MAX3098EBESE+T [MAXIM]

Line Receiver, 3 Func, 3 Rcvr, CMOS, PDSO16, 0.150 INCH, SOIC-16;
MAX3098EBESE+T
型号: MAX3098EBESE+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Receiver, 3 Func, 3 Rcvr, CMOS, PDSO16, 0.150 INCH, SOIC-16

光电二极管 接口集成电路
文件: 总16页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1727; Rev 0; 7/00  
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
General Description  
Features  
The MAX3097E/MAX3098E feature three high-speed RS-  
485/RS-422 receivers with fault-detection circuitry and  
fault-status outputs. The receivers’ inputs have fault  
thresholds that detect when the part is not in a valid state.  
Detects the Following RS-485 Faults:  
Open-Circuit Condition  
Short-Circuit Condition  
Low Differential Voltage Signal  
Common-Mode Range Violation  
The MAX3097E/MAX3098E indicate when a receiver  
input is in an open-circuit condition, short-circuit condi-  
tion, or outside the common-mode range. They also  
generate a fault indication when the differential input  
voltage goes below a preset threshold. See Ordering  
Information or the Electrical Characteristics for thresh-  
old values.  
ESD Protection  
±±5ꢀVꢁ—uman ꢂodꢃ Model  
±±5ꢀVꢁꢄEC ±111-4-ꢅ2 ꢆir-ꢇap Discharge  
Method  
±8ꢀVꢁꢄEC ±111-4-ꢅ2 Contact Discharge Method  
The fault circuitry includes a capacitor-programmable  
delay to ensure that there are no erroneous fault condi-  
tions even at slow edge rates. Each receiver is capable  
of accepting data at rates up to 32Mbps.  
Single +3V to +5.5V Operation  
-±1V to +±3.ꢅV Extended Common-Mode Range  
Capacitor-Programmable Delaꢃ of Fault ꢄndication  
ꢆllows Error-Free Operation at Slow Data Rates  
ꢄndependent and Universal Fault Outputs  
3ꢅMbps Data Rate  
________________________Applications  
RS-485/RS-422 Receivers for Motor-Shaft  
Encoders  
±6-Pin QSOP is 41% Smaller than ꢄndustrꢃ-  
Standard ꢅ6LS3±/3ꢅ Solutions  
High-Speed, Triple RS-485/RS-422 Receiver with  
Extended Electrostatic Discharge (ESD)  
Triple RS-485/RS-422 Receiver with Input Fault  
Indication  
Ordering Information  
PIN-  
PACKAGE  
PART  
TEMP. RANGE  
Telecommunications  
Embedded Systems  
MAX3097ECEE  
0°C to +70°C  
0°C to +70°C  
16 QSOP  
16 SO  
MAX3097ECSE  
Ordering Information continued at end of data sheet.  
Typical Application Circuit  
ENCODED SIGNALS  
A, A, B, B, Z, Z  
-in Configuration  
TOP VIEW  
MAX3097E  
MAX3098E  
A
1
2
3
4
5
6
7
8
16 V  
CC  
A
15 ALARMA  
14 OUTA  
RECEIVER  
OUTPUTS  
ALARM  
OUTPUTS  
B
MOTOR  
CONTROLLER  
DSP  
B
Z
MAX3097E  
MAX3098E  
13 ALARMB  
12 OUTB  
8
MOTOR  
MAX547  
12-BIT D/A  
Z
11 ALARMZ  
10 OUTZ  
GND  
DELAY  
9
ALARMD  
MOTOR DRIVER  
QSOP/SO/DIP  
________________________________________________________________ Maxim Integrated Products  
±
For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V ).............................................................+7V  
Operating Temperature Ranges  
CC  
Receiver Input Voltage (A, A, B, B, Z, Z)............................. 25V  
MAX3097EC_E...................................................0°C to +70°C  
MAX3098E_C_E.................................................0°C to +70°C  
MAX3097E_E_E..............................................-40°C to +85°C  
MAX3098E_E_E..............................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Output Voltage (OUT_, ALARM_)...............-0.3V to (V  
DELAY ........................................................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin QSOP (derate 8.3mW/°C above +70°C)............667mW  
16-Pin SO (derate 8.7mW/°C above +70°C).................696mW  
