MAX31740ATA/VY+ [MAXIM]

Ultra-Simple Fan-Speed Controller;
MAX31740ATA/VY+
型号: MAX31740ATA/VY+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-Simple Fan-Speed Controller

文件: 总11页 (文件大小:628K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here to ask about the production status of specific part numbers.  
MAX31740  
Ultra-Simple Fan-Speed Controller  
General Description  
Features  
The MAX31740 is a sophisticated, yet easy-to-use fan-  
speed controller. It monitors the temperature of an external  
NTC thermistor and generates a PWM signal that can be  
used to control the speed of a 2, 3, or 4-wire fan. The fan  
control characteristics are set using external resistors,  
thereby eliminating the need for an external microcon-  
troller. Controllable characteristics include the starting  
temperature for fan control, PWM frequency, fan speed  
at low temperatures, and slope of the temperature-duty-  
cycle transfer function.  
●ꢀ Self-ContainedꢀPWMꢀFanꢀControl—NoꢀMicroꢀNeeded  
●ꢀ ControlsꢀSpeedꢀofꢀ2-,ꢀ3-,ꢀorꢀ4-WireꢀFans  
●ꢀ ResistorsꢀSetꢀFanꢀControlꢀCharacteristics  
●ꢀ Smooth,ꢀLinearlyꢀVaryingꢀPWMꢀDutyꢀCycleꢀMinimizesꢀ  
Audibility of Fan Noise  
●ꢀ AccuratelyꢀMonitorsꢀExternalꢀThermistorꢀTemperature  
●ꢀ 3.0Vꢀtoꢀ5.5VꢀOperatingꢀVoltageꢀRange  
●ꢀ -40°Cꢀtoꢀ+125°CꢀOperatingꢀTemperatureꢀRange  
●ꢀ AEC-Q100ꢀqualifiedꢀMAX31740ATA/VY+  
Because the operating characteristics are selected by  
hardwired passive components, a simple, low-cost fan-  
speed controller can be implemented without the need  
for firmware development. This can dramatically reduce  
development time for the fan control function.  
Applications  
●ꢀ ConsumerꢀEquipment  
●ꢀ CommunicationsꢀEquipment  
●ꢀ ComputingꢀEquipment  
●ꢀ IndustrialꢀEquipment  
The MAX31740 is available in a 2mm x 3mm, 8-pin TDFN  
package.  
Ordering Information appears at end of data sheet.  
Typical Application Circuits  
2-WIRE FAN-SPEED CONTROLLER  
4-WIRE FAN-SPEED CONTROLLER  
V
V
V
V
DD  
DD  
R
ST  
C
B
R
ST  
C
B
B
B
DD  
DD  
R
R
VFAN  
SENSE  
D0  
SENSE  
D0  
R
R
R
R
D1  
D1  
FREQ  
FREQ  
C
C
F
F
VFAN  
MAX31740  
MAX31740  
DMIN  
DMIN  
TACH OR  
LOCKED  
ROTOR  
PWM_OUT  
N
PWM_OUT  
33Hz  
25kHz  
D2  
D2  
GND SLOPE  
R
GND SLOPE  
R
SLOPE  
SLOPE  
19-6697; Rev 3; 12/20  
MAX31740  
Ultra-Simple Fan-Speed Controller  
Absolute Maximum Ratings  
(All voltages relative to ground.)  
StorageꢀTemperatureꢀRange............................ -55°Cꢀtoꢀ+125°C  
Junction Temperature Maximum .....................................+150°C  
SolderingꢀTemperatureꢀ(reflow).......................................+260°C  
VoltageꢀRangeꢀonꢀV  
-0.3Vꢀtoꢀ+6.0V  
DD..............................................  
VoltageꢀRangeꢀonꢀAnyꢀNon-PowerꢀPin .... -0.3Vꢀtoꢀ(V ꢀ+ꢀ0.3V)  
DD  
OperatingꢀTemperatureꢀRange......................... -40°Cꢀtoꢀ+125°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Thermal Characteristics (Note 1)  
TDFN  
Junction-to-AmbientꢀThermalꢀResistanceꢀ(θ ) ..........60°C/W  
JA  
