MAX31855_V01 [MAXIM]

Cold-Junction Compensated Thermocouple-to-Digital Converter;
MAX31855_V01
型号: MAX31855_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Cold-Junction Compensated Thermocouple-to-Digital Converter

文件: 总13页 (文件大小:568K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
General Description  
Benefits and Features  
Integration Reduces Design Time and Lowers  
The MAX31855 performs cold-junction compensation  
and digitizes the signal from a K-, J-, N-, T-, S-, R-, or  
E-type thermocouple. The data is output in a signed  
14-bit, SPI-compatible, read-only format. This converter  
resolves temperatures to 0.25°C, allows readings as  
high as +1800°C and as low as -270°C, and exhibits  
thermocouple accuracy of ±2°C for temperatures ranging  
from -200°C to +700°C for K-type thermocouples. For full  
range accuracies and other thermocouple types, see the  
Thermal Characteristics specifications.  
System Cost  
• 14-Bit, 0.25°C Resolution Converter  
• Integrated Cold-Junction Compensation  
• Versions Available for Most Common Thermocouple  
Types: K-, J-, N-, T-, S-, R-, and E-Type  
• Detects Thermocouple Shorts to GND or V  
• Detects Open Thermocouple  
CC  
Interfaces to Most Microcontrollers  
Applications  
• Simple SPI-Compatible Interface (Read-Only)  
Industrial  
Appliances  
HVAC  
Ordering Information appears at end of data sheet.  
For related parts and recommended products to use with this part, refer  
to www.maximintegrated.com/MAX31855.related.  
Typical Application Circuit  
V
CC  
0.1µF  
MAX31855  
GND  
MICROCONTROLLER  
SO  
MISO  
SCK  
SS  
SCK  
T+  
T-  
CS  
19-5793; Rev 5; 1/15  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Absolute Maximum Ratings  
Supply Voltage Range (V  
to GND)...................-0.3V to +4.0V  
Operating Temperature Range......................... -40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range ........................... -65°C to +150°C  
Lead Temperature (soldering, 10s).................................+300°C  
Soldering Temperature (reflow) ......................................+260°C  
CC  
All Other Pins............................................. -0.3V to (V  
+ 0.3V)  
CC  
Continuous Power Dissipation (T = +70°C)  
A
SO (derate 5.9mW/°C above +70°C).......................470.6mW  
ESD Protection (All Pins, Human Body Model)....................±2kV  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
SO  
Junction-to-Ambient Thermal Resistance (θ ) ........170°C/W  
JA  
Junction-to-Case Thermal Resistance (θ )...............40°C/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Recommended Operating Conditions  
(T = -40°C to +125°C, unless otherwise noted.)  
A
PARAMETER  
Power-Supply Voltage  
Input Logic 0  
SYMBOL  
CONDITIONS  
MIN  
3.0  
TYP  
MAX  
3.6  
UNITS  
V
(Note 2)  
3.3  
V
V
CC  
V
-0.3  
+0.8  
IL  
V
+
CC  
0.3  
Input Logic 1  
V
2.1  
V
IH  
DC Electrical Characteristics  
(3.0V ≤ V  
P 3.6V, T = -40°C to +125°C, unless otherwise noted.)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power-Supply Current  
I
900  
1500  
µA  
CC  
T
= -40°C to +125°C, 100mV across the  
A
Thermocouple Input Bias Current  
Power-Supply Rejection  
-100  
+100  
2.5  
nA  
°C/V  
V
thermocouple inputs  
-0.3  
2
Power-On Reset Voltage  
Threshold  
V
(Note 3)  
POR  
Power-On Reset Voltage  
Hysteresis  
0.2  
V
V
CC  
0.4  
-
Output High Voltage  
Output Low Voltage  
V
I
I
= -1.6mA  
= 1.6mA  
V
V
OH  
OUT  
OUT  
V
0.4  
OL  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Thermal Characteristics  
(3.0V ≤ V  
P 3.6V, T = -40°C to +125°C, unless otherwise noted.) (Note 4)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= -200°C to +700°C,  
MIN  
TYP  
MAX  
UNITS  
T
T
THERMOCOUPLE  
-2  
+2  
= -20°C to +85°C (Note 3)  
A
MAX31855K Thermocouple  
Temperature Gain and Offset  
Error (41.276µV/°C nominal  
sensitivity) (Note 4)  
T
T
= +700°C to +1350°C,  
THERMOCOUPLE  
-4  
-6  
-2  
-4  
-2  
-4  
-6  
-2  
-4  
-2  
-3  
-5  
-2  
-4  
-6  
-2  
-4  