16-Pin Plastic DIP (derate 10.53mW/°C  
above +70°C).............................................................762mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +3V to +5.5V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNITS  
V
Supply Voltage Range  
Supply Current  
V
3
CC  
I
No load  
-10V V  
-10V V  
3.1  
4.0  
mA  
CC  
Receiver Differential Threshold  
Voltage (Note 1)  
V
13.2V  
-200  
+200  
mV  
mV  
TH  
CM  
CM  
Receiver Input Hysteresis  
V  
13.2V  
40  
TH  
V
V
V
V
= 4.75V, I = -4mA, V = 200mV  
V
- 1.5  
CC  
CC  
CC  
CC  
O
ID  
CC  
CC  
Output High Voltage  
V
V
OH  
= 3.0V, I = -1mA, V = 200mV  
V
- 1.0  
O
ID  
= 4.75V, I = +4mA, V = -200mV  
0.4  
0.4  
160  
O
ID  
Output Low Voltage  
V
V
OL  
= 3.0V, I = +1mA, V = -200mV  
O
ID  
Receiver Input Resistance  
R
-10V V  
13.2V  
CM  
90  
kΩ  
IN  
V
= 13.2V  
IN  
0.07  
0.14  
(Note 2)  
Input Current  
(A , A , B , B (Z , Z )  
I
V
= 0 or 5.5V  
CC  
mA  
mA  
IN  
V
= -10V  
IN  
-0.05  
-0.11  
105  
(Note 2)  
Output Short-Circuit Current  
I
0 V V  
RO CC  
OSR  
FAULT DETECTION  
MAX3097E Fault-Detection  
Receiver Differential Threshold  
Voltage (Note 3)  
F
High limit  
Low limit  
High limit  
Low limit  
275  
-475  
0.12  
-0.20  
475  
-275  
0.20  
-0.12  
DIFH  
V
V
= 0  
= 0  
mV  
V
CM  
CM  
F
DIFL  
MAX3098EA Fault-Detection  
Receiver Differential Threshold  
Voltage (Note 3)  
F
DIFH  
F
DIFL  
2
_______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3V to +5.5V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX3098EB Fault-Detection  
Receiver Differential Threshold  
Voltage (Note 3)  
F
High limit  
Low limit  
70  
250  
DIFH  
V
= 0  
mV  
CM  
F
-250  
13.2  
-70  
DIFL  
F
High limit  
Low limit  
CMH  
Fault-Detection Common-Mode  
Voltage Range (Note 4)  
V
µA  
V
F
-10  
11  
CML  
DELAY Current Source  
V
V
V
= 5V, V  
= 3V  
= 0  
DELAY  
9
10  
CC  
CC  
CC  
1.55  
3.1  
1.73  
3.29  
1.90  
3.5  
DELAY Threshold  
= 5V  
ESD PROTECTION  
Human Body Model  
15  
15  
8
ESD Protection  
(A, A, B, B, Z, Z)  
kV  
IEC1000-4-2 (Air-Gap Discharge)  
IEC1000-4-2 (Contact Discharge)  
SWITCHING CHARACTERISTICS  
(V  
= +3V to +5.5V, V  
=
3.0V, T = T  
to T  
, unless otherwise noted. Typical values are at V = +5V and T = +25°C.)  
CC A  
CC  
ID  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
, t  
CONDITIONS  
MIN  
TYP  
MAX  
75  
UNITS  
ns  
V
V
= 4.5V to 5.5V  
= 3.0V to 3.6V  
CC  
CC  
Propagation Delay from Input to  
Output  
C = 15pF,  
L
Figures 1, 2  
t
PLH PHL  
85  
Receiver Skew |t  
- t  
|
t
C = 15pF, Figures 1, 2  
L
10  
ns  
PLH PHL  
SKEW  
Channel-to-Channel  
Propagation Delay Skew  
C = 15pF, Figures 1, 2  
L
10  
ns  
Maximum Data Rate  
f
C = 15pF, Figure 1  
L
32  
Mbps  
MAX  
FAULT DETECTION  
t
15  
DFLH  
DFHL  
Differential Fault Propagation  
Delay to Output (Note 5)  
C
= 15pF, Figures 1, 3  
µs  
V/µs  
µs  
LF  
t
1.2  
MAX3097E (Note 6)  
MAX3098E (Note 7)  
1.0  
Minimum Differential Slew Rate  
to Avoid False Alarm Output  
0.33  
Common-Mode Fault  
Propagation Delay to Output  
(Note 5)  
t
t
15  
CMFLH  
CMFHL  
C = 15pF, Figures 1, 4  
L
1.5  
Note 1: V  
is the common-mode input voltage. V is the differential input voltage.  
ID  
CM  
Note 2: V is the input voltage at pins A, A, B, B, Z, Z.  
IN  
Note 3: A differential terminating resistor is required for proper function of open-circuit fault detection (see Applications Information).  
Note 4: See Applications Information for a discussion of the receiver common-mode voltage range and the operating conditions for  
fault indication.  
