MAX3222E_03 [MAXIM]

【15kV ESD-Protected, Down to 10nA, 3.0V to 5.5V, Up to 1Mbps, True RS-232 Transceivers; ± 15kV ESD保护,低至10nA的, 3.0V至5.5V ,最高可达1Mbps,真RS- 232收发器
MAX3222E_03
型号: MAX3222E_03
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

【15kV ESD-Protected, Down to 10nA, 3.0V to 5.5V, Up to 1Mbps, True RS-232 Transceivers
± 15kV ESD保护,低至10nA的, 3.0V至5.5V ,最高可达1Mbps,真RS- 232收发器

文件: 总22页 (文件大小:411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1298; Rev 7; 2/03  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
General Description  
Features  
The MAX3222E/MAX3232E/MAX3237E/MAX3241E/  
MAX3246E +3.0V-powered EIA/TIA-232 and V.28/V.24  
communications interface devices feature low power con-  
sumption, high data-rate capabilities, and enhanced  
electrostatic-discharge (ESD) protection. The enhanced  
ESD structure protects all transmitter outputs and  
receiver inputs to ±1ꢀ5V using IEꢁ 1000-4-2 Air-ꢂap  
Discharge, ±85V using IEꢁ 1000-4-2 ꢁontact Discharge  
(±±5V for MAX3246E), and ±1ꢀ5V using the ꢃuman ꢄodꢅ  
Model. The logic and receiver I/O pins of the MAX3237E  
are protected to the above standards, while the transmit-  
ter output pins are protected to ±1ꢀ5V using the ꢃuman  
ꢄodꢅ Model.  
o ESD Protection for RS-232 I/O Pins  
(MAX3222E/MAX3232E/MAX3241E/MAX3246E)  
15kV—Human Body Model  
8kV—IEC 1000-4-2, Contact Discharge  
9kV (MAX3246E Only)—IEC 1000-4-2, Contact  
Discharge  
15kV—IEC 1000-4-2, Air-Gap Discharge  
o ESD Protection for all Logic and Receiver I/O Pins  
(MAX3237E)  
15kV—Human Body Model  
8kV—IEC 1000-4-2, Contact Discharge  
15kV–IEC 1000-4-2, Air-Gap Discharge  
A proprietarꢅ low-dropout transmitter output stage delivers  
true RS-232 performance from a +3.0V to +ꢀ.ꢀV power  
supplꢅ, using an internal dual charge pump. The charge  
pump requires onlꢅ four small 0.1µF capacitors for opera-  
tion from a +3.3V supplꢅ. Each device guarantees opera-  
tion at data rates of 2ꢀ05bps while maintaining RS-232  
output levels. The MAX3237E guarantees operation at  
2ꢀ05bps in the normal operating mode and 1Mbps in the  
Megaꢄaud™ operating mode, while maintaining RS-232-  
compliant output levels.  
The MAX3222E/MAX3232E have two receivers and two  
transmitters. The MAX3222E features a 1µA shutdown  
mode that reduces power consumption in batterꢅ-pow-  
ered portable sꢅstems. The MAX3222E receivers remain  
active in shutdown mode, allowing monitoring of external  
devices while consuming onlꢅ 1µA of supplꢅ current. The  
MAX3222E and MAX3232E are pin, pac5age, and func-  
tionallꢅ compatible with the industrꢅ-standard MAX242  
and MAX232, respectivelꢅ.  
o ESD Protection for Transmitter Output Pins  
(MAX3237E)  
15kV—Human Body Model  
o Guaranteed Data Rate  
250kbps (MAX3222E/MAX3232E/MAX3241E/  
MAX3246E/MAX3237E, Normal Operation)  
1Mbps (MAX3237E, MegaBaud Operation)  
o Latchup Free  
o Low-Power Shutdown with Receivers Active  
1µA (MAX3222E/MAX3241E/MAX3246E)  
10nA (MAX3237E)  
o Flow-Through Pinout (MAX3237E)  
o Guaranteed Mouse Drivability (MAX3241E)  
o Meets EIA/TIA-232 Specifications Down to +3.0V  
The MAX3241E/MAX3246E are complete serial ports  
(three drivers/five receivers) designed for noteboo5 and  
subnoteboo5 computers. The MAX3237E (five drivers/  
three receivers) is ideal for peripheral applications that  
require fast data transfer. These devices feature a shut-  
down mode in which all receivers remain active, while  
consuming onlꢅ 1µA (MAX3241E/MAX3246E) or 10nA  
(MAX3237E).  
The MAX3222E, MAX3232E, and MAX3241E are avail-  
able in space-saving SO, SSOP, and TSSOP pac5ages.  
The MAX3237E is offered in an SSOP pac5age. The  
MAX3246E is offered in the ultra-small 6 x 6 UꢁSP™  
pac5age.  
_______________Ordering Information  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
20 TSSOP  
MAX3222ECUP  
MAX3222ECAP  
20 SSOP  
Ordering Information continued at end of data sheet.  
Pin Configurations appear at end of data sheet.  
Selector Guide appears at end of data sheet.  
Typical Operating Circuits appear at end of data sheet.  
________________________Applications  
ꢄatterꢅ-Powered Equipment Printers  
ꢁell Phones  
ꢁell-Phone Data ꢁables  
Noteboo5, Subnoteboo5,  
and Palmtop ꢁomputers  
Smart Phones  
xDSL Modems  
MegaBaud is a trademark of Maxim Integrated Products, Inc.  
UCSP is a trademark of Maxim Integrated Products, Inc.  
Covered by U.S. Patent numbers 4,636,930; 4,679,134;  
4,777,577; 4,797,899; 4,809,152; 4,897,774; 4,999,761; and  
other patents pending.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
to GND..............................................................-0.3V to +6V  
20-Pin TSSOP (derate 10.9mW/°C above +70°C) ........879mW  
20-Pin SSOP (derate 8.00mW/°C above +70°C) ..........640mW  
28-Pin SSOP (derate 9.52mW/°C above +70°C) ..........762mW  
28-Pin Wide SO (derate 12.50mW/°C above +70°C).............1W  
28-Pin TSSOP (derate 12.8mW/°C above +70°C) ......1026mW  
32-Lead QFN (derate 23.2mW/°C above +70°C) .........1860mW  
6 x 6 UCSP (derate 12.6mW/°C above +70°C).............1010mW  
Operating Temperature Ranges  
V+ to GND (Note 1)..................................................-0.3V to +7V  
V- to GND (Note 1) ...................................................+0.3V to -7V  
V+ + |V-| (Note 1).................................................................+13V  
Input Voltages  
T_IN, EN, SHDN, MBAUD to GND ........................-0.3V to +6V  
R_IN to GND ..................................................................... 25V  
Output Voltages  
T_OUT to GND............................................................... 13.2V  
