MAX296EWE+T [MAXIM]

Switched Capacitor Filter, 1 Func, Bessel, Lowpass, PDSO16, SOP-16;
MAX296EWE+T
型号: MAX296EWE+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switched Capacitor Filter, 1 Func, Bessel, Lowpass, PDSO16, SOP-16

LTE 光电二极管 有源滤波器
文件: 总10页 (文件大小:339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX291/MAX292/  
MAX295/MAX296  
8th-Order, Lowpass,  
Switched-Capacitor Filters  
General Description  
Features  
o 8th-Order Lowpass Filters:  
The MAX291/MAX292/MAX295/MAX296 are easy-to-use,  
8th-order, lowpass, switched-capacitor filters that can be  
set up with corner frequencies from 0.1Hz to 25kHz  
(MAX291/MAX292) or 0.1Hz to 50kHz (MAX295/MAX296).  
Butterworth (MAX291/MAX295)  
Bessel  
(MAX292/MAX296)  
o Clock-Tunable Corner-Frequency Range:  
0.1Hz to 25kHz (MAX291/MAX292)  
0.1Hz to 50kHz (MAX295/MAX296)  
o No External Resistors or Capacitors Required  
o Internal or External Clock  
The MAX291/MAX295 Butterworth filters provide maxi-  
mally flat passband response, and the MAX292/MAX296  
Bessel filters provide low overshoot and fast settling. All  
four filters have fixed responses, so the design task is  
limited to selecting the clock frequency that controls the  
filter’s corner frequency.  
o Clock to Corner Frequency Ratio:  
100:1 (MAX291/MAX292)  
An external capacitor is used to generate a clock using  
the internal oscillator, or an external clock signal can be  
used. An uncommitted operational amplifier (noninverting  
input grounded) is provided for building a continuous-  
time lowpass filter for post-filtering or anti-aliasing.  
50:1 (MAX295/MAX296)  
o Low Noise: -70dB THD + Noise (Typ)  
o Operate with a Single +5V Supply or  
Dual 5V Supplies  
Produced in an 8-pin DIP/SO and a 16-pin wide SO  
package, and requiring a minimum of external compo-  
nents, the MAX291 series delivers very aggressive per-  
formance from a tiny area.  
o Uncommitted Op Amp for Anti-Aliasing or Clock-  
Noise Filtering  
o 8-Pin DIP and SO Packages  
Ordering Information  
Applications  
ADC Anti-Aliasing Filter  
Noise Analysis  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
16 Wide SO  
Dice*  
8 Plastic DIP  
8 SO  
16 Wide SO  
8 CERDIP**  
MAX291CPA  
MAX291CSA  
MAX291CWE  
MAX291C/D  
MAX291EPA  
MAX291ESA  
MAX291EWE  
MAX291MJA  
DAC Post-Filtering  
50Hz/60Hz Line-Noise Filtering  
Ordering Information continued at end of data sheet.  
* Contact factory for dice specifications.  
Typical Operating Circuit  
** Contact factory for availability and processing to MIL-STD-883.  
+5V  
Pin Configurations  
7
V+  
8
1
TOP VIEW  
5
3
INPUT  
IN  
OUT  
OUTPUT  
OP OUT  
1
2
3
4
8
7
6
5
IN  
CLK  
V-  
MAX29_  
V+  
MAX29_  
4
CLOCK  
CLK  
OP IN-  
GND  
OUT  
OP OUT  
OP IN-  
6
V-  
2
-5V  
DIP/SO  
Pin Configuration is 8-pin DIP/SO.  
16-pin Wide SO at end of data sheet.  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-4526; Rev 5; 5/10  
MAX291/MAX292/MAX295/MAX296  
8th-Order, Lowpass,  
Switched-Capacitor Filters  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V+ to V-).......................................................12V  
Operating Temperature Ranges  
Input Voltage at Any Pin.............V- + (-0.3V) V V+ + (0.3V)  
MAX29_C_ _........................................................0°C to +70°C  
MAX29_E_ _.....................................................-40°C to +85°C  
MAX29_MJA ..................................................-55°C to +125°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+240°C  