Note 5: Applies to the individual channel immediate-fault outputs (ALARM_) and the general delayed-fault output (ALARMD) when  
there is no external capacitor at DELAY.  
Note 6: Equivalent pulse test: 1.3V / (t  
Note 7: Equivalent pulse test: 0.62V / (t  
- t  
) SR .  
DFLH DFHL D  
- t  
) SR .  
DFLH DFHL D  
_______________________________________________________________________________________  
3
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
Typical Operating Characteristics  
(Typical values are at V  
= +5V and T = +25°C.)  
A
CC  
SUPPLY CURRENT vs.  
TEMPERATURE  
ALARMD OUTPUT DELAY  
vs. CAPACITANCE  
RECEIVER PROPAGATION DELAY  
vs. TEMPERATURE  
5
4
3
2
1
0
10,000  
1000  
100  
70  
60  
NO LOAD  
V
= 3.3V  
CC  
V
= 5.0V  
= 3.3V  
CC  
V
CC  
50  
40  
30  
V
= 5.0V  
CC  
V
V
= 5V  
= 3V  
CC  
CC  
10  
1
20  
TEMPERATURE (°C)  
80  
-40  
-20  
0
40  
60  
10  
100  
CAPACITANCE (pF)  
1000  
1
10,000  
20  
TEMPERATURE (°C)  
80  
-40  
-20  
0
40  
60  
RECEIVER OUTPUT HIGH VOLTAGE  
vs. OUTPUT CURRENT  
RECEIVER OUTPUT LOW VOLTAGE  
vs. OUTPUT CURRENT  
DELAYED ALARM OUTPUT  
6
5
4
5.0  
4.5  
4.0  
V
= 5.0V  
CC  
CH 1  
GND  
V
= 5.0V  
CC  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.3V  
CC  
3
2
1
0
V
= 3.3V  
CC  
GND  
GND  
CH 2  
CH 3  
20µs/div  
0
5
10  
15  
20  
25  
30  
-45 -40 -35 -30 -25 -20 -15 -10 -5  
OUTPUT CURRENT (mA)  
0
CH1: V , 5V/div  
A
OUTPUT CURRENT (mA)  
CH2: V  
CH3: V  
, 5V/div  
, 5V/div  
ALARMA  
ALARMD  
V = GND, C  
= 270pF  
A
DELAY  
4
_______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
Typical Operating Characteristics (continued)  
(Typical values are at V  
= +5V and T = +25°C.)  
A
CC  
COMMON-MODE VOLTAGE FAULT  
(HIGH SIDE)  
MAX3097E  
LOW DIFFERENTIAL INPUT FAULT  
COMMON-MODE VOLTAGE FAULT  
(LOW SIDE)  
GND  
CH 1  
GND  
CH 1  
CH 2  
GND  
GND  
CH 1  
CH 2  
CH 3  
CH 2  
CH 3  
GND  
GND  
GND  
GND  
2ms/div  
2ms/div  
100µs/div  
CH1: V + AC(60Hz), 10V/div  
CH1: V + AC(60Hz), 10V/div  
CH1: V , 200mV/div  
ALARMA  
V = GND  
A
A
A
A
CH2: V  
CH3: V  
, 5V/div  
CH2: V  
CH3: V  
, 5V/div  
CH2: V  
, 5V/div  
OUTA  
ALARMA  
= 3V  
OUTA  
ALARMA  
= 3V  
, 5V/div  
, 5V/div  
V
V
CC  
CC  
FAULT-DETECTION RECEIVER DIFFERENTIAL  
THRESHOLD VOLTAGE SHIFT vs.  
COMMON-MODE VOLTAGE  
SLEW-RATE FAULT  
12  
CH 1  
CH 2  
GND  
GND  
8
4
MAX3097E  
0
MAX3098E  
-4  
-8  
-10  
-5  
0
5
10  
CH1: V , 5V/div  
A
CH2: V  
, 5V/div  
ALARMA  
SLEW RATE = 0.05V/µs  
V = GND  
A
COMMON-MODE VOLTAGE (V)  
_______________________________________________________________________________________  
5
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
-in Description  
PIN  
NAME  
FUNCTION  
1
A
Noninverting Receiver A Input  
Inverting Receiver A Input  
Noninverting Receiver B Input  
Inverting Receiver B Input  
Noninverting Receiver Z Input  
Inverting Receiver Z Input  
Ground  
2
3
4
5
6
7
A
B
B
Z
Z
GND  
Programmable Delay Terminal. Connect a capacitor from DELAY to GND to set the  
ALARMD output delay time. To obtain a minimum delay, leave DELAY unconnected. See  
Capacitance vs. ALARMD Output Delay in the Typical Operating Characteristics.  
8
9
DELAY  
Delayed Fault Output. This output is the logic OR of ALARMA, ALARMB, and ALARMZ.  
Place a capacitor from the DELAY pin to GND to set the delay (see Setting Delay Time). A  
high logic level indicates a fault condition on at least one receiver input pair. A low level on  
this pin indicates no fault condition is present.  
ALARMD  
Z Receiver Output. If V - V +200mV, OUTZ will be high. If V - V -200mV, OUTZ will  
Z
Z  
Z
Z  
be low. If Z or Z exceeds the receivers input common-mode voltage range, the ALARMZ  