MAX32_ _EC_ _ ...................................................0°C to +70°C  
MAX32_ _EE_ _.................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Bump Reflow Temperature (Note 2)  
Infrared, 15s..................................................................+200°C  
Vapor Phase, 20s..........................................................+215°C  
R_OUT, R_OUTB (MAX3241E)................-0.3V to (V  
+ 0.3V)  
CC  
Short-Circuit Duration, T_OUT to GND.......................Continuous  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin SSOP (derate 7.14mW/°C above +70°C) ..........571mW  
16-Pin Wide SO (derate 9.52mW/°C above +70°C) .....762mW  
18-Pin Wide SO (derate 9.52mW/°C above +70°C) .....762mW  
18-Pin PDIP (derate 11.11mW/°C above +70°C)..........889mW  
Note 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.  
Note 2: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device  
can be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recom-  
mended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow.  
Preheating is required. Hand or wave soldering is not allowed.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +3V to +5.5V, C1C4 = 0.1µF, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Notes 3, 4)  
MAX A  
CC  
A
MIN  
PARAMETER  
CONDITIONS  
= +3.3V or +5V, T = +25°C)  
MIN  
TYP  
MAX  
UNITS  
DC CHARACTERISTICS (V  
CC  
A
MAX3222E, MAX3232E,  
MAX3241E, MAX3246E  
0.3  
1
Supply Current  
SHDN = V , no load  
mA  
CC  
MAX3237E  
0.5  
1
2.0  
10  
SHDN = GND  
µA  
nA  
Shutdown Supply Current  
SHDN = R_IN = GND, T_IN = GND or V  
(MAX3237E)  
10  
300  
CC  
LOGIC INPUTS  
Input Logic Low  
T_IN, EN, SHDN, MBAUD  
0.8  
V
V
V
V
V
= +3.3V  
= +5.0V  
2.0  
2.4  
CC  
CC  
Input Logic High  
T_IN, EN, SHDN, MBAUD  
Transmitter Input Hysteresis  
0.5  
0.01  
9
MAX3222E, MAX3232E,  
MAX3241E, MAX3246E  
T_IN, EN, SHDN  
1
Input Leakage Current  
µA  
T_IN, SHDN, MBAUD  
MAX3237E (Note 5)  
18  
RECEIVER OUTPUTS  
R_OUT (MAX3222E/MAX3237E/MAX3241E/  
MAX3246E), EN = V , receivers disabled  
Output Leakage Current  
0.05  
10  
µA  
V
CC  
I
= 1.6mA (MAX3222E/MAX3232E/MAX3241E/  
OUT  
MAX3246E), I  
Output Voltage Low  
0.4  
= 1.0mA (MAX3237E)  
OUT  
2
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +3V to +5.5V, C1C4 = 0.1µF, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Notes 3, 4)  
MAX A  
CC  
A
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0.6  
-
V
0.1  
-
CC  
CC  
Output Voltage High  
I
= -1.0mA  
V
OUT  
RECEIVER INPUTS  
Input Voltage Range  
-25  
0.6  
0.8  
+25  
V
V
V
V
V
V
= +3.3V  
= +5.0V  
= +3.3V  
= +5.0V  
1.1  
1.5  
1.5  
2.0  
0.5  
5
CC  
CC  
CC  
CC  
Input Threshold Low  
Input Threshold High  
T
T
= +25°C  
A
2.4  
2.4  
= +25°C  
= +25°C  
V
A
Input Hysteresis  
V
k
Input Resistance  
T
3
7
A
TRANSMITTER OUTPUTS  
Output Voltage Swing  
Output Resistance  
All transmitter outputs loaded with 3k to ground  
5
5.4  
V
V
= 0, transmitter output = 2V  
300  
50k  
CC  
Output Short-Circuit Current  
60  
25  
mA  
µA  
V
= 0 or +3.0V to +5.5V, V  
= 12V, transmitters  
CC  
OUT  
Output Leakage Current  
disabled (MAX3222E/MAX3232E/MAX3241E/MAX3246E)  
MOUSE DRIVABILITY (MAX3241E)  
T1IN = T2IN = GND, T3IN = V , T3OUT loaded with  
CC  
Transmitter Output Voltage  
3k to GND, T1OUT and T2OUT loaded with 2.5mA  
each  
5
V
ESD PROTECTION  
Human Body Model  
15  
15  
8
IEC 1000-4-2 Air-Gap Discharge (except MAX3237E)  
IEC 1000-4-2 Contact Discharge (except MAX3237E)  
IEC 1000-4-2 Contact Discharge (MAX3246E only)  
Human Body Model  
R_IN, T_OUT  
kV  
kV  
9
15  
15  
8
T_IN, R_IN, R_OUT, EN, SHDN,  
MBAUD  
MAX3237E  
IEC1000-4-2 Air-Gap Discharge  
IEC1000-4-2 Contact Discharge  
_______________________________________________________________________________________  
3
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
TIMING CHARACTERISTICSMAX3222E/MAX3232E/MAX3241E/MAX3246E  
(V = +3V to +5.5V, C1C4 = 0.1µF, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Notes 3, 4)  
MAX A  
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
= T  
MIN  
250  
250  
TYP  
MAX  
UNITS  
T
to T  
MAX  
A
MIN  
R = 3k ,  
C = 1000pF,  
L
L
(MAX3222E/MAX3232E/  
MAX3241E)  
Maximum Data Rate  
kbps  
one transmitter  
switching  
T = +25°C (MAX3246E)  
A
t
t
0.15  
0.15  
200  
200  
100  
50  
PHL  
PLH  
Receiver input to receiver output,  
C = 150pF  
L
Receiver Propagation Delay  
µs  
Receiver Output Enable Time  
Receiver Output Disable Time  
Transmitter Skew  
Normal operation (except MAX3232E)  
Normal operation (except MAX3232E)  
(Note 6)  
ns  
ns  
ns  
ns  
|t  
|t  
- t  
|
|
PHL PLH  
Receiver Skew  
- t  
PHL PLH  
V
CC  
= +3.3V, T = +25°C,  
A
C = 150pF  
L
to 1000pF  
R = 3k to 7k , measured  
L
from +3.0V to 3.0V or 3.0V to  
Transition-Region Slew Rate  
6
30  
V/µs  
+3.0V, one transmitter switching  
TIMING CHARACTERISTICSMAX3237E  
(V  
= +3V to +5.5V, C1C4 = 0.1µF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
MAX A  
CC  
A
MIN  
PARAMETER  
CONDITIONS  
R = 3k , C = 1000pF, one transmitter switching,  
MIN  
TYP  
MAX  
UNITS  
L
L
250  
MBAUD = GND  
V
= +3.0V to +4.5V, R = 3k , C = 250pF,  
CC  
L
L
Maximum Data Rate  
1000  
1000  
kbps  
one transmitter switching, MBAUD = V  
CC  
V
= +4.5V to +5.5V, R = 3k , C = 1000pF,  
CC  
L
L
one transmitter switching, MBAUD = V  
CC  
t
t
0.15  
0.15  
2.6  
PHL  
PLH  
Receiver Propagation Delay  
R_IN to R_OUT, C = 150pF  
L
µs  
µs  
Receiver Output Enable Time  
Receiver Output Disable Time  
Normal operation  