-6  
+4  
+6  
+2  
+4  
+2  
+4  
+6  
+2  
+4  
+2  
+3  
+5  
+2  
+4  
+6  
+2  
+4  
+6  
°C  
= -20°C to +85°C (Note 3)  
A
T
T
= -270°C to +1372°C,  
THERMOCOUPLE  
= -40°C to +125°C (Note 3)  
A
T
T
= -210°C to +750°C,  
THERMOCOUPLE  
= -20°C to +85°C (Note 3)  
MAX31855J Thermocouple  
Temperature Gain and Offset  
Error (57.953µV/°C nominal  
sensitivity) (Note 4)  
A
°C  
°C  
°C  
°C  
T
T
= -210°C to +1200°C,  
THERMOCOUPLE  
= -40°C to +125°C (Note 3)  
A
T
T
= -200°C to +700°C,  
THERMOCOUPLE  
= -20°C to +85°C (Note 3)  
A
MAX31855N Thermocouple  
Temperature Gain and Offset  
Error (36.256µV/°C nominal  
sensitivity) (Note 4)  
T
T
= +700°C to +1300°C,  
THERMOCOUPLE  
= -20°C to +85°C (Note 3)  
A
T
T
= -270°C to +1300°C,  
THERMOCOUPLE  
= -40°C to +125°C (Note 3)  
A
T
T
= -270°C to +400°C,  
THERMOCOUPLE  
= -20°C to +85°C (Note 3)  
MAX31855T Thermocouple  
Temperature Gain and Offset  
Error (52.18µV/°C nominal  
sensitivity) (Note 4)  
A
T
T
= -270°C to +400°C,  
THERMOCOUPLE  
= -40°C to +125°C (Note 3)  
A
T
T
= -200°C to +700°C,  
THERMOCOUPLE  
= -20°C to +85°C (Note 3)  
A
MAX31855E Thermocouple  
Temperature Gain and Offset  
Error (76.373µV/°C nominal  
sensitivity) (Note 4)  
T
T
= +700°C to +1000°C,  
THERMOCOUPLE  
= -20°C to +85°C (Note 3)  
A
T
T
= -270°C to +1000°C,  
THERMOCOUPLE  
= -40°C to +125°C (Note 3)  
A
T
T
= -50°C to +700°C,  
THERMOCOUPLE  
= -20°C to +85°C (Note 3)  
A
MAX31855R Thermocouple  
Temperature Gain and Offset  
Error (10.506µV/°C nominal  
sensitivity) (Note 4)  
T
T
= +700°C to +1768°C,  
THERMOCOUPLE  
°C  
°C  
= -20°C to +85°C (Note 3)  
A
T
T
= -50°C to +1768°C,  
THERMOCOUPLE  
= -40°C to +125°C (Note 3)  
A
T
T
= -50°C to +700°C,  
THERMOCOUPLE  
= -20°C to +85°C (Note 3)  
A
MAX31855S Thermocouple  
Temperature Gain and Offset  
Error (9.587µV/°C nominal  
sensitivity) (Note 4)  
T
T
= +700°C to +1768°C,  
THERMOCOUPLE  
= -20°C to +85°C (Note 3)  
A
T
T
= -50°C to +1768°C,  
THERMOCOUPLE  
= -40°C to +125°C (Note 3)  
A
Maxim Integrated  
3  
www.maximintegrated.com  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Thermal Characteristics (continued)  
(3.0V ≤ V  
P 3.6V, T = -40°C to +125°C, unless otherwise noted.) (Note 4)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Thermocouple Temperature Data  
Resolution  
0.25  
°C  
T = -20°C to +85°C (Note 3)  
A
-2  
-3  
+2  
+3  
Internal Cold-Junction  
Temperature Error  
°C  
°C  
T = -40°C to +125°C (Note 3)  
A
Cold-Junction Temperature Data  
Resolution  
T = -40°C to +125°C  
A
0.0625  
70  
Temperature Conversion Time  
(Thermocouple, Cold Junction,  
Fault Detection)  
t
(Note 5)  
(Note 6)  
100  
ms  
ms  
CONV  
Thermocouple Conversion  
Power-Up Time  
t
200  
CONV_PU  
Serial-Interface Timing Characteristics  
(See Figure 1 and Figure 2.)  
PARAMETER  
Input Leakage Current  
Input Capacitance  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µA  
pF  
I
(Note 7)  
-1  
+1  
LEAK  
C
8
IN  
Serial-Clock Frequency  
SCK Pulse-High Width  
SCK Pulse-Low Width  
SCK Rise and Fall Time  
f
5
MHz  
ns  
SCL  
t
100  
100  
CH  
t
ns  
CL  
200  
ns  
t
100  
100  
ns  
CS Fall to SCK Rise  
CSS  
ns  
SCK to CS Hold  
t
100  
40  
ns  
CS Fall to Output Enable  
CS Rise to Output Disable  
SCK Fall to Output Data Valid  
DV  
t
ns  
TR  
t
40  
ns  
DO  
(Note 3)  
200  
ns  
CS Inactive Time  
Note 2: All voltages are referenced to GND. Currents entering the IC are specified positive, and currents exiting the IC are negative.  
Note 3: Guaranteed by design; not production tested.  
Note 4: Not including cold-junction temperature error or thermocouple nonlinearity.  
Note 5: Specification is 100% tested at T = +25°C. Specification limits over temperature (T = T  
to T  
) are guaranteed by  
MAX  
A
A
MIN  
design and characterization; not production tested.  
Note 6: Because the thermocouple temperature conversions begin at V  
, depending on V  
slew rates, the first thermocouple  
POR  
CC  
temperature conversion may not produce an accurate result. Therefore, the t  
