0  
0.6  
1.0  
1.0  
0.6  
SERIES RESISTOR RS = 0, CL = 200pF  
SERIES RESISTOR RS = 0, CL = 200pF,  
VDDB < 13V ONLY APPLIES TO MAX22702  
SERIES RESISTOR RS = 0, CL = 200pF  
VDDB = 20V  
0.6  
0.2  
RISING EDGE  
FALLING EDGE  
FALLING EDGE  
0.2  
0.2  
-0.2  
-0.6  
-1.0  
-0.2  
-0.6  
-1.0  
-0.2  
-0.6  
-1.0  
FALLING EDGE  
RISING EDGE  
RISING EDGE  
-50  
-25  
0
25  
50  
75  
100 125  
6
12  
18  
24  
30  
36  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
VDDB SUPPLY VOLTAGE (V)  
VDDA SUPPLY VOLTAGE (V)  
PART-TO-PART  
PROPAGATION DELAY MATCHING  
VDDB UVLO vs. R2  
vs. LOAD CAPACITANCE  
toc20  
toc21  
1.0  
15  
12  
9
MAX22702, R1 = 20k(SEE FIGURE 13)  
SERIES RESISTOR RS = 0Ω  
0.6  
0.2  
VDDB RISING  
RISING EDGE  
-0.2  
-0.6  
-1.0  
6
VDDB FALLING  
FALLING EDGE  
3
0
0
40  
80  
120  
160  
200  
20  
40  
60  
80  
100  
120  
LOAD CAPACITANCE (pF)  
R2 RESISTANCE (kΩ)  
PART-TO-PART  
PART-TO-PART  
PROPAGATION DELAY MATCHING  
FALLING EDGE  
PROPAGATION DELAY MATCHING  
RISING EDGE  
toc23  
toc22  
SERIES RESISTOR RS = 10, CL = 200pF  
SERIES RESISTOR RS = 10, CL = 200pF  
5V/div  
5V/div  
VOUT1  
VOUT2  
VOUT1  
VOUT2  
10ps/div  
10ps/div  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Pin Configurations  
TOP VIEW  
+
+
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
V
V
V
SSB  
DDA  
INP  
SSB  
DDA  
IN  
MAX22700D  
MAX22700E  
GNDB  
OUT  
GNDB  
OUT  
EN  
INN  
GNDA  
GNDA  
V
V
DDB  
DDB  
NARROW SOIC  
NARROW SOIC  
TOP VIEW  
+
+
1
8
1
8
V
V
V
V
SSB  
DDA  
INP  
SSB  
DDA  
IN  
MAX22701D  
MAX22701E  
2
3
4
7
6
5
CLAMP  
OUT  
2
3
4
7
6
5
CLAMP  
OUT  
EN  
INN  
GNDA  
GNDA  
V
V
DDB  
DDB  
NARROW SOIC  
NARROW SOIC  
TOP VIEW  
+
+
1
8
1
8
V
V
V
V
SSB  
DDA  
INP  
SSB  
DDA  
IN  
MAX22702D  
MAX22702E  
2
3
4
7
6
5
ADJ  
2
3
4
7
6
5
ADJ  
EN  
INN  
OUT  
OUT  
GNDA  
GNDA  
V
V
DDB  
DDB  
NARROW SOIC  
NARROW SOIC  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Pin Description  
PIN  
MAX22700D MAX22700E MAX22701D MAX22701E MAX22702D MAX22702E  
REF  
SUPPLY  
REF  
GROUND  
NAME  
V
1
2
1
2
1
2
1
2
1
2
1
2
V
V
V
V
V
V
V
V
V
V
V
V
GNDA  
GNDA  
GNDA  
GNDA  
GNDA  
GNDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
INP  
INN  
IN  
3
3
3
4
4
4
EN  
3
3
3
GNDA  
4
4
4
V
5
5
5
5
5
5
V
V
V
V
V
V
DDB  
SSB  
SSB  
SSB  
SSB  
SSB  
SSB  
OUT  
GNDB  
CLAMP  
ADJ  
6
6
6
6
6
6
7
7
7
7
7
7
8
8
8
8
V
8
8
SSB  
NAME  
FUNCTION  
POWER  
Power Supply Input for Side A (Transmitter Side). Bypass V  
capacitors as close as possible to the pin.  
to GNDA with 1nF || 0.1µF || 1µF ceramic  
DDA  
V
DDA  
GNDA  
Ground Reference for Side A (Transmitter Side).  
Positive Power Supply Input for Side B (Driver Side). Bypass V  
capacitors as close as possible to the pin. Place an additional 22µF capacitor between V  
to V  
with 1nF || 0.1µF || 1µF ceramic  
DDB  
SSB  
V
DDB  
and V  
.
SSB  
DDB  
V
Negative Power Supply Input for Side B (Driver Side).  
SSB  
(MAX22700) Gate Driver Common Pin. Connect to the power transistor’s source pin. The B-side UVLO is  
referenced to GNDB in the MAX22700 versions.  
GNDB  
INPUTS  
Non-Inverting PWM Input on Side A (D Versions). Has a weak internal pulldown. Connect the differential PWM  
control inputs to INP and INN. Refer to Table 3 for Inputs vs. Output Truth table.  
INP  
INN  
Inverting PWM Input on Side A (D Versions). Has a weak internal pullup to V  
. Connect the differential PWM  
DDA  
control inputs to INP and INN. Refer to Table 3 for Inputs vs. Output Truth table.  
Single-Ended PWM Input on Side A (E Versions). Has a weak internal pulldown. Refer to Table 4 for Inputs vs.  
Output Truth table.  
IN  
EN  
Active-Low Enable on Side A (E Versions). Has a weak internal pullup to V  
.
DDA  
(MAX22702) Adjustable UVLO Input on Side B. Connect external resistors between V  
tween ADJ and the power transistor’s source pin to adjust the B-side UVLO.  
and ADJ and be-  
DDB  
ADJ  
INPUT/OUTPUT  
CLAMP  
(MAX22701) Active Miller Clamp Input/Output on Side B. Prevents false turn-on of the power transistor.  