Normal operation  
2.4  
| t  
| t  
| t  
V
- t  
|, MBAUD = GND (Note 6)  
PHL PLH  
Transmitter Skew  
Receiver Skew  
100  
50  
ns  
ns  
- t  
|, MBAUD = V (Note 6)  
CC  
PHL PLH  
- t  
|
PHL PLH  
= +3.3V,  
MBAUD = GND  
MBAUD = V  
6
30  
CC  
C = 150pF  
L
to 1000pF  
R = 3k to 7k ,  
L
+3.0V to 3.0V or  
-3.0V to +3.0V,  
24  
150  
CC  
V/µs  
Transition-Region Slew Rate  
C = 150pF to 2500pF,  
L
MBAUD = GND  
4
30  
T
A
= +25°C  
Note 3:MAX3222E/MAX3232E/MAX3241E: C1C4 = 0.1µF tested at +3.3V 10ꢀ% C1 = 0.047µF, C2, C3, C4 = 0.33µF tested at +5.0V  
10ꢀ. MAX3237E: C1C4 = 0.1µF tested at +3.3V 5ꢀ, C1C4 = 0.22µF tested at +3.3V 10ꢀ% C1 = 0.047µF, C2, C3, C4 =  
0.33µF tested at +5.0V 10ꢀ. MAX3246E% C1-C4 = 0.22µF tested at +3.3V 10ꢀ% C1 = 0.22µF, C2, C3, C4 = 0.54µF tested at  
5.0V 10ꢀ.  
Note 4:MAX3246E devices are production tested at +25°C. All limits are guaranteed by design over the operating temperature range.  
Note 5:The MAX3237E logic inputs have an active positive feedback resistor. The input current goes to zero when the inputs are at  
the supply rails.  
Note 6: Transmitter skew is measured at the transmitter zero crosspoints.  
4
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
__________________________________________Typical Operating Characteristics  
(V  
= +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3k and C , T = +25°C, unless otherwise noted.)  
CC  
L
A
MAX3222E/MAX3232E  
OPERATING SUPPLY CURRENT  
vs. LOAD CAPACITANCE  
MAX3222E/MAX3232E  
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE  
MAX3222E/MAX3232E  
SLEW RATE vs. LOAD CAPACITANCE  
16  
14  
12  
10  
8
45  
40  
35  
30  
25  
20  
6
5
4
3
2
1
0
T1 TRANSMITTING AT 250kbps  
T2 TRANSMITTING AT 15.6kbps  
V
OUT+  
-SLEW  
+SLEW  
250kbps  
120kbps  
T1 TRANSMITTING AT 250kbps  
T2 TRANSMITTING AT 15.6kbps  
-1  
-2  
-3  
-4  
-5  
-6  
6
20kbps  
15  
10  
5
4
V
2
OUT-  
FOR DATA RATES UP TO 250kbps  
0
0
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
MAX3241E  
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE  
MAX3241E  
OPERATING SUPPLY CURRENT  
vs. LOAD CAPACITANCE  
MAX3241E  
SLEW RATE vs. LOAD CAPACITANCE  
6
14  
60  
50  
40  
30  
20  
10  
0
1 TRANSMITTER AT 250kbps  
2 TRANSMITTERS AT 15.6kbps  
5
4
V
OUT+  
12  
10  
8
250kbps  
3
1 TRANSMITTER AT 250kbps  
2 TRANSMITTERS AT 15.6kbps  
2
120kbps  
1
0
6
-1  
-2  
-3  
-4  
-5  
-6  
20kbps  
4
2
V
OUT-  
0
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
MAX3237E  
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE  
MAX3237E  
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE (MBAUD = GND)  
MAX3237E  
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE (MBAUD = V  
)
CC  
6
5
4
3
2
1
7.5  
5.0  
2.5  
0
6
5
1Mbps  
V
OUT+  
V
+
OUT  
4
FOR DATA RATES UP TO 250kbps  
1 TRANSMITTER AT 250kbps  
4 TRANSMITTERS AT 15.6kbps  
ALL TRANSMITTERS LOADED  
2Mbps  
1.5Mbps  
3
2
FOR DATA RATES UP TO 250kbps  
1 TRANSMITTER 250kbps  
1 TRANSMITTER AT FULL DATA RATE  
1
4 TRANSMITTERS AT 1/16 DATA RATE  
WITH 3k + C  
L
0
4 TRANSMITTERS 15.6kbps  
ALL TRANSMITTERS LOADED  
0
3k + C LOAD, EACH OUTPUT  
L
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
-6  
WITH 3k + C  
L
-2.5  
-5.0  
-7.5  
1.5Mbps  
1Mbps  
2Mbps  
V
OUT-  
V
OUT-  
-6  
0
500 1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
0
500 1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
0
500  
1000  
1500  
2000  
LOAD CAPACITANCE (pF)  
_______________________________________________________________________________________  
5
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3k and C , T = +25°C, unless otherwise noted.)  
L A  
CC  
MAX3237E  
SLEW RATE vs. LOAD CAPACITANCE  
(MBAUD = GND)  
MAX3237E  
SLEW RATE vs. LOAD CAPACITANCE  
MAX3237E  
SUPPLY CURRENT vs. LOAD CAPACITANCE  
WHEN TRANSMITTING DATA (MBAUD = GND)  
(MBAUD = V  
)
CC  
12  
10  
70  
60  
50  
40  
30  
20  
50  
250kbps  
120kbps  
-SLEW, 1Mbps  
+SLEW, 1Mbps  
-SLEW, 2Mbps  
+SLEW, 2Mbps  
40  
30  
20  
10  
0
SR-  
SR+  
8
20kbps  
6
4
1 TRANSMITTER AT 20kbps, 120kbps, 250kbps  
4 TRANSMITTERS AT 15.6kbps  
ALL TRANSMITTERS LOADED  
1 TRANSMITTER AT 250kbps  
4 TRANSMITTERS AT 15.6kbps  
ALL TRANSMITTERS LOADED  
1 TRANSMITTER AT FULL DATA RATE  
2
0
4 TRANSMITTERS AT 1/16 DATA RATE  
10  
0
3k + C LOAD EACH OUTPUT  
L
WITH 3k + C  
L
WITH 3k + C  
L
0
500  
1000  
1500  
2000  
0
500  
1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
0
500  
1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
MAX3237E  
TRANSMITTER OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE (MBAUD = GND)  
MAX3237E  
MAX3237E SUPPLY CURRENT  
vs. SUPPLY VOLTAGE (MBAUD = GND)  
TRANSMITTER SKEW vs. LOAD CAPACITANCE  
(MBAUD = V  
)
CC  
50  
6
5
100  
80  
60  
40  
20  
0
V
+
OUT  
4
40  
30  
3
2
1 TRANSMITTER AT 250kbps  
4 TRANSMITTERS AT 15.6kbps  
ALL TRANSMITTERS LOADED  
WITH 3k +1000pF  
1
0
-1  
-2  
-3  
-4  
-5  
-6  
20  
1 TRANSMITTER AT 250kbps  
4 TRANSMITTERS AT 15.6kbps  
ALL TRANSMITTERS LOADED  
WITH 3k AND 1000pF  
|tPLH - t  
|
PHL  
10  
0
1 TRANSMITTER AT 500kbps  
4 TRANSMITTERS AT 1/16 DATA RATE  
ALL TRANSMITTERS LOADED  
V
OUT-  
4.5  
WITH 3k + C  
L
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
5.0  
0
500  
1000  
1500  
2000  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
LOAD CAPACITANCE (pF)  
MAX3246E  
OPERATING SUPPLY CURRENT  
vs. LOAD CAPACITANCE  
MAX3246E  
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE  
MAX3246E  
SLEW RATE vs. LOAD CAPACITANCE  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
16  
