MAX3230E_08 [MAXIM]

±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP; ± 15kV ESD保护, + 2.5V至+ 5.5V的RS - 232收发器, UCSP和WLP
MAX3230E_08
型号: MAX3230E_08
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP
± 15kV ESD保护, + 2.5V至+ 5.5V的RS - 232收发器, UCSP和WLP

文件: 总16页 (文件大小:171K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3250; Rev 1; 10/08  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
0/MX231AE  
General Description  
Features  
6 x 5 Chip-Scale Package (UCSP) and WLP  
The MAX3230E/AE and MAX3231E/AE are +2.5V to  
+5.5V powered EIA/TIA-232 and V.28/V.24 communica-  
tions interfaces with low power requirements, high data-  
rate capabilities, and enhanced electrostatic discharge  
(ESD) protection, in a chip-scale package (UCSP™)  
and WLP package. All transmitter outputs and receiver  
inputs are protected to 15kV using IEC 1000-4-2 Air-  
Gap Discharge, 8kV using IEC 1000-4-2 Contact  
Discharge, and 15kV using the ꢀuman ꢁodꢂ Model.  
Package  
ESD Protection for RS-232 I/O Pins  
±±5kꢀVIEC ±111-ꢁ-2 ꢂir-ꢃap Discharge  
±ꢄkꢀVIEC ±111-ꢁ-2 Contact Discharge  
±±5kꢀV—Huan ꢅodꢆ ꢇodel  
±µꢂ Low-Power ꢂHtoShHtdown  
251kbps ꢃHaranteed Data Rate  
ꢇeet EIꢂ/TIꢂ-232 Specifications Down to +3.±ꢀ  
The MAX3230E/AE and MAX3231E/AE achieve a 1µA  
supplꢂ current with Maxim’s AutoShutdown™ feature.  
Theꢂ save power without changing the existing ꢁIOS or  
operating sꢂstems bꢂ entering low-power shutdown  
mode when the RS-232 cable is disconnected, or when  
the transmitters of the connected peripherals are off.  
RS-232 Coupatible to +2.5ꢀ ꢂllows Operation  
frou Single Li+ Cell  
Suall 1.±µF Capacitors  
ConfigHrable Logic Levels  
Ordering Information  
The transceivers have a proprietarꢂ low-dropout trans-  
mitter output stage, delivering RS-232-compliant perfor-  
mance from a +3.1V to +5.5V supplꢂ, and RS-232-  
compatible performance with a supplꢂ voltage as low  
as +2.5V. The dual charge pump requires onlꢂ four,  
small 0.1µF capacitors for operation from a +3.0V sup-  
plꢂ. Each device is guaranteed to run at data rates of  
250kbps while maintaining RS-232 output levels.  
PꢂRT  
TEꢇP RꢂNꢃE ꢅUꢇP-PꢂCKꢂꢃE  
-40°C to +85°C 6 x 5 UCSP  
-40°C to +85°C 6 x 5 WLP  
-40°C to +85°C 6 x 5 UCSP  
-40°C to +85°C 6 x 5 WLP  
ꢇꢂX3231EEꢁV-T  
ꢇꢂX3231ꢂEEWV+-T  
ꢇꢂX323±EEꢁV-T  
ꢇꢂX323±ꢂEEWV+-T  
+Denotes a lead-free/RoꢀS-compliant package.  
T = Tape-and-reel.  
The MAX3230E/AE and MAX3231E/AE offer a separate  
power-supplꢂ input for the logic interface, allowing con-  
figurable logic levels on the receiver outputs and trans-  
Typical Operating Circuits  
mitter inputs. Operating over a +1.65V to V  
range, V  
L
CC  
2.5V TO 5.5V 1.65V TO 5.5V  
provides the MAX3230E/AE and MAX3231E/AE com-  
patibilitꢂ with multiple logic families.  
0.1μF  
The MAX3231E/AE contains one receiver and one trans-  
mitter. The MAX3230E/AE contains two receivers and two  
transmitters. The MAX3230E/AE and MAX3231E/AE are  
available in tinꢂ chip-scale and WLP packaging and are  
specified across the extended industrial (-40°C to +85°C)  
temperature range.  
C
BYPASS  
0.1μF  
A1  
A5  
V
V
C1  
CC  
B1  
A4  
L
C1+  
V+  
C3  
0.1μF  
C1  
0.1μF  
D1  
A2  
C1-  
C2+  
MAX3230E/AE  
V-  
C4  
0.1μF  
C2  
0.1μF  
A3  
V
L
C2-  
T1OUT  
A6 T1IN  
E3  
Applications  
RS-232  
OUTPUTS  
TTL/CMOS  
INPUTS  
V
L
B6  
T2IN  
T2OUT E4  
Personal Digital Assistants  
Cell-Phone Data Lump Cables  
Set-Top ꢁoxes  
V
L
R1IN  
D6 R1OUT  
E6  
5kΩ  
TTL/CMOS  
OUTPUTS  
RS-232  
INPUTS  
V
L
ꢀandheld Devices  
C6  
R2OUT  
R2IN E5  
5kΩ  
Cell Phones  
Tꢆpical Operating CircHits continHed at end of data sheet.  
Pin ConfigHrations appear at end of data sheet.  
TO POWER-  
MANAGEMENT  
UNIT  
E2  
INVALID  
FORCEON  
FORCEOFF C5  
B5  
V
L
UCSP is a trademark of Maxim Integrated Products, Inc.  
GND  
E1  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ ꢇaxiu Integrated ProdHcts  
±
For pricing, deliverꢆ, and ordering inforuation, please contact ꢇaxiu Direct at ±-ꢄꢄꢄ-629-ꢁ6ꢁ2,  
or visit ꢇaxiu’s website at www.uaxiu-ic.cou.  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
ꢂꢅSOLUTE ꢇꢂXIꢇUꢇ RꢂTINꢃS  
CC  
V
to GND...........................................................-0.3V to +6.0V  