Gate Driver Output on Side B.  
OUTPUT  
OUT  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Functional Diagrams  
V
V
V
V
DDB  
DDA  
DDB  
DDA  
MAX22701E  
MAX22701D  
IN  
INP  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
UVLO  
AND  
LOGIC  
INPUTS  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
OUT  
EN  
INN  
V
V
SSB  
SSB  
GNDA  
CLAMP  
GNDA  
CLAMP  
2V  
2V  
V
V
SSB  
SSB  
V
V
V
V
DDB  
DDA  
DDB  
DDA  
MAX22700E  
MAX22702E  
MAX22700D  
MAX22702D  
IN  
INP  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
UVLO  
AND  
LOGIC  
INPUTS  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
OUT  
EN  
INN  
V
V
SSB  
SSB  
GNDA  
GNDA  
GNDB/ADJ  
GNDB/ADJ  
MAX22702 provides an adjustable B-side UVLO, offering  
design flexibility with different types of external power  
transistors.  
Detailed Description  
The MAX22700–MAX22702 are a family of single-chan-  
nel isolated gate drivers with an ultra-high CMTI of  
300kV/µs (typ). All devices have integrated digital galvan-  
All devices support a minimum pulse width of 20ns with  
maximum pulse-width distortion of 2ns. The part-to-part  
propagation delay is matched within 2ns maximum at  
+25°C ambient temperature, and is guaranteed to be  
within 5ns maximum over the temperature range of -40°C  
to +125°C.  
ic isolation with an isolation rating of 3kV  
in an 8-pin,  
RMS  
narrow-body SOIC package. This family of devices offers  
high common-mode transient immunity, high electromag-  
netic interference (EMI) immunity, and stable temperature  
performance through Maxim’s proprietary process tech-  
nology. The devices feature variants with output options  
for gate driver common pin GNDB (MAX22700), Miller  
clamp (MAX22701), and adjustable UVLO (MAX22702).  
In addition, variants are offered as differential inputs INP  
and INN (D versions) or single-ended input IN with enable  
EN (E versions). Refer to the Ordering Information for details.  
All MAX22700–MAX22702 have a default-low output. The  
default is the state the output assumes when the input is  
either not powered or is open-circuit. The output is set to  
logic-low when side A or side B supply is in UVLO, the  
device is in thermal shutdown, or EN is high (E versions).  
Output Driver Stage  
The MAX22700 has a gate driver common pin (GNDB)  
The output driver stage of the MAX22700-MAX22702 fea-  
tures a pullup structure and a pulldown structure. The pul-  
lup structure consists of a PMOS transistor and a NMOS  
transistor in parallel (see the Functional Diagrams). The  
that is a reference ground for V  
and V  
. V  
DDB  
SSB SSB  
has a voltage range between -16V and 0V with reference  
to GNDB. The MAX22701 has an active Miller clamp  
pin, CLAMP, which prevents false turn-on of the exter-  
nal power transistor caused by the Miller current. The  
PMOS transistor has a maximum R  
of 4.5Ω. The  
DSON  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
NMOS transistor only turns on for a short period of time  
during the output low-to-high transition and provides a  
boost current to enable the fast turn-on of the device. The  
NMOS transistor has a much lower on-resistance than  
the PMOS transistor; thus the parallel combination of the  
NMOS and the PMOS enables a faster turn-on during the  
output low-to-high transition.  
Functional Diagrams. The two internal transistors in the  
output driver are configured for push-pull operation and  
feature an active pulldown function to turn off the external  
power transistor when either side of the power supply is  
in UVLO. This prevents the external power transistor from  
falsely turning on during startup or UVLO.  
INN vs. EN Function  
The pulldown structure of the MAX22700–MAX22702  
consists of a NMOS transistor. The NMOS transistor  
in the MAX22700 and the MAX22702 has a maximum  
The MAX2270_D features differential PWM inputs (INP  
and INN). The differential inputs reject input glitches and  