output will be high and OUTZ will be indeterminate.  
10  
11  
OUTZ  
Z Fault Output. When ALARMZ is high, OUTZ is indeterminate. Tables 1 and 2 show all the  
possible states for which an alarm is set.  
ALARMZ  
B Receiver Output. If V - V +200mV, OUTB will be high. If V - V -200mV, OUTB will  
B
B
B
B
12  
13  
14  
OUTB  
be low. If B or B exceeds the input receivers common-mode voltage range, the ALARMB  
output will be high and OUTB will be indeterminate.  
B Fault Output. When ALARMB is high, OUTB is indeterminate. Tables 1 and 2 show all the  
possible states for which an alarm is set.  
ALARMB  
A Receiver Output. If V - V +200mV, OUTA will be high. If V - V -200mV, OUTA will  
A
A
A
A  
OUTA  
be low. If A or A exceeds the receivers input common-mode voltage range, the ALARMA  
output will be high and OUTA will be indeterminate.  
A Fault Output. When ALARMA is high, OUTA is indeterminate. Tables 1 and 2 show all the  
possible states for which an alarm is set.  
15  
16  
ALARMA  
V
Power Supply  
CC  
6
_______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
The MAX3097E/MAX3098E are designed for motor-  
Detailed Description  
shaft encoders with standard A, B, and Z outputs (see  
The MAX3097E/MAX3098E feature high-speed, triple  
Using the MAX3097E/MAX3098E as Shaft Encoder  
RS-485/RS-422 receivers with fault-detection circuitry  
Receivers). The devices provide an alarm for open-cir-  
and fault-status outputs. The fault outputs are active  
cuit conditions, short-circuit conditions, data nearing  
push-pull, requiring no pull-up resistors. The fault cir-  
the minimum differential threshold conditions, data  
cuitry includes a capacitor-programmable delayed  
below the minimum threshold conditions, and receiver  
FAULT_ output to ensure that there are no erroneous  
inputs outside the input common-mode range. Tables 1  
fault conditions even at slow edge rates (see Delayed  
and 2 are functional tables for each receiver.  
Fault Output). The receivers operate at data rates up to  
32Mbps.  
Test Circuits and Waveforms  
ALARMA  
OR (FAULT OUTPUT)  
ALARMD  
+3V  
-3V  
C
RISE/FALL TIMES 2ns  
LF  
A
A
OV  
OV  
V
ID  
V
A
V
OUTA  
t
PHL  
t
ID  
PLH  
V
C
OH  
L
V
/2  
V /2  
CC  
CC  
R
O
V
A
V
OL  
Figure 1. Typical Receiver Test Circuit  
Figure 2. Propagation Delay  
F
CMH  
IN  
V
+3.0V  
OV  
F
DIFH  
OV  
V
ID  
F
F
CML  
DIFL  
-3.0V  
t
t
DFHL  
DFLH  
V
OH  
V
/2  
V /2  
CC  
CC  
ALARM OR ALARMD  
t
t
t
t
CMFLH  
CMFHL CMFLH  
CMFHL  
/2  
V
OL  
V
OH  
V
/2  
CC  
V /2  
CC  
V
/2  
V
CC  
CC  
ALARM OR ALARMD  
V
OL  
Figure 4. Common-Mode Fault Propagation Delay  
Figure 3. Fault-Detection Timing  
_______________________________________________________________________________________  
7
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
Table 1. MAX3097E Alarm Function Table (Each Receiver)  
INPUTS  
OUTPUTS  
V
ALARMD  
t DELAY  
(NOTE 1)  
ID  
FAULT CONDITION  
COMMON-MODE  
VOLTAGE  
(DIFFERENTIAL  
INPUT VOLTAGE)  
OUT_  
ALARM_  
0.475V  
1
1
0
0
Normal Operation  
Indeterminate  
<0.475V and 0.275V  
Indeterminate  
Indeterminate  
<0.275V and 0.2V  
1
1
1
1
1
Low Input Differential Voltage  
Indeterminate  
(Note 2)  
0.2V and -0.2V  
Low Input Differential Voltage  
Low Input Differential Voltage  
13.2V and -10V  
-0.2V and >-0.275V  
0
0
0
1
1
-0.275V and  
>-0.475V  
Indeterminate  
0
Indeterminate  
0
Indeterminate  
-0.475V  
Indeterminate  
(Note 3)  
Outside Common-Mode  
Voltage Range  
X
<-10V or >+13.2V  
1
1
X = Dont care  
Note 1: ALARMD indicates fault for any receiver.  