14  
7
6
5
4
3
2
1
0
1 TRANSMITTER AT 250kbps  
2 TRANSMITTERS AT 15.6kbps  
V
OUT+  
1 TRANSMITTER AT 250kbps  
2 TRANSMITTERS AT 15.6kbps  
12  
250kbps  
120kbps  
SR-  
SR+  
10  
8
-1  
-2  
-3  
-4  
-5  
-6  
20kbps  
6
4
V
OUT-  
0
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
6
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
-in Description  
PIN  
MAX3222E  
MAX3232E  
MAX3241E  
NAME  
FUNCTION  
MAX3246E  
TSSOP/ SO/DIP/  
MAX3237E  
SO/DIP  
TSSOP  
SSOP/SO QFN  
SSOP  
SSOP  
1
1
13*  
28  
23  
28  
22  
28  
B3  
F3  
EN  
Receiver Enable. Active low.  
Positive Terminal of Voltage-  
Doubler Charge-Pump  
Capacitor  
2
3
2
3
1
2
C1+  
+5.5V Generated by the  
Charge Pump  
2
3
3
4
27  
25  
27  
24  
27  
23  
F1  
F4  
V+  
Negative Terminal of Voltage-  
Doubler Charge-Pump  
Capacitor  
4
4
C1-  
Positive Terminal of Inverting  
Charge-Pump Capacitor  
5
6
7
5
6
7
4
5
6
5
6
7
1
3
4
1
2
3
29  
30  
31  
E1  
D1  
C2+  
C2-  
V-  
Negative Terminal of Inverting  
Charge-Pump Capacitor  
-5.5V Generated by the  
Charge Pump  
C1  
5, 6, 7,  
10, 12  
9, 10,  
11  
6, 7,  
8
8, 15  
9, 14  
8, 17  
9, 16  
7, 14  
8, 13  
8, 17  
9, 16  
F6, E6, D6  
T_OUT  
R_IN  
RS-232 Transmitter Outputs  
RS-232 Receiver Inputs  
A4, A5,  
A6, B6, C6  
8, 9, 11  
48  
15  
13, 14,  
15, 17,  
18  
C2, B1,  
18, 20,  
21  
10, 13  
11, 12  
10, 15  
12, 13  
9, 12  
12, 15  
13, 14  
1519  
R_OUT  
TTL/CMOS Receiver Outputs  
TTL/CMOS Transmitter Inputs  
A1, A2, A3  
17*, 19*,  
22*, 23*,  
24*  
12, 13,  
14  
10, 11,  
12  
10, 11  
E3, E2, D2  
T_IN  
GND  
16  
17  
18  
18  
19  
20  
15  
16  
18  
19  
2
25  
26  
22  
24  
26  
21  
F5  
F2  
B2  
Ground  
V
26  
CC  
+3.0V to +5.5V Supply Voltage  
Shutdown Control. Active low.  
14*  
SHDN  
No Connection. For  
MAX3246E, these locations  
are not populated with solder  
bumps.  
C3, D3, B4,  
C4, D4, E4,  
1, 10, 11,  
20  
9, 16,  
11, 14  
N.C.  
25, 32 B5, C5, D5,  
E5  
MegaBaud Control Input.  
Connect to GND for normal  
15*  
16  
MBAUD  
R_OUTB  
operation% connect to V  
for  
CC  
1Mbps transmission rates.  
Noninverting Complementary  
Receiver Outputs. Always  
active.  
20, 21  
19, 20  
*These pins have an active positive feedback resistor internal to the MAX3237E, allowing unused inputs to be left unconnected.  
_______________________________________________________________________________________  
7
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
V
V
CC  
CC  
0.1 F  
0.1 F  
V
V
CC  
CC  
C1+  
C1+  
V+  
V-  
V+  
V-  
C1  
C2  
C1  
C2  
C3  
C4  
C3  
C4  
C1-  
C2+  
C1-  
C2+  
MAX3222E  
MAX3232E  
MAX3237E  
MAX3241E  
MAX3246E  
MAX3222E  
MAX3232E  
MAX3237E  
MAX3241E  
MAX3246E  
C2-  
C2-  
T_ OUT  
R_ IN  
T_ OUT  
R_ IN  
T_ IN  
T_ IN  
R_ OUT  
R_ OUT  
5k  
5k  
1000pF  
(2500pF, MAX3237E only)  
7k  
150pF  
3k  
GND  
GND  
MINIMUM SLEW-RATE TEST CIRCUIT  
Figure 1. Slew-Rate Test Circuits  
MAXIMUM SLEW-RATE TEST CIRCUIT  
into a high-impedance state when the device is in shut-  
down mode (SHDN = GND). The MAX3222E/  
MAX3232E/MAX3237E/MAX3241E/MAX3246E permit  
the outputs to be driven up to 12V in shutdown.  
Detailed Description  
Dual Chargeꢂ-ump koltage Converter  
The MAX3222E/MAX3232E/MAX3237E/MAX3241E/  
MAX3246Esinternal power supply consists of a regu-  
lated dual charge pump that provides output voltages  
of +5.5V (doubling charge pump) and -5.5V (inverting  
The MAX3222E/MAX3232E/MAX3241E/MAX3246E  
transmitter inputs do not have pullup resistors. Connect  
unused inputs to GND or V . The MAX3237Es trans-  
CC  
charge pump) over the +3.0V to +5.5V V  
range. The  
CC  
mitter inputs have a 400k active positive-feedback  
resistor, allowing unused inputs to be left unconnected.  
charge pump operates in discontinuous mode% if the  
output voltages are less than 5.5V, the charge pump is  
enabled, and if the output voltages exceed 5.5V, the  
charge pump is disabled. Each charge pump requires  
a flying capacitor (C1, C2) and a reservoir capacitor  
(C3, C4) to generate the V+ and V- supplies (Figure 1).  
MAX3237E MegaBaud Operation  
For higher-speed serial communications, the  
MAX3237E features MegaBaud operation. In  
MegaBaud operating mode (MBAUD = V ), the  
CC  
MAX3237E transmitters guarantee a 1Mbps data rate  
with worst-case loads of 3k in parallel with 250pF for  
Rꢁꢂ232 Transmitters  
The transmitters are inverting level translators that con-  
vert TTL/CMOS-logic levels to 5V EIA/TIA-232-compli-  
ant levels.  
+3.0V < V  
< +4.5V. For +5V 10ꢀ operation, the  
CC  
MAX3237E transmitters guarantee a 1Mbps data rate  
into worst-case loads of 3k in parallel with 1000pF.  
The MAX3222E/MAX3232E/MAX3237E/MAX3241E/  
MAX3246E transmitters guarantee a 250kbps data rate  
with worst-case loads of 3k in parallel with 1000pF,  
providing compatibility with PC-to-PC communication  
software (such as LapLink). Transmitters can be par-  
alleled to drive multiple receivers or mice.  
Rꢁꢂ232 Receivers  
The receivers convert RS-232 signals to CMOS-logic  
output levels. The MAX3222E/MAX3237E/MAX3241E/  
MAX3246E receivers have inverting three-state outputs.  
Drive EN high to place the receiver(s) into a high-  
impedance state. Receivers can be either active or  
inactive in shutdown (Table 1).  
The MAX3222E/MAX3237E/MAX3241E/MAX3246E  
transmitters are disabled and the outputs are forced  
LapLink is a trademark of Traveling Software.  
8
______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
V
CC  
5V/div  
0
SHDN  
T2OUT  
PREVIOUS  
RS-232  
V
CC  
PROTECTION  
2V/div  