prevent false turn-on of the output. The output will hold  
the previous value when a glitch is detected on either  
input (Figure 5). The MAX2270_E features a single-ended  
input (IN) and an active-low input enable (EN). The EN  
pin allows the output (OUT) to be quickly set to logic-  
low, turning off the external power transistor. The output  
remains at logic-low until the PWM input (IN) receives a  
logic-high signal (Figure 6).  
R
of 1.25Ω, while the NMOS in the MAX22701 has  
DSON  
an R  
of 2.5Ω. For the MAX22701, when both OUT  
DSON  
and CLAMP pins are connected to the gate of the exter-  
nal power transistor, an additional NMOS is connected  
in parallel to the pulldown NMOS transistor to prevent  
false turn-on of the external power transistor by provid-  
ing an additional low-impedance path to V  
. Refer to  
SSB  
Active Miller Clamp (MAX22701 Only) section and the  
Functional Diagrams for details.  
Current sources are used at both A-side inputs to prevent  
the output from falsely turning on by input glitches or  
noise. The INN pin has a weak pullup and the INP has a  
weak pulldown in the MAX2270_D devices. The EN pin  
has a weak pullup and the IN pin has a weak pulldown in  
the MAX2270_E devices. Refer to Table 3 and Table 4 for  
the Inputs vs. Output Truth Tables.  
Digital Isolation  
The MAX22700–MAX22702 provide basic galvanic isola-  
tion for digital signals transmitted between two ground  
domains, and block high-voltage/high-current transients.  
The devices withstand differences of up to 3kV  
for up to  
RMS  
60 seconds, and up to 1200V  
of continuous isolation.  
PEAK  
Undervoltage-Lockout (UVLO)  
The devices have two supply inputs (V  
and V  
)
DDB  
DDA  
The V  
and V  
supplies are both internally moni-  
DDA  
DDB  
that independently set the logic levels on either side of  
the device. V and V are referenced to GNDA and  
tored for undervoltage conditions. Undervoltage events  
can occur during power-up, power-down, or during nor-  
mal operation due to a sagging supply voltage. When  
an undervoltage condition is detected on either supply,  
the output is set to logic-low (default state) to turn off the  
external power transistor, regardless of the state of the  
MAX22700–MAX22702 inputs. The B-side UVLO has an  
DDA  
DDB  
V , respectively. Logic input and output levels match  
SSB  
the supply voltages used in the associated power domain.  
The difference in ground potential between the two power  
domains may be as large as V  
of time and will withstand surge voltages up to 5kV. Data  
transfer integrity is maintained for a differential ground  
potential change up to 300kV/µs (typ).  
for extended periods  
IOWM  
internal filter to reject any V  
glitches less than 32µs  
DDB  
(typ) (see Figure 11 and Figure 12). Figure 7 through  
Figure 10 show the behavior of the outputs during power-  
up and power-down.  
Unidirectional Channel and Active Pulldown  
The MAX22700–MAX22702 have an unidirectional chan-  
nel that passes data in one direction, as indicated in the  
Table 3. MAX2270_D Inputs vs. Output  
Truth Table  
Table 4. MAX2270_E Inputs vs. Output  
Truth Table  
INP  
Low  
Low  
High  
High  
INN  
Low  
High  
Low  
High  
OUT  
Hold  
Low  
IN  
EN  
OUT  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Low  
Low (Default)  
High  
High  
Hold  
Low (Default)  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
H
GLITCH  
INP  
INN  
LOGIC OUTPUT  
INP  
INN  
INP  
L
GLITCH  
L
L
L
H
L
HOLD  
L
H
L
INN  
H
FILTERED  
H
H
H
OUT  
OUT  
L
FILTERED  
H
HOLD  
(a)  
(b)  
H
INP  
INN  
INP  
INN  
L
S
INP  
INN  
LOGIC  
OUTPUT  
GLITCH  
H
R
L
GLITCH  
FILTERED  
H
FILTERED  
L
POR  
OUT  
OUT  
(d)  
(c)  
Figure 5. MAX2270_D Differential Inputs  
H
GLITCH  
IN  
EN  
LOGIC OUTPUT  
IN  
IN  
L
GLITCH  
L
L
L
H
L
L
L
H
EN  
L
EN  
H
H
H
H
L
OUT  
OUT  
L
FILTERED  
H
OUTPUT TURNS OFF  
(a)  
(b)  
H
IN  
LOGIC  
OUTPUT  
IN  
EN  
L
IN  
GLITCH  
H
EN  
EN  
L
GLITCH  
H
OUT  
L
FILTERED  
OUT  
OUTPUT TURNS OFF  
(c)  
(d)  
