MAX2424EAI [MAXIM]

900MHz Image-Reject Receivers with Transmit Mixer; 900MHz的图像抑制接收器与发射混频器
MAX2424EAI
型号: MAX2424EAI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

900MHz Image-Reject Receivers with Transmit Mixer
900MHz的图像抑制接收器与发射混频器

电信集成电路 光电二极管
文件: 总14页 (文件大小:164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1350 Rev 2; 2/99  
900MHz Image-Reject Receivers  
with Transmit Mixer  
/MAX426  
________________General Description  
____________________________Features  
Receive Mixer with 35dB Image Rejection  
Adjustable-Gain LNA  
The MAX2424/MAX2426 highly integrated front-end ICs  
provide the lowest cost solution for cordless and ISM-  
band radios operating in the 900MHz band. Both devices  
incorporate a receive image-reject mixer (to reduce filter  
cost) as well as a versatile transmit mixer. The devices  
operate from a +2.7V to +4.8V single power supply,  
allowing direct connection to a 3-cell battery stack.  
Up to +2dBm Combined Receiver Input IP3  
4dB Combined Receiver Noise Figure  
Optimized for Common Receiver IF Frequencies:  
10.7MHz (MAX2424)  
The receive path incorporates an adjustable-gain LNA  
and an image-reject downconverter with 35dB image  
suppression. These features yield excellent combined  
downconverter noise figure (4dB) and high linearity with  
an input third-order intercept point (IIP3) of up to +2dBm.  
70MHz (MAX2426)  
PA Predriver Provides up to 0dBm  
Low Current Consumption: 23mA Receive  
20mA Transmit  
The transmitter consists of a double-balanced mixer and  
a power amplifier (PA) predriver that produces up to  
0dBm (in some applications serving as the final power  
stage). It can be used in a variety of configurations,  
including BPSK modulation, direct VCO modulation, and  
transmitter upconversion. For devices featuring trans-  
mit as well as receive image rejection, refer to the  
MAX2420/MAX2421/MAX2422/MAX2460/MAX2463  
data sheet.  
9.5mA Oscillator  
0.5µA Shutdown Mode  
Operates from Single +2.7V to +4.8V Supply  
_______________Ordering Information  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
MAX2424EAI  
MAX2426EAI  
28 SSOP  
The MAX2424/MAX2426 have an on-chip local oscillator  
(LO), requiring only an external varactor-tuned LC tank  
for operation. The integrated divide-by-64/65 dual-mod-  
ulus prescaler can also be set to a direct mode, in which  
it acts as an LO buffer amplifier. Four separate power-  
down inputs can be used for system power manage-  
ment, including a 0.5µA shutdown mode.  
28 SSOP  
___________________Pin Configuration  
The MAX2424/MAX2426 come in a 28-pin SSOP pack-  
age.  
TOP VIEW  
V
28  
27  
26  
25  
24  
23  
22  
21  
GND  
GND  
GND  
CC  
1
2
3
4
5
6
7
8
9
________________________Applications  
Cordless Phones  
CAP1  
RXOUT  
GND  
TANK  
TANK  
Wireless Telemetry  
RXIN  
MAX2424  
MAX2426  
Wireless Networks  
V
CC  
V
CC  
V
Spread-Spectrum Communications  
Two-Way Paging  
GND  
GND  
CC  
PREOUT  
20 PREGND  
19  
TXOUT  
MOD  
18 DIV1  
LNAGAIN 10  
V
CC  
11  
12  
13  
14  
VCOON  
17  
16  
15  
TXIN  
TXIN  
RXON  
TXON  
Functional Diagram appears at end of data sheet.  
CAP2  
SSOP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
900MHz Image-Reject Receiver  
with Transmit Mixer  
ABSOLUTE MAXIMUM RATINGS  
V
to GND...........................................................-0.3V to +5.5V  
Continuous Power Dissipation (T = +70°C)  
A
CC  
TXIN, TXIN Differential Voltage..............................................+2V  
SSOP (derate 9.50mW/°C above +70°C) ......................762mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +165°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Voltage on TXOUT......................................-0.3V to (V  
Voltage on LNAGAIN, TXON, RXON, VCOON,  
DIV1, MOD, TXIN, TXIN............................-0.3V to (V  
+ 1.0V)  
CC  
+ 0.3V)  
CC  
RXIN Input Power..............................................................10dBm  
TANK, TANK Input Power...................................................2dBm  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
CC  
= +2.7V to +4.8V, no RF signals applied, LNAGAIN = Unconnected, V  
= V  
= 2.3V, V = 2.4V, V  
VCOON  
= V  
=
RXON  
TXON  
TXIN  
TXIN  
V
MOD  
= V  
= 0.45V, PREGND = GND, T = -40°C to +85°C. Typicals are at T = +25°C, V  
= 3.3V, unless otherwise noted.)  
DIV1  
A
A
CC  
/MAX426  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
4.8  
UNITS  
V
Supply-Voltage Range  
2.7  
Oscillator Supply Current  
PREGND = unconnected  
9.5  
4.2  
14  
mA  
Prescaler Supply Current  