Note 2: Receiver output may oscillate with this differential input condition.  
Note 3: See Applications Information for conditions leading to input range fault condition.  
Table 2. MAX3098EA Alarm Function Table (Each Receiver)  
INPUTS  
OUTPUTS  
V
ALARMD  
t DELAY  
(NOTE 1)  
ID  
FAULT CONDITION  
COMMON-MODE  
VOLTAGE  
(DIFFERENTIAL  
INPUT VOLTAGE)  
OUT_  
ALARM_  
0.2V  
1
0
0
Normal Operation  
Indeterminate  
Indeterminate  
<0.2V and 0.12V  
Indeterminate  
Indeterminate  
13.2V and -  
Indeterminate  
(Note 2)  
<0.12V and -0.12V  
1
1
Low Input Differential Voltage  
10V  
Indeterminate  
0
-0.12V and -0.2V  
-0.2V  
Indeterminate  
0
Indeterminate  
0
Indeterminate  
Normal Operation  
Outside Common-Mode Voltage  
Range  
<-10V or  
>+13.2V  
Indeterminate  
(Note 3)  
X
1
1
X = Dont care; for B-grade functionality, replace V input values in Table 2 with B-grade parameters from Electrical Characteristics.  
ID  
Note 1: ALARMD indicates fault for any receiver.  
Note 2: Receiver output may oscillate with this differential input condition.  
Note 3: See Applications Information for conditions leading to input range fault condition.  
8
_______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
IEC 1000-4-2  
Since January 1996, all equipment manufactured and/or  
sold in the European community has been required to  
meet the stringent IEC 1000-4-2 specification. The IEC  
1000-4-2 standard covers ESD testing and performance  
of finished equipment; it does not specifically refer to inte-  
grated circuits. The MAX3097E/MAX3098E help you  
design equipment that meets Level 4 (the highest level)  
of IEC 1000-4-2, without additional ESD-protection com-  
ponents.  
±±15k EꢀD -rotection  
As with all Maxim devices, ESD-protection structures  
are incorporated on all pins to protect against ESD  
encountered during handling and assembly. The  
MAX3097E/MAX3098E receiver inputs have extra pro-  
tection against static electricity found in normal opera-  
tion. Maxims engineers developed state-of-the-art  
structures to protect these pins against 15kV ESD  
without damage. After an ESD event, the MAX3097E/  
MAX3098E continue working without latchup.  
The main difference between tests done using the  
Human Body Model and IEC 1000-4-2 is higher peak  
current in IEC 1000-4-2. Because series resistance is  
lower in the IEC 1000-4-2 ESD test model (Figure 6a), the  
ESD-withstand voltage measured to this standard is gen-  
erally lower than that measured using the Human Body  
Model. Figure 6b shows the current waveform for the  
8kV IEC 1000-4-2 Level 4 ESD Contact Discharge test.  
The Air-Gap test involves approaching the device with a  
charge probe. The Contact Discharge method connects  
the probe to the device before the probe is energized.  
ESD protection can be tested in several ways. The  
receiver inputs are characterized for protection to the  
following:  
15kV using the Human Body Model  
8kV using the Contact Discharge method specified  
in IEC 1000-4-2 (formerly IEC 801-2)  
15kV using the Air-Gap Discharge method specified  
in IEC 1000-4-2 (formerly IEC 801-2)  
ESD Test Conditions  
ESD performance depends on a number of conditions.  
Contact Maxim for a reliability report that documents  
test setup, methodology, and results.  
Machine Model  
The Machine Model for ESD testing uses a 200pF stor-  
age capacitor and zero-discharge resistance. It mimics  
the stress caused by handling during manufacturing  
and assembly. All pins (not just RS-485 inputs) require  
this protection during manufacturing. Therefore, the  
Machine Model is less relevant to the I/O ports than are  