Figure 6. MAX2270_E Single-Ended Input with Enable  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
VDDB POWER-UP AND POWER-DOWN  
INPUT SET TO HIGH  
VDDA POWER-UP AND POWER-DOWN  
INPUT SET TO HIGH  
fig07  
fig08  
EN OR INN = LOW  
EN OR INN = LOW  
VDDA  
5V/div  
VDDA  
5V/div  
VDDB  
10V/div  
VDDB  
10V/div  
VIN  
VIN  
5V/div  
5V/div  
VOUT  
VOUT  
10V/div  
10V/div  
400µs/div  
400µs/div  
Figure 7. V  
Undervoltage Lockout Behavior (Input High)  
Figure 8. V  
Undervoltage Lockout Behavior (Input High)  
DDB  
DDA  
VDDB POWER-UP AND POWER-DOWN  
VDDA POWER-UP AND POWER-DOWN  
INPUT SET TO LOW  
INPUT SET TO LOW  
fig09  
fig10  
EN OR INN = LOW  
EN OR INN = LOW  
VDDA  
5V/div  
VDDA  
5V/div  
VDDB  
10V/div  
5V/div  
VDDB  
10V/div  
5V/div  
VIN  
VIN  
VOUT  
VOUT  
10V/div  
10V/div  
400µs/div  
400µs/div  
Figure 9. V  
Undervoltage Lockout Behavior (Input Low)  
Figure 10. V  
Undervoltage Lockout Behavior (Input Low)  
DDB  
DDA  
VDDB GLITCH FILTER  
VDDB GLITCH FILTER  
fig11  
fig12  
EN OR INN = LOW, VDDB GLITCH 32µs  
EN OR INN = LOW, VDDB GLITCH 28µs  
VDDA  
5V/div  
VDDA  
5V/div  
VDDB  
VDDB  
10V/div  
5V/div  
10V/div  
VIN  
VIN  
5V/div  
VDDB UVLO IS  
10V/div  
VDDB UVLO IS NOT  
10V/div  
VOUT  
VOUT  
TRIGGERED  
TRIGGERED  
400µs/div  
400µs/div  
Figure 12. V  
UVLO Triggered  
Undervoltage Lockout Glitch Filter,  
Figure 11. V  
UVLO Not Triggered  
Undervoltage Lockout Glitch Filter,  
DDB  
DDB  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Thermal Shutdown  
Adjustable UVLO (MAX22702 Only)  
The MAX22700–MAX22702 operate at an ambient tem-  
perature up to +125°C on a properly designed multilayer  
PCB. Operating at higher voltages or with heavy output  
loads will increase the junction temperature and power  
dissipation, and also reduce the maximum allowable  
operating temperature. See the Package Information,  
Absolute Maximum Ratings and Safety Limits sections  
for details.  
The MAX22702 features an adjustable B-side UVLO to  
accommodate UVLO requirements of different types of  
external power transistors. To set a user-defined B-side  
UVLO, connect external resistors between V  
and ADJ,  
DDB  
and between ADJ and the external power transistor ground  
so that:  
V
= 2 × (1 + R2 ÷ R1)  
ADJ_UVLO  
where R1 is placed between V  
and ADJ, and R2 is  
DDB  
The MAX22700–MAX22702 will be in thermal shutdown  
when the junction temperature of the device exceeds  
+160°C (typ). During thermal shutdown, the output is set to  
logic-low to turn off the external power transistor regardless  
of the state of the MAX22700–MAX22702 inputs.  
placed between ADJ and the external power transistor  
ground (see Figure 13).  
For example, to set the B-side UVLO to 13V, connect  
20kΩ (R1) between V  
and ADJ. R2 will be:  
DDB  
(13 ÷ 2 - 1) × 20 = 110kΩ  
Active Miller Clamp (MAX22701 Only)  
The MAX22701 features an active Miller clamp to prevent  
false turn-on of the external power transistor caused by  
the Miller current. When the external high-side transistor  
is turned on after the external low-side transistor is turned  
off, the internal Miller clamp transistor starts to engage  
when the Miller clamp pin voltage drops below the 2V  
threshold, and it provides a low-impedance path to direct  
Applications Information  
Power-Supply Sequencing  
The MAX22700–MAX22702 do not require special power-  
supply sequencing. The logic levels are set independently  
on either side by V  
and V  
. Each supply can be  
DDA  
DDB  
present over the entire specified range regardless of the  
level or presence of the other supply.  
the Miller current to V  
clamp timing diagram.  
. Refer to Figure 4 for a Miller  
SSB  
V
DDB  
V
DDA  
1nF 0.1µF 22µF  
1nF 0.1µF 1µF  
HIGH VOLTAGE  
V
V
V
SSB  
SSB SSB  
V
V
DDB  
DDA  
MAX22702  
INP/IN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
INN/EN  
V
DDB  
V
SSB  
GNDA  
R1  
R2  
V
SSB  
ADJ  
GNDB  
ARE REFERENCED TO GNDB. V  
NOTE: V  
DDB  
AND V  
SSB  
- V  
< 5V (TYP)  
ADJ  
DDB  