specification is required after V  
is  
CC  
CONV_PU  
greater than V  
to guarantee a valid thermocouple temperature conversion result.  
CCMIN  
Note 7: For all pins except T+ and T- (see the Thermocouple Input Bias Current parameter in the DC Electrical Characteristics  
table).  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Serial-Interface Diagrams  
CS  
SCK  
D0  
SO  
D31  
D7  
D6  
D4  
D2  
D8  
D5  
D3  
D1  
Figure 1. Serial-Interface Protocol  
t
CSS  
CS  
t
t
CL  
CH  
SCK  
SO  
t
DV  
t
DO  
t
TR  
D31  
D3  
D2  
D1  
D0  
Figure 2. Serial-Interface Timing  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Typical Operating Characteristics  
(V  
= +3.3V, T = +25°C, unless otherwise noted.)  
A
CC  
INTERNAL TEMPERATURE SENSOR  
ACCURACY  
SUPPLY CURRENT vs. TEMPERATURE  
0.7  
1.4  
V
CC  
= 3.3V  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 3.6V  
CC  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
NOTE: THIS DATA WAS TAKEN  
IN PRECISION BATH SO HIGH  
TEMPERATURE LIMIT IS 90°C  
V
= 3.3V  
CC  
V
= 3.0V  
CC  
-0.1  
-0.2  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
ADC ACCURACY vs. ADC INPUT VOLTAGE  
ACROSS TEMPERATURE  
ADC ACCURACY vs. ADC INPUT VOLTAGE  
ACROSS V  
CC  
0.3  
0.2  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1.0  
AT -40°C  
V
= 3.0V  
CC  
0.1  
0
V
= 3.3V  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
AT +85°C  
CC  
V
= 3.6V  
CC  
AT +25°C  
V
CC  
= 3.3V  
INTERNAL TEMPERATURE = +25°C  
20 40  
ADC INPUT VOLTAGE (mV)  
0
20  
40  
60  
0
60  
ADC INPUT VOLTAGE (mV)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Pin Configuration  
Pin Description  
PIN  
NAME  
FUNCTION  
1
GND  
Ground  
TOP VIEW  
Thermocouple Input. See Table 1. Do not  
connect to GND.  
2
T-  
+
GND  
T-  
1
2
3
4
8
7
6
5
DNC  
SO  
3
4
5
T+  
Thermocouple Input. See Table 1.  
Power-Supply Voltage  
MAX31855  
V
CC  
T+  
CS  
SCK  
Serial-Clock Input  
V
CC  
SCK  
Active-Low Chip Select. Set CS low to  
enable the serial interface.  
6
CS  
SO  
7
8
SO  
Serial-Data Output  
Do Not Connect  
DNC  
Block Diagram  
V
CC  
V
CC  
S5  
S4  
SCK  
SO  
COLD-JUNCTION  
COMPENSATION  
DIGITAL  
CONTROL  
MAX31855  
CS  
T+  
ADC  
T-  
S1  
S2  
FAULT  
DETECTION  
GND  
REFERENCE  
VOLTAGE  
S3  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
for the difference between the thermocouple coldjunction  
side (device ambient temperature) and a 0°C virtual ref-  
erence. For a K-type thermocouple, the voltage changes  
by about 41µV/°C, which approximates the thermocouple  
characteristic with the following linear equation:  
Detailed Description  
The MAX31855 is a sophisticated thermocouple-to-digital  
converter with a built-in 14-bit analog-to-digital converter  
(ADC). The device also contains cold-junction compensa-  
tion sensing and correction, a digital controller, an SPI-  
compatible interface, and associated control logic. The  
device is designed to work in conjunction with an external  
microcontroller (µC) in thermostatic, process-control, or  
monitoring applications. The device is available in several  
versions, each optimized and trimmed for a specific thermo-  
couple type (K, J, N, T, S, R, or E.). The thermocouple type is  
indicated in the suffix of the part number (e.g., MAX31855K).  
See the Ordering Information table for all options.  
V
= (41.276µV/°C) x (T - T  
)
AMB  
OUT  
R
where V  
is the thermocouple output voltage (µV), T  
R
OUT  
is the temperature of the remote thermocouple junction  
(°C), and T is the temperature of the device (°C).  
AMB  
Other thermocouple types use a similar straight-line  
approximation but with different gain terms. Note that the  
MAX31855 assumes a linear relationship between tem-  
perature and voltage. Because all thermocouples exhibit  
some level of nonlinearity, apply appropriate correction to  
the device’s output data.  
Temperature Conversion  
The device includes signal-conditioning hardware to con-  