Junction-to-CaseꢀThermalꢀResistanceꢀ(θ )...............11°C/W  
JC  
Note 1:ꢀ PackageꢀthermalꢀresistancesꢀwereꢀobtainedꢀusingꢀtheꢀmethodꢀdescribedꢀinꢀJEDECꢀspecificationꢀJESD51-7,ꢀusingꢀaꢀfour-layerꢀ  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Recommended Operating Conditions  
(T ꢀ=ꢀ-40°Cꢀtoꢀ+125°C,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Noteꢀ2)  
A
PARAMETER  
SupplyꢀVoltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
3.0  
3.3  
5.5  
V
V
V
DD  
Logicꢀ1ꢀ(D0)  
Logicꢀ0ꢀ(D0)  
V
V
x 0.7  
V
ꢀ+ꢀ0.3  
IH  
DD  
DD  
V
-0.3  
V
x 0.3  
DD  
IL  
Electrical Characteristics  
(V ꢀ=ꢀV  
ꢀtoꢀV  
, T ꢀ=ꢀ-40°Cꢀtoꢀ+125°C,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Notesꢀ2,ꢀ3)  
DD  
DDMIN  
DDMAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
ꢀ=ꢀ3.3V  
ꢀ=ꢀ5.5V  
ꢀ=ꢀ3.3V  
500  
750  
-40  
19  
800  
1100  
+10  
DD  
DD  
DD  
SupplyꢀCurrentꢀ(Noteꢀ4)  
I
µA  
DD  
PWMꢀStartꢀVoltageꢀ(Noteꢀ5)  
InputꢀBiasꢀCurrentꢀ(SENSE)  
InternalꢀDOꢀPulldownꢀResistor  
V
-80  
20  
mV  
nA  
kΩ  
START  
I
T =ꢀ+25°Cꢀtoꢀ+125°C  
A
BIAS  
DO  
60  
100  
RLOAD  
InternalꢀSLOPEꢀFeedbackꢀ  
Resistanceꢀ(Noteꢀ6)  
R
V
ꢀ=ꢀ3.3V,ꢀT =ꢀ+25°C  
22 ± 2.4  
kΩ  
FBK  
DD  
A
SawtoothꢀPeakꢀVoltageꢀOffsetꢀ  
(Note 7)  
V
±12  
mV  
FSOFFSET  
SawtoothꢀPeakꢀVoltage  
V
0.4925  
0.5  
0.5075  
10  
xꢀV  
DD  
FS  
R
ꢀCapacitiveꢀLoadꢀ  
SLOPE  
C
pF  
SLOPE  
(Note 8)  
PWMꢀOutputꢀLow  
PWMꢀOutputꢀHigh  
V
I
I
ꢀ=ꢀ6mA  
0.4  
V
V
OL  
SINK  
V
ꢀ=ꢀ-6mA  
V
- 0.4  
OH  
SOURCE  
DD  
10.5455-6/C  
Hz  
F
PWM Frequency  
PWM  
T
T
=ꢀ+25°Cꢀtoꢀ+125°C  
=ꢀ-40°Cꢀtoꢀ+125°C  
-10  
-20  
+10  
+20  
FREQ  
A
A
%
Maxim Integrated  
2  
www.maximintegrated.com  
MAX31740  
Ultra-Simple Fan-Speed Controller  
Capacitance  
(T ꢀ=ꢀ+25°C,ꢀunlessꢀotherwiseꢀnoted.)  
A
PARAMETER  
Input Capacitance  
OutputꢀCapacitance  
Note 2: All voltages referenced to ground.  
SYMBOL  
CONDITIONS  
MIN  
TYP  
10  
MAX  
UNITS  
pF  
C
(Note 9)  
(Note 9)  
I
C
15  
pF  
O
Note 3:ꢀ LimitsꢀareꢀproductionꢀtestedꢀatꢀT ꢀ=ꢀ+25°C. Limitsꢀoverꢀtheꢀoperatingꢀtemperatureꢀrangeꢀandꢀrelevantꢀsupplyꢀvoltageꢀrangeꢀ  
A
areꢀguaranteedꢀbyꢀdesignꢀandꢀcharacterization.ꢀTypicalꢀvaluesꢀareꢀnotꢀguaranteed.  
Note 4:ꢀ SENSEꢀ=ꢀV /2.  
DD  
Note 5:ꢀ V  
ꢀspecifiesꢀtheꢀvoltageꢀchangeꢀrelativeꢀtoꢀV /2ꢀthatꢀisꢀrequiredꢀtoꢀstartꢀPWM.ꢀNegativeꢀvalueꢀindicatesꢀlowerꢀthanꢀ  
START  
DD  
V
/2.  
DD  
Note 6:ꢀ Theꢀtypicalꢀ(TYP)ꢀcolumnꢀindicatesꢀ±3ꢀsigmaꢀdistributionꢀofꢀaꢀtrimmedꢀresistance.  
Note 7:ꢀ V ꢀisꢀspecifiedꢀrelativeꢀtoꢀV /2.ꢀTheꢀtotalꢀerrorꢀequalsꢀV ꢀ+ꢀV  
FSOFFSET  
.
FSOFFSET  
DD  
FS  
Note 8:ꢀ ForꢀstableꢀPWMꢀoperation,ꢀtheꢀmaximumꢀexternalꢀcapacitanceꢀconnectedꢀtoꢀR  
from all sources must be less than  
SLOPE  
10pF.  
Note 9: Guaranteed by design; not 100% production tested.  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX31740  
Ultra-Simple Fan-Speed Controller  
Typical Operating Characteristics  
(T ꢀ=ꢀ+25°C,ꢀunlessꢀotherwiseꢀnoted.)  
A
PWM_OUT OUTPUT FREQUENCY  
POWER-SUPPLY CURRENT  
vs. POWER-SUPPLY VOLTAGE  