IN  
Continuous Power Dissipation  
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW  
8-Pin SO (derate 5.88mW/°C above +70°C)................471mW  
16-Pin Wide SO (derate 9.52mW/°C above +70°C) ....762mW  
8-Pin CERDIP (derate 8.00mW/°C above +70°C)........640mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = 5V, V- = -5V, filter output measured at OUT pin, 20kload resistor to ground at OUT and OP OUT, f  
= 100kHz  
CLK  
(MAX291/MAX292) or f  
= 50kHz (MAX295/MAX296), T = T  
to T  
, unless otherwise noted.)  
MAX  
CLK  
A
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FILTER CHARACTERISTICS  
MAX291/MAX292  
MAX295/MAX296  
MAX291/MAX292  
MAX295/MAX296  
MAX291  
0.1-25k  
0.1-50k  
100:1  
50:1  
10  
Corner-Frequency Range  
Hz  
Clock to Corner  
Frequency Ratio  
MAX292  
MAX295  
40  
5
Clock to Corner  
Frequency Tempco  
ppm/°C  
MAX296  
60  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 0.50 F  
-0.02  
-2.7  
-0.1  
-3.2  
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
= 1.00 F  
= 2.00 F  
= 3.00 F  
= 0.25 F  
= 0.50 F  
= 1.00 F  
= 2.00 F  
= 3.00 F  
= 4.00 F  
= 6.00 F  
= 0.50 F  
= 1.00 F  
= 2.00 F  
= 3.00 F  
= 0.25 F  
= 0.50 F  
= 1.00 F  
= 2.00 F  
= 3.00 F  
= 4.00 F  
= 6.00 F  
-2.2  
-43.0  
-70.0  
-0.1  
MAX291  
MAX292  
MAX295  
MAX296  
-48.0  
-76.0  
-0.2  
-0.3  
-1.0  
-0.6  
-0.8  
-2.7  
-3.0  
-3.3  
-11.0  
-30.0  
-47.0  
-74.0  
-13.0  
-34.0  
-51.0  
-78.0  
-0.02  
-2.7  
-15.0  
Insertion Gain Relative to  
DC Gain  
dB  
-0.1  
-3.2  
-2.2  
-43.0  
-70.0  
-0.1  
-48.0  
-76.0  
-0.2  
-0.3  
-1.0  
-0.6  
-0.8  
-2.7  
-3.0  
-3.3  
-11.0  
-30.0  
-47.0  
-74.0  
-13.0  
-34.0  
-51.0  
-78.0  
-15.0  
2
Maxim Integrated  
MAX291/MAX292/MAX295/MAX296  
8th-Order, Lowpass,  
Switched-Capacitor Filters  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 5V, V- = -5V, filter output measured at OUT pin, 20kload resistor to ground at OUT and OP OUT, f  
= 100kHz  
CLK  
(MAX291/MAX292) or f  
= 50kHz (MAX295/MAX296), T = T  
to T , unless otherwise noted.)  
MAX  
CLK  
A
MIN  
PARAMETER  
Output DC Swing  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
V
Output Offset Voltage  
IN = GND  
150  
0
400  
mV  
DC Insertion Gain Error with  
Output Offset Removed  
0.15  
-0.15  
dB  
Total Harmonic Distortion  
plus Noise  
T
= +25°C, f  
= 100kHz  
-70  
6
dB  
A
CLK  
Clock Feedthrough  
f
= 100kHz  
mVp-p  
CLK  
CLOCK  
Internal Oscillator  
Frequency  
C
= 1000pF  
= 0V or 5V  
29  
35  
70  
43  
kHz  
µA  
OSC  
Internal Oscillator  
Current Source/Sink  
V
CLK  
120  
Clock Input High  
(Note 1)  
4.0  
V
V
Low  
1.0  
50  
UNCOMMITTED OP AMP  
Input Offset Voltage  
Output DC Swing  
Input Bias Current  
POWER REQUIREMENTS  
10  
mV  
V
µA  
4
0.05  
Supply Voltage  
Dual Supply  
2.375  
4.750  
5.500  
V
V
Single Supply  
V- = 0V, GND = V 2  
V+ = 5V, V- = -5V, V  
V+ = 2.375V, V- = -2.375V, V  
11.000  
22  
12  
= 0V to 5V  
15  
7
CLK  
Supply Current  
mA  
= -2V to 2V  
CLK  
Note 1. Guaranteed by design.  
Typical Operating Characteristics  
(V+ = 5V, V- = -5V, T = +25°C, f  
= 100kHz (MAX291/MAX292) or f  
= 50kHz (MAX295/MAX296), unless otherwise noted.)  
A
CLK  
CLK  
INTERNAL OSCILLATOR PERIOD vs.  
CAPACITANCE VALUE  
NORMALIZED INTERNAL OSCILLATOR  
FREQUENCY vs. SUPPLY VOLTAGE  
NORMALIZED INTERNAL OSCILLATOR  
FREQUENCY vs. TEMPERATURE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1nF EXTERNAL  