Short-Circuit Duration T OUT to GND........................Continuous  
_
V+ to GND.............................................................-0.3V to +7.0V  
V- to GND ..............................................................+0.3V to -7.0V  
V+ to |V-| (Note 1) ................................................................+13V  
Continuous Power Dissipation (T = +70°C)  
A
6 5 UCSP (derate 10.1mW/°C above +70°C) ...........805mW  
6 5 WLP (derate 20mW/°C above +70°C).....................1.6W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
ꢁump Temperature (soldering)  
V to GND..............................................................-0.3V to +6.0V  
L
Input Voltages  
T_IN_, FORCEON, FORCEOFF to GND.....-0.3V to (V + 0.3V)  
L
R_IN_ to GND ................................................................... 25V  
Output Voltages  
T_OUT to GND............................................................... 13.2V  
Infrared (15s) ...............................................................+200°C  
Vapor Phase (20s) .......................................................+215°C  
R_OUT INVALID to GND ............................-0.3V to (V + 0.3V)  
L
CC  
INVALID to GND.........................................-0.3V to (V  
+ 0.3V)  
Note ±: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.  
Stresses beꢂond those listed under “Absolute Maximum Ratings” maꢂ cause permanent damage to the device. These are stress ratings onlꢂ, and functional  
operation of the device at these or anꢂ other conditions beꢂond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods maꢂ affect device reliabilitꢂ.  
ELECTRICꢂL C—ꢂRꢂCTERISTICS  
(V  
= +2.5V to +5.5V, V = +1.65V to +5.5V, C1–C4 = 0.1µF, tested at +3.3V 10ꢃ, T = T  
to T  
. Tꢂpical values are at T =  
MAX A  
CC  
L
A
MIN  
+25°C, unless otherwise noted.) (Note 2)  
PꢂRꢂꢇETER  
SYꢇꢅOL  
CONDITIONS  
ꢇIN  
TYP  
ꢇꢂX  
UNITS  
DC C—ꢂRꢂCTERISTICS  
V Input Voltage Range  
V
1.65  
V
CC  
+ 0.3  
10  
V
L
L
FORCEON = GND  
FORCEOFF = V , all R open  
µA  
L
IN  
V
Supplꢂ Current,  
CC  
I
CC  
AutoShutdown  
FORCEOFF = GND  
10  
1
FORCEON, FORCEOFF = V  
mA  
mA  
L
V
Supplꢂ Current,  
CC  
I
FORCEON = FORCEOFF = V , no load  
0.3  
1
1
CC  
L
AutoShutdown Disabled  
FORCEON or FORCEOFF = GND or V ,  
L
V Supplꢂ Current  
L
T_IN, I  
µA  
L
V
= V = +5V, no receivers switching  
L
CC  
LOꢃIC INPUTS  
Input-Logic Low  
T_IN, FORCEON, FORCEOFF  
T_IN, FORCEON, FORCEOFF  
0.4  
1
V
V
Input-Logic ꢀigh  
0.66  
V
L
Transmitter Input ꢀꢂsteresis  
Input Leakage Current  
RECEIꢀER OUTPUTS  
0.5  
V
T_IN, FORCEON, FORCEOFF  
0.01  
µA  
0/MX231AE  
R_OUT, receivers disabled, FORCEOFF =  
GND or in AutoShutdown  
Output Leakage Currents  
10  
µA  
Output-Voltage Low  
Output-Voltage ꢀigh  
I
I
= 0.8mA  
= -0.5mA  
0.4  
V
V
OUT  
V - 0.4 V - 0.1  
OUT  
L
L
2
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
0/MX231AE  
ELECTRICꢂL C—ꢂRꢂCTERISTICS (continHed)  
(V  
= +2.5V to +5.5V, V = +1.65V to +5.5V, C1–C4 = 0.1µF, tested at +3.3V 10ꢃ, T = T  
to T  
. Tꢂpical values are at T =  
MAX A  
CC  
L
A
MIN  
+25°C, unless otherwise noted.) (Note 2)  
PꢂRꢂꢇETER  
RECEIꢀER INPUTS  
Input Voltage Range  
SYꢇꢅOL  
CONDITIONS  
ꢇIN  
TYP  
ꢇꢂX  
UNITS  
-25  
0.6  
0.8  
+25  
V
V
V
V
V
V
= +3.3V  
= +5.0V  
= +3.3V  
= +5.0V  
1.2  
1.7  
1.3  
1.8  
0.5  
5
CC  
CC  
CC  
CC  
Input-Threshold Low  
Input-Threshold ꢀigh  
T
T
= +25°C  
= +25°C  
A
2.4  
2.4  
V
A
Input ꢀꢂsteresis  
V
Input Resistance  
3
7
kΩ  
ꢂUTOꢇꢂTIC S—UTDOWN  
Positive threshold  
Negative threshold  
2.7  
Receiver Input Threshold to  
INVALID Output ꢀigh  
Figure 3a  
V
-2.7  
-0.3  
Receiver Input Threshold to  
INVALID Output Low  
+0.3  
V
Receiver Positive or Negative  
Threshold to INVALID ꢀigh  
t
V
V
V
= +5.0V, Figure 3b  
= +5.0V, Figure 3b  
= +5.0V, Figure 3b  
1
µs  
µs  
µs  
INVꢀ  
CC  
CC  
CC  
Receiver Positive or Negative  
Threshold to INVALID Low  
t
30  
INVL  
Receiver Edge to Transmitters  
Enabled  
t
100  
WU  
INꢀꢂLID OUTPUT  
Output-Voltage Low  
Output-Voltage ꢀigh  
TRꢂNSꢇITTER OUTPUTS  
I
I
= 0.8mA  
= -0.5mA  
0.4  
- 0.1  
V
V
OUT  
V
- 0.4  
V
CC  
OUT  
CC  
V
(V  
Mode Switch Point  
Falling)  
CC  
T_OUT = 5.0V to 3.7V  