(÷ 64/65 mode) (Note 1)  
6
mA  
Prescaler Supply Current  
(buffer mode) (Note 2)  
V
= 2.4V  
5.4  
23  
8.5  
36  
32  
mA  
mA  
mA  
DIV1  
Receive Supply Current (Note 3)  
V
V
= 2.4V, PREGND = unconnected  
RXON  
= 0.45V, V  
= 2.4V,  
TXON  
RXON  
Transmitter Supply Current (Note 4)  
20  
PREGND = unconnected  
T = +25°C  
0.5  
A
VCOON = RXON = TXON  
= MOD = DIV1 = GND  
Shutdown Supply Current  
µA  
T = -40°C to +85°C  
A
10  
Digital Input Voltage High  
Digital Input Voltage Low  
Digital Input Current  
RXON, TXON, DIV1, VCOON, MOD  
RXON, TXON, DIV1, VCOON, MOD  
Voltage on any one digital input = V  
2.4  
V
V
0.45  
10  
or GND  
1
µA  
CC  
Note 1: Calculated by measuring the combined oscillator and prescaler supply current and subtracting the oscillator supply current.  
Note 2: Calculated by measuring the combined oscillator and LO buffer supply current and subtracting the oscillator supply current.  
Note 3: Calculated by measuring the combined receive and oscillator supply current and subtracting the oscillator supply current.  
With LNAGAIN = GND, the supply current drops by 4.5mA.  
Note 4: Calculated by measuring the combined transmit and oscillator supply current and subtracting the oscillator supply current.  
2
_______________________________________________________________________________________  
900MHz Image-Reject Receiver  
with Transmit Mixer  
/MAX426  
AC ELECTRICAL CHARACTERISTICS  
(MAX2424/MAX2426 EV kit, V  
= +3.3V, f  
= 915MHz, P  
= -35dBm, V  
= V  
= 2.3V (DC bias), V = 250mVp-p,  
TXIN  
CC  
RXIN  
RXIN  
TXIN  
TXIN  
f
= 1MHz, V  
= 2V, V  
= 2.4V, RXON = TXON = MOD = DIV1 = PREGND = GND, T = +25°C, unless otherwise noted.)  
A
VCOON  
TXIN  
LNAGAIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RECEIVER (V = 2.4V, f = 925.7MHz (MAX2424), f = 985MHz (MAX2426))  
RXON  
LO  
LO  
Input Frequency Range  
(Notes 5, 6)  
800  
1000  
MHz  
MAX2424 (Notes 5, 6)  
MAX2426 (Notes 5, 6)  
8.5  
55  
26  
20  
19  
19  
18  
10.7  
70  
12.5  
85  
IF Frequency Range  
MHz  
dB  
Image Frequency Rejection  
35  
MAX2424  
MAX2426  
MAX2424  
MAX2426  
22  
24.5  
23.5  
25  
V
= V  
,
LNAGAIN  
CC  
T
A
= +25°C (Note 7)  
21  
V
= V  
,
LNAGAIN  
CC  
Conversion Power Gain  
Noise Figure  
dB  
T
A
= -40°C to +85°C (Notes 5, 7)  
24  
V
= 1V (Note 7)  
12  
-16  
4
LNAGAIN  
LNAGAIN = GND (Note 7)  
LNAGAIN = V (Notes 5, 7)  
5
CC  
dB  
dB  
V
= 1V (Notes 5, 7)  
12  
LNAGAIN  
LNAGAIN = V (Notes 5, 8)  
-19  
-17  
-8  
CC  
Input Third-Order Intercept  
(IIP3)  
V
= 1V (Notes 5, 8)  
LNAGAIN  
LNAGAIN = V  
-26  
-18  
-60  
500  
CC  
Input 1dB Compression  
dBm  
V
= 1V  
LNAGAIN  
LO to RXIN Leakage  
Receiver on or off  
(Note 9)  
dBm  
ns  
Receiver Turn-On Time  
TRANSMITTER (V  
= 2.4V, f = 915MHz)  
LO  
TXON  
Output Frequency Range  
(Notes 5, 10)  
800  
1000  
MHz  
MHz  
dBm  
dBm  
dBm  
Baseband 3dB Bandwidth  
Output Power  
125  
-7  
T
T
= +25°C  
-9.5  
-10  
-5  
A
= T  
to T  
(Note 5)  
-4.5  
A
MIN  
MAX  
Output 1dB Compression  
Output Third-Order Intercept (OIP3)  
-0.5  
3.5  
(Note 11)  
(Note 12)  
Carrier Suppression  
30  
dBc  
dBm/Hz  
ns  
Output Noise Density  
Transmitter Turn-On Time  
-140  
220  
_______________________________________________________________________________________  
3
900MHz Image-Reject Receiver  
with Transmit Mixer  
AC ELECTRICAL CHARACTERISTICS (continued)  
(MAX2424/MAX2426 EV kit, V  
= +3.3V, f  
= 915MHz, P  
= -35dBm, V  
= V  
= 2.3V (DC bias), V = 250mVp-p,  
TXIN  
CC  
RXIN  
RXIN  
TXIN  
TXIN  
f
= 1MHz, V  
= 2V, V  
= 2.4V, RXON = TXON = MOD = DIV1 = PREGND = GND, T = +25°C, unless otherwise noted.)  
A
VCOON  
TXIN  
LNAGAIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OSCILLATOR AND PRESCALER  
Oscillator Frequency Range  
(Note 5)  
800  
1100  
MHz  
MAX2424  
MAX2426  
MAX2424  
MAX2426  
MAX2424  
MAX2426  
82  
72  
8
Oscillator Phase Noise  
10kHz offset (Note 13)  
dBc/Hz  
Standby to TX or Standby to RX  
35  
70  
110  
500  
-8  
Oscillator Pulling  
kHz  
RX to TX with P  
=-45dBm (RX mode)  
RXIN  
to P  
= 0dBm (TX mode) (Note 14)  
RXIN  
Prescaler Output Level  
mVp-p  
dBm  
Z = 100k| | 10pF  
L
= 2.4V,  
T
T
= +25°C  
-11  
-12  
Oscillator Buffer Output Level  
(Notes 5, 13)  
A
V
DIV1  
Z = 50Ω  
L
= -40°C to +85°C  
A
/MAX426  
Required Modulus Setup Time  
(Notes 5, 15)  
÷ 64/65 mode  
÷ 64/65 mode  
10  
0
ns  
ns  
Required Modulus Hold Time  
(Notes 5, 15)  
Note 5: Guaranteed by design and characterization.  
Note 6: Image rejection typically falls to 30dBc at the frequency extremes.  