0
DIODE  
Rx  
5k  
UART  
T1OUT  
Tx  
V
= 3.3V  
CC  
GND  
C1–C4 = 0.1 F  
SHDN = GND  
40 s/div  
Figure 3. Transmitter Outputs Recovering from Shutdown or  
Powering Up  
a) OLDER RS-232: POWERED-DOWN UART DRAWS CURRENT FROM  
A ACTIVE RECEIVER OUTPUT IN SHUTDOWN.  
V
CC  
TO  
P
MAX3222E/MAX3237E/MAX3241E/  
MAX3246E ꢁhutdown Mode  
Supply current falls to less than 1µA in shutdown mode  
(SHDN = low). The MAX3237Es supply current falls  
to10nA (typ) when all receiver inputs are in the invalid  
range (-0.3V < R_IN < +0.3). When shut down, the  
devices charge pumps are shut off, V+ is pulled down  
to V , V- is pulled to ground, and the transmitter out-  
CC  
puts are disabled (high impedance). The time required  
to recover from shutdown is typically 100µs, as shown  
LOGIC  
TRANSITION  
DETECTOR  
MAX3237E/MAX3241E  
R1OUTB  
V
CC  
PROTECTION  
DIODE  
R1IN  
Rx  
R1OUT  
THREE-STATED  
in Figure 3. Connect SHDN to V  
if shutdown mode is  
CC  
EN = V  
CC  
5k  
not used. SHDN has no effect on R_OUT or R_OUTB  
UART  
(MAX3237E/MAX3241E).  
T1OUT  
T1IN  
Tx  
1ꢀ5k EꢁD -rotection  
As with all Maxim devices, ESD-protection structures  
are incorporated to protect against electrostatic dis-  
charges encountered during handling and assembly.  
The driver outputs and receiver inputs of the  
MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E  
have extra protection against static electricity. Maxims  
engineers have developed state-of-the-art structures to  
protect these pins against ESD of 15kV without damage.  
The ESD structures withstand high ESD in all states:  
normal operation, shutdown, and powered down. After  
an ESD event, Maxims E versions keep working without  
latchup, whereas competing RS-232 products can latch  
and must be powered down to remove latchup.  
GND  
SHDN = GND  
b) NEW MAX3237E/MAX3241E: EN SHUTS DOWN RECEIVER OUTPUTS  
B (EXCEPT FOR B OUTPUTS), SO NO CURRENT FLOWS TO UART IN SHUTDOWN.  
B B OUTPUTS INDICATE RECEIVER ACTIVITY DURING SHUTDOWN WITH EN HIGH.  
Figure 2. Detection of RS-232 Activity when the UART and  
Interface are Shut Down; Comparison of MAX3237E/MAX3241E  
(b) with Previous Transceivers (a)  
The complementary outputs on the MAX3237E/  
MAX3241E (R_OUTB) are always active, regardless of the  
state of EN or SHDN. This allows the device to be used  
for ring indicator applications without forward biasing  
other devices connected to the receiver outputs. This is  
ideal for systems where V  
to accommodate peripherals such as UARTs (Figure 2).  
Furthermore, the MAX3237E logic I/O pins also have  
15kV ESD protection. Protecting the logic I/O pins to  
15kV makes the MAX3237E ideal for data cable  
applications.  
drops to zero in shutdown  
CC  
_______________________________________________________________________________________  
9
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
ESD protection can be tested in various ways% the  
Table 1. MAX3222E/MAX3237E/MAX3241E/  
MAX3246E Shutdown and Enable Control  
Truth Table  
transmitter outputs and receiver inputs for the  
MAX3222E/MAX3232E/MAX3241E/MAX3246E are  
characterized for protection to the following limits:  
15kV using the Human Body Model  
R_OUTB  
(MAX3237E/  
MAX3241E)  
SHDN  
EN  
T_OUT  
R_OUT  
8kV using the Contact Discharge method specified  
in IEC 1000-4-2  
0
0
1
1
0
1
0
1
High-Z  
High-Z  
Active  
Active  
Active  
High-Z  
Active  
High-Z  
Active  
Active  
Active  
Active  
9kV (MAX3246E only) using the Contact Discharge  
method specified in IEC 1000-4-2  
15kV using the Air-Gap Discharge method speci-  
fied in IEC 1000-4-2  
R
R
C
1M  
D
1500  
DISCHARGE  
RESISTANCE  
I
P
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
CHARGE-CURRENT  
LIMIT RESISTOR  
I
r
HIGH-  
VOLTAGE  
DC  
AMPERES  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
s
100pF  
36.8%  
SOURCE  
10%  
0
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 4b. Human Body Model Current Waveform  
Figure 4a. Human Body ESD Test Model  
I
100%  
R
R
D
330  
C
90%  
50M to 100M  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
150pF  
STORAGE  
CAPACITOR  
SOURCE  
10%  
t
t = 0.7ns to 1ns  
r
30ns  
60ns  
Figure 5a. IEC 1000-4-2 ESD Test Model  
Figure 5b. IEC 1000-4-2 ESD Generator Current Waveform  
10 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
Table 2. Required Minimum Capacitor  
Values  
6
5
VCC  
(V)  
C1  
(µF)  
C2, C3, C4  
(µF)  
V
OUT+  
4
3
V
= 3.0V  
CC  
2
MAX3222E/MAX3232E/MAX3241E  
V
V
1
OUT+  
OUT-  
3.0 to 3.6  
4.5 to 5.5  
0.1  
0.047  
0.1  
0.1  
0
0.33  
0.47  
-1  
-2  
-3  
-4  
-5  
-6  
3.0 to 5.5  
V
CC  
1
MAX3237E/MAX3246E  
3.0 to 3.6  
V
OUT-  
9
0.22  
0.1  
0.22  
0.1  
3.15 to 3.6  
0
2
3
4
5
6
7
8
10  
4.5 to 5.5  
0.047  
0.22  
0.33  
1.0  
LOAD CURRENT PER TRANSMITTER (mA)  
3.0 to 5.5  
Figure 6a. MAX3241E Transmitter Output Voltage vs. Load  
Current Per Transmitter  
Table 3. Logic-Family Compatibility with  
Various Supply Voltages  
IEC 1000ꢂ4ꢂ2  
SYSTEM  
V
CC  
SUPPLY  
VOLTAGE  
(V)  
The IEC 1000-4-2 standard covers ESD testing and  
performance of finished equipment% it does not specifi-  
cally refer to integrated circuits. The MAX3222E/  
MAX3232E/MAX3237E/MAX3241E/MAX3246E help you  
design equipment that meets level 4 (the highest level)  
of IEC 1000-4-2, without the need for additional ESD-  
protection components.  
POWER-SUPPLY  
VOLTAGE  
(V)  
COMPATIBILITY  
Compatible with all  
CMOS families  
3.3  
5
3.3  
5
Compatible with all  
TTL and CMOS  
families  
The major difference between tests done using the  