CAPACITOR CLK  
1nF EXTERNAL  
CAPACITOR CLK  
1.06  
1.030  
1.020  
1.010  
1.03  
1.00  
0.97  
0.94  
1.000  
0.990  
0
0
4
6
8
10 12 14 16 18  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
-60 -40 -20  
0
20 40 60 80 100 120 140  
CAPACITANCE (nF)  
TEMPERATURE (°C)  
Maxim Integrated  
3
MAX291/MAX292/MAX295/MAX296  
8th-Order, Lowpass,  
Switched-Capacitor Filters  
Typical Operating Characteristics (continued)  
(V+ = 5V, V- = -5V, T = +25°C, f  
A
= 100kHz (MAX291/MAX292) or f  
= 50kHz (MAX295/MAX296), unless otherwise noted.)  
CLK  
CLK  
MAX292/MAX296  
FREQUENCY RESPONSE  
MAX291/MAX295  
FREQUENCY RESPONSE  
MAX291/MAX295  
FREQUENCY RESPONSE  
20  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
20  
0
F = 1kHz  
F = 1kHz  
o
F = 1kHz  
o
o
MAX291  
MAX295  
-20  
-40  
-60  
-80  
-100  
-120  
-20  
-40  
-60  
-80  
-100  
-120  
MAX296  
MAX291  
MAX292  
6
MAX295  
4
0
2
4
8
10  
0
200  
400  
600  
800  
1k  
0
1
2
3
5
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
MAX291/MAX295  
SUPPLY CURRENT  
MAX292/MAX296  
FREQUENCY RESPONSE  
vs. SUPPLY VOLTAGE  
FREQUENCY RESPONSE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
16  
15  
14  
13  
12  
11  
10  
9
0
100kHz EXTERNAL CLOCK  
F = 1kHz  
F = 1kHz  
o
o
-2  
-4  
MAX296  
MAX292  
-6  
MAX291/MAX295  
-8  
-10  
-12  
-14  
8
7
6
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE, V+ OR |V-|  
0
400  
800  
1.2k  
1.6k  
2k  
0
400  
800  
1.2k  
1.6k  
2k  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
MAX291/MAX295  
PHASE RESPONSE  
SUPPLY CURRENT vs. TEMPERATURE  
MAX292/296 PHASE RESPONSE  
0
16  
15  
14  
13  
12  
11  
10  
0
-80  
100kHz EXTERNAL CLOCK  
I+ OR | I- |  
f = 1kHz  
o
F = 1kHz  
o
-50  
-100  
-150  
-200  
-250  
-300  
-160  
-240  
-320  
-400  
-480  
-560  
MAX291  
-350  
MAX295  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0
400  
800  
1.2k  
1.6k  
2k  
0
400  
800  
1.2k  
1.6k  
2k  
TEMPERATURE (°C)  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
4
Maxim Integrated  
MAX291/MAX292/MAX295/MAX296  
8th-Order, Lowpass,  
Switched-Capacitor Filters  
Typical Operating Characteristics (continued)  
(V+ = 5V, V- = -5V, R  
= 5k, T = +25°C, unless otherwise noted.)  
A
LOAD  
MAX296 LOW-VOLTAGE  
FREQUENCY RESPONSE  
MAX291 LOW-VOLTAGE  
FREQUENCY RESPONSE  
MAX291 THD + NOISE vs.  
INPUT SIGNAL AMPLITUDE  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
0
A: f = 200kHz F = 2kHz  
INPUT FREQ. = 200Hz  
MEAS. BANDWIDTH = 30kHz  
CLK  
o
V+ = +2.5V  
V- = -2.5V  
V+ = +2.5V  
V- = -2.5V  
0
-4  
-4  
-8  
B: f = 1MHz F = 1kHz  
CLK  
o
-8  
INPUT FREQ. = 1kHz  
MEAS. BANDWIDTH = 80kHz  
F
= 20kHz  
C
-12  
-12  
-16  
-20  
-24  
F
= 2kHz  
A
C
-16  
-20  
F
= 20kHz  
C
F
= 1kHz  
1.3  
C
-24  
-28  
B
-28  
-80  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
INPUT FREQUENCY (F/FC)  
1.0  
1.1  
1.2  
1.4  
1.5  
1
2
3
4
5
6
7
8
9
10  
INPUT FREQUENCY (F/FC)  
AMPLITUDE (Vp-p)  
MAX291 LOW-FREQUENCY  
PHASE RESPONSE  
MAX292 THD + NOISE vs.  
INPUT SIGNAL AMPLITUDE  
MAX296 LOW-VOLTAGE PHASE RESPONSE  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
A: f = 200kHz F = 2kHz  
INPUT FREQ. = 200Hz  
MEAS. BANDWIDTH = 30kHz  
CLK  
o
V+ = +2.5V  
V- = -2.5V  
V+ = +2.5V  
V- = -2.5V  
0
0
-80  
-160  
-240  
-320  
-400  
-480  
-90  
-180  
-270  
-360  
-450  
-540  
B: f = 1MHz F = 1kHz  
CLK  
o
INPUT FREQ. = 1kHz  
MEAS. BANDWIDTH = 80kHz  