Note 7: Refer to the Typical Operating Characteristics for a plot showing Receiver Gain vs. LNAGAIN Voltage, Input IP3 vs.  
LNAGAIN Voltage, and Noise Figure vs. LNAGAIN Voltage.  
Note 8: Two tones at P  
= -45dBm each, f1 = 915.0MHz and f2 = 915.2MHz.  
RXIN  
Note 9: Time delay from V  
= 0.45V to V  
= 2.4V transition to the time the output envelope reaches 90% of its final value.  
RXON  
RXON  
Note 10: Output power typically falls to -10dBm at the frequency extremes.  
Note 11: Two tones at V = 125mVp-p, f1 = 1.0MHz, and f2 = 1.2MHz.  
TXIN  
Note 12: Time delay from V  
= 0.45V to V  
= 2.4V transition to the time the output envelope reaches 90% of its final value.  
TXON  
TXON  
Note 13: Using tank components L3 = 5.0nH (Coilcraft A02T), C2 = C3 = C26 = 3.3pF, R6 = R7 = 10.  
Note 14: This approximates a typical application in which TXOUT is followed by an external PA and a T/R switch with finite isolation.  
Note 15: Relative to the rising edge of PREOUT.  
4
_______________________________________________________________________________________  
900MHz Image-Reject Receiver  
with Transmit Mixer  
/MAX426  
__________________________________________Typical Operating Characteristics  
(MAX2424/MAX2426 EV kit, V  
= +3.3V; f  
= 925.7MHz (MAX2424), 985MHz (MAX2426); f  
= 915MHz, P  
=
RXIN  
CC  
RX)  
RXIN  
LO(  
-35dBm, f  
= 915MHz, V  
= V  
= 2.3V (DC bias), V  
= 250mVp-p, f  
= 1MHz, V  
= 2V, V  
= 2.4V,  
LO(TX)  
TXIN  
TXIN  
TXIN  
TXIN  
LNAGAIN  
VCOON  
RXON = TXON = MOD = DIV1 = PREGND = GND, T = +25°C, unless otherwise noted.)  
A
RECEIVER SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
TRANSMITTER SUPPLY CURRENT  
vs. TEMPERATURE  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
4.5  
39  
37  
35  
33  
31  
V
CC  
= 4.8V  
VCOON = GND  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
CC  
= 3.3V  
V
CC  
= 4.8V  
V
= 2.7V  
CC  
V
= 3.3V  
CC  
29  
27  
25  
23  
21  
V
CC  
= 4.8V  
V
CC  
= 2.7V  
RXON = V  
CC  
V
CC  
= 3.3V  
TXON = V  
CC  
PREGND = UNCONNECTED  
INCLUDES OSCILLATOR  
CURRENT  
PREGND = UNCONNECTED  
INCLUDES OSCILLATOR  
CURRENT  
V
CC  
= 2.7V  
-40 -20  
0
20  
40  
60  
80  
-40 -20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RECEIVER NOISE FIGURE  
vs. LNAGAIN  
RECEIVER GAIN vs. LNAGAIN  
RECEIVER INPUT IP3 vs. LNAGAIN  
40  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
5
LNA  
PARTIALLY  
BIASED  
LNA  
OFF  
LNA  
PARTIALLY  
BIASED  
ADJUSTABLE MAX  
LNA  
OFF  
LNA  
PARTIALLY  
BIASED  
ADJUSTABLE MAX  
LNA  
OFF  
GAIN  
GAIN  
GAIN  
GAIN  
0
AVOID  
THIS  
REGION  
-5  
ADJUSTABLE MAX  
GAIN GAIN  
0
-10  
-15  
-20  
-5  
RXON = V  
CC  
CC  
AVOID  
THIS  
REGION  
DIV1 = V  
-10  
-15  
-20  
AVOID  
THIS  
REGION  
RXON = V  
1.5  
RXON = V  
CC  
CC  
0
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
2.0  
0
0.5  
1.0  
1.5  
2.0  
LNAGAIN VOLTAGE (V)  
LNAGAIN VOLTAGE (V)  
LNAGAIN VOLTAGE (V)  
MAX2424  
RECEIVER GAIN vs. TEMPERATURE  
RECEIVER NOISE FIGURE vs.  
TEMPERATURE AND SUPPLY VOLTAGE  
RECEIVER INPUT IP3  
vs. TEMPERATURE  
5.5  
5.0  
4.5  
-6  
-8  
LNAGAIN = V  
CC  
LNAGAIN = V  
CC  
26  
24  
22  
20  
18  
RXON = V  
RXON = V  
V
= 1V  
CC  
CC  
CC  
LNAGAIN  
DIV1 = V  
V
= 4.8V  
CC  
-10  
-12  
-14  
V
CC  
= 4.8V  
V
= 3.3V  
CC  
V
= 2.7V  
CC  
4.0  
V
= 3.3V  
CC  
V
= 2.7V  
CC  
-16  
V
= 2V  
LNAGAIN  
3.5  
3.0  
-18  
-20  
RXON = V  
CC  
-40 -20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
900MHz Image-Reject Receiver  
with Transmit Mixer  
______________________________Typical Operating Characteristics (continued)  
(MAX2424/MAX2426 EV kit, V  
= +3.3V; f  
= 925.7MHz (MAX2424), 985MHz (MAX2426); f  
= 915MHz, P  
=
RXIN  
CC  
RX)  
RXIN  
LO(  
-35dBm, f  
= 915MHz, V  
= V  
= 2.3V (DC bias), V  
= 250mVp-p, f  
= 1MHz, V  
= 2V, V  
= 2.4V,  
LO(TX)  
TXIN  
TXIN  
TXIN  
TXIN  
LNAGAIN  
VCOON  
RXON = TXON = MOD = DIV1 = PREGND = GND, T = +25°C, unless otherwise noted.)  
A
MAX2424  
RECEIVER OUTPUT 1dB  
COMPRESSION POINT vs. TEMPERATURE  
RECEIVER IMAGE REJECTION  
vs. RF FREQUENCY  
RECEIVER IMAGE REJECTION  
vs. IF FREQUENCY  
60  
50  
40  
30  
20  
10  
0
40  
35  
-3  
-4  
RXON = V  
CC  
MAX2424  
MAX2426  
V
CC  
= 4.8V  
30  
25  
20  
15  
10  
5
-5  
-6  
-7  
-8  
-9  
V
= 2.7V  
CC  
V
= 3.3V  
CC  
-10  
-20  
RXON = V  
60  
CC  
RXON = V  
CC  
/MAX426  
0
1
-40 -20  
0
20  
40  
80  
0
400  
800  
1200  
1600  
2000  
10  
100  
1000  
TEMPERATURE (°C)  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
RXIN INPUT IMPEDANCE  
vs. FREQUENCY  
TRANSMITTER OUTPUT POWER  