Human Body Model and IEC 1000-4-2 is higher peak  
current in IEC 1000-4-2, because series resistance is  
lower in the IEC 1000-4-2 model. Hence, the ESD with-  
stand voltage measured to IEC 1000-4-2 is generally  
lower than that measured using the Human Body  
Model. Figure 5a shows the IEC 1000-4-2 model, and  
Figure 5b shows the current waveform for the 8kV IEC  
1000-4-2 level 4 ESD Contact Discharge test. The Air-  
Gap Discharge test involves approaching the device  
with a charged probe. The Contact Discharge method  
connects the probe to the device before the probe is  
energized.  
Compatible with ACT  
and HCT CMOS, and  
with AC, HC, or  
5
3.3  
CD4000 CMOS  
For the MAX3237E, all logic and RS-232 I/O pins are  
characterized for protection to 15kV per the Human  
Body Model.  
EꢁD Test Conditions  
ESD performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents  
test setup, test methodology, and test results.  
Machine Model  
The Machine Model for ESD tests all pins using a  
200pF storage capacitor and zero discharge resis-  
tance. Its objective is to emulate the stress caused by  
contact that occurs with handling and assembly during  
manufacturing. All pins require this protection during  
manufacturing, not just RS-232 inputs and outputs.  
Therefore, after PC board assembly, the Machine  
Model is less relevant to I/O ports.  
Human Body Model  
Figure 4a shows the Human Body Model, and Figure  
4b shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of  
a 100pF capacitor charged to the ESD voltage of interest,  
which is then discharged into the test device through a  
1.5k resistor.  
______________________________________________________________________________________ 11  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
V
= +3.0V TO +5.5V  
CC  
C
BYPASS  
26  
27  
3
28  
V
CC  
C1+  
V+  
V-  
C1  
C3  
C4  
24  
C1-  
COMPUTER SERIAL PORT  
1
C2+  
MAX3241E  
C2  
2
C2-  
9
T1IN  
14  
13  
T1OUT  
T2OUT  
T3OUT  
+V  
+V  
T2IN  
10  
11  
T3IN  
12  
21  
V
CC  
-V  
R1OUTB  
GND  
Tx  
20  
19  
R2OUTB  
R1OUT  
R1IN  
R2IN  
R3IN  
R4IN  
4
5
6
5k  
5k  
18  
17  
16  
R2OUT  
R3OUT  
5k  
5k  
5k  
7
R4OUT  
R5OUT  
EN  
MOUSE  
15  
23  
R5IN  
8
22  
SHDN  
V
CC  
GND  
25  
Figure 6b. Mouse Driver Test Circuit  
excessively with temperature. If in doubt, use capaci-  
tors with a larger nominal value. The capacitors equiv-  
alent series resistance (ESR), which usually rises at low  
temperatures, influences the amount of ripple on V+  
and V-.  
Applications Information  
Capacitor ꢁelection  
The capacitor type used for C1C4 is not critical for  
proper operation% polarized or nonpolarized capacitors  
can be used. The charge pump requires 0.1µF capaci-  
tors for 3.3V operation. For other supply voltages, see  
Table 2 for required capacitor values. Do not use val-  
ues smaller than those listed in Table 2. Increasing the  
capacitor values (e.g., by a factor of 2) reduces ripple  
on the transmitter outputs and slightly reduces power  
consumption. C2, C3, and C4 can be increased without  
changing C1s value. However, do not increase C1  
without also increasing the values of C2, C3, C4,  
-owerꢂꢁupply Decoupling  
In most circumstances, a 0.1µF V  
bypass capacitor  
CC  
is adequate. In applications sensitive to power-supply  
noise, use a capacitor of the same value as charge-  
pump capacitor C1. Connect bypass capacitors as  
close to the IC as possible.  
Operation Down to 2.7k  
Transmitter outputs meet EIA/TIA-562 levels of 3.7V  
with supply voltages as low as 2.7V.  
and C  
to maintain the proper ratios (C1 to  
the other capacitors).  
BYPASS  
When using the minimum required capacitor values,  
make sure the capacitor value does not degrade  
12 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
the transmitters are enabled only when the magnitude  
of V- exceeds approximately -3.0V.  
Transmitter Outputs Recovering  
from ꢁhutdown  
Figure 3 shows two transmitter outputs recovering from  
shutdown mode. As they become active, the two trans-  
mitter outputs are shown going to opposite RS-232 levels  
(one transmitter input is high% the other is low). Each  
transmitter is loaded with 3k in parallel with 2500pF.  
The transmitter outputs display no ringing or undesir-  
able transients as they come out of shutdown. Note that  
Mouse Drivability  
The MAX3241E is designed to power serial mice while  
operating from low-voltage power supplies. It has  
been tested with leading mouse brands from manu-  
facturers such as Microsoft and Logitech. The  
MAX3241E successfully drove all serial mice tested  
and met their current and voltage requirements.  
V
CC  
0.1 F  
5V/div  
5V/div  
5V/div  
T1IN  
T1OUT  
R1OUT  
V
CC  
C1+  
V+  
V-  
C3  
C4  
C1  
C1-  
C2+  
MAX3222E  
MAX3232E  
MAX3237E  
MAX3241E  
MAX3246E  
C2  
C2-  
V
= 3.3V, C1C4 = 0.1 F  
CC  
T_ OUT  
T_ IN  
2 s/div  
R_ IN  
5k  
R_ OUT  
Figure 9. MAX3241E Loopback Test Result at 250kbps  
1000pF  
GND  
+5V  
T_IN  
0
Figure 7. Loopback Test Circuit  
+5V  
0
-5V  
+5V  
0
T_OUT  
5k + 250pF  
V
= 3.3V  
CC  
C1C4 = 0.1 F  
R_OUT  
5V/div  
T1IN  
400ns/div  
5V/div  
5V/div  
T1OUT  
Figure 10. MAX3237E Loopback Test Result at 1000kbps  
(MBAUD = V  
)
CC  
R1OUT  
V
= 3.3V  
CC  
C1C4 = 0.1 F  
2 s/div  
Figure 8. MAX3241E Loopback Test Result at 120kbps  
______________________________________________________________________________________ 13  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
Figure 6a shows the transmitter output voltages under  
increasing load current at +3.0V. Figure 6b shows a  