vert the thermocouple’s signal into a voltage compatible  
with the input channels of the ADC. The T+ and T- inputs  
connect to internal circuitry that reduces the introduction  
of noise errors from the thermocouple wires.  
Cold-Junction Compensation  
The function of the thermocouple is to sense a difference  
in temperature between two ends of the thermocouple  
wires. The thermocouple’s “hot” junction can be read  
across the operating temperature range (Table 1). The  
reference junction, or “cold” end (which should be at the  
Before converting the thermoelectric voltages into equiva-  
lent temperature values, it is necessary to compensate  
Table 1. Thermocouple Wire Connections and Nominal Sensitivities  
COLD-JUNCTION  
SENSITIVITY (µV/°C)  
(0°C TO +70°C)  
TYPE  
T- WIRE  
T+ WIRE  
TEMP RANGE (°C)  
SENSITIVITY (µV/°C)  
41.276  
(0°C to +1000°C)  
K
J
Alumel  
Constantan  
Nisil  
Chromel  
Iron  
-270 to +1372  
-210 to +1200  
-270 to + 1300  
-50 to +1768  
-270 to +400  
-270 to +1000  
-50 to +1768  
40.73  
52.136  
27.171  
6.181  
57.953  
(0°C to +750°C)  
36.256  
(0°C to +1000°C)  
N
S
T
E
R
Nicrosil  
9.587  
(0°C to +1000°C)  
Platinum  
Constantan  
Constantan  
Platinum  
Platinum/Rhodium  
Copper  
52.18  
(0°C to +400°C)  
41.56  
76.373  
(0°C to +1000°C)  
Chromel  
44.123  
6.158  
10.506  
(0°C to +1000°C)  
Platinum/Rhodium  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
same temperature as the board on which the device is  
mounted) can range from -55°C to +125°C. While the  
temperature at the cold end fluctuates, the device contin-  
ues to accurately sense the temperature difference at the  
opposite end.  
During fault detection, the connections from the external  
thermocouple and cold-junction compensation circuit to  
the ADC are opened (switches S4 and S5). The internal  
ground reference on T- is also opened (switch S3). The  
connections to the internal fault-detection circuit are  
closed (switch S1 and S2). The fault-detection circuit tests  
The device senses and corrects for the changes in the  
reference junction temperature with cold-junction com-  
pensation. It does this by first measuring its internal die  
temperature, which should be held at the same tem-  
perature as the reference junction. It then measures the  
voltage from the thermocouple’s output at the reference  
junction and converts this to the noncompensated ther-  
mocouple temperature value. This value is then added  
to the device’s die temperature to calculate the thermo-  
couple’s “hot junction” temperature. Note that the “hot  
junction” temperature can be lower than the cold junction  
(or reference junction) temperature.  
for shorted connections to V  
or GND on the T+ and T-  
CC  
inputs, as well as looking for an open thermocouple condi-  
tion. Bits D0, D1, and D2 of the output data are normally  
low. Bit D2 goes high to indicate a thermocouple short to  
V
, bit D1 goes high to indicate a thermocouple short  
CC  
to GND, and bit D0 goes high to indicate a thermocouple  
open circuit. If any of these conditions exists, bit D16 of  
the SO output data, which is normally low, also goes high  
to indicate that a fault has occurred.  
Serial Interface  
The Typical Application Circuit shows the device inter-  
faced with a microcontroller. In this example, the device  
processes the reading from the thermocouple and trans-  
mits the data through a serial interface. Drive CS low  
and apply a clock signal at SCK to read the results at  
SO. Conversions are always being performed in the  
background. The fault and temperature data are only be  
updated when CS is high.  
Optimal performance from the device is achieved when  
the thermocouple cold junction and the device are at the  
same temperature. Avoid placing heat-generating devices  
or components near the MAX31855 because this could  
produce cold-junction-related errors.  
Conversion Functions  
During the conversion time, t  
, three functions are  
CONV  
