MAX3120EUA+ [MAXIM]

Telecom Circuit, 1-Func, PDSO8, UMAX-8;
MAX3120EUA+
型号: MAX3120EUA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Telecom Circuit, 1-Func, PDSO8, UMAX-8

文件: 总8页 (文件大小:153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1390; Rev 0; 10/98  
Lo w -P ro file , 3 V, 1 2 0 µA,  
IrDA In fra re d Tra n s c e ive r  
MAX3120  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
IrDA 1.2 Compatible: 2.4kbps to 115.2kbps  
+3V to +5.5V Single-Supply Operation  
Flexible Optics Selection and Layout  
120µA Supply Current  
The MAX3120 IrDA 1.2-compatible infrared transceiver  
is optimized for battery-powered, space-constrained  
applications. It consumes only 120µA while supporting  
data rates up to 115kbps over a wide 3V to 5.5V oper-  
ating range, and features a 10nA shutdown mode to  
further extend battery life.  
The MAX3120 reduces the space required for IrDA  
applications by requiring a minimum of external compo-  
nents: photodiode, infrared LED, and current-setting  
resistor. Optical components are external to allow maxi-  
mum flexibility in PC board design. The MAX3120 is  
available in 8-pin µMAX and SO packages. The µMAX  
package consumes half the board space of an 8-pin  
SO.  
10nA Shutdown Supply Current  
200mA, High-Current Infrared LED Drive  
Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 µMAX  
8 SO  
MAX3120CUA  
MAX3120CSA  
MAX3120EUA  
MAX3120ESA  
0°C to +70°C  
Ap p lic a t io n s  
IrDA Applications  
-40°C to +85°C  
-40°C to +85°C  
8 µMAX  
8 SO  
Personal Digital Assistants (PDAs)  
Palmtop Computers  
Cell Phones  
Hand-Held Equipment  
Peripherals  
Typ ic a l Op e ra t in g Circ u it  
+3.3V  
P in Co n fig u ra t io n  
V
CC  
V
SHDN  
LEDC  
CC  
CS  
SCLK  
DIN  
LED  
TOP VIEW  
TX  
RX  
TXD  
RXD  
DOUT  
MAX3100  
GND  
MAX3120  
TXD  
1
2
3
4
8
7
6
5
RXD  
PINC  
V
CC  
LEDC  
PGND  
SHDN  
MAX3120  
GND  
PINC  
GND  
PGND  
PIN  
DIODE  
µMAX/SO  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Lo w -P ro file , 3 V, 1 2 0 µA,  
IrDA In fra re d Tra n s c e ive r  
ABSOLUTE MAXIMUM RATINGS  
(Referred to GND)  
Continuous Power Dissipation (T = +70°C)  
A
V
...........................................................................-0.3V to +6V  
µMAX (derate 4.1mW/°C above +70°C) ....................330mW  
SO (derate 5.88mW/°C above +70°C).......................471mW  
Operating Temperature Ranges  
CC  
TXD, SHDN, LEDC ...................................................-0.3V to +6V  
RXD ............................................................-0.3V to (V + 0.3V)  
CC  
PGND ....................................................................-0.1V to +0.1V  
PINC....................................................................................10mA  
Continuous LEDC Current.................................................200mA  
Repetitive Pulsed LEDC Current  
MAX3120C_A....................................................0°C to +70°C  
MAX3120E_A.................................................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
(<90µs, duty cycle <20%) ..........................................500mA  
MAX3120  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +3.0V to +5.5V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C and V = +3.3V.)  
MAX A CC  
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC CHARACTERISTICS  
Supply Current  
I
120  
200  
1.0  
µA  
µA  
T
= +25°C, SHDN = V (Note 1)  
CC  
A
CC  
Shutdown Supply Current  
I
0.01  
T
A
= +25°C, SHDN = GND (Note 1)  
CC(SHDN)  
LOGIC INPUTS (TXD, SHDN)  
Input Logic Threshold Low  
V
0.8  
1
V
V
IL  
V
= 3.3V  
= 5.0V  
2.0  
2.4  
-1  
CC  
Input Logic Threshold High  
V
IH  
V
CC  
Input Leakage Current  
Input Capacitance  
I
µA  
pF  
LEAK  
C
2
IN  
LOGIC OUTPUT (RXD)  
V
OL  
I
= 200µA  
0.1  
0.4  
SINK  
Output Voltage  
V
ns  
V
0.5  
-
V
0.05  
-
CC  
CC  
V
I
= 100µA  
OH  
SOURCE  
Output Rise and Fall Time  
IR RECEIVER  
t , t  
r
C
= 50pF  
LOAD  
50  
f
Supported Data Rates  