the Human Body Model and IEC 1000-4-2.  
Human Body Model  
Figure 5a shows the Human Body Model, and Figure  
5b shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of  
a 100pF capacitor charged to the ESD voltage of inter-  
est, which is then discharged into the device through a  
1.5kresistor.  
R
R
D
1.5k  
C
1MΩ  
I
P
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
AMPERES  
36.8%  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
s
100pF  
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 5b. Human Body Model Current Waveform  
Figure 5a. Human Body ESD Test Model  
_______________________________________________________________________________________  
9
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
___________Applications Information  
R
R
C
D
50Mto 100MΩ  
330Ω  
Using the MAX3097E/MAX3098E as ꢀhaft  
Encoder Receivers  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
The MAX3097E/MAX3098E are triple RS-485 receivers  
designed for shaft encoder receiver applications. A  
shaft encoder is an electromechanical transducer that  
converts mechanical rotary motion into three RS-485  
differential signals. Two signals, A (A and A) and B (B  
and B) provide incremental pulses as the shaft turns,  
while the index signal, Z (Z and Z) occurs only once  
per revolution to allow synchronization of the shaft to a  
known position. Digital signal processing (DSP) tech-  
niques are used to count the pulses and provide feed-  
back of both shaft position and shaft velocity for a  
stable positioning system.  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
150pF  
STORAGE  
CAPACITOR  
SOURCE  
Figure 6a. IEC 1000-4-2 ESD Test Model  
I
Shaft encoders typically transmit RS-485 signals over  
twisted-pair cables since the signal often has to travel  
across a noisy electrical environment (Figure 7).  
100%  
90%  
Detecting Faults  
Signal integrity from the shaft encoder to the DSP is  
essential for reliable system operation. Degraded sig-  
nals could cause problems ranging from simple mis-  
counts to loss of position. In an industrial environment,  
many problems can occur within the three twisted  
pairs. The MAX3097E/MAX3098E can detect various  
types of common faults, including a low-input-level sig-  
nal, open-circuit wires, short-circuit wires, and an input  
signal outside the common-mode input voltage range  
of the receiver.  
10%  
t = 0.7ns to 1ns  
r
t
30ns  
60ns  
Figure 6b. IEC 1000-4-2 ESD Generator Current Waveform  
A
A
Detecting ꢀhort Circuits  
In Figure 8, if wires A and A are shorted together, then A  
and A will be at the same potential, so the difference in  
the voltage between the two will be approximately 0. This  
causes fault A to trigger since the difference between A -  
A is less than the differential fault threshold.  
B
B
Z
Detecting OpenꢁCircuit Conditions  
Detecting an open-circuit condition is similar to detect-  
ing a short-circuit condition and relies on the terminat-  
ing resistor being across A and A. For example, if the  
wire drops out of the A terminal, A pulls A through the  
terminating resistor to look like the same signal. In this  
Z
Figure 7. Typical Shaft Encoder Output  
condition, V is approximately 0 and a fault occurs.  
ID  
10 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
ground. Upon activation of any alarm from receiver A,  
B, or Z, the MOSFET is turned off, allowing the current  
CommonꢁMode Range  
The MAX3097E/MAX3098E contain circuitry that de-  
tects if the input stage is going outside its useful com-  
mon-mode range. If the received data could be  