F
= 20kHz  
C
F
= 20kHz  
B
C
F
= 2kHz  
C
F
= 1kHz  
C
A
-560  
-80  
-630  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1
2
3
4
5
6
7
8
9
10  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
INPUT FREQUENCY (F/FC)  
INPUT FREQUENCY (F/FC)  
AMPLITUDE (Vp-p)  
MAX295 THD + NOISE vs.  
INPUT SIGNAL AMPLITUDE  
MAX296 THD + NOISE vs.  
INPUT SIGNAL AMPLITUDE  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
C: f = 200kHz F = 4kHz  
INPUT FREQ. = 400Hz  
MEAS. BANDWIDTH = 30kHz  
C: f = 200kHz F = 4kHz  
INPUT FREQ. = 400Hz  
MEAS. BANDWIDTH = 30kHz  
CLK  
o
CLK  
o
D: f = 1MHz F = 20kHz  
D: f = 1MHz F = 20kHz  
CLK  
o
CLK  
o
INPUT FREQ. = 2kHz  
MEAS. BANDWIDTH = 80kHz  
INPUT FREQ. = 2kHz  
MEAS. BANDWIDTH = 80kHz  
D
D
C
C
-80  
-80  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
AMPLITUDE (Vp-p)  
AMPLITUDE (Vp-p)  
Maxim Integrated  
5
MAX291/MAX292/MAX295/MAX296  
8th-Order, Lowpass,  
Switched-Capacitor Filters  
_____________________Pin Description  
A
8-PIN 16-PIN  
NAME  
FUNCTION  
1, 2, 7,  
8, 9, 10,  
15, 16  
B
N.C.  
No Connect  
C
Clock Input. Use internal or  
external clock.  
1
3
CLK  
Negative Supply pin. Dual  
supplies: -2.375V to -5.500V.  
Single supplies: V- = 0V.  
TIME (200µs/div)  
2
3
4
5
6
4
5
V-  
A: 3kHz INPUT SIGNAL  
B: MAX292 BESSEL FILTER RESPONSE WITH F = 10kHz  
OP OUT  
OP IN-  
OUT  
Uncommitted Op-Amp Output  
o
C: MAX291 BUTTERWORTH FILTER RESPONSE WITH F = 10kHz  
o
Inverting Input to the uncommit-  
ted op amp. The noninverting op  
amp is internally tied to ground.  
6
Figure 1. Bessel vs. Butterworth Filter Responses  
11  
12  
Filter Output  
The MAX291/MAX295 give more attenuation outside the  
passband. The phase and frequency response curves in  
the Typical Operating Characteristics reveal the differences  
between the two types of filters.  
Ground. In single-supply oper-  
ation, GND must be biased to  
the mid-supply voltage level.  
GND  
Positive Supply pin. Dual sup-  
plies: +2.375V to +5.500V. Single  
supplies: +4.75V to +11.0V.  
MAX291/MAX292/MAX295/MAX296 phase shift and gain  
do not vary significantly from part to part. Typical phase  
shift and gain differences are less than 0.5% at the corner  
7
8
13  
14  
V+  
IN  
Filter Input  
frequency (F ).  
C
_______________Detailed Description  
Corner Frequency and Filter Attenuation  
The MAX291/MAX292 operate with a 100:1 clock to corner  
frequency ratio and a 25kHz maximum corner frequency,  
where corner frequency is defined as the point where the  
filter output is 3dB below the filter’s DC gain. The  
MAX295/MAX296 operate with a 50:1 clock to corner fre-  
quency ratio with a 50kHz maximum corner frequency.  
The 8 poles provide 48dB of attenuation per octave.  
Lowpass Butterworth filters such as the MAX291/  
MAX295 provide maximally flat passband response, making  
them ideal for instrumentation applications that require mini-  
mum deviation from the DC gain throughout the passband.  
Lowpass Bessel filters such as the MAX292/MAX296  
delay all frequency components equally, preserving the  
shape of step inputs, subject to the attenuation of the high-  
er frequencies. They also settle faster than Butterworth fil-  
ters. Faster settling can be important in applications that  
use a multiplexer (mux) to select one signal to be sent to  
an analog-to-digital converter (ADC)—an anti-aliasing filter  
placed between the mux and the ADC must settle quickly  
after a new channel is selected by the mux.  
Background Information  
Most switched-capacitor filters are designed with biqua-  
dratic sections. Each section implements two filtering  
poles, and the sections can be cascaded to produce high-  
er-order filters. The advantage to this approach is ease of  
design. However, this type of design can display poor sen-  
sitivity if any section’s Q is high.  
The difference in the filters’ responses can be observed  
when a 3kHz square wave is applied to the filter input  
(Figure 1, trace A). With the filter cutoff frequencies set at  
10kHz, trace C shows the MAX291/MAX295 Butterworth  
filter response and trace B shows the MAX292/MAX296  
Bessel filter response. Since the MAX292/MAX296 have a  
linear phase response in the passband, all frequency  
components are delayed equally, which preserves the  
square wave. The filters attenuate higher frequencies of  
the input square wave, giving rise to the rounded edges at  
the output. The MAX291/MAX295 delay different frequen-  
cy components by varying times, causing the overshoot  
and ringing own in trace C.  
An alternative approach is to emulate a passive network  
using switched-capacitor integrators with summing and  
scaling. The passive network can be synthesized using  
CAD programs, or can be found in many filter books.  
Figure 2 shows the basic ladder filter structure.  
A switched-capacitor filter that emulates a passive ladder  
filter retains many of its advantages. The filter’s com-  
ponent sensitivity is low when compared to a cascaded  
biquad design because each component affects the entire  
filter shape, not just one pole pair. That is, a mismatched  
component in a biquad design will have a concentrated  
6
Maxim Integrated  
MAX291/MAX292/MAX295/MAX296  
8th-Order, Lowpass,  
Switched-Capacitor Filters  
+5V  
7
V+  
1
3
R1  
L1  
L3  
L5  
L7  
CLK  
5
6
+5V  
0V  
OUTPUT  
OUT  
GND  
OP OUT  
10k  
10k  
0.1µF  
MAX29_  
4
8
C2  
C4  
C6  
C8  
R2  
OP IN-  
+1V TO +4V  
INPUT SIGNAL  
RANGE  
IN  
V
IN  
V
O
V-  
0.1µF  
2
0V  
Pin Configuration is 8-pin DIP.  
Figure 3. +5V Single-Supply Operation  
Figure 2. 8th-Order Ladder Filter Network  
error on its respective poles, while the same mismatch in a  
ladder filter design will spread its error over all poles.  
clock frequency over the clock range 100kHz to 1MHz.  
Varying the rate of an external clock will dynamically ad-  
just the corner frequency of the filter.  
The MAX291/MAX292/MAX295/MAX296 input impedance  
is effectively that of a switched-capacitor resistor (see  
equation below, and Table 1), and it is inversely proportion-  
al to frequency. The input impedance values determined  
below represent average input impedance, since the input  
current is not continuous. The input current flows in a series  
of pulses that charge the input capacitor every time the  
appropriate switch is closed. A good rule of thumb is that  
the driver’s input source resistance should be less than  
10% of the filter’s input impedance. The input impedance  
of the filter can be estimated using the following formula:  
Ideally, the MAX291/MAX292/MAX295/MAX296 should  
be clocked symmetrically (50% duty cycle). MAX291/  
MAX292/MAX295/MAX296 can be operated with clock  
asymmetry of up to 60/40% (or 40/60%) if the clock  
remains HIGH and LOW for at least 200ns. For example,  
if the part has a maximum clock rate of 2.5MHz, then the  
clock should be high for at least 200ns, and low for at  
least 200ns.  
When using the internal oscillator, the capacitance (C  
)
OSC  
from CLK to ground determines the oscillator frequency:  
Z = 1 / (f  
* C)  
CLK  
5
10  
f
(kHz)  
OSC  
where: f  
= Clock Frequency  
CLK  
3C  
(pF)  
OSC  
The input impedance for various clock frequencies is  
given below:  
The stray capacitance at CLK should be minimized be-  
cause it will affect the internal oscillator frequency.  
Table 1. Input Impedance for Various Clock  
Frequencies  
___________Application Information  
Power Supplies  
The MAX291/MAX292/MAX295/MAX296 operate from  
either dual or single power supplies. The dual-supply volt-  
age range is +2.375V to +5.500V. The 2.5V dual supply is  
equivalent to single-supply operation (Figure 3). Minor per-  
formance degradation could occur due to the external  
resistor divider network, where the GND pin is biased to  
mid-supply.  
10kHz  
100kHz  
1000kHz  
PART  
C (pF)  
(MΩ)  
(MΩ)  
(kΩ)  
MAX291  
MAX292  
MAX295  
MAX296  
2.24  
3.28  
4.47  
4.22  
44.6  
30.5  
22.4  
23.7  
4.46  
3.05  
2.24  
2.37  
446  
305  
224  
237  
Clock-Signal Requirements  
The MAX291/MAX292/MAX295/MAX296 maximum rec-  
ommended clock frequency is 2.5MHz, producing a cutoff  
frequency of 25kHz for the MAX291/MAX292 and 50kHz  
for the MAX295/MAX296. The CLK pin can be driven by  
an external clock or by the internal oscillator with an exter-  
nal capacitor. For external clock applications, the clock  
circuitry has been designed to interface with +5V CMOS  
logic. Drive the CLK pin with a CMOS gate powered from  
0V and +5V when using either a single +5V supply or dual  
+5V supplies. The MAX291/MAX292/MAX295/MAX296  
supply curt increases slightly (<3%) with increasing  
Input Signal Range  
The ideal input signal range is determined by observing at  
what voltage level the total harmonic distortion plus noise  
(THD + Noise) ratio is maximized for a given corner fre-  
quency. The Typical Operating Characteristics show the  
MAX291/MAX292/MAX295/MAX296 THD + Noise response  
as the input signal’s peak-to-peak amplitude is varied.  
Uncommitted Op Amp  
The uncommitted op amp has its noninverting input tied  
to the GND pin, and can be used to build a 1st- or 2nd-  
Maxim Integrated  
7
MAX291/MAX292/MAX295/MAX296  
8th-Order, Lowpass,  
Switched-Capacitor Filters  
22k  
_Ordering Information (continued)  
C1  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
16 Wide SO  
Dice*  
8 Plastic DIP  
8 SO  
16 Wide SO  
8 CERDIP**  
8 Plastic DIP  
8 SO  
R2  
330pF  
OP IN  
MAX292CPA  
MAX292CSA  
MAX292CWE  
MAX292C/D  
MAX292EPA  
MAX292ESA  
MAX292EWE  
MAX292MJA  
MAX295CPA  
MAX295CSA  
MAX295CWE  
MAX295C/D  
MAX295EPA  
MAX295ESA  
MAX295EWE  
MAX295MJA  
MAX296CPA  
MAX296CSA  
MAX296CWE  
MAX296C/D  
MAX296EPA  
MAX296ESA  
MAX296EWE  
MAX296MJA  
22k  
R1  
22k  
R3  
4
INPUT  
OUTPUT  
C2  
1500pF  
3
OP OUT  
MAX29_  
Pin Configuration is 8-pin DIP/SO.  
Figure 4. Uncommitted Op Amp Configured as a 2nd-Order  
Butterworth Lowpass Filter (F = 10kHz)  
o
16 Wide SO  
Dice*  
8 Plastic DIP  
8 SO  
16 Wide SO  
8 CERDIP**  
8 Plastic DIP  
8 SO  
16 Wide SO  
Dice*  
order continuous lowpass filter. This filter is convenient for  
anti-aliasing applications, or for clock noise attenuation at  
the switched-capacitor filter’s output. Figure 4 shows a  
2nd-order lowpass Butterworth filter built using the  
uncommitted op amp with a 10kHz corner frequency.  