Equivalent Input Noise Current  
Input Current Sensitivity  
2.4  
115.2  
6
kbps  
I
(Note 2)  
(Note 3)  
10  
nA  
RMS  
NOISE  
0.0002  
mA  
V
= 3.3V  
= 5.0V  
100  
375  
10  
CC  
Ambient DC Current Rejection  
Shutdown Time  
µA  
µs  
V
CC  
Delay until I < 1µA  
CC  
Delay until maximum IR receiver data rate is  
valid  
Shutdown Disable Time  
300  
µs  
Data rate = 2.4kbps  
1
1
90  
8
IR Receiver Output Pulse Width  
µs  
Data rate = 115.2kbps  
2
_______________________________________________________________________________________  
Lo w -P ro file , 3 V, 1 2 0 µA,  
IrDA In fra re d Tra n s c e ive r  
MAX3120  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +3.0V to +5.5V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C and V = +3.3V.)  
MAX A CC  
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IR TRANSMITTER  
Transmitter Rise Time  
Transmitter Fall Time  
t
10% to 90% of 200mA drive current  
90% to 10% of 200mA drive current  
20  
20  
600  
600  
2.0  
1.6  
10  
ns  
ns  
r
t
f
V
= 3.3V  
= 5.0V  
1.15  
0.9  
CC  
Transmitter Output Resistance  
Off-Leakage Current  
I
= 200mA  
OUT  
V
CC  
0.01  
µA  
Note 1: All supply current measurements are made under the following conditions: no load at all outputs, input voltages at GND or  
, no PIN diode input current.  
V
CC  
Note 2: Equivalent input current noise is calculated by dividing the output noise of the transimpedance amplifier by the midband  
transimpedance gain.  
Note 3: Sensitivity is measured with an IrDA-compliant input signal, where the data rate is within the Supported Data Rate, rise/fall  
times are less than 600ns, and pulse widths are between 1.41µs and 3/16 of the baud rate.  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
LED DRIVER  
ON-RESISTANCE vs. TEMPERATURE  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
140  
130  
120  
110  
100  
90  
I
= 100mA  
LEDC  
V
= 5V  
CC  
V
CC  
= 3.3V  
V
= 3V  
CC  
V
CC  
= 5V  
60  
-40  
-15  
10  
35  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LEDC VOLTAGE  
vs. LEDC CURRENT  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
600  
500  
400  
300  
200  
100  
0
135  
130  
125  
120  
115  
110  
105  
PULSED AT  
20% DUTY CYCLE  
V
CC  
= 3.3V  
V
CC  
= 5V  
100  
150  
200  
250  
300  
350  
400  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
LEDC CURRENT (mA)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
3
Lo w -P ro file , 3 V, 1 2 0 µA,  
IrDA In fra re d Tra n s c e ive r  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
RXD OUTPUT PULSE WIDTH  
vs. DISTANCE  
AMBIENT PHOTODIODE CURRENT REJECTION  
RXD OUTPUT PULSE WIDTH  
vs. DISTANCE  
vs. SUPPLY VOLTAGE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
100  
80  
60  
40  
20  
0
450  
TRANSMITTER POWER = 200mW/sr  
INPUT PULSE WIDTH = 78µs  
TEMIC BPV22NF  
400  
350  
300  
250  
200  
150  
100  
50  
V
CC  
= 3.3V  
MAX3120  
TRANSMITTER POWER = 200mW/sr  
INPUT PULSE WIDTH = 1.63µs  
TEMIC BPV22NF  
V
CC  
= 3.3V  
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
DISTANCE (cm)  
DISTANCE (cm)  
SUPPLY VOLTAGE (V)  
RXD OUTPUT  
RXD OUTPUT  
vs. INFRARED INPUT  
vs. INFRARED INPUT  
MAX3120 toc08  
MAX3120 toc09  
RXD  
OUTPUT  
RXD  
OUTPUT  
2V/div  
2V/div  
INFRARED  
INPUT  
INFRARED  
INPUT  
2V/div  
2V/div  
2µs/div  
100µs/div  
V
CC  
= 3.3V, 115.2kbps AT 1cm DISTANCE,  
V
CC  
= 3.3V, 2400bps AT 1cm DISTANCE,  
TERMIC BPV22NF, TRANSMIT POWER 200mW/sr  
TERMIC BPV22NF, TRANSMIT POWER 200mW/sr  
RXD OUTPUT  
RXD OUTPUT  
vs. INFRARED INPUT  
vs. INFRARED INPUT  
MAX3120 toc10  
MAX3120 toc11  
RXD  
RXD  
2V/div  
2V/div  
OUTPUT  
OUTPUT  
INFRARED  
INPUT  
INFRARED  
INPUT  
2V/div  
2V/div  
2µs/div  
100µs/div  
V
CC  
= 3.3V, 115.2kbps AT 10cm DISTANCE,  
V
CC  
= 3.3V, 2400bps AT 10cm DISTANCE,  
TERMIC BPV22NF, TRANSMIT POWER 200mW/sr  
TERMIC BPV22NF, TRANSMIT POWER 200mW/sr  
4
_______________________________________________________________________________________  
Lo w -P ro file , 3 V, 1 2 0 µA,  