unreliable, a fault signal is triggered.  
source to charge C  
. When V  
exceeds the  
DELAY  
DELAY  
DELAY threshold, the comparator output, ALARMD,  
goes high. ALARMD is reset when all receiver alarms  
go low, quickly discharging C  
to ground.  
DELAY  
Detecting Low Input Differential  
ꢀetting Delay Time  
Due to cable attenuation on long wire runs, it is possi-  
ALARMDs delay time is set with a single capacitor  
ble that V < 200mV, and incorrect data will be  
ID  
connected from DELAY to GND. The delay comparator  
received. In this condition, a fault will be indicated.  
threshold varies with supply voltage, and the C  
DELAY  
Delayed Fault Output  
The delayed fault output provides a programmable  
blanking delay to allow transient faults to occur without  
triggering an alarm. Such faults may occur with slow  
signals triggering the receiver alarm through the zero  
crossover region.  
value can be determined for a given time delay period  
from the Capacitance vs. ALARMD Output Delay graph  
in the Typical Operating Characteristics or using the  
following equations:  
t = 15 + 0.33 x C  
(for V  
CC  
= 5V)  
D
DELAY  
and  
Figure 9 shows the delayed alarm output.  
t = 10 + 0.187 x C  
(for V  
CC  
= 3V)  
D
DELAY  
ALARMD performs a logic OR of ALARMA, ALARMB,  
and ALARMZ (Figure 10). A NOR gate drives an N-  
channel MOSFET so that in normal operation with no  
faults, the current source (10µA typ) is shunted to  
where t is in µs and C  
D
is in pF.  
DELAY  
DELAY  
CURRENT  
SOURCE  
A
A
DELAY  
COMPARATOR  
ALARMD  
ALARMA  
ALARMB  
ALARMZ  
C
*
NORMAL OPERATION  
SHORT CIRCUIT A TO A  
NMOS  
G1  
DELAY  
(EXTERNAL)  
Figure 8. Short-Circuit Detection  
t
DLY  
ALARMA  
ALARMB  
ALARM_  
DELAY  
DELAY THRESHOLD  
ALARMD  
t
D
t
D
*The capacitor (C  
If the duration of an ALARM_ pulse is less than t , no alarm  
) charges up slowly, but discharges rapidly.  
DELAY  
ALARMD  
DLY  
output will be present at ALARMD.  
Figure 9. Delayed Alarm Output  
Figure 10. ALARMD Simplified Schematic  
______________________________________________________________________________________ 11  
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
Ordering Information (continued)  
Functional Diagram  
PIN-  
PACKAGE  
PART  
TEMP. RANGE  
V
CC  
MAX3097ECPE  
MAX3097EEEE  
MAX3097EESE  
MAX3097EEPE  
MAX3098EACEE  
MAX3098EACSE  
MAX3098EACPE  
MAX3098EAEEE  
MAX3098EAESE  
MAX3098EAEPE  
MAX3098EBCEE  
MAX3098EBCSE  
MAX3098EBCPE  
MAX3098EBEEE  
MAX3098EBESE  
MAX3098EBEPE  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
16 Plastic DIP  
16 QSOP  
16 SO  
ALARMA  
OUTA  
A
A
ALARMB  
OUTB  
16 Plastic DIP  
16 QSOP  
16 SO  
B
B
ALARMZ  
OUTZ  
16 Plastic DIP  
16 QSOP  
16 SO  
Z
Z
ALARMD  
DELAY  
16 Plastic DIP  
16 QSOP  
16 SO  
MAX3097E  
MAX3098E  
GND  
16 Plastic DIP  
16 QSOP  
16 SO  
16 Plastic DIP  
Chip Information  
TRANSISTOR COUNT: 675  
PROCESS: CMOS  
12 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
-ac5age Information  
______________________________________________________________________________________ 13  
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
-ac5age Information (continued)  
14 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
-ac5age Information (continued)  
______________________________________________________________________________________ 15  
±±15k EꢀDꢁ-rotected, 32Mbps, 3k/1k,  
Triple Rꢀꢁ422/Rꢀꢁ481 Receivers with Fault Detection  
NOTES  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated -roducts, ±20 ꢀan Gabriel Drive, ꢀunnyvale, CA 94086 408ꢁ737ꢁ7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3098EBESE-T