vs. INPUT VOLTAGE  
TRANSMITTER OUTPUT POWER  
vs. TEMPERATURE  
MAX2424/6-13  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
-100  
-80  
-60  
-40  
-2  
-3  
TXON = V  
RXON = V  
V
= 4.8V  
CC  
CC  
CC  
0
-5  
V
= 3.3V  
-4  
CC  
-5  
-6  
IMAGINARY  
REAL  
V
CC  
= 4.8V  
V
CC  
= 2.7V  
-7  
-10  
-15  
-20  
-25  
-8  
-9  
V
CC  
= 2.7V  
V
CC  
= 3.3V  
-10  
-11  
-12  
-13  
-14  
-20  
0
TXON = V  
CC  
0
600  
800  
1000  
1200  
1400  
10  
100  
INPUT VOLTAGE (mVp-p)  
1000  
-20  
20  
TEMPERATURE (°C)  
-40  
0
40  
60  
80  
FREQUENCY (MHz)  
TRANSMITTER 1dB COMPRESSION POINT  
vs. TEMPERATURE  
TXOUT OUTPUT IMPEDANCE  
vs. FREQUENCY  
TRANSMITTER OUTPUT SPECTRUM  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
1
0
150  
100  
50  
DOUBLE-SIDE  
BAND  
FUNDAMENTAL  
TXON = V  
CC  
V
CC  
= 4.8V  
REAL  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0
LO  
V
CC  
= 3.3V  
-50  
IMAGINARY  
-100  
-150  
-200  
-250  
-300  
V
CC  
= 2.7V  
TXON = V  
TXON = V  
CC  
CC  
910 911 912 913 914 915 916 917 918 919 920  
FREQUENCY (MHz)  
-40 -20  
0
20  
40  
60  
80  
600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
900MHz Image-Reject Receiver  
with Transmit Mixer  
/MAX426  
______________________________Typical Operating Characteristics (continued)  
(MAX2424/MAX2426 EV kit, V  
= +3.3V; f  
= 925.7MHz (MAX2424), 985MHz (MAX2426); f  
= 915MHz, P  
=
RXIN  
CC  
RX)  
RXIN  
LO(  
-35dBm, f  
= 915MHz, V  
= V  
= 2.3V (DC bias), V  
= 250mVp-p, f  
= 1MHz, V  
= 2V, V  
= 2.4V,  
LO(TX)  
TXIN  
TXIN  
TXIN  
TXIN  
LNAGAIN  
VCOON  
RXON = TXON = MOD = DIV1 = PREGND = GND, T = +25°C, unless otherwise noted.)  
A
TRANSMITTER BASEBAND  
FREQUENCY RESPONSE  
POWER vs. TXIN VOLTAGE  
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
-33  
-36  
10  
0
TXON = V  
CC  
NOTE: TXIN IS TOTAL  
VOLTAGE FOR TWO TONES  
(PEAK-TO-PEAK)  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
FUNDAMENTAL  
IM3 LEVEL  
TXON = V  
CC  
1
10  
100  
1000  
10  
100  
TXIN VOLTAGE (mVp-p)  
1000  
FREQUENCY (MHz)  
______________________________________________________________Pin Description  
PIN  
NAME  
FUNCTION  
Supply-Voltage Input for Master Bias Cell. Bypass with a 47pF low-inductance capacitor and 0.1µF to  
GND (pin 28 recommended).  
1
V
CC  
Receive Bias Compensation Pin. Bypass with a 47pF low-inductance capacitor and 0.01µF to GND.  
Do not make any other connections to this pin.  
2
CAP1  
3
4
RXOUT  
GND  
Single-ended, 330IF Output. AC couple to this pin.  
Ground Connection  
Receiver RF Input, single ended. The input match shown in Figure 1 maintains an input VSWR of better  
than 2:1 from 902MHz to 928MHz.  
5
6
RXIN  
Supply Voltage Input for the Receive Low-Noise Amplifier. Bypass with a 47pF low-inductance capacitor  
to GND (pin 7 recommended).  
V
CC  
Ground Connection for Receive Low-Noise Amplifier. Connect directly to ground plane using multiple  
vias.  
7
8
9
GND  
GND  
Ground Connection for Signal-Path Blocks, except LNA  
PA Predriver Output. See Figure 1 for an example matching network, which provides better than 2:1  
VSWR from 902MHz to 928MHz.  
TXOUT  
Low-Noise Amplifier Gain-Control Input. Drive this pin high for maximum gain. When LNAGAIN is pulled  
low, the LNA is capacitively bypassed and the supply current is reduced by 4.5mA. This pin can also be  
driven with an analog voltage to adjust the LNA gain in intermediate states. Refer to the Receiver Gain  
vs. LNAGAIN Voltage graph in the Typical Operating Characteristics, as well as Table 1.  
10  
11  
LNAGAIN  
Supply Voltage Input for the Signal-Path Blocks, except LNA. Bypass with a 47pF low-inductance capac-  
itor and 0.01µF to GND (pin 8 recommended).  
V
CC  
_______________________________________________________________________________________  
7
900MHz Image-Reject Receiver  
with Transmit Mixer  
_________________________________________________Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Transmit Mixer’s Noninverting Baseband/IF Input. TXIN, TXIN form a high-impedance, differential input  
port. See Figure 1.  
12  
TXIN  
Transmit Mixer’s Inverting Baseband/IF Input. TXIN, TXIN form a high-impedance, differential input port.  
See Figure 1.  
13  
14  
15  
16  
17  
TXIN  
CAP2  
Transmit Bias Compensation Input. Bypass with a 47pF low-inductance capacitor and 0.01µF to GND.  
Do not make any other connections to this pin.  
Drive TXON and VCOON with a logic high to enable the transmit IF variable-gain amplifier, upconverter  
mixer, and PA predriver. See Power Management section.  