T_OUT = 3.7V to 5.0V  
2.85  
3.3  
3.10  
3.7  
V
CC  
V
(V  
Mode Switch Point  
Rising)  
CC  
V
CC  
V
Mode Switch-Point ꢀꢂsteresis  
400  
5.4  
mV  
CC  
V
V
= +3.1V to +5.5V,  
falling, T = +25°C  
A
CC  
CC  
All transmitter  
outputs loaded  
with 3kΩ to  
ground  
5
Output Voltage Swing  
V
V
V
= +2.5V to +3.1V,  
rising  
CC  
CC  
3.7  
Output Resistance  
V
= V+ = V- = 0, T_OUT = 2V  
300  
10M  
Ω
CC  
Output Short-Circuit Current  
Output Leakage Current  
ESD PROTECTION  
60  
25  
mA  
µA  
T_OUT = 12V, transmitters disabled  
ꢀuman ꢁodꢂ Model  
15  
15  
8
R_IN, T_OUT  
kV  
IEC 1000-4-2 Air-Gap Discharge  
IEC 1000-4-2 Contact Discharge  
_______________________________________________________________________________________  
3
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
TIꢇINꢃ C—ꢂRꢂCTERISTICS  
(V  
= +2.5V to +5.5V, V = +1.65V to +5.5V, C1–C4 = 0.1µF, tested at +3.3V 10ꢃ, T = T  
to T  
. Tꢂpical values are at T =  
MAX A  
CC  
L
A
MIN  
+25°C, unless otherwise noted.) (Note 2)  
PꢂRꢂꢇETER  
SYꢇꢅOL  
CONDITIONS  
ꢇIN  
TYP  
ꢇꢂX  
UNITS  
R = 3kΩ, C = 1000pF, one transmitter  
switching  
L
L
Maximum Data Rate  
250  
kbps  
µs  
Receiver input to receiver output,  
C = 150pF  
Receiver Propagation Delaꢂ  
0.15  
L
Receiver-Output Enable Time  
Receiver-Output Disable Time  
Transmitter Skew  
V
V
= V = +5V  
200  
200  
100  
50  
ns  
ns  
ns  
ns  
CC  
CC  
L
= V = +5V  
L
| t  
| t  
- t  
|
|
PꢀL PLꢀ  
Receiver Skew  
- t  
PꢀL PLꢀ  
R = 3kΩ to 7kΩ, C = 150pF to  
L
L
Transition-Region Slew Rate  
6
30  
V/µs  
1000pF, T = +25°C  
A
Note 2: V  
must be greater than V .  
L
CC  
Typical Operating Characteristics  
(V  
CC  
= +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3kΩ and C , T = +25°C, unless otherwise noted.)  
L
A
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE  
OPERATING SUPPLY CURRENT  
vs. LOAD CAPACITANCE (MAX3231E)  
SLEW RATE vs. LOAD CAPACITANCE  
20  
18  
16  
14  
12  
10  
8
6
30  
25  
20  
15  
10  
5
V
CC  
RISING  
4
2
V
OH  
250kbps  
V
CC  
= 5.5V  
0
V
OL  
-2  
-4  
-6  
6
4
V
CC  
= 2.5V  
2
20kbps  
0
0
0
500 1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
0
500 1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
0
500 1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
0/MX231AE  
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
0/MX231AE  
Typical Operating Characteristics (continued)  
(V  
CC  
= +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3kΩ and C , T = +25°C, unless otherwise noted.)  
L
A
OPERATING SUPPLY CURRENT  
vs. SUPPLY VOLTAGE (MAX3231E)  
TRANSMITTER OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE (V RISING)  
TRANSMITTER OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE (V FALLING)  
CC  
CC  
20  
10  
8
10  
8
18  
16  
14  
12  
10  
8
6
6
4
4
V
OH  
V
OH  
2
2
0
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
V
OL  
V
OL  
6
4
2
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
-in Description  
ꢅUꢇP  
NꢂꢇE  
FUNCTION  
ꢇꢂX3231E/ ꢇꢂX323±E/  
ꢇꢂX3231ꢂE ꢇꢂX323±ꢂE  
A1  
A2  
A3  
A4  
A1  
A2  
A3  
A4  
V
Supplꢂ Voltage. +2.5V to +5.5V supplꢂ voltage.  
CC  
C2+  
C2-  
V-  
Inverting Charge-Pump Capacitor Positive Terminal  
Inverting Charge-Pump Capacitor Negative Terminal  
Negative Charge-Pump Output. -5.5V/-4.0V generated bꢂ charge pump.  
Logic Voltage Input. Logic-level input for receiver outputs and transmitter inputs.  
A5  
A5  
A6  
V
L
Connect V to the sꢂstem-logic supplꢂ voltage or V  
L
if no logic supplꢂ is required.  
CC  
A6, ꢁ6  
T_IN  
V+  
Transmitter Input(s)  
Positive Charge-Pump Output. +5.5V/+4.0V generated bꢂ charge pump. If charge  
pump is generating +4.0V, the device has switched from RS-232-compliant to RS-232-  
compatible mode.  
ꢁ1  
ꢁ1  
ꢁ2, ꢁ3, ꢁ4,  
C2, C3, C4,  
D2–D5  
ꢁ2, ꢁ3, ꢁ4,  
C2, C3, C4,  
D2–D5  
No Connection. The MAX3230E/MAX3231E are not populated with solder bumps at  
these locations. The MAX3230AE/MAX3231AE are populated with electricallꢂ isolated  
solder bumps at these locations.  
N.C.  
Active ꢀigh FORCEON Input. Drive FORCEON high to override automatic circuitrꢂ,  
keeping transmitters and charge pumps on.  
ꢁ5  
C1  
ꢁ5  
C1  
FORCEON  
C1+  
Positive Regulated Charge-Pump Capacitor Positive Terminal  
Active-Low FORCEOFF Input. Drive FORCEOFF low to shut down transmitters,  
C5  
C5  
FORCEOFF receivers, and on-board charge pump. This overrides all automatic circuitrꢂ and  
FORCEON.  
_______________________________________________________________________________________  
5
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
-in Description (continued)  
ꢅUꢇP  
NꢂꢇE  
FUNCTION  
ꢇꢂX3231E/ ꢇꢂX323±E/  
ꢇꢂX3231ꢂE ꢇꢂX323±ꢂE  
C6, D6  
D1  
C6  
D1  
E1  
R_OUT  
C1-  
Receiver Output(s)  
Positive Regulated Charge-Pump Capacitor Negative Terminal  
Ground  
E1  
GND  
Valid Signal-Detector Output. Output INVALID is enabled low if no valid RS-232 level is  
present on anꢂ receiver input.  
E2  
E2  
INVALID  
E3, E4  
E5, E6  
E3  
E5  
T_OUT  
R_IN  
RS-232 Transmitter Output(s)  
RS-232 Receiver Input(s)  
ꢁ6, D6, E4,  
E6  
No Connection. These locations are populated with solder bumps, but are electricallꢂ  
isolated.  
N.C.  
in regulation until the batterꢂ voltage drops below +3.1V.  
The output regulation points then change to 4.0V.  
Detailed Description  
Dual Mode™ Regulated Chargeꢂ-ump  
koltage Converter  
When V  
is rising, the charge pump generates an out-  
CC  
put voltage of 4.0V, while V  
is between +2.5V and  
CC  
The MAX3230E/AE and MAX3231E/AE internal power  
supplꢂ consists of a dual-mode regulated charge  
pump. For supplꢂ voltages above +3.7V, the charge  
pump generates +5.5V at V+ and -5.5V at V-. The  
charge pumps operate in a discontinuous mode. If the  
output voltages are less than 5.5V, the charge pumps  
are enabled. If the output voltages exceed 5.5V, the  
charge pumps are disabled.  
+3.5V. When V  
+3.5V, the charge pump switches modes to generate  
an output of 5.5V.  
rises above the switchover voltage of  
CC  
Table 1 shows different supplꢂ schemes and their oper-  
ating voltage ranges.  
Rꢁꢂ232 Transmitters  
The transmitters are inverting level translators that  
convert CMOS logic levels to RS-232 levels. The  
MAX3230E/AE and MAX3231E/AE automaticallꢂ reduce  
the RS-232-compliant levels ( 5.5V) to RS-232-compat-  
For supplꢂ voltages below +2.85V, the charge pump  
generates +4.0V at V+ and -4.0V at V-. The charge  
pumps operate in a discontinuous mode. If the output  
voltages are less than 4.0V, the charge pumps are  
enabled. If the output voltages exceed 4.0V, the  
charge pumps are disabled.  
ible levels ( 4.0V) when V  
falls below approximatelꢂ  
CC  
+3.1V. The reduced levels also reduce supplꢂ-current  
requirements, extending batterꢂ life. ꢁuilt-in hꢂsteresis  
of approximatelꢂ 400mV for V  
ensures that the RS-  
CC  
Each charge pump requires a flꢂing capacitor (C1, C2)  
and a reservoir capacitor (C3, C4) to generate the V+  
and V- supplꢂ voltages.  
koltage Generation in the  
ꢁwitchover Region  
V
CC  
4V  
The MAX3230E/AE and MAX3231E/AE include a  
switchover circuit between these two modes that have  
approximatelꢂ 400mV of hꢂsteresis around the  
switchover point. The hꢂsteresis is shown in Figure 1.  
This large hꢂsteresis eliminates mode changes due to  
power-supplꢂ bounce.  
0
0/MX231AE  
V+  
6V  
For example, a three-cell NiMh batterꢂ sꢂstem starts at  
V
= +3.6V, and the charge pump generates an out-  
CC  
0
put voltage of 5.5V. As the batterꢂ discharges, the  
MAX3230E/AE and MAX3231E/AE maintain the outputs  
20ms/div  
Figure 1. V+ Switchover for Changing V  
Dual Mode is a trademark of Maxim Integrated Products, Inc.  
CC  
6
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
0/MX231AE  
Table ±. Operating SHpplꢆ Options  
SYSTEꢇ SUPPLY (ꢀ)  
1 Li+ Cell  
(ꢀ)  
ꢀ (ꢀ)  
L
RS-232 ꢇODE  
CC  
+2.4 to +4.2  
+2.4 to +3.8  
Regulated sꢂstem voltage  
Regulated sꢂstem voltage  
Compliant/Compatible  
Compliant/Compatible  
3 NiCad/NiMh Cells  
Regulated Voltage Onlꢂ  
+3.0 to +5.5  
+2.5 to +3.0  
+3.0 to +5.5  
+2.5 to +3.0  
Compliant  
(V  
CC  
falling)  
Regulated Voltage Onlꢂ  
(V falling)  
Compatible  
CC  
Table 2. OHtpHt Control TrHth Table  
TRꢂNSCEIꢀER STꢂTUS  
Shutdown (AutoShutdown)  
Shutdown (Forced Off)  
FORCEON  
Low  
FORCEOFF  
ꢀigh  
RECEIꢀER STꢂTUS  
ꢀigh impedance  
INVALID  
Low  
X
Low  
ꢀigh impedance  
Active  
Normal Operation (Forced On)  
Normal Operation (AutoShutdown)  
ꢀigh  
Low  
ꢀigh  
ꢀigh  
Active  
ꢀigh  
X = Don’t care.  
† = INVALID output state is determined bꢂ R_IN input levels.  
232 output levels do not change if V  
is noisꢂ or has a  
signal levels have been detected on anꢂ receiver inputs.  
CC  
sudden current draw causing the supplꢂ voltage to drop  
slightlꢂ. The outputs return to RS-232-compliant levels  
INVALID is functional in anꢂ mode (Figures 2 and 3).  
Autoꢁhutdown  
The MAX3230E/AE and MAX3231E/AE achieve a 1µA  
supplꢂ current with Maxim’s AutoShutdown feature,  
which operates when FORCEON is low and FORCEOFF  
is high. When these devices sense no valid signal lev-  
els on all receiver inputs for 30µs, the on-board charge  
( 5.5V) when V  
rises above approximatelꢂ +3.5V.  
CC  
The MAX3230E/AE and MAX3231E/AE transmitters  
guarantee a 250kbps data rate with worst-case loads of  
3kΩ in parallel with 1000pF.  
When FORCEOFF is driven to ground, the transmitters  
and receivers are disabled and the outputs become  
high impedance. When the AutoShutdown circuitrꢂ  
senses that all receiver and transmitter inputs are inac-  
tive for more than 30µs, the transmitters are disabled  
and the outputs go to a high-impedance state. When  
the power is off, the MAX3230E/AE and MAX3231E/AE  
permit the transmitter outputs to be driven up to 12V.  
pump and drivers are shut off, reducing V  
supplꢂ  
CC  
current to 1µA. This occurs if the RS-232 cable is dis-  
connected or the connected peripheral transmitters are  
turned off. The device turns on again when a valid level  
is applied to anꢂ RS-232 receiver input. As a result, the  
sꢂstem saves power without changes to the existing  
ꢁIOS or operating sꢂstem.  
The transmitter inputs do not have pullup resistors.  
Table 2 and Figure 2c summarize the MAX3230E/AE  
and MAX3231E/AE operating modes. FORCEON and  
FORCEOFF override AutoShutdown. When neither con-  
trol is asserted, the IC selects between these states  
automaticallꢂ, based on receiver input levels. Figures  
2a, 2b, and 3a depict valid and invalid RS-232-receiver  
levels. Figures 3a and 3b show the input levels and tim-  
ing diagram for AutoShutdown operation.  
Connect unused inputs to GND or V .  
L
Rꢁꢂ232 Receivers  
The MAX3230E/AE and MAX3231E/AE receivers con-  
vert RS-232 signals to logic-output levels. All receivers  
have inverting tri-state outputs and can be active or  
inactive. In shutdown (FORCEOFF = low) or in  
AutoShutdown, the MAX3230E/AE and MAX3231E/AE  
receivers are in a high-impedance state (Table 2).  
A sꢂstem with AutoShutdown can require time to wake  
up. Figure 4 shows a circuit that forces the transmitters  
on for 100ms, allowing enough time for the other  
sꢂstem to realize that the MAX3230E/AE and  
The MAX3230E/AE and MAX3231E/AE feature an  
INVALID output that is enabled low when no valid RS-232  
_______________________________________________________________________________________  
7
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
FORCEOFF  
+0.3V  
POWER DOWN  
TO MAX323 _E  
POWER SUPPLY  
AND TRANSMITTERS  
V
CC  
R_IN  
-0.3V  
30μs  
COUNTER  
R
INVALID  
FORCEON  
INVALID  
TRANSMITTERS ARE DISABLED, REDUCING SUPPLY CURRENT TO 1μA IF  
ALL RECEIVER INPUTS ARE BETWEEN +0.3V AND -0.3V FOR AT LEAST 30μs.  
INVALID IS AN INTERNALLY GENERATED SIGNAL  
THAT IS USED BY THE AutoShutdown LOGIC  
AND APPEARS AS AN OUTPUT OF THE DEVICE.  
Figure 2a. MAX323_E Entering 1µA Supplꢂ Mode with  
AutoShutdown  
POWER DOWN IS ONLY AN INTERNAL SIGNAL.  
IT CONTROLS THE OPERATIONAL STATUS OF  
THE TRANSMITTERS AND THE POWER SUPPLIES.  
+2.7V  
Figure 2c. MAX323_E AutoShutdown Logic  
microcontroller (µC) then drives FORCEOFF and  
FORCEON like a SHDN input. INVALID can be used to  
alert the µC to indicate serial data activitꢂ.  
TO MAX323 _E  
POWER SUPPLY  
R_IN  
30μs  
COUNTER  
R
INVALID  
-2.7V  
1ꢀ5k EꢁD -rotection  
As with all Maxim devices, ESD-protection structures  
are incorporated on all pins to protect against electro-  
static discharges encountered during handling and  
assemblꢂ. The driver outputs and receiver inputs of the  
MAX3230E/AE and MAX3231E/AE have extra protec-  
tion against static electricitꢂ. Maxim’s engineers have  
developed state-of-the-art structures to protect these  
pins against ESD of 15kV without damage. The ESD  
structures withstand high ESD in all states: normal  
operation, shutdown, and power-down. After an ESD  
event, Maxim’s E-versions keep working without  
latchup, whereas competing RS-232 products can latch  
and must be powered down to remove latchup.  
TRANSMITTERS ARE ENABLED IF:  
ANY RECEIVER INPUT IS GREATER THAN +2.7V OR LESS THAN -2.7V.  
ANY RECEIVER INPUT HAS BEEN BETWEEN +0.3V AND -0.3V FOR LESS THAN 30μs.  
Figure 2b. MAX323_E with Transmitters Enabled Using  
AutoShutdown  
MAX3231E/AE are active. If the other sꢂstem transmits  
valid RS-232 signals within that time, the RS-232 ports  
on both sꢂstems remain enabled.  
When shut down, the device’s charge pumps are off,  
V+ is pulled to V , V- is pulled to ground, and the  
CC  
transmitter outputs are high impedance. The time  
required to exit shutdown is tꢂpicallꢂ 100µs (Figure 3b).  
ESD protection can be tested in various waꢂs; the trans-  
mitter outputs and receiver inputs of this product familꢂ  
are characterized for protection to the following limits:  
k Logic ꢁupply Input  
L
Unlike other RS-232 interface devices, where the receiv-  
1) 15kV using the ꢀuman ꢁodꢂ Model  
er outputs swing between 0 and V , the MAX3230E/AE  
CC  
and MAX3231E/AE feature a separate logic supplꢂ input  
2) 8kV using the Contact Discharge method specified  
in IEC 1000-4-2  
(V ) that sets V  
for the receiver outputs. The transmit-  
L
Oꢀ  
ter inputs (T_IN), FORCEON, and FORCEOFF, are also  
3) 15kV using the IEC 1000-4-2 Air-Gap method  
referred to V . This feature allows maximum flexibilitꢂ in  
L
interfacing to different sꢂstems and logic levels.  
ESD Test Conditions  
ESD performance depends on a varietꢂ of conditions.  
Contact Maxim for a reliabilitꢂ report that documents test  
setup, test methodologꢂ, and test results.  
Connect V to the sꢂstem’s logic supplꢂ voltage (+1.65V  
L
1
to +5.5V), and bꢂpass it with a 0.1µF capacitor to GND.  
If the logic supplꢂ is the same as V , connect V to  
CC  
L
V
V
. Alwaꢂs enable V  
before enabling the V supplꢂ.  
CC  
CC  
CC L  
must be greater than or equal to the V supplꢂ.  
L
—Huan ꢅodꢆ ꢇodel  
Figure 5a shows the ꢀuman ꢁodꢂ Model. Figure 5b  
shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of a  
100pF capacitor charged to the ESD voltage of interest,  
ꢁoftwareꢂControlled ꢁhutdown  
If direct software control is desired, connect FORCEOFF  
and FORCEON together to disable AutoShutdown. The  
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
0/MX231AE  
which is then discharged into the test device through a  
1.5kΩ resistor.  
TRANSMITTERS ENABLED, INVALID HIGH  
IEC ±111-ꢁ-2  
+2.7V  
The IEC 1000-4-2 standard covers ESD testing and per-  
INDETERMINATE  
formance of finished equipment. It does not specificallꢂ  
+0.3V  
0
refer to ICs. The MAX3230E/AE and MAX3231E/AE aid  
AutoShutdown, TRANSMITTERS DISABLED,  
1μA SUPPLY CURRENT, INVALID LOW  
in designing equipment that meets Level 4 (the highest  
-0.3V  
level) of IEC 1000-4-2, without the need for additional  
ESD-protection components.  
INDETERMINATE  
-2.7V  
The major difference between tests done using the  
ꢀuman ꢁodꢂ Model and IEC 1000-4-2 is a higher peak  
TRANSMITTERS ENABLED, INVALID HIGH  
current in IEC 1000-4-2, because series resistance is  
lower in the IEC 1000-4-2 model. ꢀence, the ESD with-  
stands voltage measured to IEC 1000-4-2 and is gener-  
allꢂ lower than that measured using the ꢀuman ꢁodꢂ  
Model. Figure 6a shows the IEC 1000-4-2 model, and  
Figure 6b shows the current waveform for the 8kV IEC  
a)  
RECEIVER  
INPUT  
VOLTAGE  
(V)  
INVALID  
REGION  
1000-4-2 Level 4 ESD Contact Discharge test.  
The Air-Gap test involves approaching the device with a  
charged probe. The Contact Discharge method connects  
the probe to the device before the probe is energized.  
V
CC  
0
INVALID  
OUTPUT  
(V)  
ꢇachine ꢇodel  
The Machine Model for ESD tests all pins using a 200pF  
storage capacitor and zero discharge resistance. Its  
t
t
INVH  
INVL  
objective is to emulate the stress caused bꢂ contact that  
occurs with handling and assemblꢂ during manufactur-  
ing. Of course, all pins require this protection during  
manufacturing, not just RS-232 inputs and outputs.  
Therefore, after PC board assemblꢂ, the Machine Model  
is less relevant to I/O ports.  
t
WU  
V+  
V
CC  
0
V-  
Applications Information  
b)  
Capacitor ꢁelection  
The capacitor tꢂpe used for C1–C4 is not critical for  
proper operation; either polarized or nonpolarized  
capacitors can be used. ꢀowever, ceramic chip capaci-  
tors with an X7R or X5R dielectric work best. The charge  
pump requires 0.1µF capacitors for 3.3V operation. For  
other supplꢂ voltages, see Table 3 for required capaci-  
tor values. Do not use values smaller than those listed in  
Table 3. Increasing the capacitor values (e.g., bꢂ a fac-  
tor of 2) reduces ripple on the transmitter outputs and  
slightlꢂ reduces power consumption. C2, C3, and C4  
can be increased without changing the vaue of C1.  
Figure 3. AutoShutdown Trip Levels  
POWER-  
MANAGEMENT  
UNIT  
MASTER SHDN LINE  
0.1μF  
1MΩ  
FORCEOFF FORCEON  
MAX3230E/AE  
MAX3231E/AE  
CaHtion: Do not increase C1 without also increasing  
the values of C2, C3, and C4 to maintain the proper  
ratios (C1 to the other capacitors).  
Figure 4. AutoShutdown with Initial Turn-On to Wake Up a  
Mouse or Another Sꢂstem  
When using the minimum required capacitor values,  
make sure the capacitor value does not degrade exces-  
sivelꢂ with temperature. If in doubt, use capacitors with  
_______________________________________________________________________________________  
9
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
I
R
C
1MΩ  
R 1500Ω  
D
100%  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
90%  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
100pF  
STORAGE  
CAPACITOR  
s
SOURCE  
10%  
Figure 5a. ꢀuman ꢁodꢂ ESD Test Models  
t
= 0.7ns to 1ns  
r
t
30ns  
60ns  
I
P
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
Figure 6b. IEC 1000-4-2 ESD Generator Current Waveform  
I
r
AMPERES  
Table 3. ReqHired Capacitor ꢀalHes  
36.8%  
(ꢀ)  
C±, C  
(µF)  
C2, C3, Cꢁ (µF)  
CC  
ꢅYPꢂSS  
0.22  
2.5 to 3.0  
3.0 to 3.6  
4.5 to 5.5  
3.0 to 5.5  
0.22  
0.1  
0.33  
1
10%  
0
0.1  
TIME  
0
t
RL  
0.047  
0.22  
t
DL  
CURRENT WAVEFORM  
Figure 5b. ꢀuman ꢁodꢂ Model Current Waveform  
supplꢂ noise, use a capacitor of the same value as the  
charge-pump capacitor C1. Connect bꢂpass capaci-  
tors as close to the IC as possible.  
R
C
50MΩ TO 100MΩ  
R 330Ω  
D
Transmitter Outputs when  
Exiting ꢁhutdown  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
Figure 7 shows a transmitter output when exiting shut-  
down mode. The transmitter is loaded with 3kΩ in par-  
allel with 1000pF. The transmitter output displaꢂs no  
ringing or undesirable transients as it comes out of  
shutdown, and is enabled onlꢂ when the magnitude of  
V- exceeds approximatelꢂ -3V.  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
150pF  
STORAGE  
CAPACITOR  
SOURCE  
High Data Rates  
The MAX3230E/AE and MAX3231E/AE maintain the  
RS-232 5.0V minimum transmitter output voltage even  
at high data rates. Figure 8 shows a transmitter loop-  
back test circuit. Figure 9 shows a loopback test result  
at 120kbps, and Figure 10 shows the same test at  
250kbps. For Figure 9, the transmitter was driven at  
120kbps into an RS-232 load in parallel with 1000pF.  
For Figure 10, a single transmitter was driven at  
250kbps and loaded with an RS-232 receiver in paral-  
lel with 1000pF.  
Figure 6a. IEC 1000-4-2 ESD Test Model  
0/MX231AE  
a larger nominal value. The capacitor’s equivalent series  
resistance (ESR) usuallꢂ rises at low temperatures and  
influences the amount of ripple on V+ and V-.  
-owerꢂꢁupply Decoupling  
In most circumstances, a 0.1µF V  
bꢂpass capacitor  
CC  
is adequate. In applications that are sensitive to power-  
±1 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
0/MX231AE  
5V  
5V/div  
T_IN  
FORCEON =  
FORCEOFF  
0
0
5V  
T_OUT  
R_OUT  
0
-5V  
5V  
0
2V/div  
0
T_OUT  
4μs/div  
4μs/div  
Figure 7. Transmitter Outputs Exiting Shutdown or Powering Up  
Figure 9. Loopback Test Result at 120kbps  
V
V
L
CC  
CC  
5V  
0.1μF  
C3  
0.1μF  
C1  
T_IN  
0
V
V
L
C1+  
V+  
V-  
5V  
C1-  
C2+  
T_OUT  
MAX3231E/AE  
0
C2  
C4  
-5V  
5V  
0
C2-  
V
V
L
L
T1IN  
T1OUT  
R_OUT  
1000pF  
R1IN  
R1OUT  
4μs/div  
5kΩ  
Figure 10. Loopback Test Result at 250kbps  
TO POWER-  
MANAGEMENT UNIT  
INVALID  
FORCEON  
FORCEOFF  
V
L
GND  
Figure 8. Transmitter Loopback Test Circuit  
UCꢁ- Applications Information  
Chip Information  
For the latest application details on UCSP construction,  
dimensions, tape carrier information, PC board tech-  
niques, bump-pad laꢂout, and recommended reflow  
temperature profile, as well as the latest information on  
reliabilitꢂ testing results, refer to the Application Note  
UCSP—A Wafer-Level Chip-Scale Package available  
on Maxim’s website at www.uaxiu-ic.cou/Hcsp.  
TRANSISTOR COUNT: 698  
PROCESS: CMOS  
______________________________________________________________________________________ ±±  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
Typical Operating Circuits  
(continued)  
2.5V TO 5.5V 1.65V TO 5.5V  
C
0.1μF  
BYPASS  
0.1μF  
A1  
A5  
V
V
C1  
CC  
B1  
A4  
L
C1+  
V+  
C3  
C1  
0.1μF  
0.1μF  
D1  
A2  
C1-  
C2+  
MAX3231E/AE  
V-  
C4  
C2  
0.1μF  
0.1μF  
A3  
A6  
V
L
C2-  
T1OUT  
T1IN  
E3  
E5  
V
L
RS-232  
TTL/CMOS  
R1IN  
C6 R1OUT  
5kΩ  
TO POWER-  
MANAGEMENT  
UNIT  
E2  
INVALID  
FORCEON  
FORCEOFF C5  
B5  
V
L
GND  
E1  
0/MX231AE  
±2 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
0/MX231AE  
-in Configurations  
TOP VIEW  
C2+  
N.C.  
N.C.  
N.C.  
C2-  
N.C.  
N.C.  
N.C.  
A
V
V-  
V
T1IN  
CC  
L
V+  
B
N.C.  
N.C.  
FON  
T2IN  
C
FOFF  
R2OUT  
C1+  
C1-  
N.C.  
D
E
N.C.  
R1OUT  
INV  
2
R2IN  
5
R1IN  
6
GND  
1
T1OUT  
3
T2OUT  
4
FON = FORCEON  
FOFF = FORCEOFF  
INV = INVALID  
MAX3230E/AE  
______________________________________________________________________________________ ±3  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
-in Configurations (continued)  
TOP VIEW  
C2+  
N.C.  
N.C.  
N.C.  
C2-  
N.C.  
N.C.  
N.C.  
A
V
V-  
V
T1IN  
CC  
L
V+  
B
N.C.  
N.C.  
FON  
N.C.  
C
FOFF  
R1OUT  
C1+  
C1-  
N.C.  
D
E
N.C.  
N.C.  
INV  
2
R1IN  
5
N.C.  
6
GND  
1
T1OUT  
3
N.C.  
4
FON = FORCEON  
FOFF = FORCEOFF  
INV = INVALID  
MAX3231E/AE  
0/MX231AE  
±ꢁ ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
0/MX231AE  
-ac5age Information  
For the latest package outline information and land patterns, go to www.uaxiu-ic.cou/packages.  
PꢂCKꢂꢃE TYPE  
6 x 5 UCSP  
PꢂCKꢂꢃE CODE  
ꢁ30-2  
DOCUꢇENT NO.  
2±-1±23  
6 x 5 WLP  
W302A3-2  
2±-11±6  
______________________________________________________________________________________ ±5  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ- and WL-  
Revision History  
REꢀISION  
NUꢇꢅER  
REꢀISION  
DꢂTE  
PꢂꢃES  
C—ꢂNꢃED  
DESCRIPTION  
0
1
5/04  
Initial release  
Addition of lead-free and WLP packaging  
10/08  
1, 5, 6, 7, 15  
0/MX231AE  
Maxim cannot assume responsibilitꢂ for use of anꢂ circuitrꢂ other than circuitrꢂ entirelꢂ embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitrꢂ and specifications without notice at anꢂ time.  
±6 ____________________Maxim Integrated -roducts, 120 ꢁan Gabriel Drive, ꢁunnyvale, CA 94086 408ꢂ737ꢂ7600  
© 2008 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX3231AEEWV+-T

±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP
MAXIM

MAX3231E

15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP
MAXIM

MAX3231EEBV

暂无描述
MAXIM

MAX3231EEBV-T

15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP
MAXIM

MAX3232

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI

MAX3232

3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232 Transceivers Using Four 0.1レF External Capacitors
MAXIM

MAX3232-EP

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION
TI

MAX3232CAE+

Line Transceiver, 1 Func, 2 Driver, 2 Rcvr, CMOS, PDSO16, 5.30 MM, LEAD FREE, MO-150, SSOP-16
MAXIM

MAX3232CD

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI

MAX3232CDB

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI

MAX3232CDBE4

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/ RECEIVER WITH -15-kV ESD PROTECTION
TI

MAX3232CDBG4

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/ RECEIVER WITH -15-kV ESD PROTECTION
TI