IrDA In fra re d Tra n s c e ive r  
MAX3120  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
RXD OUTPUT  
RXD OUTPUT  
vs. INFRARED INPUT  
vs. INFRARED INPUT  
MAX3120 toc13  
MAX3120 toc12  
RXD  
RXD  
2V/div  
2V/div  
OUTPUT  
OUTPUT  
INFRARED  
INPUT  
INFRARED  
INPUT  
2V/div  
2V/div  
100µs/div  
2µs/div  
V
= 3.3V, 115.2kbps AT 1m DISTANCE,  
V
= 3.3V, 2400bps AT 1m DISTANCE,  
CC  
CC  
TERMIC BPV22NF, TRANSMIT POWER 200mW/sr  
TERMIC BPV22NF, TRANSMIT POWER 200mW/sr  
P in De s c rip t io n  
PIN  
1
NAME  
FUNCTION  
TXD  
IR Transmitter TTL/CMOS Data Input. High = LED on.  
Supply Voltage  
2
V
CC  
3
GND  
PINC  
SHDN  
PGND  
LEDC  
RXD  
Ground. Connect anode of PIN diode to GND. Connect GND to PGND.  
PIN Diode Cathode Input. Connect cathode of PIN diode to PINC.  
Shutdown Input. Active low.  
4
5
6
Power Ground. Ground for IR LED driver. Connect PGND to GND.  
LED Driver Output. Connect cathode of IR-emitting LED to LEDC.  
IR Receiver TTL/CMOS Data Output. Pulses low for IR input pulse.  
7
8
Re c e ive r  
De t a ile d De s c rip t io n  
The MAX3120s IR receiver amplifier reverse biases the  
PIN diode by approximately 1.2V, and the PIN diode  
converts pulses of IR light into pulses of current. The  
input transimpedance (current-to-voltage) amplifier  
then converts these current pulses into voltage pulses  
of a useful magnitude. The MAX3120 filters the result-  
ing output voltage pulses to remove low-frequency  
ambient light interference and high-frequency circuit  
nois e . Fina lly, a hig h-s p e e d c omp a ra tor tra ns la te s  
these voltage pulses into usable CMOS output levels  
(Figure 1).  
The MAX3120 is an IrDA 1.2-compatible infrared (IR)  
transceiver. By selecting appropriate external optical  
components (see IR LED and PIN Photodiode Selection  
section), the MAX3120 will operate at data rates of  
2.4kb p s to 115kb p s a t d is ta nc e s from 1c m to 1m.  
Be c a us e of its low-nois e d e s ig n, the MAX3120  
achieves a bit error rate (BER) below 10-8 at maximum  
data rates when used with the appropriate external  
c omp one nts . On-c hip filte ring re je c ts out-of-b a nd  
ambient light signals that would otherwise interfere with  
IR communication. Also included in the MAX3120 is  
a high-power LED driver capable of sinking 200mA. It  
can drive most available IR LEDs at IrDA speeds of  
2.4kbps to 115kbps.  
_______________________________________________________________________________________  
5
Lo w -P ro file , 3 V, 1 2 0 µA,  
IrDA In fra re d Tra n s c e ive r  
2
2
2
I
= (4µW/cm )(0.075cm )(1.8)(0.95) (0.6A/W)  
= 291nA  
RXD  
TXD  
LEDC  
PIN  
The first term (4µW/cm2) is the minimum guaranteed  
irradiance in the ±15° angular range. The second term  
(0.075cm2) is the effective sensitive area of the PIN  
diode. The factor of 1.8 accounts for the efficiency  
increase due to the spherical lens. The first 0.95 factor  
normalizes the sensitivity to the 875nm wavelength,  
while the second 0.95 factor adjusts for decreased  
re c e ive r e ffic ie nc y a t ± 15° off-a xis . The la s t te rm,  
0.6A/W, is the sensitivity of the PIN diode. In this exam-  
ple, the Temic BPV22NF is an appropriate selection.  
PGND  
PINC  
BANDPASS  
FILTER  
-
MAX3120  
+
BIAS  
GND  
MAX3120  
1.2V  
SHDN  
V
CC  
The final important factor in selecting a PIN diode is  
effective diode capacitance. It is important to keep this  
capacitance below 70pF at 1.2V reverse bias. Higher  
input capacitance can compromise system noise per-  
formance by increasing the noise gain of the input tran-  
simpedance amplifier.  
Figure 1. Functional Diagram  
Tra n s m it t e r  
The MAX3120s IR transmitter consists of a high-power  
MOS switch, capable of quickly switching 200mA with  
less than 2of on-resistance. Internal buffering keeps  
the input capacitance of the TXD pin extremely low to  
ease the input drive requirement. Connect an IR LED in  
series with a current-setting resistor to select the appro-  
priate IR output power (see the Powering the IR LED  
section). Note that the transmitter does not have an  
automatic shutoff circuit, so pay special attention to com-  
ponent power dissipation in high-duty-cycle transmit  
schemes.  
P o w e rin g t h e IR LED  
Set the current in the IR LED using an external resistor.  
Consult the IR LED manufacturers data sheet to select  
a forward current that will meet IrDA specifications dis-  
cussed in the IR LED and PIN Photodiode Selection  
section. Look up the drop across the LED (V  
) and  
LED  
the drop across the MAX3120 LED driver (see Typical  
Operating Characteristics - V ) and choose the cur-  
LEDC  
rent-setting resistor based on the following equation:  
Ap p lic a t io n s In fo rm a t io n  
V
-V -V  
CC LED LEDC  
R
=
IR LED a n d P IN P h o t o d io d e S e le c t io n  
The IrDA specification calls for an IR transmitter with a  
peak wavelength between 850nm and 900nm. Within a  
±15° half-cone-angle, the output intensity of the IR LED  
must be between 40mW/sr and 500mW/sr. Outside a  
±30° half-cone-angle, the output intensity of the IR LED  
must fall below 40mW/sr. The optical rise and fall times  
of the IR LED must be less than 600ns. Based on these  
system requirements, the Hewlett Packard HSDL-4220  
or the Temic TSHF5400 IR LEDs are two appropriate  
choices.  
SET  
I
SET  
Using the Hewlett Packard HSDL-4220 IR LED as an  
example, V = 5V, I  
CC  
= 100mA, and V  
= 1.67V,  
SET  
LED  
therefore:  
V
= 0.08V  
LEDC  
R
SET  
= 32.5Ω  
Ap p rop ria te PIN p hotod iod e s e le c tion is e xtre me ly  
important to system performance. The PIN diode must  
generate at least 200nA (minimum sensitivity of the  
MAX3120) of current when aimed ±15° off-axis with an  
incident irradiance of 4µW/cm2. Use the following equa-  
tion to determine if the Temic BPV22NF meets these  
requirements:  
6
_______________________________________________________________________________________  
Lo w -P ro file , 3 V, 1 2 0 µA,  
IrDA In fra re d Tra n s c e ive r  
MAX3120  
Power-dissipation requirements of the MAX3120, IR  
LED, and R must be met based on maximum duty  
cycle and output current requirements.  
La yo u t Co n s id e ra t io n s  
The MAX3120 requires careful layout techniques to mini-  
mize parasitic signal coupling to the PINC input. Keep  
the lead length between the photodiode and PINC as  
short as possible. Be sure to keep PC board traces to  
the PIN diode separate from other noisy traces. To mini-  
mize coupling, run the AGND trace adjacent to the PINC  
trace on both sides. To prevent oscillation, avoid routing  
the RXD signal near the PINC signal. Connect the anode  
of the PIN diode, the GND pin, and the supply bypass  
capacitor pin in a star-ground connection. Connect  
PGND and GND together. Reduce the output trace  
length from RXD as much as possible to minimize cou-  
pling back to the input via parasitic capacitance.  
SET  
MAX3120 Power Dissipation = ISET · VLEDC · Duty Cycle  
IR LED Power Dissipation = ISET · VLED · Duty Cycle  
R
Power Dissipation = I 2 · RSET · Duty Cycle  
SET  
SET  
P o w e r-S u p p ly No is e Re je c t io n  
Because of the extremely sensitive nature of photodi-  
ode amplifiers, it is important to maintain a quiet supply  
voltage. Use a separate analog supply voltage where  
possible. Place a 1µF ceramic bypass capacitor as  
close to the V  
pin as possible. In especially noisy  
CC  
systems, connect a small (10) resistor in series with  
, in addition to the normal bypass capacitor.  
Ch ip In fo rm a t io n  
V
CC  
TRANSISTOR COUNT: 256  
P a c k a g e In fo rm a t io n  
_______________________________________________________________________________________  
7
Lo w -P ro file , 3 V, 1 2 0 µA,  
IrDA In fra re d Tra n s c e ive r  
P a c k a g e In fo rm a t io n (c o n t in u e d )  
MAX3120  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8
_____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3120EUA+T

暂无描述
MAXIM

MAX3120EUA-T

暂无描述
MAXIM

MAX312C/D

10з, Quad, SPST, CMOS Analog Switches
MAXIM

MAX312CPE

10з, Quad, SPST, CMOS Analog Switches
MAXIM

MAX312CPE+

SPST, 4 Func, 1 Channel, CMOS, PDIP16, 0.300 INCH, PLASTIC, MO-058AB, MS-001AA, DIP-16
MAXIM

MAX312CSE

10з, Quad, SPST, CMOS Analog Switches
MAXIM

MAX312CSE+

SPST, 4 Func, 1 Channel, CMOS, PDSO16, 0.150 INCH, MS-012AC, SOIC-16
MAXIM

MAX312CSE+T

SPST, 4 Func, 1 Channel, CMOS, PDSO16, 0.150 INCH, MS-012C, SOIC-16
MAXIM

MAX312CUE

10з, Quad, SPST, CMOS Analog Switches
MAXIM

MAX312CUE+

SPST, 4 Func, 1 Channel, CMOS, PDSO16, MO-153AB, TSSOP-16
MAXIM

MAX312EPE

10з, Quad, SPST, CMOS Analog Switches
MAXIM

MAX312ESE

10з, Quad, SPST, CMOS Analog Switches
MAXIM