TXON  
RXON  
VCOON  
Drive RXON and VCOON with a logic high to enable the LNA, receive mixer, and IF output buffer.  
See Power Management section.  
Drive VCOON with a logic high to turn on the VCO, phase shifters, VCO buffers, and prescaler. To dis-  
able the prescaler, leave the PREGND pin unconnected.  
/MAX426  
Drive DIV1 with a logic high to disable the divide-by-64/65 prescaler and connect the PREOUT pin  
directly to an oscillator buffer amplifier, which outputs -8dBm into a 50load. Drive DIV1 low for divide-  
by-64/65 operation. Drive this pin low when in shutdown to minimize shutdown current.  
18  
19  
20  
DIV1  
MOD  
Modulus Control for the Divide-by-64/65 Prescaler. Drive MOD high for divide-by-64 mode. Drive MOD  
low for divide-by-65 mode.  
Ground connection for the Prescaler. Connect PREGND to ground for normal operation. Leave uncon-  
nected to disable the prescaler and the output buffer. Connect MOD and DIV1 to ground and leave PRE-  
OUT unconnected when disabling the prescaler.  
PREGND  
Prescaler/Oscillator Buffer Output. In divide-by-64/65 mode (DIV1 = low), the output level is 500mVp-p  
into a high-impedance load. In divide-by-1 mode (DIV1 = high), this output delivers -8dBm into a 50Ω  
load. AC couple to this pin.  
21  
PREOUT  
Supply-Voltage Input for Prescaler. Bypass with a 47pF low-inductance capacitor and 0.01µF to GND  
(pin 20 recommended).  
22  
23  
24  
25  
V
V
CC  
Supply-Voltage Input for VCO and Phase Shifters. Bypass with a 47pF low-inductance capacitor to GND  
(pin 26 recommended).  
CC  
Differential Oscillator Tank Port. See Applications Information for information on tank circuits or on using  
an external oscillator.  
TANK  
Differential Oscillator Tank Port. See Applications Information for information on tank circuits or on using  
an external oscillator.  
TANK  
26  
27  
28  
GND  
GND  
GND  
Ground Connection for VCO and Phase Shifters  
Ground (substrate)  
Ground Connection for Master Bias Cell  
8
_______________________________________________________________________________________  
900MHz Image-Reject Receiver  
with Transmit Mixer  
/MAX426  
V
V
CC  
CC  
1
22  
V
V
CC  
CC  
47pF  
0.01µF  
0.1µF  
0.1µF  
47pF  
20  
23  
28  
2
GND  
PREGND  
VCO TANK COMPONENTS  
FOR 915MHz RF FREQUENCY  
V
CC  
L3  
(nH)  
C26  
(pF)  
CAP1  
C2, C3  
(pF)  
R6, R7  
()  
V
CC  
DEVICE  
47pF  
47pF  
26  
27  
6.8  
3.3  
2.0  
4.0  
MAX2424  
MAX2426  
3.3  
8.0  
10  
20  
GND  
GND  
RECEIVE  
RF INPUT  
8.2nH  
MAX2424  
MAX2426  
5
0.01µF  
RXIN  
3
RXOUT  
RECEIVE IF OUTPUT (330)  
47pF  
12nH  
V
CC  
0.01µF*  
47pF  
MODULATOR INPUT  
22nH  
12  
13  
TXIN  
TXIN  
47pF  
10k  
9
V
CC  
TXOUT  
R
A
R
B
18nH  
TRANSMIT  
RF OUTPUT  
10k  
MODULATOR INPUT  
0.01µF*  
V
CC  
6
7
VARACTORS:  
V
CC  
ALPHA SMV1299-004  
OR EQUIVALENT  
1k  
47pF  
100nH  
GND  
V
R7  
CC  
25  
24  
11  
8
TANK  
C2  
47k  
C26  
V
CC  
VCO  
0.01µF  
0.01µF  
47pF  
L3  
ADJUST  
R6  
GND  
47pF  
TANK  
1000pF  
1k  
C3  
14  
21  
19  
CAP2  
PREOUT  
MOD  
TO PLL  
MOD  
47pF  
18  
17  
DIV1  
DIV1  
VCOON  
VCOON  
*
WHEN USING DIFFERENTIAL  
SOURCE, REMOVE RESISTORS  
10  
4
16  
15  
LNAGAIN  
GND  
LNAGAIN  
RXON  
TXON  
RXON  
TXON  
AND REPLACE CAPACITORS WITH  
SHORTS. FOR SINGLE-ENDED  
47pF  
SOURCE, DRIVE ONLY MODULATOR  
INPUT. CHOOSE R AND R VALUES  
A
B
AS SHOWN IN TRANSMITTER SECTION.  
Figure 1. Typical Operating Circuit  
_______________________________________________________________________________________  
9
900MHz Image-Reject Receiver  
with Transmit Mixer  
_______________Detailed Description  
The following sections describe each of the functional  
blocks shown in the Functional Diagram.  
MAX2424  
MAX2426  
Receiver  
TXIN  
The MAX2424/MAX2426’s receive path consists of a  
900MHz low-noise amplifier, an image-reject mixer, and  
an IF buffer amplifier.  
1.5µA  
1.5µA  
2M  
VMIXER INPUT  
The LNA’s gain and biasing are adjustable via the LNA-  
GAIN pin. Proper operation of this pin provides optimum  
TXIN  
performance over a wide range of signal levels. The LNA  
has four modes determined by the DC voltage applied on  
the LNAGAIN pin. See Table 1, as well as the relevant  
Figure 2. TXIN, TXIN Equivalent Circuit  
Typical Operating Characteristics plots.  
At low LNAGAIN voltages, the LNA is shut off and the  
input signal capacitively couples directly into mixer to  
provide maximum linearity for large-signal operation  
(receiver close to transmitter). As the LNAGAIN voltage  
increases, the LNA turns on. Between 0.5V and 1V at  
LNAGAIN, the LNA is partially biased and behaves like a  
Class C amplifier. Avoid this operating mode for applica-  
tions where linearity is a concern. As the LNAGAIN volt-  
age reaches 1V, the LNA is fully biased into Class A  
mode, and the gain is monotonically adjustable for LNA-  
GAIN voltages above 1V. See the receiver gain, IP3, and  
Noise Figure vs. LNAGAIN plots in the Typical Operating  
Characteristics for more information.  
each mixer. An on-chip oscillator and an external tank  
circuit generates the LO. Its signal is buffered and split  
into two phase shifters, which provide 90° of phase shift  
across their outputs. This pair of LO signals is fed to the  
mixers. The mixers’ outputs then pass through a sec-  
ond pair of phase shifters, which provide a 90° phase  
shift across their outputs. The resulting mixer outputs are  
then summed together. The final phase relationship is  
such that the desired signal is reinforced and the image  
signal is canceled. The downconverter mixer output  
appears on the RXOUT pin, a single-ended 330output.  
/MAX426  
Transmitter  
The MAX2424/MAX2426 transmitter consists of a bal-  
anced mixer and a PA driver amplifier. The mixer inputs  
are accessible via the TXIN and TXIN pins. An equiva-  
lent circuit for the TXIN and TXIN pins is shown in  
Figure 2. Because TXIN and TXIN are linearly coupled  
to the mixer stage, they can accept spectrally shaped  
input signals. Typically, the mixer can be used to multi-  
ply the LO with a baseband signal, generating BPSK or  
ASK modulation. Transmit upconversion can also be  
implemented by applying a modulated IF signal to  
these inputs. For applications requiring image rejection  
on the transmitter, refer to the MAX2420/MAX2421/  
MAX2422/MAX2460/MAX2463 data sheet.  
The downconverter is implemented using an image-  
reject mixer consisting of an input buffer with two out-  
puts, each of which is fed to a double-balanced mixer.  
A quadrature LO drives the local-oscillator (LO) port of  
Table 1. LNA Modes  
LNAGAIN  
MODE  
VOLTAGE (V)  
LNA capacitively bypassed,  
minimum gain, maximum IP3  
0 < V  
0.5  
LNAGAIN  
LNA partially biased. Avoid this  
mode— the LNA operates in a  
Class C manner  
0.5 < V  
< 1.0  
LNAGAIN  
Set the common-mode voltage at TXIN, TXIN to 2.3V by  
selecting appropriate values for R and R (Figure 1). The  
A
B
total series impedance of R and R should be approxi-  
A
B
LNA gain is monotonically  
adjustable  
1.0 < V  
1.5  
LNAGAIN  
LNAGAIN  
mately 100k.  
Frequency modulation (FM) is realized by modulating  
the VCO tuning voltage. Apply the appropriate differen-  
tial and common-mode voltages to TXIN and TXIN to  
control transmitter output power (Figure 3).  
LNA at maximum gain  
(remains monotonic)  
1.5 < V  
V  
CC  
10 ______________________________________________________________________________________  
900MHz Image-Reject Receiver  
with Transmit Mixer  
/MAX426  
Phase Shifter  
The MAX2424/MAX2426 uses passive networks to pro-  
vide quadrature phase shifting for the receive IF and LO  
signals. Because these networks are frequency selec-  
tive, both the RF and IF frequency operating ranges are  
limited. Image rejection degrades as the IF and RF  
moves away from the designed optimum frequencies.  
The MAX2424/MAX2426’s phase shifters are arranged  
such that the LO frequency is higher than the RF carrier  
frequency (high-side injection).  
V
CC  
MAX2424  
MAX2426  
R1  
R2  
R3  
i
1.5µA  
TXIN  
TXIN  
2M  
Local Oscillator (LO)  
The on-chip LO is formed by an emitter-coupled differ-  
ential pair. An external LC resonant tank sets the oscil-  
lation frequency. A varactor diode is typically used to  
create a voltage-controlled oscillator (VCO). See the  
Applications Information section for an example VCO  
tank circuit.  
1.5µA  
R = R + R + R  
T
1
2
3
V
= V  
- V  
DIFF  
TXIN TXIN  
Figure 3. Biasing TXIN and TXIN for FM  
The LO may be overdriven in applications where an  
external signal is available. The external LO signal  
should be about 0dBm from 50, and should be AC  
coupled into either the TANK or TANK pin. Both TANK  
For example, if V  
T
that bias currents for TXIN and TXIN have little effect  
over temperature. Set V  
mode voltage range requirements at V  
= 3.3V and P  
= -8dBm, choose  
CC  
OUT  
R = 100kfor sufficient current through the divider, so  
= 2.3V to satisfy common-  
TXIN  
and TANK require pull-up resistors to V . See the  
CC  
= 3.3V.  
CC  
Applications Information section for details.  
Use the Transmit Output Power vs. Input Voltage graph  