vs. TEMPERATURE  
650  
600  
550  
500  
450  
50  
C
= 330nF,  
V
C
= 3.3V,  
= 330nF,  
F
DD  
DUTY CYCLE = 50%  
F
45  
40  
35  
30  
25  
20  
C = 10pF  
L
+125°C  
-40°C  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
-40  
10  
20  
50  
80  
110  
POWER-SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
THEROETICAL PWM OUTPUT FREQUENCY  
vs. FREQ INPUT CAPACITANCE  
MEASURED PWM OUTPUT FREQUENCY  
vs. FREQ INPUT CAPACITANCE  
1.E+05  
1.E+04  
1.E+03  
1.E+02  
1.E+01  
1.E+05  
1.E+04  
1.E+03  
1.E+02  
1.E+01  
T
A
= +25°C  
T = +25°C  
A
1.E-10  
1.E-09  
1.E-08  
1.E-07  
1.E-06  
1.E-10  
1.E-09  
1.E-08  
1.E-07  
1.E-06  
FREQ INPUT CAPACITANCE (F)  
FREQ INPUT CAPACITANCE (F)  
PWM DUTY CYCLE  
PWM_OUT OUTPUT VOLTAGE LOW  
vs. OUTPUT CURRENT  
PWM_OUT OUTPUT VOLTAGE HIGH  
vs. OUTPUT CURRENT  
vs. D  
INPUT BIAS  
MIN  
100  
80  
60  
40  
20  
0
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
0.4  
0.3  
0.2  
0.1  
0
V
= 3.3V,  
= +25°C  
DD  
V
= 3.3V,  
= +25°C  
V
= 3.3V,  
DD  
DD  
T
A
T
T = +25°C  
A
A
0%  
15%  
30%  
45%  
-10  
-8  
-6  
-4  
-2  
0
0
5
10  
15  
20  
D
BIAS (%V )  
DD  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
MIN  
Maxim Integrated  
4
www.maximintegrated.com  
MAX31740  
Ultra-Simple Fan-Speed Controller  
Pin Configuration  
TOP VIEW  
DMIN  
SLOPE  
SENSE  
GND  
1
2
3
4
8
7
6
5
V
DD  
PWM_OUT  
D0  
MAX31740  
TDFN  
EP  
FREQ  
Pin Description  
PIN  
NAME  
FUNCTION  
Connect to an external resistor-divider to set the minimum active PWM duty cycle. (Typically between  
0.05V ꢀtoꢀ0.2V , depending on desired minimum duty cycle.)  
1
DMIN  
DD  
DD  
2
SLOPE  
SENSE  
Connect to an external resistor to set the slope of the temperature-PWM curve.  
ThermistorꢀVoltageꢀInput.ꢀExternalꢀNTCꢀthermistorꢀsensesꢀtemperature.ꢀThermistorꢀandꢀexternalꢀresistorꢀ  
formꢀaꢀvoltage-dividerꢀwithꢀaꢀnegativeꢀtemperatureꢀcoefficient.ꢀ  
3
4
GND  
Ground  
5
FREQ  
Connect to external capacitor C to set PWM frequency.  
F
DutyꢀCycleꢀInput.ꢀSetsꢀtheꢀdutyꢀcycleꢀbelowꢀt  
to either D  
ꢀorꢀ0%.ꢀConnectꢀtoꢀGNDꢀforꢀ0%ꢀorꢀtoꢀV  
MIN  
MIN DD  
6
D0  
for D  
.ꢀD0ꢀhasꢀanꢀinternalꢀ60kΩꢀ(typ)ꢀpulldownꢀresistor.  
MIN  
7
8
PWM_OUT PWMꢀCMOSꢀoutputꢀsignal.ꢀ  
V
3.0Vꢀtoꢀ5.5VꢀSupplyꢀVoltageꢀInput.ꢀBypassꢀwithꢀatꢀleastꢀaꢀ0.01µFꢀcapacitor.  
DD  
ExposedꢀPad.ꢀConnectꢀtoꢀground,ꢀbutꢀdoꢀnotꢀuseꢀasꢀtheꢀsoleꢀgroundꢀconnectionꢀpointꢀorꢀleaveꢀ  
unconnected.  
EP  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX31740  
Ultra-Simple Fan-Speed Controller  
Block Diagram  
V
DD  
V
FS  
V
DD  
V
L
FREQ  
OSCILLATOR  
P
C
F
R
FBK  
PWM_OUT  
N
SLOPE  
R
SLOPE  
V
FS  
V
DD  
R
ST  
R
B
SENSE  
MAX31740  
C
B
60kΩ (TYP)  
THERMISTOR  
DMIN  
D0  
V
DD  
V
DD  
R
D1  
R
D2  
PWM_OUTꢀ isꢀ aꢀ CMOSꢀ outputꢀ thatꢀ canꢀ beꢀ connectedꢀ  
directly to most fans’ speed control input as shown in the  
4-WireꢀFan-SpeedꢀControllerꢀgraphꢀinꢀTypical Application  
Circuits.  
Detailed Description  
The MAX31740 monitors the temperature of an external  