This filter’s input resistance of 22k satisfies the minimum  
load requirements of the switched-capacitor filter.  
The uncommitted op amp (with a 2MHz gain bandwidth  
product) can alternatively be used at the input of the  
switched-capacitor filter to help reduce any possible  
clock ripple feedthrough to the output.  
8 Plastic DIP  
8 SO  
16 Wide SO  
8 CERDIP**  
DAC Post-Filtering  
When using the MAX291/MAX292/MAX295/MAX296 for  
DAC post-filtering, synchronize the DAC and the filter  
clocks. If clocks are not synchronized, beat frequen-  
cies will alias into the desired passband. The DAC’s  
clock should be generated by dividing down the  
switched-capacitor filter’s clock.  
* Contact factory for dice specifications.  
** Contact factory for availability and processing to MIL-STD-883.  
Harmonic Distortion  
Harmonic distortion arises from nonlinearities within the  
filters. These nonlinearities generate harmonics when a  
pure sine wave is applied to the filter input. Table 2 lists  
typical harmonic distortion values for the MAX291/  
MAX292/MAX295/MAX296 with a 1kHz 5Vp-p sine-wave  
input signal, a 1MHz clock frequency, and a 5kload.  
Table 2. Typical Harmonic Distortion (dB)  
Harmonic  
2nd  
-72  
-71  
-93  
-71  
3rd  
-78  
-82  
-86  
-89  
4th  
-83  
-82  
-92  
-96  
5th  
-89  
-88  
-97  
-96  
MAX291  
MAX292  
MAX295  
MAX296  
Filter  
8
Maxim Integrated  
MAX291/MAX292/MAX295/MAX296  
8th-Order, Lowpass,  
Switched-Capacitor Filters  
____Pin Configurations (continued)  
Package Information  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package draw-  
ings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
TOP VIEW  
N.C.  
N.C.  
N.C.  
N.C.  
IN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
CLK  
8 CERDIP  
8 Plastic DIP  
8 SO  
J8-2  
21-0045  
21-0043  
21-0041  
21-0042  
V-  
V+  
MAX29_  
P8-2  
OP OUT  
OP IN-  
N.C.  
GND  
OUT  
N.C.  
N.C.  
S8-5  
16 Wide SO  
W16-1  
N.C.  
WIDE SO  
Maxim Integrated  
9
MAX291/MAX292/MAX295/MAX296  
8th-Order, Lowpass,  
Switched-Capacitor Filters  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
3
4
5
12/97  
4/09  
5/10  
8
Added MAX292 to Ordering Information table and added new Package  
Information section  
Changed voltage range in Figure 7  
7
Maxim cannot me responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves he right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
10  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
©
The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.  
2010 Maxim Integrated  

相关型号:

MAX296EWE-T

Switched Capacitor Filter, 1 Func, Bessel, Lowpass, PDSO16, SOP-16
MAXIM

MAX296JA

Switched Capacitor Filter, 1 Func, Bessel, Lowpass, CDIP8, CERDIP-8
MAXIM

MAX296MJA

8th-Order, Lowpass, Switched-Capacitor Filters
MAXIM

MAX296PA

Switched Capacitor Filter, 1 Func, Bessel, Lowpass, PDIP8, PLASTIC, DIP-8
MAXIM

MAX297

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters
MAXIM

MAX297C/D

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters
MAXIM

MAX297CPA

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters
MAXIM

MAX297CWE

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters
MAXIM

MAX297CWE+

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, PDSO16, SOIC-16
MAXIM

MAX297CWE+T

暂无描述
MAXIM

MAX297CWE-T

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, PDSO16, 0.300 INCH, SOIC-16
MAXIM

MAX297EPA

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters
MAXIM