Line Receiver, 3 Func, 3 Rcvr, CMOS, PDSO16, 0.150 INCH, SOIC-16
MAXIM

MAX309C/D

Precision, 8-Channel/Dual 4-Channel, High-Performance, CMOS Analog Multiplexers
MAXIM

MAX309CPE

Precision, 8-Channel/Dual 4-Channel, High-Performance, CMOS Analog Multiplexers
MAXIM

MAX309CSE

Precision, 8-Channel/Dual 4-Channel, High-Performance, CMOS Analog Multiplexers
MAXIM

MAX309CSE

DUAL 4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, SO-16
ROCHESTER

MAX309EJE

Precision, 8-Channel/Dual 4-Channel, High-Performance, CMOS Analog Multiplexers
MAXIM

MAX309EJE

DUAL 4-CHANNEL, DIFFERENTIAL MULTIPLEXER, CDIP16, CERDIP-16
ROCHESTER

MAX309EPE

Precision, 8-Channel/Dual 4-Channel, High-Performance, CMOS Analog Multiplexers
MAXIM

MAX309ESE

Precision, 8-Channel/Dual 4-Channel, High-Performance, CMOS Analog Multiplexers
MAXIM

MAX309ESE-T

Differential Multiplexer, 2 Func, 4 Channel, CMOS, PDSO16, 0.150 INCH, SO-16
MAXIM

MAX309EUE

DUAL 4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, TSSOP-16
ROCHESTER

MAX309EUE+

Differential Multiplexer, 2 Func, 4 Channel, CMOS, PDSO16, TSSOP-16
MAXIM