NTC thermistor and generates a PWM signal that can be  
used to control the speed of a 2-, 3-, or 4-wire fan. The fan  
control characteristics are set using external resistors and  
capacitors, thereby eliminating the need for an external  
microcontroller. Controllable characteristics include the  
starting temperature for fan control, PWM frequency, fan  
speed at low temperatures, and slope of the temperature-  
duty-cycle transfer function.  
If the fan has no speed control input (this is the case for all  
2-wire fans and most 3-wire fans), there are two options  
for controlling the fan’s speed. The first option is to use a  
low-frequencyꢀ (typicallyꢀ 33Hz)ꢀ PWMꢀ signalꢀ toꢀ modulateꢀ  
theꢀfan’sꢀpowerꢀsupplyꢀasꢀshownꢀinꢀtheꢀ2-WireꢀFan-Speedꢀ  
Controller graph in Typical Application Circuits.  
The advantage of using PWM to modulate the fan’s power  
supply is that it is inexpensive. Note, however, that some  
fan manufacturers recommend against this approach for  
their fans. Before using this approach, be sure to verify  
that the fan is compatible with pulse-width modulation  
of the power supply. Also, modulating the power-supply  
voltage in this manner can cause an increase in the  
Controlling Fan Speed  
The device generates a PWM signal and varies the duty  
cycle of that signal to control the speed of one or more  
fans. If the fan has a PWM speed control input (typically  
this is a “4-wire” fan), the recommended PWM frequency  
isꢀusuallyꢀinꢀtheꢀ20kHzꢀtoꢀ30kHzꢀrange.  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX31740  
Ultra-Simple Fan-Speed Controller  
perceived noise level when the duty cycle is not equal to  
100% or 0%.  
D
is the PWM duty cycle at the lower left end of the  
MIN  
solid diagonal portion of the curve. It is selected using  
a resistor-divider to set the voltage at the DMIN input.  
Another option for fans with no speed control input is to  
convert the PWM signal to a DC voltage. This can be  
done using a simple two-transistor buffer circuit, a linear  
low-dropout voltage regulator, or a switch-mode voltage  
regulator.ꢀ Alwaysꢀ useꢀ aꢀ highꢀ PWMꢀ frequencyꢀ (20kHzꢀ  
or higher recommended) in this case to ease filtering.  
Figure 1 shows an example of a two-transistor buffer  
circuit.  
T
is the temperature at which the duty cycle begins  
MIN  
to increase from D  
.
MIN  
D0 is the value of the PWM duty cycle for tempera-  
tures below T . This value is equal to either D  
or 0% in curves (b) and (c), depending upon whether  
MIN  
MIN  
D0ꢀisꢀconnectedꢀtoꢀV or GND.  
DD  
The slope of the diagonal portion of the curve is select-  
edꢀbyꢀtheꢀvalueꢀofꢀtheꢀresistorꢀatꢀtheꢀSLOPEꢀinput.  
Fan Control Profile  
Figure 2 shows three general curves of PWM duty cycle  
vs. temperature for the device. The important parameters  
are listed as follows:  
T
is the temperature that corresponds to the inter-  
START  
section of the diagonal portion of the curve, including  
the dashed portion in (b) and (c), with 0% duty cycle. It  