in the Typical Operating Characteristics to determine  
the input voltage (in mVp-p) required to produce the  
desired output. Divide this value by 22 and use it for  
The local oscillator resists pulling caused by changes  
in load impedance that occur as the part is switched  
from standby mode, with just the oscillator running to  
either transmit or receive mode. The amount of LO  
pulling is affected if a signal is present at the RXIN port  
in transmit mode. The most common cause of pulling is  
imperfect isolation in an external transmit/  
receive (T/R) switch. The AC Electrical Characteristics  
table contains specifications for this case as well.  
V
. A -8dBm transmitter output requires 250mVp-p /  
DIFF  
22 = 88.4mV.  
V
= 2.3V + 0.0884V = 2.3884V  
TXIN  
R = R1 + R2 + R3  
T
Solve for resistors R1, R2, and R3 with the following  
equations:  
Prescaler  
The on-chip prescaler operates in two different modes:  
as a dual-modulus divide-by-64/65, or as an oscillator  
buffer amplifier. The DIV1 pin controls this function.  
When DIV1 is low, the prescaler is in dual-modulus  
divide-by-64/65 mode; when it is high, the prescaler is  
disabled and the oscillator buffer amplifier is enabled.  
The buffer typically outputs -8dBm into a 50load. To  
minimize shutdown supply current, pull the DIV1 pin  
low when in shutdown mode.  
V
x R  
TXIN  
T
R3 =  
R2 =  
V
CC  
R
T
V
– V  
x
TXIN  
TXIN  
(
)
V
CC  
R1 = R – R2 – R3  
T
Since the transmit and receive sections typically require  
different LO frequencies, it is not recommended to have  
both transmit and receive active at the same time.  
In divide-by-64/65 drive mode, the division ratio is con-  
trolled by the MOD pin. Drive MOD high to operate the  
prescaler in divide-by-64 mode. Drive MOD and DIV1  
low to operate the prescaler in divide-by-65 mode.  
______________________________________________________________________________________ 11  
900MHz Image-Reject Receiver  
with Transmit Mixer  
To disable the prescaler entirely, leave PREGND and  
PREOUT unconnected. Also connect the MOD and  
DIV1 pins to GND. Disabling the prescaler does not  
affect operation of the VCO stage.  
Choose tank components according to your application  
needs, such as phase-noise requirements, tuning  
range, and VCO gain. High Q inductors such as air-  
core micro springs yield low phase noise. Use a low-  
tolerance inductor (L3) for predictable oscillation  
frequency. Resistors R6 and R7 can be chosen from 0  
to 20to reduce the Q of parasitic resonance due to  
Power Management  
The MAX2424/MAX2426 supports four different power-  
management features to conserve battery life. The VCO  
section has its own control pin (VCOON), which also  
serves as a master bias pin. When VCOON is high, the  
LO, quadrature LO phase shifters, and prescaler or LO  
buffer are all enabled. Stabilize VCO by powering it up  
prior to transmitting or receiving. For transmit-to-receive  
switching, the receiver and transmitter sections have  
their own enable control inputs, RXON and TXON. With  
VCOON high, bringing RXON high enables the receive  
path, which consists of the LNA, image-reject mixers,  
and IF output buffer. When this pin is low, the receive  
path is inactive. The TXON input enables the upcon-  
verter mixer and PA predriver. VCOON must be high for  
the transmitter to operate. When TXON is low, the trans-  
mitter is off.  
series package inductance L . Keep R6 and R7 as  
T
small as possible to minimize phase noise, yet large  
enough to ensure oscillator start-up in fundamental  
mode. Oscillator start-up with be most critical with high  
tuning bandwidth (low tank Q) and high temperature.  
Capacitors C2 and C3 couple in the varactor. Light  
coupling of the varactor is a way to reduce the effects  
of high varactor tolerance and increase loaded Q. For a  
wider tuning range, use larger values for C2 and C3 or  
a varactor with a large capacitance ratio. Capacitor  
C26 is used to trim the tank oscillator frequency. Larger  
values for C26 will help negate the effect of stray PCB  
capacitance and parasitic inductor capacitance (L3).  
Choose a low-tolerance capacitor for C26.  
/MAX426  
To disable all chip functions and reduce the supply cur-  
rent to typically 0.5µA, pull VCOON, DIV1, MOD, RXON,  
and TXON low.  
V
CC  
L4  
___________Applications Information  
100nH  
MAX2424  
MAX2426  
R5  
1k  
Oscillator Tank  
The on-chip oscillator requires a parallel-resonant tank  
circuit connected across TANK and TANK. Figure 4  
shows an example of an oscillator tank circuit. Inductor  