performed: the temperature conversion of the internal  
cold-junction temperature, the temperature conversion of  
the external thermocouple, and the detection of thermo-  
couple faults.  
Drive CS low to output the first bit on the SO pin. A com-  
plete serial-interface read of the cold-junction compen-  
sated thermocouple temperature requires 14 clock cycles.  
Thirty-two clock cycles are required to read both the  
thermocouple and reference junction temperatures (Table  
2 and Table 3.) The first bit, D31, is the thermocouple  
temperature sign bit, and is presented to the SO pin within  
When executing the temperature conversion for the inter-  
nal cold-junction compensation circuit, the connection to  
signal from the external thermocouple is opened (switch  
S4) and the connection to the cold-junction compensa-  
tion circuit is closed (switch S5). The internal T- reference  
to ground is still maintained (switch S3 is closed) and  
the connections to the fault-detection circuit are open  
(switches S1 and S2).  
t
of the falling edge of CS. Bits D[30:18] contain the  
DV  
converted temperature in the order of MSB to LSB, and  
are presented to the SO pin within t of the falling edge  
D0  
of SCK. Bit D16 is normally low and goes high when the  
thermocouple input is open or shorted to GND or V  
.
CC  
The reference junction temperature data begins with D15.  
CS can be taken high at any point while clocking out con-  
version data. If T+ and T- are unconnected, the thermo-  
couple temperature sign bit (D31) is 0, and the remainder  
of the thermocouple temperature value (D[30:18]) is 1.  
When executing the temperature conversion of the  
external thermocouple, the connections to the internal  
fault-detection circuit are opened (switches S1 and S2 in  
the Block Diagram) and the switch connecting the cold-  
junction compensation circuit is opened (switch S5). The  
internal ground reference connection (switch S3) and the  
connection to the ADC (switch S4) are closed. This allows  
the ADC to process the voltage detected across the T+  
and T- terminals.  
Figure 1 and Figure 2 show the serial-interface timing and  
order. Table 2 and Table 3 show the SO output bit weights  
and functions.  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Table 2. Memory Map—Bit Weights and Functions  
14-BIT THERMOCOUPLE  
TEMPERATURE DATA  
FAULT  
BIT  
12-BIT INTERNAL TEMPERATURE  
SCV  
BIT  
SCG  
BIT  
OC  
BIT  
RES  
RES  
DATA  
BIT  
D31  
Sign  
D30  
D18  
D17  
D16  
D15  
Sign  
D14  
D4  
D3  
D2  
D1  
D0  
1 =  
Short  
to  
1 =  
Short  
to  
MSB  
1 =  
Open  
Circuit  
10  
-2  
-4  
MSB 2  
(1024°C)  
LSB 2  
(0.25°C)  
1 =  
Fault  
LSB 2  
(0.0625°C)  
6
VALUE  
Reserved  
2
Reserved  
(64°C)  
V
GND  
CC  
Table 3. Memory Map—Descriptions  
BIT  
D[31:18]  
D17  
NAME  
DESCRIPTION  
14-Bit Thermocouple  
Temperature Data  
These bits contain the signed 14-bit thermocouple temperature value. See Table 4.  
Reserved  
This bit always reads 0.  
This bit reads at 1 when any of the SCV, SCG, or OC faults are active. Default value  
is 0.  
D16  
Fault  
12-Bit Internal Temperature  
Data  
These bits contain the signed 12-bit value of the reference junction temperature. See  
Table 5.  
D[15:4]  
D3  
D2  
D1  
D0  
Reserved  
SCV Fault  
SCG Fault  
OC Fault  
This bit always reads 0.  
This bit is a 1 when the thermocouple is short-circuited to V . Default value is 0.  
CC  
This bit is a 1 when the thermocouple is short-circuited to GND. Default value is 0.  
This bit is a 1 when the thermocouple is open (no connections). Default value is 0.  
Table 4. Thermocouple Temperature Data  
Format  
Table 5. Reference Junction Temperature  
Data Format  
TEMPERATURE  
(°C)  
DIGITAL OUTPUT  
(D[31:18])  
TEMPERATURE  
(°C)  
DIGITAL OUTPUT  
(D[15:4])  
+1600.00  
+1000.00  
+100.75  
+25.00  
0.00  
0110 0100 0000 00  
0011 1110 1000 00  
0000 0110 0100 11  
0000 0001 1001 00  
0000 0000 0000 00  
1111 1111 1111 11  
1111 1111 1111 00  
1111 0000 0110 00  
+127.0000  
+100.5625  
+25.0000  
0.0000  
0111 1111 0000  
0110 0100 1001  
0001 1001 0000  
0000 0000 0000  
1111 1111 1111  
1111 1111 0000  
1110 1100 0000  
1100 1001 0000  
-0.0625  
-0.25  
-1.0000  
-1.00  
-20.0000  
-55.0000  
-250.00  
Note: The practical temperature ranges vary with the thermo-  
couple type.  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
The thermocouple system’s accuracy can also be  
improved by following these precautions:  
Applications Information  
Noise Considerations  
Use the largest wire possible that does not shunt heat  
away from the measurement area.  
Because of the small signal levels involved, thermocouple  
temperature measurement is susceptible to powersupply  
coupled noise. The effects of power-supply noise can be  
minimized by placing a 0.1µF ceramic bypass capacitor  
If a small wire is required, use it only in the region  
of the measurement, and use extension wire for the  
region with no temperature gradient.  
close to the V  
pin of the device and to GND.  
CC  
Avoid mechanical stress and vibration, which could  
strain the wires.  
The input amplifier is a low-noise amplifier designed  
to enable high-precision input sensing. Keep the ther-  
mocouple and connecting wires away from electrical  
noise sources. It is strongly recommended to add a  
10nF ceramic surface-mount differential capacitor, placed  
across the T+ and T- pins, in order to filter noise on the  
thermocouple lines.  
When using long thermocouple wires, use a twisted  
pair extension wire.  
Avoid steep temperature gradients.  
Try to use the thermocouple wire well within its tem-  
perature rating.  
Thermal Considerations  
Use the proper sheathing material in hostile environ-  
ments to protect the thermocouple wire.  
Self-heating degrades the device’s temperature measure-  
ment accuracy in some applications. The magnitude of  
the temperature errors depends on the thermal conduc-  
tivity of the device package, the mounting technique, and  
the effects of airflow. Use a large ground plane to improve  
the device’s temperature measurement accuracy.  
Use extension wire only at low temperatures and only  
in regions of small gradients.  
Keep an event log and a continuous record of thermo-  
couple resistance.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Ordering Information  
PART  
MAX31855KASA+  
MAX31855KASA+T  
MAX31855JASA+  
MAX31855JASA+T  
MAX31855NASA+  
MAX31855NASA+T  
MAX31855SASA+  
MAX31855SASA+T  
MAX31855TASA+  
MAX31855TASA+T  
MAX31855EASA+  
MAX31855EASA+T  
MAX31855RASA+  
MAX31855RASA+T  
THERMOCOUPLE TYPE  
MEASURED TEMP RANGE  
PIN-PACKAGE  
8 SO  
K
K
J
-200°C to +1350°C  
-200°C to +1350°C  
-40°C to +750°C  
-40°C to +750°C  
-200°C to + 1300°C  
-200°C to + 1300°C  
-50°C to +1600°C  
-50°C to +1600°C  
-250°C to +400°C  
-250°C to +400°C  
-40°C to +900°C  
-40°C to +900°C  
-50°C to +1770°C  
-50°C to +1770°C  
8 SO  
8 SO  
J
8 SO  
N
N
S
S
T
T
E
E
R
R
8 SO  
8 SO  
8 SO  
8 SO  
8 SO  
8 SO  
8 SO  
8 SO  
8 SO  
8 SO  
Note: All devices are specified over the -40°C to +125°C operating temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
LAND PATTERN NO.  
8 SO  
S8+4  
21-0041  
90-0096  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
3/11  
Initial release  
11/11  
Corrected ESD protection value; added “S” and “R” type specifications  
1, 2, 3, 8, 12  
Corrected the thermocouple temperature conditions in the Thermal Characteristics  
table and Table 1; added clarification to the Serial Interface section to help users better  
understand how to communicate with the device; added a recommendation to add a  
10nF differential capacitor to the T+/T- pins in the Noise Considerations section  
2
2/12  
3, 8, 9, 11  
Change “S” type thermocouple minimum temperature in Table 1 and Ordering  
Information  
3
7/14  
8, 12  
4
5
11/14  
1/15  
Removed automotive reference from data sheet  
1
1
Revised Benefits and Features section  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2015 Maxim Integrated Products, Inc.  
13  

相关型号:

MAX31856MUD+

Analog Circuit, 1 Func, PDSO14, ROHS COMPLIANT, TSSOP-14
MAXIM

MAX3185CAP

【15kV ESD-Protected, EMC-Compliant, 230kbps RS-232 Serial Port for Motherboards/Desktop PCs
MAXIM

MAX3185CAP+

Line Transceiver, 1 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO20, 0.200 INCH, 0.65 MM PITCH, SSOP-20
MAXIM

MAX3185CAP+T

Line Transceiver, 1 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO20, 0.200 INCH, 0.65 MM PITCH, SSOP-20
MAXIM

MAX3185CAPT

Line Transceiver, 1 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO20, 0.200 INCH, 0.65 MM PITCH, SSOP-20
MAXIM

MAX3185CWP

【15kV ESD-Protected, EMC-Compliant, 230kbps RS-232 Serial Port for Motherboards/Desktop PCs
MAXIM

MAX3185CWP+

Line Transceiver, 1 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO20, 0.300 INCH, SOIC-20
MAXIM

MAX3185CWP+T

Line Transceiver, 1 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO20, 0.300 INCH, SOIC-20
MAXIM

MAX3185EAP

【15kV ESD-Protected, EMC-Compliant, 230kbps RS-232 Serial Port for Motherboards/Desktop PCs
MAXIM

MAX3185EAP+

暂无描述
MAXIM

MAX3185EAP+T

Line Transceiver, 1 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO20, 0.200 INCH, 0.65 MM PITCH, SSOP-20
MAXIM

MAX3185EAP-T

LINE TRANSCEIVER, PDSO20, 0.200 INCH, 0.65 MM PITCH, SSOP-20
MAXIM