isselectedꢀbyꢀsettingꢀresistorꢀR  
equal to the resis-  
ST  
tance of the thermistor at temperature T  
START.  
V
FAN  
3.3V  
(5V OR 12V)  
100kΩ  
P
2N3904  
MAX31740  
100kΩ  
33kΩ  
PWM_OUT  
2.2µF  
10µF  
9.1kΩ  
Figure 1. Two-Transistor Buffer  
a) D  
= 0%, D0 = GND  
b) D  
> 0%, D0 = GND  
c) D > 0%, D0 = V  
MIN DD  
MIN  
MIN  
100  
100  
100  
D
MIN  
D
MIN  
D
MIN  
T
TEMPERATURE (°C)  
T
T
TEMPERATURE (°C)  
T T  
START MIN  
TEMPERATURE (°C)  
START  
START MIN  
Figure 2. PWM Duty Cycle vs. Temperature  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX31740  
Ultra-Simple Fan-Speed Controller  
D
MIN  
and D0  
Operation  
As seen in the Block Diagram, C sets the frequency of  
SelectD  
and D0 based on the system requirements  
F
MIN  
the internal saw-tooth oscillator that is used to generate  
the PWM speed control signal. The oscillator’s output  
and the type of fan to be used. For example, in some  
systems, the optimum cooling strategy requires that  
the fan stop spinning when the temperature is below a  
voltageꢀswingsꢀfromꢀnear-zeroꢀtoꢀV ꢀ(V /2).  
FS DD  
specific value (T  
with the fan profile shown in Figure 2(c).ꢀTheꢀvoltageꢀV  
at the DMIN input selects the minimum duty cycle using  
the following equation:  
).Suchaschemecanbeachievedꢀ  
MIN  
Theꢀ externalꢀ NTCꢀ thermistorꢀ andꢀ resistorꢀ (R ) form a  
voltage-divider whose output voltage is approximately  
linear and has a negative temperature coefficient. This  
ST  
MIN  
voltageissubtractedfromV  
to create a voltage with  
FS  
a positive temperature coefficient at the input to the  
amplifier. The amplifier’s closed-loop gain is set by an  
V
/V ꢀ=ꢀR2/(R1+R2)ꢀ=ꢀD  
(%)/200  
MIN DD  
MIN  
where D  
is the minimum duty cycle (in percent).  
MIN  
externalꢀresistorꢀ(R  
)ꢀandꢀanꢀinternalꢀ25kΩꢀresistorꢀ  
SLOPE  
(R  
).Theꢀ valueꢀ ofꢀ R  
therefore determines the  
For example, if a minimum duty cycle of 30% is desired,  
theꢀvoltageꢀatꢀtheꢀDMINꢀinputꢀshouldꢀbeꢀ15%ꢀofꢀV  
FBK  
SLOPE  
slope of the duty cycle as a function of temperature. The  
temperature at which the thermistor’s resistance is equal  
toꢀR is the nominal value of T  
.
DD  
When the temperature drops below T  
in the profile  
MIN  
.
ST  
START  
shown in Figure 2(b),ꢀtheꢀdutyꢀcycleꢀshouldꢀdropꢀtoꢀzero.ꢀ  
The voltage at D  
, derived by the voltage-divider  
MIN  
This is accomplished by connecting the D0 input to GND.  
betweenꢀ V  
and GND, determines the minimum duty  
DD  
If the system requires a profile like the one in Figure  
cycle. The logic level at D0 determines whether the low-  
temperature duty cycle will be 0% or equal to D  
2(c), where the duty cycle remains at D  
when the  
MIN  
.
MIN  
temperature drops below T  
,ꢀsimplyꢀconnectꢀD0ꢀtoꢀV  
.
MIN  
DD  
Someꢀfansꢀwithꢀspeedꢀcontrolꢀinputsꢀ(theseꢀareꢀtypicallyꢀ  
4-wire fans) are designed to keep spinning at a reduced  
speedꢀ evenꢀ whenꢀ theꢀ dutyꢀ cycleꢀ isꢀ equalꢀ toꢀ zero.ꢀ Forꢀ  
such fans, a profile like that of Figure 2(a) is usually  
appropriate. With this profile, the duty cycle decreases  
linearlyꢀtoꢀzeroꢀasꢀtemperatureꢀdecreases.ꢀToꢀachieveꢀthisꢀ  
profile, connect D0 to GND.  
Component Selection  
Before picking component values, be sure that you have  
determined target values for the important parameters  
such as PWM frequency, T  
, D  
, D0, and the  
MIN  
START  
slope of the duty cycle vs. temperature curve. Most of  
these parameters are defined in the Fan Control Profile  
section.  
Thermistor  
PWM Frequency  
Useꢀ aꢀ standardꢀ NTCꢀ thermistor.Aꢀ +25°Cꢀ resistanceꢀ inꢀ  
theꢀ10kΩꢀtoꢀ50kΩꢀrangeꢀworksꢀwell.ꢀAnꢀNTC’sꢀresistance-  
temperature curve is generally very nonlinear, but when  
If the fan has a speed control input, the most common  
recommendedꢀPWMꢀfrequencyꢀisꢀ25kHz,ꢀalthoughꢀsomeꢀ  
fans require different frequencies. If the fan has no PWM  
input and will be controlled by applying the PWM signal  
directly to a power-supply modulation transistor (as in  
the typical 2-wire fan-speed controller circuit), the PWM  
frequencyꢀshouldꢀnormallyꢀbeꢀinꢀtheꢀ25Hzꢀtoꢀ35Hzꢀrange.ꢀ  
Aꢀgoodꢀstartingꢀpointꢀisꢀ33Hz.  
combinedꢀ withꢀ R  
in a voltage-divider, the resulting  
ST  
curve is reasonably linear over the temperature range of  
interest.  
R
ST  
First determine T  
. In Figure 2(a), T  
is the  
START  
START  
C sets the PWM frequency according to the equation:  
F
temperature at which the duty-cycle curve intersects the  
C ꢀ=ꢀ10.5455E-6/FREQꢀ(Hz)  
horizontalꢀ axis.ꢀ Inꢀ Figure 2(b) and Figure 2(c), T  
can be determined by continuing the diagonal line until  
itꢀ crossesꢀ theꢀ horizontalꢀ axis,ꢀ andꢀ theꢀ pointꢀ atꢀ whichꢀ itꢀ  
START  
F
The most common values of C are 330nF for f  
=
PWM  
F
33Hzꢀandꢀ430pFꢀforꢀf ꢀ=ꢀ25kHz.  
PWM  
intersectsꢀtheꢀhorizontalꢀaxisꢀisꢀT  
.ꢀNowꢀchooseꢀR  
START  
ST  
equal to the resistance of the thermistor at T  
.
START  
T
START  
SelectꢀR equal to the resistance of the thermistor at the  
ST  
desired value of T  
.
START  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX31740  
Ultra-Simple Fan-Speed Controller  
Slope  
R
ST  
and R  
Example Values  
SLOPE  
R
sets the slope of the duty cycle vs. temperature  
Table 1ꢀ givesꢀ exampleꢀ valuesꢀ ofꢀ R ꢀ andꢀ R  
for  
SLOPE  
SLOPE  
ST  
curve.Pickthevaluebasedonthethermistorcharacteristics  
three values of T  
and three fan control temperature  
START  
and the desired range of temperatures between T  
the point where the duty cycle reaches 100%.  
and  
spans.ꢀ Valuesꢀ areꢀ givenꢀ forꢀ twoꢀ standardꢀ thermistorꢀ  
products,ꢀoneꢀratedꢀatꢀ10kΩꢀandꢀtheꢀotherꢀratedꢀatꢀ15kΩꢀ  
atꢀ+25°C.  
MIN  
Asanexample,assumethatatypicalNTCthermistor+ꢀ  
ꢀcombinationꢀwillꢀprovideꢀaꢀslopeꢀofꢀaboutꢀ1%ꢀofꢀV  
R
ST  
DD  
FS  
C and R  
B
B
perꢀ°C.ꢀSinceꢀV ꢀ=ꢀV /2,ꢀthisꢀisꢀequivalentꢀtoꢀ2%ꢀofꢀV  
FS  
DD  
Oneꢀ ofꢀ theꢀ mostꢀ commonꢀ reasonsꢀ forꢀ controllingꢀ fanꢀ  
speed is to reduce the audible noise perceived by users  
in the vicinity of the equipment. The audibility of fan noise  
increases significantly when the fan speed undergoes  
rapid changes. When the thermistor is in contact with a  
significant mass, such as a heat sink or a printed circuit  
board, the thermal mass of the object being measured will  
oftenꢀlimitꢀtheꢀrateꢀofꢀchangeꢀofꢀtheꢀvoltageꢀatꢀtheꢀSENSEꢀ  
input so that any fan speed changes are slow and no  
additionalꢀfilteringꢀisꢀneeded.ꢀInꢀsuchꢀcases,ꢀRBꢀandꢀCBꢀ  
are not necessary.  
perꢀ°Cꢀatꢀtheꢀinputꢀtoꢀtheꢀinternalꢀamplifier.ꢀTherefore,ꢀtheꢀ  
range of duty cycles from 0% to 100% would correspond  
toꢀaboutꢀaꢀ50°Cꢀrangeꢀofꢀtemperaturesꢀwhenꢀtheꢀamplifierꢀ  
gain is equal to one. In most implementations, you would  
wantꢀaꢀsmallerꢀtemperatureꢀrangeꢀ(forꢀexample,ꢀ15°C)ꢀtoꢀ  
cause the duty cycle to cover the full 0% to 100% range.  
Doing so requires an amplifier gain of:  
A
Vꢀ  
=ꢀ50°C/15°Cꢀ=ꢀ3.33  
The closed-loop gain of the internal amplifier is:  
A ꢀ=ꢀ(1ꢀ+ꢀR /R ).  
V
FBK SLOPE  
In some cases, the thermistor could be in contact with  
an object whose temperature changes relatively rapidly,  
or a low-mass thermistor can be suspended in an area  
where air flow could cause its temperature to undergo  
Therefore:  
ꢀ=ꢀR  
R
/(A ꢀ–ꢀ1)ꢀ=ꢀ25kΩ/(3.33ꢀ–ꢀ1)ꢀ=ꢀ10.7kΩ  
FBK V  
SLOPE  
Table 1. R and R  
Resistor Options  
ST  
SLOPE  
R
(kΩ)  
CONTROL RANGE  
(T to T ) (°C)  
R
SLOPE  
(kΩ)  
ST  
THERMISTOR  
T
START  
START  
100%  
+10  
+15  
+20  
+10  
+15  
+20  
+10  
+15  
+20  
+10  
+15  
+20  
+10  
+15  
+20  
+10  
+15  
+20  
6.65  
11  
25  
10  
16.2  
6.49  
10.5  
15.4  
6.04  
10  
BetaTHERMꢀ10K3A1  
30  
35  
25  
30  
35  
8.06  
6.49  
15  
14.7  
5.49  
8.87  
13  
5.23  
8.45  
12.4  
5.36  
8.45  
12.4  
MurataꢀNCP15XW153J03RC  
12.4  
10.5  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX31740  
Ultra-Simple Fan-Speed Controller  
fast changes. In these cases, the temperature changes  
can be fast enough to cause audible fan speed variations.  
Tominimizethiseffect,therateatwhichthedutycycleꢀ  
canchangecanbesloweddownusinganexternalRCꢀ  
Applications Information  
Power-Supply Decoupling  
To achieve the best results when using the device,  
networkconsistingofR and C and connected to the  
decoupleꢀtheꢀV  
power supply with a (minimum) 0.01µF  
B
B
DD  
SENSEꢀ input.Typicalꢀ valuesꢀ forꢀ theseꢀ componentsꢀ areꢀ  
5MΩꢀ andꢀ 1µF,ꢀ althoughꢀ theyꢀ canꢀ beꢀ easilyꢀ adjustedꢀ toꢀ  
conform to the requirements of the system.  
capacitor.ꢀ Useꢀ aꢀ high-quality,ꢀ ceramic,ꢀ surface-mountꢀ  
capacitorꢀ ifꢀ possible.ꢀ Surface-mountꢀ componentsꢀ mini-  
mizeꢀleadꢀinductance,ꢀwhichꢀimprovesꢀperformance,ꢀandꢀ  
ceramic capacitors tend to have adequate high-frequency  
response for decoupling applications.  
C canbeconnectedtoGND,V , or an intermediate  
B
DD  
voltage depending on the desired startup characteristics.  
Whenꢀ connectedꢀ toꢀ V , C ꢀ initiallyꢀ holdsꢀ theꢀ SENSEꢀ  
DD  
B
Handling, PCB Layout, and Assembly  
inputꢀ highꢀ uponꢀ applicationꢀ ofꢀ V , which delays the  
DD  
Theꢀ lead-free/RoHSꢀ packageꢀ canꢀ beꢀ solderedꢀ usingꢀ aꢀ  
reflowꢀprofileꢀthatꢀcompliesꢀwithꢀJEDECꢀJ-STD-020.  
onset of the PWM signal when D0 is grounded and  
theꢀ temperatureꢀ onꢀ applicationꢀ ofꢀ V  
is greater than  
DD  
T
. The delay time is related to the time constant  
Moisture-sensitive packages are shipped from the factory  
dry-packed.Handlinginstructionslistedonthepackageꢀ  
label must be followed to prevent damage during reflow.  
Referꢀ toꢀ theꢀ IPC/JEDECꢀ J-STD-020ꢀ standardꢀ forꢀ mois-  
ture-sensitiveꢀdeviceꢀ(MSD)ꢀclassifications.  
START  
C R . When connected to GND, C briefly keeps the  
SENSEꢀ inputꢀ lowꢀ uponꢀ applicationꢀ ofꢀ V , providing a  
“spin-up” function on power-up that can be useful in some  
cases (but is generally not necessary). Connecting C to  
B
B
B
DD  
B
aꢀvoltage-dividerꢀthatꢀproducesꢀanꢀoutputꢀofꢀV /2ꢀcanꢀbeꢀ  
DD  
usedꢀtoꢀminimizeꢀanyꢀspin-upꢀorꢀdelayꢀtime.  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
thatꢀaꢀ“+”,ꢀ“#”,ꢀorꢀ“-”ꢀinꢀtheꢀpackageꢀcodeꢀindicatesꢀRoHSꢀstatusꢀ  
only. Package drawings may show a different suffix character, but  
theꢀdrawingꢀpertainsꢀtoꢀtheꢀpackageꢀregardlessꢀofꢀRoHSꢀstatus.  
PART NUMBER  
MAX31740ATA+  
TEMP RANGE  
PIN-PACKAGE  
-40°Cꢀtoꢀ+125°C  
8ꢀTDFN-EP*  
MAX31740ATA/VY+  
-40°Cꢀtoꢀ+125°C 8ꢀTDFNꢀ(SWꢀEP*)  
+ꢀDenotes a lead(Pb)-free/RoHS-compliant package.  
/V = Denotes automotive grade.  
Y = Denotes side-wettable.  
SW = Denotes side-wettable package.  
* EP = Exposed pad.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
8ꢀTDFN-EP  
T823+1  
21-0174  
90-0091  
90-0091  
8ꢀTDFNꢀ(SWꢀEP)  
T823Y+3  
21-100417  
Chip Information  
SUBSTRATEꢀCONNECTEDꢀTOꢀGROUND  
PROCESS:ꢀCMOS  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX31740  
Ultra-Simple Fan-Speed Controller  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
2
3
5/13  
Initial release  
4
7/19  
UpdatedꢀTOC06  
3/20  
UpdatedꢀOrderingꢀInformationꢀtableꢀandꢀPackageꢀInformationꢀtable  
UpdatedꢀFeatures section  
10  
1
12/20  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2020 Maxim Integrated Products, Inc.  
11  

相关型号:

MAX31740_V01

Ultra-Simple Fan-Speed Controller
MAXIM

MAX3174CAI

#.3V Multiprotocol Software-Selectable Cable Terminators and Transceivers
MAXIM

MAX3175

+5V Multiprotocol, Software-Selectable Control Transceivers
MAXIM

MAX3175CAI

+5V Multiprotocol, Software-Selectable Control Transceivers
MAXIM

MAX3175CAI+

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, BICMOS, PDSO28, 5.30 MM, 0.65 MM PITCH, SSOP-28
MAXIM

MAX3175CAI+T

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, BICMOS, PDSO28, 5.30 MM, 0.65 MM PITCH, SSOP-28
MAXIM

MAX3175CAI-T

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, BICMOS, PDSO28, 5.30 MM, 0.65 MM PITCH, SSOP-28
MAXIM

MAX31760AEE+

Analog Circuit, 1 Func, PDSO16, ROHS COMPLIANT, QSOP-16
MAXIM

MAX31782

System Management Microcontroller
MAXIM

MAX31782ETL+

System Management Microcontroller
MAXIM

MAX31782ETL+T

System Management Microcontroller
MAXIM