typical mouse connection using the MAX3241E.  
UCꢁ- Reliability  
The UCSP represents a unique packaging form factor  
that may not perform equally to a packaged product  
through traditional mechanical reliability tests. UCSP  
reliability is integrally linked to the users assembly  
methods, circuit board material, and usage environ-  
ment. The user should closely review these areas when  
considering use of a UCSP package. Performance  
through Operating Life Test and Moisture Resistance  
remains uncompromised as the wafer-fabrication  
process primarily determines it.  
High Data Rates  
The MAX3222E/MAX3232E/MAX3237E/MAX3241E/  
MAX3246E maintain the RS-232 5V minimum transmit-  
ter output voltage even at high data rates. Figure 7  
shows a transmitter loopback test circuit. Figure 8  
shows a loopback test result at 120kbps, and Figure 9  
shows the same test at 250kbps. For Figure 8, all trans-  
mitters were driven simultaneously at 120kbps into RS-  
232 loads in parallel with 1000pF. For Figure 9, a single  
transmitter was driven at 250kbps, and all transmitters  
were loaded with an RS-232 receiver in parallel with  
1000pF.  
Mechanical stress performance is a greater considera-  
tion for a UCSP package. UCSPs are attached through  
direct solder contact to the users PC board, foregoing  
the inherent stress relief of a packaged product lead  
frame. Solder joint contact integrity must be consid-  
ered. Table 4 shows the testing done to characterize  
the UCSP reliability performance. In conclusion, the  
UCSP is capable of performing reliably through envi-  
ronmental stresses as indicated by the results in the  
table. Additional usage data and recommendations are  
detailed in the UCSP application note, which can be  
found on Maxims website at www.maxim-ic.com.  
The MAX3237E maintains the RS-232 5.0V minimum  
transmitter output voltage at data rates up to 1Mbps.  
Figure 10 shows a loopback test result at 1Mbps with  
MBAUD = V . For Figure 10, all transmitters were  
CC  
loaded with an RS-232 receiver in parallel with 250pF.  
Interconnection with 3k and ꢀk Logic  
The MAX3222E/MAX3232E/MAX3237E/MAX3241E/  
MAX3246E can directly interface with various 5V logic  
families, including ACT and HCT CMOS. See Table 3  
for more information on possible combinations of inter-  
connections.  
Table 4. Reliability Test Data  
FAILURES PER  
DURATION  
TEST  
CONDITIONS  
SAMPLE SIZE  
T
T
= -35°C to +85°C,  
= -40°C to +100°C  
150 cycles,  
900 cycles  
0/10,  
0/200  
A
A
Temperature Cycle  
Operating Life  
T
T
T
T
= +70°C  
240 hours  
240 hours  
240 hours  
24 hours  
0/10  
0/10  
0/10  
0/10  
0/15  
0/5  
A
A
A
A
Moisture Resistance  
Low-Temperature Storage  
Low-Temperature Operational  
Solderability  
= +20°C to +60°C, 90ꢀ RH  
= -20°C  
= -10°C  
8-hour steam age  
ESD  
15kV, Human Body Model  
High-Temperature Operating  
Life  
T = +150°C  
J
168 hours  
0/45  
14 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
__________________________________________________________-in Configurations  
TOP VIEW  
N.C.  
C1+  
V+  
1
2
N.C.  
EN  
C1+  
V+  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
SHDN  
1
2
3
4
5
6
7
8
C1+  
V+  
V
CC  
18  
17  
16  
15  
14  
13  
12  
11  
EN  
C1+  
V+  
1
2
SHDN  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
16  
15  
14  
V
V
GND  
CC  
V
CC  
CC  
GND  
3
GND  
C1-  
T1OUT  
GND  
3
T1OUT  
R1IN  
C1-  
4
T1OUT  
R1IN  
C1-  
T1OUT  
R1IN  
R1OUT  
N.C.  
MAX3232E  
C1-  
4
C2+  
C2-  
13 R1IN  
12 R1OUT  
11 T1IN  
MAX3232E  
MAX3222E  
MAX3222E  
C2+  
C2-  
5
C2+  
C2-  
C2+  
C2-  
5
R1OUT  
T1IN  
6
R1OUT  
T1IN  
6
V-  
V-  
7
V-  
V-  
10  
9
7
T2OUT  
R2IN  
T2IN  
T2OUT  
T2IN  
8
T2IN  
T2OUT  
R2IN  
T2OUT  
T1IN  
R2OUT  
8
R2OUT  
N.C.  
R2IN  
N.C.  
9
10 R2OUT  
T2IN  
R2IN  
9
SSOP/SO/DIP  
R2OUT  
10  
N.C.  
10  
SO/DIP  
TSSOP  
TSSOP/SSOP  
TOP VIEW  
28  
28  
27  
26  
25  
24  
23  
22  
1
2
1
2
3
4
5
6
7
8
9
C2+  
C2-  
C2+  
GND  
C1+  
V+  
C1+  
27  
26  
V+  
V
C2-  
V-  
3
CC  
V
CC  
R1IN  
R2IN  
1
2
3
4
5
6
7
8
24 GND  
V-  
25 C1-  
4
R1IN  
R2IN  
R3IN  
R4IN  
R5IN  
T1OUT  
GND  
C1-  
23 C1-  
T1IN  
T1OUT  
T2OUT  
T3OUT  
5
24  
23  
MAX3237E  
MAX3241E  
R3IN  
22 EN  
6
T2IN  
EN  
R4IN  
21 SHDN  
20 R1OUTB  
19 R2OUTB  
18 R1OUT  
17 R2OUT  
7
22 T3IN  
21  
SHDN  
MAX3241E  
R5IN  
21 R1OUTB  
R1IN  
R2IN  
8
R1OUT  
T1OUT  
T2OUT  
T3OUT  
20  
19  
20  
19  
R2OUTB  
R1OUT  
9
R2OUT  
T4IN  
10  
11  
12  
13  
14  
T2OUT 10  
T4OUT  
R3IN  
18 R3OUT T3OUT  
18 R2OUT  
17 R3OUT  
16 R4OUT  
11  
12  
13  
14  
T5IN  
17  
T5OUT  
EN  
T3IN  
T2IN  
T1IN  
16 R1OUTB  
15  
15  
MBAUD  
R5OUT  
SHDN  
SSOP  
SSOP/SO/TSSOP  
QFN  
______________________________________________________________________________________ 15  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
-in Configurations (continued)  
TOP VIEW  
(BUMPS ON BOTTOM)  
B2: SHDN  
C2: R1OUT  
R4OUT R5OUT  
R1IN  
A4  
R2IN  
A5  
D2: T3IN  
E2: T2IN  
B3: EN  
E3: T1IN  
BUMPS B4, B5, C3, C4,  
C5, D3, D4, D5, E4, AND  
E5 NOT POPULATED  
A1  
A2  
B2  
C2  
D2  
E2  
F2  
A3  
A6 R3IN  
B6 R4IN  
R3OUT  
R2OUT B1  
B3  
C6  
C1  
V-  
R5IN  
MAX3246E  
C2-  
C2+  
V+  
D6 T3OUT  
D1  
E1  
F1  
E3  
E6  
T2OUT  
F3  
F4  
F5  
F6 T1OUT  
V
C1+  
C1-  
GND  
CC  
UCSP  
16 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
__________________________________________________Typical Operating Circuits  
+3.3V  
+3.3V  
17  
16  
C
C
BYPASS  
BYPASS  
V
V
CC  
CC  
3
7
2
4
5
6
2
6
1
3
4
5
C1+  
C1+  
V+  
V+  