L4 provides DC bias to the tank ports. Inductor L3,  
capacitor C26, and the series combination of capaci-  
tors C2, C3, and both halves of the varactor diode  
capacitance set the resonant frequency as follows:  
C2  
R7  
TANK  
1/2 D1  
R8  
VCO_CTRL  
47k  
L3  
6.8nH  
C26  
C3  
C1  
47pF  
R6  
1/2 D1  
1
TANK  
R4  
1k  
f =  
r
2π L3 C  
(
)
(
)
EFF  
D1 = ALPHA SMV1299-004  
1
C
=
+ C26  
SEE FIGURE 1 FOR R6, R7, C2, C3, C26, AND L3 COMPONENT VALUES.  
EFF  
1
1
2
C
D1  
+
+
C2 C3  
Figure 4. Oscillator Tank Schematic Using the On-Chip VCO  
where C is the capacitance of one varactor diode.  
D1  
12 ______________________________________________________________________________________  
900MHz Image-Reject Receiver  
with Transmit Mixer  
/MAX426  
L
T
TANK  
L1  
L3  
R1  
MAX2424  
MAX2426  
1/2 D1  
1/2 D1  
R2  
L4  
V
TUNE  
V
CC  
C
i
C2  
C1  
L
T
L2  
L5  
R3  
TANK  
Figure 5. Series-Coupled Resonant Tank for Wide Tuning Range and Low Phase Noise  
For applications that require a wide tuning range and  
low phase noise, a series-coupled resonant tank may  
be required as shown in Figure 5. This tank will use the  
V
V
CC  
package inductance in series with inductors L1, L2,  
and capacitance of varactor D1 to set the net equiva-  
lent inductance which resonates in parallel with the  
internal oscillator capacitance. Inductors L1 and L2  
may be implemented as microstrip inductors, saving  
component cost. Bias is provided to the tank port  
through chokes L3 and L5. R1 and R3 should be cho-  
sen large enough to de-Q the parasitic resonance due  
to L3 and L5 but small enough to minimize the voltage  
drop across them due to bias current. Values for R1  
and R3 should be kept between 0 and 50. Proper  
high frequency bypassing (C1) should be used for the  
bias voltage to eliminate power supply noise from  
entering the tank.  
MAX2424  
50Ω  
50Ω  
47pF  
TANK  
CC  
50Ω  
EXT LO  
TANK  
EXTERNAL LO LEVEL IS 0dBm  
FROM A 50SOURCE.  
50Ω  
47pF  
Oscillator Tank PC Board Layout  
The parasitic PC board capacitance, as well as PCB  
trace inductance and package inductance, affect oscil-  
lation frequency, so be careful in laying out the PC  
board for the oscillator tank. Keep the tank layout as  
symmetrical, tightly packed, and close to the device as  
possible to minimize LO feedthrough. When using a PC  
board with a ground plane, a cut-out in the ground  
plane (and any other planes) below the oscillator tank  
reduces parasitic capacitance.  
Figure 6. Using an External Local Oscillator  
Using an External Oscillator  
If an external 50LO signal source is available, it can  
be used as an input to the TANK or TANK pin in place  
of the on-chip oscillator (Figure 6). The oscillator signal  
is AC coupled into the TANK pin and should have a  
level of about 0dBm from a 50source. For proper  
biasing of the oscillator input stage, pull up the TANK  
and TANK pins to the V  
supply via 50resistors.  
CC  
If a differential LO source such as the MAX2620 is  
available, AC-couple the inverting output into TANK.  
______________________________________________________________________________________ 13  
900MHz Image-Reject Receiver  
with Transmit Mixer  
_________________________________________________________Functional Diagram  
LNAGAIN  
90°  
RXOUT  
Σ
RXIN  
0°  
DIV1  
MOD  
CAP1  
0°  
90°  
÷ 1/64/65  
PREOUT  
RXON  
TXON  
BIAS  
PREGND  
TANK  
CAP2  
PHASE  
SHIFTER  
TANK  
VCOON  
0°  
MAX2424  
MAX2426  
/MAX426  
TXIN  
TXOUT  
TXIN  
________________________________________________________Package Information  
14 ______________________________________________________________________________________  

相关型号:

MAX2424EAI+

TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PDSO28, SSOP-28
ROCHESTER

MAX2424EAI+T

RF and Baseband Circuit, PDSO28, SSOP-28
MAXIM

MAX2424EAI-T

RF and Baseband Circuit, PDSO28, SSOP-28
MAXIM

MAX2426

900MHz Image-Reject Receivers with Transmit Mixer
MAXIM

MAX2426EAI

900MHz Image-Reject Receivers with Transmit Mixer
MAXIM

MAX2426EAI

TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PDSO28, SSOP-28
ROCHESTER

MAX2426EAI+

TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PDSO28, SSOP-28
ROCHESTER

MAX2426EAI+

RF and Baseband Circuit, PDSO28, SSOP-28
MAXIM

MAX2426EAI+T

RF and Baseband Circuit, PDSO28, SSOP-28
MAXIM

MAX2426EVKIT

Evaluation Kit for the MAX2424/MAX2426
MAXIM

MAX24287

1Gbps Parallel-to-Serial MII Converter Translates Link Speed and Duplex Mode
MAXIM

MAX24287ETK

1Gbps Parallel-to-Serial MII Converter Translates Link Speed and Duplex Mode
MAXIM