Figure 13. Example Circuit for MAX22702 Adjustable UVLO  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
voltage and the data rate, and the “load current”, which  
depends on the load impedance. Current into a capacitive  
load is a function of the load capacitance, the switching  
frequency, and the supply voltage.  
Power-Supply Decoupling  
To reduce ripple and the chance of introducing data  
errors, bypass V  
and V  
with 1nF, 0.1µF, and 1µF  
DDA  
DDB  
low-ESR and low-ESL ceramic capacitors with sufficient  
voltage rating in parallel to GNDA and V , respectively.  
I
= C × f  
× V  
SW DDB  
SSB  
CL  
L
To ensure the best performance, place the decoupling  
capacitors as close to the power-supply pins as possible.  
where:  
is the current required to drive the capacitive load.  
I
CL  
On the B side, it is recommended to place the 1nF and  
C is the load capacitance on the output pin.  
L
1µF capacitors close to the V  
pin, and place the 0.1µF  
SSB  
f
is the switching frequency in Hz.  
capacitor close to the V  
pin. It is also recommended  
SW  
DDB  
to include a 22µF reservoir capacitor (tantalum or elec-  
V
is the B-side supply voltage.  
DDB  
trolytic type) between V  
and V  
in case the V  
SSB DDB  
DDB  
The total power dissipation (P ) can be calculated as:  
D
power supply is located far away from the V  
pin. All  
DDB  
P
D
= V  
× I  
+ V  
× I  
bypass capacitors on V  
a 50V voltage rating.  
are required to have at least  
DDA  
DDA  
DDB DDB  
DDB  
where I  
B-side supply current.  
is the A-side supply current and I  
is the  
= 5V,  
DDA  
DDB  
Layout Considerations  
Example: A MAX22701 is operating with V  
V
capacitive load. V  
a 10kHz data rate and a 5V supply voltage according  
to Figure 14. V must supply the sum of the no load  
current and the load current. The no load current is about  
3.77mA with a 10kHz data rate and a 20V supply voltage  
according to Figure 15. The load current is equal to 1nF ×  
10kHz × 20V = 0.2mA. V  
3.97mA. The total power dissipation is 5V × 4.56mA +  
20V × 3.97mA = 102.2mW.  
DDA  
The PCB designer should follow some critical recom-  
mendations in order to get the best performance from the  
design.  
= 20V. The output is operating at 10kHz with 1nF  
DDB  
must supply about 4.56mA with  
DDA  
Keep the input/output traces as short as possible.  
To maintain low signal-path inductance, avoid using  
vias.  
DDB  
Place the gate driver as close to the external power  
transistor as possible to decrease the trace induc-  
tance and avoid output ringing.  
must therefore supply about  
DDB  
Have a solid ground plane underneath the high-  
speed signal layer.  
Gate Driver Output Resistors  
Keep the area underneath the MAX22700–  
MAX22702 free from ground and signal planes. Any  
galvanic or metallic connection between side A and  
side B defeats the isolation.  
External series resistors (R  
and R  
) between the  
ON  
OFF  
MAX22700–MAX22702 output and the gate of the power  
transistor are required in gate driver applications. These  
resistors control the turn-on and turn-off time of the power  
transistor to optimize switching efficiency and EMI perfor-  
mance.  
Have a solid ground plane next to V  
pin with  
SSB  
multiple V  
vias to reduce the parasitic inductance  
SSB  
and minimize the ringing on the output signal.  
The R  
resistance and external FET’s gate capacitance  
ON  
determine the turn-on time. The parallel combination of  
both R and R resistance and the external FET’s  
gate capacitance determine the turn-off time. Turn-off  
Calculating Power Dissipation  
The required current for the A side of the MAX22700–  
ON  
OFF  
MAX22702 depends on the V  
supply voltage and  
DDA  
time is usually much faster than turn-on time to avoid  
the data rate. The required current for the B side of the  
MAX22700–MAX22702 depends on the V supply  
shoot-through. Figure 16 shows a typical R  
and R  
and R  
ON  
OFF  
OFF  
DDB  
network for the MAX22700–MAX22702. R  
ON  
voltage, the data rate, and the load condition. The typical  
current for different V and V supply voltages at any  
values should be adjusted based on the required slew  
rate and the external FET’s gate capacitance.  
DDA  
DDB  
data rate without external load can be estimated from the  
graphs in Figure 14 and Figure 15. Please note that the  
data in Figure 14 and Figure 15 are extrapolated from sup-  
ply current measurements in a typical operating condition.  
The gate driver output resistors also help limit ringing caused  
by parasitic inductances and capacitances due to PCB lay-  
out and device package leads. Output ringing can happen  
during high voltage dV/dt and high current di/dt switching.  
The total current for the B side is the sum of the “no load”  
current (shown in Figure 15) which is a function of the  
Increasing R  
and R  
can help reduce the ringing.  
ON  
OFF  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
and MAX22702 as GaN gate drivers. A boost current is  
required during the GaN device’s turn-on period; hence  
a capacitor is placed in series with one of the resistors at  
the output. This capacitor needs to be discharged during  
the turn-off period. Therefore, a diode is placed in parallel  
to the resistor to provide a discharge path. On the layout,  
it is recommended to place the gate driver very close to  
the GaN device to minimize series inductance and reduce  
gate drive loop area. To prevent ringing and support high  
peak currents when turning on GaN devices, good decou-  
Driving GaN Transistors  
The high CMTI rating of 300kV/µs (typ) and the propaga-  
tion delay matching of 5ns (max) between the high-side  
and low-side drivers make the MAX22701 and MAX22702  
ideal to drive GaN devices. The MAX22702 also features  
an adjustable B-side UVLO to accommodate the low gate  
drive voltage of GaN devices.  
As shown in the Typical Operating Circuits, a positive  
supply (V  
) and a negative supply (V  
) with refer-  
SSB  
DDB  
ence to GNDB are required to meet the gate voltage  
requirement of GaN devices when using the MAX22701  
pling is required on the V  
and V  
pins.  
DDB  
SSB  
VDDA SUPPLY CURRENT  
vs. DATA RATE  
VDDB SUPPLY CURRENT  
vs. DATA RATE  
fig14  
fig15  
6
10  
9
VDDB = 6V  
VDDB = 13V  
VDDB = 6V ONLY  
APPLIES TO MAX22702  
5
4
3
VDDB = 20V  
VDDB = 30V  
VDDB = 36V  
8
7
CL = 0pF  
6
VDDA = 3.3V  
VDDA = 3.6V  
VDDA = 5V  
2
1
0
5
VDDA = 5.5V  
4
3
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
DATA RATE (kHz)  
DATA RATE (kHz)  
Figure 14. VDDA Supply Current vs. Data Rate (typ)  
Figure 15. VDDB Supply Current vs. Data Rate (typ)  
V
DDB  
V
DDA  
1nF 0.1µF 1µF  
1nF 0.1µF 22µF  
HIGH VOLTAGE  
V
V
V
SSB SSB SSB  
V
V
DDB  
DDA  
MAX22700 – MAX22702  
INP/IN  
UVLO,  
R
ON  
UVLO  
AND  
LOGIC  
INPUTS  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
OUT  
INN/EN  
R
OFF  
V
SSB  
GNDA  
V
SSB  
GNDB/CLAMP/ADJ  
GNDB  
Figure 16. Typical Gate Driver Output Network with R  
and R  
OFF  
ON  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Typical Operating Circuits  
HIGH-SIDE POSITIVE SUPPLY  
5V  
V
DDB1  
1nF 0.1µF 1µF  
1nF 0.1µF 22µF  
HIGH VOLTAGE  
MICROCONTROLLER/  
FPGA  
V
V
V
SSB1 SSB1 SSB1  
V
V
DDB  
DDA  
MAX22700E  
V
DDA  
IN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
PWMH  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
SiC  
EN  
PWML  
GNDA  
HIGH-SIDE  
NEGATIVE SUPPLY  
V
SSB  
GNDA  
V
SSB1  
GNDB  
HIGH-SIDE SUPPLY GROUND  
OUTPUT  
1nF 0.1µF 1µF  
LOW-SIDE POSITIVE SUPPLY  
V
DDB2  
1nF 0.1µF 22µF  
V
V
DDB  
DDA  
MAX22700E  
V
V
V
SSB2 SSB2 SSB2  
IN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
SiC  
EN  
V
SSB  
LOW-SIDE  
GNDA  
NEGATIVE SUPPLY  
V
SSB2  
GNDB  
LOW-SIDE SUPPLY GROUND  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Typical Operating Circuits (continued)  
HIGH-SIDE POSITIVE SUPPLY  
5V  
V
DDB1  
1nF 0.1µF 1µF  
1nF 0.1µF 22µF  
HIGH VOLTAGE  
MICROCONTROLLER/  
FPGA  
V
V
V
SSB1 SSB1 SSB1  
V
V
DDB  
DDA  
MAX22700D  
V
DDA  
INP  
INN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
PWMH  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
SiC  
PWMH  
HIGH-SIDE  
NEGATIVE SUPPLY  
V
SSB  
GNDA  
GNDA  
V
SSB1  
GNDB  
HIGH-SIDE SUPPLY GROUND  
OUTPUT  
1nF 0.1µF 1µF  
LOW-SIDE POSITIVE SUPPLY  
V
DDB2  
1nF 0.1µF 22µF  
V
V
DDB  
DDA  
MAX22700D  
V
V
V
SSB2 SSB2 SSB2  
INP  
INN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
PWML  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
SiC  
PWML  
V
SSB  
LOW-SIDE  
NEGATIVE SUPPLY  
GNDA  
V
SSB2  
GNDB  
LOW-SIDE SUPPLY GROUND  
GNDA  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Typical Operating Circuits (continued)  
HIGH-SIDE POSITIVE SUPPLY  
5V  
V
DDB1  
1nF 0.1µF 1µF  
1nF 0.1µF 22µF  
HIGH VOLTAGE  
MICROCONTROLLER/  
FPGA  
V
V
V
SSB1 SSB1 SSB1  
V
V
DDB  
DDA  
MAX22701E  
V
DDA  
IN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
PWMH  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
SiC  
EN  
PWML  
GNDA  
V
SSB  
GNDA  
CLAMP  
2V  
V
SSB  
HIGH-SIDE  
NEGATIVE SUPPLY  
V
SSB1  
OUTPUT  
1nF 0.1µF 1µF  
LOW-SIDE POSITIVE SUPPLY  
V
DDB2  
1nF 0.1µF 22µF  
V
V
DDB  
DDA  
MAX22701E  
V
V
V
SSB2 SSB2 SSB2  
IN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
SiC  
EN  
V
SSB  
GNDA  
CLAMP  
2V  
GNDA  
V
SSB  
LOW-SIDE  
NEGATIVE SUPPLY  
V
SSB2  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Typical Operating Circuits (continued)  
HIGH-SIDE POSITIVE SUPPLY  
5V  
V
DDB1  
1nF 0.1µF 1µF  
1nF 0.1µF 22µF  
HIGH VOLTAGE  
MICROCONTROLLER/  
FPGA  
V
V
V
SSB1 SSB1 SSB1  
V
V
DDB  
DDA  
MAX22701D  
V
DDA  
INP  
INN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
PWMH  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
SiC  
PWMH  
V
SSB  
GNDA  
GNDA  
CLAMP  
2V  
V
SSB  
HIGH-SIDE  
NEGATIVE SUPPLY  
V
SSB1  
OUTPUT  
1nF 0.1µF 1µF  
LOW-SIDE POSITIVE SUPPLY  
V
DDB2  
1nF 0.1µF 22µF  
V
V
DDB  
DDA  
MAX22701D  
V
V
V
SSB2 SSB2 SSB2  
INP  
INN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
PWML  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
SiC  
PWML  
V
SSB  
GNDA  
CLAMP  
2V  
GNDA  
V
SSB  
LOW-SIDE  
NEGATIVE SUPPLY  
V
SSB2  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Typical Operating Circuits (continued)  
HIGH-SIDE POSITIVE SUPPLY  
5V  
V
DDB1  
1nF 0.1µF 1µF  
1nF 0.1µF 22µF  
HIGH VOLTAGE  
MICROCONTROLLER/  
FPGA  
V
V
V
SSB1 SSB1 SSB1  
V
V
DDB  
DDA  
MAX22702E  
V
DDA  
IN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
PWMH  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
SiC  
EN  
V
DDB1  
PWML  
GNDA  
V
HIGH-SIDE  
NEGATIVE  
SUPPLY  
SSB  
GNDA  
R1  
R2  
V
SSB1  
ADJ  
1nF 0.1µF 1µF  
LOW-SIDE POSITIVE SUPPLY  
OUTPUT  
V
DDB2  
GNDB1  
1nF 0.1µF 22µF  
V
V
DDB  
DDA  
MAX22702E  
V
V
V
SSB2 SSB2 SSB2  
IN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
SiC  
EN  
V
DDB2  
V
SSB  
LOW-SIDE  
NEGATIVE  
SUPPLY  
GNDA  
R1  
R2  
V
SSB2  
ADJ  
GNDA  
GNDB2  
ARE REFERENCED TO GNDB. V  
NOTE: V  
AND V  
- V  
< 5V (TYP)  
ADJ  
DDB  
SSB  
DDB  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Typical Operating Circuits (continued)  
HIGH-SIDE POSITIVE SUPPLY  
5V  
V
DDB1  
1nF 0.1µF 1µF  
1nF 0.1µF 22µF  
HIGH VOLTAGE  
MICROCONTROLLER/  
FPGA  
V
V
V
SSB1 SSB1 SSB1  
V
V
DDB  
DDA  
MAX22702D  
V
DDA  
INP  
INN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
PWMH  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
SiC  
V
DDB1  
PWMH  
V
SSB  
HIGH-SIDE  
NEGATIVE  
SUPPLY  
GNDA  
R1  
R2  
GNDA  
V
SSB1  
ADJ  
1nF 0.1µF 1µF  
OUTPUT  
LOW-SIDE POSITIVE SUPPLY  
V
DDB2  
GNDB1  
1nF 0.1µF 22µF  
V
V
DDB  
DDA  
MAX22702D  
V
V
V
SSB2 SSB2 SSB2  
INP  
INN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
PWML  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
SiC  
V
DDB2  
PWML  
V
SSB  
LOW-SIDE  
NEGATIVE  
SUPPLY  
GNDA  
R1  
R2  
V
SSB2  
ADJ  
GNDA  
GNDB2  
ARE REFERENCED TO GNDB. V  
NOTE: V  
AND V  
- V  
< 5V (TYP)  
ADJ  
DDB  
SSB  
DDB  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Typical Operating Circuits (continued)  
HIGH-SIDE POSITIVE SUPPLY  
5V  
V
DDB1  
1nF 0.1µF 1µF  
1nF 0.1µF 1µF  
HIGH VOLTAGE  
MICROCONTROLLER/  
FPGA  
V
V
V
SSB1 SSB1 SSB1  
V
V
DDB  
DDA  
MAX22701D  
V
DDA  
INP  
INN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
PWMH  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
GaN  
(PANASONIC)  
PWMH  
GNDB1  
V
SSB  
HIGH-SIDE  
COMMON  
GROUND  
GNDA  
GNDA  
CLAMP  
2V  
V
SSB  
HIGH-SIDE  
NEGATIVE SUPPLY  
V
SSB1  
OUTPUT  
1nF 0.1µF 1µF  
LOW-SIDE POSITIVE SUPPLY  
V
DDB2  
1nF 0.1µF 1µF  
V
V
DDB  
DDA  
MAX22701D  
V
V
V
SSB2 SSB2 SSB2  
INP  
INN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
PWML  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
GaN  
(PANASONIC)  
PWML  
GNDB2  
V
SSB  
LOW-SIDE  
COMMON  
GROUND  
GNDA  
GNDA  
CLAMP  
2V  
V
SSB  
LOW-SIDE  
NEGATIVE SUPPLY  
V
SSB2  
MAX22701D AS GaN GATE DRIVER  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Typical Operating Circuits (continued)  
HIGH-SIDE POSITIVE SUPPLY  
5V  
V
DDB1  
1nF 0.1µF 1µF  
1nF 0.1µF 1µF  
HIGH VOLTAGE  
MICROCONTROLLER/  
FPGA  
V
V
V
SSB1 SSB1 SSB1  
V
DDA  
V
DDB  
MAX22702E  
V
DDA  
IN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
PWMH  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
GaN  
EN  
PWML  
GNDA  
V
DDB1  
GNDB1  
V
SSB  
HIGH-SIDE  
NEGATIVE  
SUPPLY  
HIGH-SIDE  
COMMON  
GROUND  
GNDA  
V
SSB1  
ADJ  
LOW-SIDE POSITIVE SUPPLY  
OUTPUT  
1nF 0.1µF 1µF  
V
DDB2  
GNDB1  
1nF 0.1µF 1µF  
V
V
DDB  
DDA  
MAX22702E  
V
V
V
SSB2 SSB2 SSB2  
IN  
UVLO,  
CONTROL  
LOGIC,  
AND  
OUTPUT  
DRIVER  
UVLO  
AND  
LOGIC  
INPUTS  
OUT  
GaN  
EN  
V
DDB2  
GNDB2  
V
SSB  
LOW-SIDE  
NEGATIVE  
SUPPLY  
LOW-SIDE  
COMMON  
GROUND  
GNDA  
V
SSB2  
ADJ  
GNDA  
MAX22702E AS GaN GATE DRIVER  
GNDB2  
NOTE: V  
AND V  
ARE REFERENCED TO GNDB. V  
- V  
< 5V (TYP)  
ADJ  
DDB  
SSB  
DDB  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Ordering Information  
ISOLATION  
VOLTAGE  
TEMP  
RANGE  
(°C)  
LOW-SIDE  
PART NUMBER  
INPUTS  
PIN 7  
UVLO  
PIN-PACKAGE  
R
(Ω)  
DSON  
1.25  
1.25  
2.5  
(ꢀV  
)
RMS  
Differential,  
INP and INN  
MAX22700DASA+*  
MAX22700EASA+*  
MAX22701DASA+*  
MAX22701EASA+  
MAX22702DASA+*  
MAX22702EASA+*  
GNDB  
GNDB  
CLAMP  
CLAMP  
ADJ  
13V to GNDB  
13V to GNDB  
3
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
8 Narrow SOIC  
8 Narrow SOIC  
8 Narrow SOIC  
8 Narrow SOIC  
8 Narrow SOIC  
8 Narrow SOIC  
Single ended,  
IN and EN  
3
3
3
3
3
Differential,  
INP and INN  
13V to V  
13V to V  
SSB  
SSB  
Single ended,  
IN and EN  
2.5  
Differential,  
INP and INN  
Adjustable  
Adjustable  
1.25  
1.25  
Single ended,  
IN and EN  
ADJ  
*Future product—contact factory for availability.  
+Denotes a lead (Pb)-free/RoHS-compliant package.  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX22700D–MAX22702D  
MAX22700E–MAX22702E  
Ultra-High CMTI  
Isolated Gate Drivers  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
7/19  
Initial release  
Updated the Absolute Maximum Ratings and Package Information sections, Table  
2, and Figure 1  
1
2
8/19  
9/19  
2, 7  
1, 4  
Updated the General Description, Benefits and Features, DC Electrical Charac-  
teristics, and Dynamic Characteristics sections  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
30  

相关型号:

MAX22702DASA

Ultra-High CMTI Isolated Gate Drivers
MAXIM

MAX22702E

Ultra-High CMTI Isolated Gate Drivers
MAXIM

MAX22702EASA

Ultra-High CMTI Isolated Gate Drivers
MAXIM

MAX2291

Evaluation Kit
MAXIM

MAX2291NCDMAEVKIT

Evaluation Kit
MAXIM

MAX2291TDMAEVKIT

Evaluation Kit
MAXIM

MAX2291WCDMAEVKIT

Evaluation Kit
MAXIM

MAX230

+5V-Powered, Multichannel RS-232 Drivers/Receivers
MAXIM

MAX2306

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer
MAXIM

MAX2306-MAX2309

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer
MAXIM

MAX2306EGI

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer
MAXIM

MAX2306EGI-T

Baseband Circuit, 5 X 5 MM, 0.90 MM HEIGHT, QFN-28
MAXIM