C1  
0.1 F  
C1  
0.1 F  
C3*  
C3*  
0.1 F  
0.1 F  
C1-  
C2+  
C1-  
C2+  
MAX3222E  
MAX3232E  
V-  
V-  
C2  
0.1 F  
C2  
0.1 F  
C4  
0.1 F  
C4  
0.1 F  
C2-  
C2-  
12  
T1OUT  
T1IN  
15  
8
11  
T1OUT  
T1IN  
14  
7
TTL/CMOS  
INPUTS  
RS-232  
TTL/CMOS  
INPUTS  
RS-232  
OUTPUTS  
OUTPUTS  
T2IN  
T2OUT  
R1IN  
11  
T2IN  
T2OUT  
R1IN  
10  
14  
9
13 R1OUT  
10 R2OUT  
13  
8
12 R1OUT  
TTL/CMOS  
OUTPUTS  
TTL/CMOS  
OUTPUTS  
RS-232  
INPUTS  
5k  
RS-232  
INPUTS  
5k  
R2IN  
9
R2OUT  
R2IN  
5k  
5k  
EN  
1
18  
SHDN  
GND  
16  
GND  
15  
*C3 CAN BE RETURNED TO EITHER V OR GROUND.  
CC  
NOTE: PIN NUMBERS REFER TO SO/DIP PACKAGES.  
SEE TABLE 2 FOR CAPACITOR SELECTION.  
______________________________________________________________________________________ 17  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
_____________________________________Typical Operating Circuits (continued)  
+3.3V  
+3.3V  
C
C
BYPASS  
28  
BYPASS  
26  
26  
V
V
CC  
CC  
27  
4
27  
3
28  
C1+  
C1+  
V+  
V-  
V+  
C1  
C3*  
0.1 F  
0.1 F  
C3*  
0.1 F  
25  
1
24  
1
C1-  
C2+  
C1-  
C2+  
0.1 F  
MAX3237E  
MAX3241E  
V-  
C2  
0.1 F  
0.1 F  
0.1 F  
C4  
0.1 F  
3
2
C2-  
C2-  
T1IN  
T1IN  
T1OUT  
T2OUT  
T3OUT  
5
6
7
T1OUT  
9
24  
14  
13  
T1  
T2  
T2IN  
T3IN  
T2IN  
T2OUT 10  
23  
22  
TTL/CMOS  
INPUTS  
RS-232  
OUTPUTS  
T3IN  
12  
21  
11  
RS-232  
T3OUT  
R1IN  
LOGIC  
INPUTS  
T3  
T4  
T5  
OUTPUTS  
R1OUTB  
T4IN  
T5IN  
T4OUT 10  
19  
17  
R2OUTB  
R1OUT  
20  
19  
12  
T5OUT  
R1IN  
4
5
R1OUTB  
R1OUT  
16  
21  
5k  
R2OUT  
R3OUT  
R4OUT  
R2IN  
18  
17  
16  
8
9
R1  
R2  
R3  
5k  
TTL/CMOS  
OUTPUTS  
5k  
6
7
8
R3IN  
RS-232  
INPUTS  
RS-232  
INPUTS  
R2OUT  
R3OUT  
R2IN  
R3IN  
20  
18  
LOGIC  
5k  
OUTPUTS  
5k  
5k  
R4IN  
11  
5k  
R5OUT  
EN  
15  
23  
R5IN  
15  
14  
5k  
MBAUD  
SHDN  
EN  
13  
22  
SHDN  
GND  
2
GND  
25  
*C3 CAN BE RETURNED TO EITHER V OR GROUND.  
CC  
18 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
_____________________________________Typical Operating Circuits (continued)  
+3.3V  
C
BYPASS  
F2  
V
CC  
F1  
F3  
C1+  
V+  
V-  
C1  
0.1 F  
C3*  
F4  
E1  
D1  
C1-  
C2+  
0.1 F  
MAX3246E  
C1  
C2  
0.1 F  
C4  
0.1 F  
C2-  
T1IN  
T1OUT F6  
T2OUT E6  
E3  
E2 T2IN  
RS-232  
OUTPUTS  
TTL/CMOS  
INPUTS  
T3IN  
D2  
C2  
D6  
A4  
T3OUT  
R1OUT  
R1IN  
5k  
R2OUT  
R3OUT  
R4OUT  
R2IN A5  
B1  
A1  
A2  
5k  
5k  
TTL/CMOS  
OUTPUTS  
A6  
B6  
R3IN  
R4IN  
RS-232  
INPUTS  
5k  
5k  
R5OUT  
EN  
A3  
B3  
R5IN C6  
B2  
SHDN  
GND  
F5  
*C3 CAN BE RETURNED TO EITHER V OR GROUND.  
CC  
______________________________________________________________________________________ 19  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
ꢁelector Guide  
Ordering Information (continued)  
NO. OF  
DRIVERS/  
RECEIVERS  
GUARANTEED  
DATA RATE  
(bps)  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
18 Wide SO  
18 Plastic DIP  
Dice*  
LOW-POWER  
SHUTDOWN  
PART  
MAX3222ECWN  
MAX3222ECPN  
MAX3222EC/D  
MAX3222EEUP  
MAX3222EEAP  
MAX3222EEWN  
MAX3222EEPN  
MAX3232ECAE  
MAX3232ECWE  
MAX3232ECPE  
MAX3232ECUP  
MAX3232EEAE  
MAX3232EEWE  
MAX3232EEPE  
MAX3232EEUP  
MAX3237ECAI  
MAX3237EEAI  
MAX3241ECAI  
MAX3241ECWI  
MAX3241ECUI  
MAX3241ECGJ  
MAX3241EEAI  
MAX3241EEWI  
MAX3241EEUI  
MAX3246ECBX-T  
MAX3246EEBX-T  
MAX3222E  
MAX3232E  
2/2  
2/2  
250k  
250k  
20 TSSOP  
20 SSOP  
MAX3237E  
(Normal)  
5/3  
5/3  
250k  
1M  
18 Wide SO  
18 Plastic DIP  
16 SSOP  
MAX3237E  
(MegaBaud)  
MAX3241E  
MAX3246E  
3/5  
3/5  
250k  
250k  
16 Wide SO  
16 Plastic DIP  
20 TSSOP  
16 SSOP  
___________________Chip Information  
TRANSISTOR COUNT:  
16 Wide SO  
16 Plastic DIP  
20 TSSOP  
28 SSOP  
MAX3222E/MAX3232E: 1129  
MAX3237E: 2110  
MAX3241E: 1335  
28 SSOP  
MAX3246E: 842  
28 SSOP  
28 Wide SO  
28 TSSOP  
32 QFN  
28 SSOP  
28 Wide SO  
28 TSSOP  
6 x 6 UCSP*  
6 x 6 UCSP*  
*Requires solder temperature profile described in the Absolute  
Maximum Ratings section. UCSP Reliability is integrally linked  
to the user’s assembly methods, circuit board material, and  
environment. Refer to the UCSP Reliability Notice in the UCSP  
Reliability section of this datasheet for more information.  
20 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
-ac5age Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 21  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
-ac5age Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
22 ____________________Maxim Integrated -roducts, 120 ꢁan Gabriel Drive, ꢁunnyvale, CA 94086 408ꢂ737ꢂ7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3222E_06

【15kV ESD-Protected, Down to 10nA, 3.0V to 5.5V, Up to 1Mbps, True RS-232 Transceivers
MAXIM

MAX3222E_09

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION
TI

MAX3222E_10

±15kV ESD-Protected, Down to 10nA, 3.0V to 5.5V, Up to 1Mbps, True RS-232 Transceivers
MAXIM

MAX3222E_V01

±15kV ESD-Protected, Down to 10nA, 3.0V to 5.5V, Up to 1Mbps, True RS-232 Transceivers
MAXIM

MAX3222IDB

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI

MAX3222IDBE4

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI

MAX3222IDBR

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI

MAX3222IDBRE4

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI

MAX3222IDW

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI

MAX3222IDWE4

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI

MAX3222IDWR

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI

MAX3222IDWRE4

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI