MAX3241EEAI [MAXIM]

LINE TRANSCEIVER|CMOS|3 DRIVER|5 RCVR|SSOP|28PIN|PLASTIC ; 线收发器| CMOS | 3驱动器| 5 RCVR | SSOP | 28PIN |塑料\n
MAX3241EEAI
型号: MAX3241EEAI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

LINE TRANSCEIVER|CMOS|3 DRIVER|5 RCVR|SSOP|28PIN|PLASTIC
线收发器| CMOS | 3驱动器| 5 RCVR | SSOP | 28PIN |塑料\n

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管 信息通信管理
文件: 总19页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1298; Rev 5; 3/02  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
General Description  
Features  
The MAX3222E/MAX3232E/MAX3237E/MAX3241E are  
3V-powered EIA/TIA-232 and V.28/V.24 communications  
interfaces with low power requirements, high data-rate  
capabilities, and enhanced electrostatic discharge (ESD)  
protection. All transmitter outputs and receiver inputs are  
protected to 1ꢀ5V using IEꢁ 1ꢂꢂꢂ-4-2 Air-ꢃap  
Discharge, 85V using IEꢁ 1ꢂꢂꢂ-4-2 ꢁontact Discharge,  
and 1ꢀ5V using the ꢄuman ꢅodꢆ Model. In addition, the  
MAX3237E’s logic and receiver I/O pins are protected to  
the above ESD standards.  
o ESD Protection for RS-232 I/O Pins  
(MAX3222E/MAX3232E/MAX3237E/MAX3241E)  
15kV—Human Body Model  
8kV—IEC 1000-4-2, Contact Discharge  
15kV—IEC 1000-4-2, Air-Gap Discharge  
o ESD Protection For All Logic and Receiver I/O  
Pins (MAX3237E)  
15kV—Human Body Model  
8kV—IEC 1000-4-2, Contact Discharge  
15kV—IEC 1000-4-2, Air-Gap Discharge  
The transceivers have a proprietarꢆ low-dropout transmit-  
ter output stage, delivering true RS-232 performance from  
a +3.ꢂV to +ꢀ.ꢀV supplꢆ with a dual charge pump. The  
charge pump requires onlꢆ four small ꢂ.1µF capacitors  
for operation from a +3.3V supplꢆ. Each device is guaran-  
teed to run at data rates of 2ꢀꢂ5bps while maintaining RS-  
232 output levels. The MAX3237E is guaranteed to run at  
data rates of 2ꢀꢂ5bps in the normal operating mode and  
1Mbps in the Megaꢅaud™ operating mode while main-  
taining RS-232-compliant output levels.  
o Guaranteed Data Rate  
250kbps (MAX3222E/MAX3232E/MAX3241E  
and MAX3237E, Normal Operation)  
1Mbps (MAX3237E, MegaBaud Operation)  
o Latchup Free  
o Low-Power Shutdown with Receivers Active  
1µA (MAX3222E/MAX3241E)  
10nA (MAX3237E)  
The MAX3222E/MAX3232E have two receivers and two  
drivers. The MAX3222E features a 1µA shutdown mode  
that reduces power consumption and extends batterꢆ life  
in portable sꢆstems. Its receivers can remain active in  
shutdown mode, allowing external devices such as  
modems to be monitored using onlꢆ 1µA supplꢆ current.  
ꢅoth the MAX3222E and MAX3232E are pin, pac5age,  
and functionallꢆ compatible with the industrꢆ-standard  
MAX242 and MAX232, respectivelꢆ.  
The MAX3241E is a complete serial port (three  
drivers/five receivers) designed for noteboo5 and sub-  
noteboo5 computers. The MAX3237E (five drivers/three  
receivers) is ideal for peripheral applications that require  
fast data transfer. ꢅoth devices feature a shutdown mode  
in which all receivers can remain active while using a  
supplꢆ current of onlꢆ 1µA (MAX3241E) or 1ꢂnA  
(MAX3237E). The MAX3237E/MAX3241E have additional  
receiver outputs that alwaꢆs remain active.  
o Flow-Through Pinout (MAX3237E)  
o Guaranteed Mouse Driveability (MAX3241E)  
o Meets EIA/TIA-232 Specifications Down to 3.0V  
_______________Ordering Information  
PART  
TEMP RANGE  
ꢂ°ꢁ to +7ꢂ°ꢁ  
ꢂ°ꢁ to +7ꢂ°ꢁ  
PIN-PACKAGE  
MAX3222EꢁUP  
MAX3222EꢁAP  
2ꢂ TSSOP  
2ꢂ SSOP  
Ordering Information continued at end of data sheet.  
___________________________elector Guide  
NO. OF  
LOW-  
POWER  
GUARANTEED  
DATA RATE  
(kbps)  
The MAX3222E, MAX3232E, and MAX3241E are avail-  
able in space-saving SO, SSOP, and TSSOP pac5ages.  
The MAX3237E is available in an SSOP pac5age.  
PART  
DRIVERS/  
RECEIVERS SHUTDOWN  
MAX3222E  
MAX3232E  
2/2  
2/2  
250  
250  
________________________Applications  
ꢅatterꢆ-Powered Equipment Printers  
MAX3237E  
(Normal)  
5/3  
250  
ꢁell Phones  
Smart Phones  
xDSL Modems  
ꢁell-Phone Data ꢁables  
MAX3237E  
(MegaBaud)  
5/3  
3/5  
250  
1M  
Noteboo5, Subnoteboo5,  
and Palmtop ꢁomputers  
MAX3241E  
Pin Configurations appear at end of data sheet.  
Typical Operating Circuits appear at end of data sheet.  
MegaBaud is a trademark of Maxim Integrated Products, Inc.  
Covered by U.S. Patent numbers 4,636,930; 4,679,134; 4,777,577; 4,797,899; 4,809,152; 4,897,774; 4,999,761; and other patents pending.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
to GND..............................................................-0.3V to +6V  
18-Pin Wide SO (derate 9.52mW/°C above +70°C) .....762mW  
18-Pin PDIP (derate 11.11mW/°C above +70°C)..........889mW  
20-Pin TSSOP (derate 10.9mW/°C above +70°C) ........879mW  
20-Pin SSOP (derate 8.00mW/°C above +70°C) ..........640mW  
28-Pin SSOP (derate 9.52mW/°C above +70°C) ..........762mW  
28-Pin Wide SO (derate 12.50mW/°C above +70°C).............1W  
28-Pin TSSOP (derate 12.8mW/°C above +70°C) ......1026mW  
32-pin QFN (derate 23.2mW/°C above +70°C).............1860mW  
Operating Temperature Ranges  
V+ to GND (Note 1)..................................................-0.3V to +7V  
V- to GND (Note 1) ...................................................+0.3V to -7V  
V+ + |V-| (Note 1).................................................................+13V  
Input Voltages  
T_IN, EN, SHDN, MBAUD to GND ........................-0.3V to +6V  
R_IN to GND ..................................................................... 25V  
Output Voltages  
T_OUT to GND............................................................... 13.2V  
R_OUT, R_OUTB (MAX3241E)................-0.3V to (V  
Short-Circuit Duration, T_OUT to GND.......................Continuous  
+ 0.3V)  
MAX32_ _EC_ _ ...................................................0°C to +70°C  
MAX32_ _EE_ _.................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin SSOP (derate 7.14mW/°C above +70°C) ..........571mW  
16-Pin Wide SO (derate 9.52mW/°C above +70°C) .....762mW  
Note 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +5.5V, C1C4 = 0.1µF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
CC  
A
MIN  
PARAMETER  
CONDITIONS  
= +3.3V or +5.0V, T = +25°C)  
MIN  
TYP  
MAX  
UNITS  
DC CHARACTERISTICS (V  
CC  
A
MAX3222E, MAX3232E,  
MAX3241E  
0.3  
1
Supply Current  
SHDN = V , no load  
mA  
CC  
MAX3237E  
0.5  
1
2.0  
10  
SHDN = GND  
µA  
nA  
Shutdown Supply Current  
SHDN = R_IN = GND, T_IN = GND or V  
(MAX3237E)  
10  
300  
CC  
LOGIC INPUTS  
Input Logic Low  
T_IN, EN, SHDN, MBAUD  
0.8  
V
V
V
V
V
= 3.3V  
2.0  
2.4  
CC  
CC  
Input Logic High  
T_IN, EN, SHDN, MBAUD  
= 5.0V  
Transmitter Input Hysteresis  
0.5  
MAX3222E, MAX3232E,  
MAX3241E  
T_IN, EN, SHDN  
0.01  
1
Input Leakage Current  
µA  
T_IN, SHDN, MBAUD  
MAX3237E (Note 3)  
9
18  
RECEIVER OUTPUTS  
R_OUT (MAX3222E/MAX3237E/MAX3241E), EN = V  
receivers disabled  
,
CC  
Output Leakage Current  
0.05  
10  
µA  
V
I
I
= 1.6mA (MAX322E/MAX3232E/MAX3241E)  
= 1.0mA (MAX3237E)  
OUT  
OUT  
Output Voltage Low  
Output Voltage High  
0.4  
V
0.6  
-
V
-
CC  
CC  
I
= -1.0mA  
V
OUT  
0.1  
RECEIVER INPUTS  
Input Voltage Range  
-25  
+25  
V
2
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +5.5V, C1C4 = 0.1µF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
CC  
A
MIN  
PARAMETER  
CONDITIONS  
MIN  
0.6  
TYP  
1.1  
1.5  
1.5  
2.0  
0.5  
5
MAX  
UNITS  
V
V
V
V
= 3.3V  
= 5.0V  
= 3.3V  
= 5.0V  
CC  
CC  
CC  
CC  
Input Threshold Low  
T
T
= +25°C  
V
A
0.8  
2.4  
2.4  
Input Threshold High  
= +25°C  
= +25°C  
V
A
Input Hysteresis  
V
k
Input Resistance  
T
A
3
7
TRANSMITTER OUTPUTS  
Output Voltage Swing  
Output Resistance  
All transmitter outputs loaded with 3k to ground  
5
5.4  
V
V
= 0, transmitter output = 2V  
300  
50k  
CC  
Output Short-Circuit Current  
60  
25  
mA  
µA  
V
= 0 or 3V to 5.5V, V  
= 12V, transmitters  
CC  
OUT  
Output Leakage Current  
disabled (MAX3222E/MAX3232E/MAX3241E)  
MOUSE DRIVEABILITY (MAX3241E)  
T1IN = T2IN = GND, T3IN = V  
,
CC  
Transmitter Output Voltage  
5
V
T3OUT loaded with 3k to GND,  
T1OUT and T2OUT loaded with 2.5mA each  
ESD PROTECTION  
Human Body Model  
15  
15  
8
R_IN, T_OUT  
kV  
kV  
IEC 1000-4-2 Air-Gap Discharge (except MAX3237E)  
IEC 1000-4-2 Contact Discharge (except MAX3237E)  
Human Body Model  
15  
15  
8
T_IN, R_IN, R_OUT, EN, SHDN,  
MBAUD  
MAX3237E  
IEC1000-4-2 Air-Gap Discharge  
IEC1000-4-2 Contact Discharge  
TIMING CHARACTERISTICSMAX3222E/MAX3232E/MAX3241E  
(V  
= +3.0V to +5.5V, C1C4 = 0.1µF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
R = 3k , C = 1000pF,  
MIN  
TYP  
MAX  
UNITS  
L
L
Maximum Data Rate  
250  
kbps  
one transmitter switching  
t
t
0.15  
0.15  
200  
200  
100  
50  
PHL  
PLH  
Receiver input to receiver output,  
C = 150pF  
L
Receiver Propagation Delay  
µs  
Receiver Output Enable Time  
Receiver Output Disable Time  
Transmitter Skew  
Normal operation (except MAX3232E)  
Normal operation (except MAX3232E)  
(Note 4)  
ns  
ns  
ns  
ns  
|t  
|t  
- t  
|
|
PHL PLH  
Receiver Skew  
- t  
PHL PLH  
V
= 3.3V,  
CC  
T
= +25°C,  
A
C = 150pF  
L
to 1000pF  
Transition-Region Slew Rate  
R = 3k to 7k , measured  
L
from +3V to -3V or -3V to +3V,  
one transmitter switching  
6
30  
V/µs  
_______________________________________________________________________________________  
3
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
TIMING CHARACTERISTICSMAX3237E  
(V  
= +3.0V to +5.5V, C1C4 = 0.1µF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
CC  
A
MIN  
PARAMETER  
CONDITIONS  
R = 3k , C = 1000pF, one transmitter switching,  
MIN  
TYP  
MAX  
UNITS  
L
L
250  
MBAUD = GND  
V
= 3.0V to 4.5V, R = 3k , C = 250pF,  
CC  
L
L
Maximum Data Rate  
1000  
1000  
kbps  
one transmitter switching, MBAUD = V  
CC  
V
= 4.5V to 5.5V, R = 3k , C = 1000pF,  
CC  
L
L
one transmitter switching, MBAUD = V  
CC  
t
t
0.15  
0.15  
2.6  
PHL  
PLH  
Receiver Propagation Delay  
R_IN to R_OUT, C = 150pF  
L
µs  
µs  
Receiver Output Enable Time  
Receiver Output Disable Time  
Normal operation  
Normal operation  
2.4  
| t  
| t  
| t  
- t  
|, MBAUD = GND  
PHL PLH  
Transmitter Skew  
Receiver Skew  
100  
50  
ns  
ns  
- t  
|, MBAUD = V  
|
PHL PLH  
CC  
- t  
PHL PLH  
MBAUD =  
GND  
6
24  
4
30  
150  
30  
C = 150pF  
L
to 1000pF  
V
= 3.3V, R = 3k to  
L
CC  
7k ,  
+3V to -3V or -3V to +3V,  
= +25°C  
MBAUD =  
V/µs  
V
Transition-Region Slew Rate  
CC  
T
A
C = 150pF to 2500pF,  
L
MBAUD = GND  
Note 2: MAX3222E/MAX3232E/MAX3241E: C1C4 = 0.1µF tested at 3.3V 10ꢀ% C1 = 0.047µF, C2, C3, C4 = 0.33µF tested at 5.0V  
10ꢀ. MAX3237E: C1C4 = 0.1µF tested at 3.3V 5ꢀ, C1C4 = 0.22µF tested at 3.3V 10ꢀ% C1 = 0.047µF, C2, C3, C4 =  
0.33µF tested at 5.0V 10ꢀ.  
Note 3: The MAX3237E logic inputs have an active positive feedback resistor. The input current goes to zero when the inputs are at  
the supply rails.  
Note 4: Transmitter skew is measured at the transmitter zero crosspoints.  
__________________________________________Typical Operating Characteristics  
(V  
= +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3k and C , T = +25°C, unless otherwise noted.)  
CC  
L
A
MAX3222E/MAX3232E  
OPERATING SUPPLY CURRENT  
vs. LOAD CAPACITANCE  
MAX3222E/MAX3232E  
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE  
MAX3222E/MAX3232E  
SLEW RATE vs. LOAD CAPACITANCE  
16  
14  
12  
10  
8
45  
40  
35  
30  
25  
20  
6
5
4
3
2
1
0
T1 TRANSMITTING AT 250kbps  
T2 TRANSMITTING AT 15.6kbps  
V
OUT+  
-SLEW  
+SLEW  
250kbps  
120kbps  
T1 TRANSMITTING AT 250kbps  
T2 TRANSMITTING AT 15.6kbps  
-1  
-2  
-3  
-4  
-5  
-6  
6
20kbps  
15  
10  
5
4
V
2
OUT-  
FOR DATA RATES UP TO 250kbps  
0
0
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
4
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3k and C , T = +25°C, unless otherwise noted.)  
CC  
L
A
MAX3241E  
OPERATING SUPPLY CURRENT  
vs. LOAD CAPACITANCE  
MAX3241E  
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE  
MAX3241E  
SLEW RATE vs. LOAD CAPACITANCE  
6
5
4
3
2
1
0
14  
12  
10  
8
60  
50  
40  
30  
20  
10  
0
1 TRANSMITTER AT 250kbps  
2 TRANSMITTERS AT 15.6kbps  
V
OUT+  
250kbps  
1 TRANSMITTER AT 250kbps  
2 TRANSMITTERS AT 15.6kbps  
120kbps  
6
-1  
-2  
-3  
-4  
-5  
-6  
20kbps  
4
2
V
OUT-  
0
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
MAX3237E  
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE  
MAX3237E  
SLEW RATE vs. LOAD CAPACITANCE  
(MBAUD = GND)  
MAX3237E  
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE (MBAUD = V  
)
CC  
12  
10  
7.5  
6
5
4
3
2
1
0
1Mbps  
V
+
OUT  
5.0  
2.5  
0
2Mbps  
SR-  
SR+  
1.5Mbps  
8
FOR DATA RATES UP TO 250kbps  
1 TRANSMITTER 250kbps  
1 TRANSMITTER AT FULL DATA RATE  
4 TRANSMITTERS AT 1/16 DATA RATE  
4 TRANSMITTERS 15.6kbps  
ALL TRANSMITTERS LOADED  
6
4
3k + C LOAD, EACH OUTPUT  
L
-1  
-2  
-3  
-4  
-5  
-6  
WITH 3k + C  
L
-2.5  
-5.0  
-7.5  
1 TRANSMITTER AT 250kbps  
4 TRANSMITTERS AT 15.6kbps  
ALL TRANSMITTERS LOADED  
1.5Mbps  
1Mbps  
2Mbps  
2
0
V
OUT-  
WITH 3k + C  
L
0
500  
1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
0
500 1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
0
500  
1000  
1500  
2000  
LOAD CAPACITANCE (pF)  
MAX3237E  
SLEW RATE vs. LOAD CAPACITANCE  
MAX3237E  
MAX3237E  
SUPPLY CURRENT vs. LOAD CAPACITANCE  
WHEN TRANSMITTING DATA (MBAUD = GND)  
TRANSMITTER SKEW vs. LOAD CAPACITANCE  
(MBAUD = V  
(MBAUD = V  
)
CC  
)
CC  
70  
60  
50  
40  
30  
20  
50  
100  
80  
60  
40  
20  
0
250kbps  
120kbps  
-SLEW, 1Mbps  
+SLEW, 1Mbps  
-SLEW, 2Mbps  
+SLEW, 2Mbps  
40  
30  
20  
10  
0
20kbps  
1 TRANSMITTER AT 20kbps, 120kbps, 250kbps  
4 TRANSMITTERS AT 15.6kbps  
ALL TRANSMITTERS LOADED  
|tPLH - t  
|
PHL  
1 TRANSMITTER AT FULL DATA RATE  
4 TRANSMITTERS AT 1/16 DATA RATE  
3k + C LOAD EACH OUTPUT  
1 TRANSMITTER AT 500kbps  
4 TRANSMITTERS AT 1/16 DATA RATE  
ALL TRANSMITTERS LOADED  
10  
0
L
WITH 3k + C  
L
WITH 3k + C  
L
0
500  
1000  
1500  
2000  
0
500  
1000 1500 2000 2500 3000  
0
500  
1000  
1500  
2000  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
_______________________________________________________________________________________  
5
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3k and C , T = +25°C, unless otherwise noted.)  
L A  
CC  
MAX3237E  
TRANSMITTER OUTPUT VOLTAGE vs.  
SUPPLY VOLTAGE (MBAUD = GND)  
MAX3237E  
SUPPLY CURRENT vs.  
SUPPLY VOLTAGE (MBAUD = GND)  
6
5
50  
40  
30  
V
+
OUT  
4
3
2
1 TRANSMITTER AT 250kbps  
4 TRANSMITTERS AT 15.6kbps  
ALL TRANSMITTERS LOADED  
WITH 3k +1000pF  
1
0
-1  
-2  
-3  
-4  
-5  
-6  
20  
1 TRANSMITTER AT 250kbps  
4 TRANSMITTERS AT 15.6kbps  
ALL TRANSMITTERS LOADED  
WITH 3k AND 1000pF  
10  
0
V
OUT-  
4.5  
2.0  
2.5  
3.0  
3.5  
4.0  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
-in Description  
PIN  
MAX3222E  
MAX3232E  
MAX3241E  
NAME  
FUNCTION  
MAX3237E  
TSSOP/  
SSOP  
TSSOP/  
SSOP  
SO/DIP  
SO/DIP  
SSOP/SO  
QFN  
1
1
13*  
28  
23  
22  
EN  
Receiver Enable. Active low.  
Positive Terminal of Voltage-  
Doubler Charge-Pump Capacitor  
2
3
4
2
1
2
3
2
28  
27  
24  
28  
27  
23  
C1+  
+5.5V Generated by the Charge  
Pump  
3
4
3
4
27  
25  
V+  
Negative Terminal of Voltage-  
Doubler Charge-Pump Capacitor  
C1-  
Positive Terminal of Inverting  
Charge-Pump Capacitor  
5
6
7
5
6
7
4
5
6
5
6
7
1
3
4
1
2
3
29  
30  
31  
C2+  
C2-  
V-  
Negative Terminal of Inverting  
Charge-Pump Capacitor  
-5.5V Generated by the Charge  
Pump  
5, 6, 7, 10,  
12  
9, 10,  
11  
8, 15  
9, 14  
8, 17  
9, 16  
7, 14  
8, 13  
9, 12  
8, 17  
9, 16  
6, 7, 8  
T_OUT  
R_IN  
RS-232 Transmitter Outputs  
RS-232 Receiver Inputs  
8, 9, 11  
48  
15  
13, 14, 15,  
17, 18  
10, 13  
10, 15  
12, 15  
18, 20, 21  
1519  
R_OUT  
TTL/CMOS Receiver Outputs  
12, 13,  
14  
17*, 19*,  
22*, 23*, 24*  
10, 11,  
12  
11, 12  
12, 13  
10, 11  
13, 14  
T_IN  
TTL/CMOS Transmitter Inputs  
6
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
-in Description (continued)  
PIN  
MAX3222E  
MAX3232E  
MAX3241E  
NAME  
FUNCTION  
MAX3237E  
TSSOP/  
SSOP  
TSSOP/  
SSOP  
SO/DIP  
SO/DIP  
SSOP/SO  
QFN  
16  
17  
18  
18  
19  
20  
15  
16  
18  
19  
2
25  
26  
22  
24  
26  
21  
GND  
Ground  
V
26  
14*  
+3.0V to +5.5V Supply Voltage  
Shutdown Control. Active low.  
CC  
SHDN  
1, 10,  
11, 20  
9, 16,  
25, 32  
No Connection  
11, 14  
15*  
16  
N.C.  
MegaBaud Control Input.  
Connect to GND for normal  
operation% connect to V  
MBAUD  
for  
CC  
1Mbps transmission rates.  
Noninverting Complementary  
Receiver Outputs. Always active.  
20, 21  
19, 20  
R_OUTB  
*These pins have an active positive feedback resistor internal to the MAX3237E, allowing unused inputs to be left unconnected.  
V
V
CC  
CC  
0.1 F  
0.1 F  
V
V
CC  
CC  
C1+  
C1+  
V+  
V-  
V+  
V-  
C1  
C2  
C1  
C2  
C3  
C4  
C3  
C4  
C1-  
C2+  
C1-  
C2+  
MAX3222E  
MAX3232E  
MAX3237E  
MAX3241E  
MAX3222E  
MAX3232E  
MAX3237E  
MAX3241E  
C2-  
C2-  
T_ OUT  
R_ IN  
T_ OUT  
R_ IN  
T_ IN  
T_ IN  
R_ OUT  
R_ OUT  
5k  
5k  
2500pF  
150pF  
3k  
7k  
GND  
GND  
MINIMUM SLEW-RATE TEST CIRCUIT  
Figure 1. Slew-Rate Test Circuits  
MAXIMUM SLEW-RATE TEST CIRCUIT  
_______________________________________________________________________________________  
7
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
state. Receivers can be either active or inactive in shut-  
_______________Detailed Description  
down (Table 1).  
Dual Chargeꢂ-ump koltage Converter  
The complementary outputs on the MAX3237E/MAX3241E  
The MAX3222E/MAX3232E/MAX3237E/MAX3241Es  
(R_OUTB) are always active, regardless of the state of EN  
internal power supply consists of a regulated dual  
or SHDN. This allows the device to be used for ring indica-  
charge pump that provides output voltages of +5.5V  
tor applications without forward biasing other devices con-  
(doubling charge pump) and -5.5V (inverting charge  
nected to the receiver outputs. This is ideal for systems  
pump), over the 3.0V to 5.5V V  
range. The charge  
CC  
where V  
drops to 0 in shutdown to accommodate  
CC  
pump operates in discontinuous mode% if the output  
voltages are less than 5.5V, the charge pump is  
enabled, and if the output voltages exceed 5.5V, the  
charge pump is disabled. Each charge pump requires  
a flying capacitor (C1, C2) and a reservoir capacitor  
(C3, C4) to generate the V+ and V- supplies (Figure 1).  
peripherals such as UARTs (Figure 2).  
MAX3222E/MAX3237E/MAX3241E  
ꢁhutdown Mode  
Supply current falls to less than 1µA in shutdown mode  
(SHDN = low). The MAX3237Es supply current falls  
to10nA (typ) when all receiver inputs are in the invalid  
range (-0.3V < R_IN < +0.3). When shut down, the  
devices charge pumps are shut off, V+ is pulled down  
Rꢁꢂ232 Transmitters  
The transmitters are inverting level translators that con-  
vert TTL/CMOS-logic levels to 5.0V EIA/TIA-232 com-  
pliant levels.  
to V , V- is pulled to ground, and the transmitter  
CC  
outputs are disabled (high impedance). The time  
required to recover from shutdown is typically 100µs,  
The MAX3222E/MAX3232E/MAX3237E/MAX3241E  
transmitters guarantee a 250kbps data rate with worst-  
case loads of 3k in parallel with 1000pF, providing  
compatibility with PC-to-PC communication software  
(such as LapLink). Transmitters can be paralleled to  
drive multiple receivers or mice.  
as shown in Figure 3. Connect SHDN to V  
if the shut-  
CC  
down mode is not used. SHDN has no effect on R_OUT  
or R_OUTB (MAX3237E/MAX3241E).  
1ꢀ5k EꢁD -rotection  
As with all Maxim devices, ESD-protection structures  
are incorporated to protect against electrostatic dis-  
charges encountered during handling and assembly.  
The driver outputs and receiver inputs of the  
MAX3222E/MAX3232E/MAX3237E/MAX3241E have  
extra protection against static electricity. Maxims engi-  
neers have developed state-of-the-art structures to pro-  
tect these pins against ESD of 15kV without damage.  
The ESD structures withstand high ESD in all states:  
normal operation, shutdown, and powered down. After  
an ESD event, Maxims E versions keep working without  
latchup, whereas competing RS-232 products can latch  
and must be powered down to remove latchup.  
The MAX3222E/MAX3237E/MAX3241Es transmitters are  
disabled and the outputs are forced into a high-imped-  
ance state when the device is in shutdown mode (SHDN =  
GND). The MAX3222E/MAX3232E/MAX3237E/MAX3241E  
permit the outputs to be driven up to 12V in shutdown.  
The MAX3222E/MAX3232E/MAX3241E transmitter  
inputs do not have pullup resistors. Connect unused  
inputs to GND or V . The MAX3237Es transmitter  
CC  
inputs have a 400k active positive feedback resistor,  
allowing unused inputs to be left unconnected.  
MAX3237E MegaBaud Operation  
For higher-speed serial communications, the MAX3237E  
features MegaBaud operation. In MegaBaud operating  
Furthermore, the MAX3237E logic I/O pins also have  
15kV ESD protection. Protecting the logic I/O pins to  
15kV makes the MAX3237E ideal for data cable appli-  
cations.  
mode (MBAUD = V ), the MAX3237E transmitters  
CC  
guarantee a 1Mbps data rate with worst-case loads of  
3k in parallel with 250pF for 3.0V < V  
< 4.5V. For 5V  
CC  
10ꢀ operation, the MAX3237E transmitters guarantee a  
1Mbps data rate into worst-case loads of 3k in parallel  
with 1000pF.  
Table 1. MAX3222E/MAX3237E/MAX3241E  
Shutdown and Enable Control Truth Table  
R_OUTB  
Rꢁꢂ232 Receivers  
The receivers convert RS-232 signals to CMOS-logic  
output levels. The MAX3222E/MAX3237E/MAX3241E  
receivers have inverting three-state outputs. Drive EN  
high to place the receiver(s) into a high-impedance  
T_OUT  
R_OUT  
(MAX3237E/  
MAX3241E)  
SHDN  
EN  
0
0
1
1
0
1
0
1
High-Z  
High-Z  
Active  
Active  
Active  
High-Z  
Active  
High-Z  
Active  
Active  
Active  
Active  
LapLink is a trademark of Traveling Software.  
8
______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
ESD protection can be tested in various ways% the  
transmitter outputs and receiver inputs for the  
MAX3222E/MAX3232E/MAX3237E/MAX3241E are  
characterized for protection to the following limits:  
15kV using IEC 1000-4-2s Air-Gap Discharge  
method  
ESD Test Conditions  
ESD performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents  
test setup, test methodology, and test results.  
15kV using the Human Body Model  
8kV using the Contact Discharge method specified  
in IEC 1000-4-2  
Human Body Model  
Figure 4a shows the Human Body Model, and Figure  
4b shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of  
a 100pF capacitor charged to the ESD voltage of inter-  
est, which is then discharged into the test device  
through a 1.5k resistor.  
V
CC  
PREVIOUS  
RS-232  
V
CC  
PROTECTION  
DIODE  
Rx  
IEC 1000-4-2  
The IEC 1000-4-2 standard covers ESD testing and per-  
formance of finished equipment% it does not specifically  
refer to integrated circuits. The MAX3222E/MAX3232E/  
MAX3237E/MAX3241E help you design equipment that  
meets Level 4 (the highest level) of IEC 1000-4-2, without  
the need for additional ESD-protection components.  
5k  
UART  
Tx  
GND  
SHDN = GND  
The major difference between tests done using the  
Human Body Model and IEC 1000-4-2 is higher peak  
current in IEC 1000-4-2 because series resistance is  
lower in the IEC 1000-4-2 model. Hence, the ESD with-  
stand voltage measured to IEC 1000-4-2 is generally  
lower than that measured using the Human Body  
Model. Figure 5a shows the IEC 1000-4-2 model, and  
Figure 5b shows the current waveform for the 8kV IEC  
1000-4-2 Level 4 ESD Contact Discharge test.  
a) OLDER RS-232: POWERED-DOWN UART DRAWS CURRENT FROM  
ACTIVE RECEIVER OUTPUT IN SHUTDOWN.  
V
CC  
TO  
P
LOGIC  
TRANSITION  
DETECTOR  
The Air-Gap Discharge test involves approaching the  
device with a charged probe. The Contact Discharge  
MAX3237E/MAX3241E  
R1OUTB  
V
CC  
PROTECTION  
DIODE  
5V/div  
0
SHDN  
R1IN  
Rx  
R1OUT  
THREE-STATED  
T2OUT  
EN = V  
CC  
5k  
UART  
T1OUT  
2V/div  
0
T1IN  
Tx  
GND  
SHDN = GND  
T1OUT  
b) NEW MAX3237E/MAX3241E: EN SHUTS DOWN RECEIVER OUTPUTS  
(EXCEPT FOR B OUTPUTS), SO NO CURRENT FLOWS TO UART IN SHUTDOWN.  
B OUTPUTS INDICATE RECEIVER ACTIVITY DURING SHUTDOWN WITH EN HIGH.  
V
= 3.3V  
CC  
C1–C4 = 0.1 F  
40 s/div  
Figure 2. Detection of RS-232 Activity when the UART and  
Interface are Shut Down; Comparison of MAX3237E/MAX3241E  
(b) with Previous Transceivers (a)  
Figure 3. Transmitter Outputs Recovering from Shutdown or  
Powering Up  
_______________________________________________________________________________________  
9
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
method connects the probe to the device before the  
probe is energized.  
Applications Information  
Capacitor ꢁelection  
Machine Model  
The Machine Model for ESD tests all pins using a  
200pF storage capacitor and zero discharge resis-  
tance. Its objective is to emulate the stress caused by  
contact that occurs with handling and assembly during  
manufacturing. All pins require this protection during  
manufacturing, not just RS-232 inputs and outputs.  
Therefore, after PC board assembly, the Machine  
Model is less relevant to I/O ports.  
The capacitor type used for C1C4 is not critical for  
proper operation% polarized or nonpolarized capacitors  
can be used. The charge pump requires 0.1µF capaci-  
tors for 3.3V operation. For other supply voltages, see  
Table 2 for required capacitor values. Do not use val-  
ues smaller than those listed in Table 2. Increasing the  
capacitor values (e.g., by a factor of 2) reduces ripple  
on the transmitter outputs and slightly reduces power  
consumption. C2, C3, and C4 can be increased without  
changing C1s value. However, do not increase C1  
without also increasing the values of C2, C3, C4,  
and C  
to maintain the proper ratios (C1 to  
BYPASS  
the other capacitors).  
R
R
C
1M  
D
1500  
I 100%  
P
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
AMPERES  
36.8%  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
100pF  
STORAGE  
CAPACITOR  
SOURCE  
10%  
0
0
TIME  
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 4a. Human Body ESD Test Model  
Figure 4b. Human Body Model Current Waveform  
I
100%  
R
R
D
330  
C
50M to 100M  
90%  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
150pF  
STORAGE  
CAPACITOR  
SOURCE  
10%  
t
t = 0.7ns to 1ns  
r
30ns  
60ns  
Figure 5b. IEC 1000-4-2 ESD Generator Current Waveform  
Figure 5a. IEC 1000-4-2 ESD Test Model  
10 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
6
Table 2. Required Minimum Capacitor  
Values  
5
V
4
3
OUT+  
V
= 3.0V  
CC  
V
(V)  
C1  
(µF)  
C2, C3, C4  
(µF)  
CC  
2
V
V
1
OUT+  
OUT-  
MAX3222E/MAX3232E/MAX3241E  
0
3.0 to 3.6  
4.5 to 5.5  
3.0 to 5.5  
MAX3237E  
3.0 to 3.6  
3.15 to 3.6  
4.5 to 5.5  
3.0 to 5.5  
0.1  
0.047  
0.1  
0.1  
-1  
-2  
-3  
-4  
-5  
-6  
0.33  
0.47  
V
CC  
1
V
OUT-  
9
0.22  
0.1  
0.22  
0.1  
0
2
3
4
5
6
7
8
10  
LOAD CURRENT PER TRANSMITTER (mA)  
0.047  
0.22  
0.33  
1.0  
Figure 6a. MAX3241E Transmitter Output Voltage vs. Load  
Current per Transmitter  
power supplies. It has been tested with leading mouse  
brands from manufacturers such as Microsoft and  
Logitech. The MAX3241E successfully drove all serial  
mice tested and met their respective current and volt-  
age requirements. Figure 6a shows the transmitter out-  
put voltages under increasing load current at 3.0V.  
Figure 6b shows a typical mouse connection using the  
MAX3241E.  
When using the minimum required capacitor values,  
make sure the capacitor value does not degrade  
excessively with temperature. If in doubt, use capaci-  
tors with a larger nominal value. The capacitors equiv-  
alent series resistance (ESR), which usually rises at low  
temperatures, influences the amount of ripple on V+  
and V-.  
-owerꢂꢁupply Decoupling  
High Data Rates  
The MAX3222E/MAX3232E/MAX3237E/MAX3241E  
maintain the RS-232 5.0V minimum transmitter output  
voltage even at high data rates. Figure 7 shows a trans-  
mitter loopback test circuit. Figure 8 shows a loopback  
test result at 120kbps, and Figure 9 shows the same test  
at 250kbps. For Figure 8, all transmitters were driven  
simultaneously at 120kbps into RS-232 loads in parallel  
with 1000pF. For Figure 9, a single transmitter was driv-  
en at 250kbps, and all transmitters were loaded with an  
RS-232 receiver in parallel with 1000pF.  
In most circumstances, a 0.1µF V  
bypass capacitor  
CC  
is adequate. In applications that are sensitive to power-  
supply noise, use a capacitor of the same value as  
charge-pump capacitor C1. Connect bypass capaci-  
tors as close to the IC as possible.  
Operation Down to 2.7k  
Transmitter outputs will meet EIA/TIA-562 levels of  
3.7V with supply voltages as low as 2.7V.  
Transmitter Outputs when  
Recovering from ꢁhutdown  
The MAX3237 maintains the RS-232 5.0V minimum  
transmitter output voltage at data rates up to 1Mbps.  
Figure 10 shows a loopback test result at 1Mbps with  
MBAUD = V . For Figure 10, all transmitters were  
CC  
loaded with an RS-232 receiver in parallel with 250pF.  
Figure 3 shows two transmitter outputs when recover-  
ing from shutdown mode. As they become active, the  
two transmitter outputs are shown going to opposite  
RS-232 levels (one transmitter input is high, the other is  
low). Each transmitter is loaded with 3k in parallel with  
2500pF. The transmitter outputs display no ringing or  
undesirable transients as they come out of shutdown.  
Note that the transmitters are enabled only when the  
magnitude of V- exceeds approximately -3V.  
Interconnection with 3k and ꢀk Logic  
The MAX3222E/MAX3232E/MAX3237E/MAX3241E can  
directly interface with various 5V logic families, includ-  
ing ACT and HCT CMOS. See Table 3 for more infor-  
mation on possible combinations of interconnections.  
Mouse Driveability  
The MAX3241E has been specifically designed to  
power serial mice while operating from low-voltage  
______________________________________________________________________________________ 11  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
V
= 3V  
CC  
to 5.5V  
C
BYPASS  
26  
27  
3
28  
V
CC  
C1+  
C1-  
V+  
V-  
C1  
C2  
C3  
C4  
24  
COMPUTER SERIAL PORT  
1
2
C2+  
MAX3241E  
C2-  
9
T1IN  
14  
T1OUT  
T2OUT  
T3OUT  
+V  
+V  
T2IN  
10  
11  
13  
T3IN  
12  
21  
V
CC  
-V  
R1OUTB  
GND  
Tx  
20  
19  
R2OUTB  
R1OUT  
R1IN  
R2IN  
R3IN  
R4IN  
4
5
6
5k  
5k  
18  
17  
16  
R2OUT  
R3OUT  
5k  
5k  
5k  
7
R4OUT  
R5OUT  
EN  
MOUSE  
15  
23  
R5IN  
8
22  
SHDN  
V
CC  
GND  
25  
Figure 6b. Mouse Driver Test Circuit  
12 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
Table 3. Logic-Family Compatibility with  
Various Supply Voltages  
5V/div  
5V/div  
5V/div  
T1IN  
SYSTEM  
POWER-SUPPLY  
VOLTAGE  
(V)  
V
CC  
SUPPLY  
VOLTAGE  
(V)  
COMPATIBILITY  
T1OUT  
R1OUT  
Compatible with all  
CMOS families  
3.3  
5
3.3  
5
Compatible with all  
TTL and CMOS fami-  
lies  
V
= 3.3V  
CC  
C1C4 = 0.1 F  
2 s/div  
Compatible with ACT  
and HCT CMOS, and  
with AC, HC, or  
5
3.3  
Figure 8. MAX3241E Loopback Test Result at 120kbps  
CD4000 CMOS  
5V/div  
T1IN  
T1OUT  
R1OUT  
V
CC  
0.1 F  
V
5V/div  
5V/div  
CC  
C1+  
V+  
C3  
C1  
C1-  
C2+  
MAX3222E  
MAX3232E  
MAX3237E  
MAX3241E  
V-  
V
= 3.3V, C1C4 = 0.1 F  
CC  
C4  
C2  
C2-  
2 s/div  
T_ OUT  
T_ IN  
Figure 9. MAX3241E Loopback Test Result at 250kbps  
R_ IN  
5k  
R_ OUT  
1000pF  
+5V  
T_IN  
0
+5V  
GND  
0
-5V  
+5V  
0
T_OUT  
5k + 250pF  
V
= 3.3V  
CC  
C1C4 = 0.1 F  
Figure 7. Loopback Test Circuit  
R_OUT  
400ns/div  
Figure 10. MAX3237E Loopback Test Result at 1000kbps  
(MBAUD = V  
)
CC  
______________________________________________________________________________________ 13  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
__________________________________________________________-in Configurations  
TOP VIEW  
N.C.  
C1+  
V+  
1
2
N.C.  
EN  
C1+  
V+  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
SHDN  
1
2
3
4
5
6
7
8
C1+  
V+  
V
CC  
18  
17  
16  
15  
14  
13  
12  
11  
EN  
C1+  
V+  
1
2
SHDN  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
16  
15  
14  
V
V
GND  
CC  
V
CC  
CC  
GND  
3
GND  
C1-  
T1OUT  
GND  
3
T1OUT  
R1IN  
C1-  
4
T1OUT  
R1IN  
C1-  
T1OUT  
R1IN  
R1OUT  
N.C.  
MAX3232E  
C1-  
4
C2+  
C2-  
13 R1IN  
12 R1OUT  
11 T1IN  
MAX3232E  
MAX3222E  
MAX3222E  
C2+  
C2-  
5
C2+  
C2-  
C2+  
C2-  
5
R1OUT  
T1IN  
6
R1OUT  
T1IN  
6
V-  
V-  
7
V-  
V-  
10  
9
7
T2OUT  
R2IN  
T2IN  
T2OUT  
T2IN  
8
T2IN  
T2OUT  
R2IN  
T2OUT  
T1IN  
R2OUT  
8
R2OUT  
N.C.  
R2IN  
N.C.  
9
10 R2OUT  
T2IN  
R2IN  
9
SSOP/SO/DIP  
R2OUT  
10  
N.C.  
10  
SO/DIP  
TSSOP  
TSSOP/SSOP  
TOP VIEW  
28  
28  
27  
26  
25  
24  
23  
22  
1
2
1
2
3
4
5
6
7
8
9
C2+  
C2-  
C2+  
GND  
C1+  
V+  
C1+  
27  
26  
V+  
V
C2-  
V-  
3
CC  
V
CC  
R1IN  
R2IN  
1
2
3
4
5
6
7
8
24 GND  
V-  
25 C1-  
4
R1IN  
R2IN  
R3IN  
R4IN  
R5IN  
T1OUT  
GND  
C1-  
23 C1-  
T1IN  
T1OUT  
T2OUT  
T3OUT  
5
24  
23  
MAX3237E  
MAX3241E  
R3IN  
22 EN  
6
T2IN  
EN  
R4IN  
21 SHDN  
20 R1OUTB  
19 R2OUTB  
18 R1OUT  
17 R2OUT  
7
22 T3IN  
21  
SHDN  
MAX3241E  
R5IN  
21 R1OUTB  
R1IN  
R2IN  
8
R1OUT  
T1OUT  
T2OUT  
T3OUT  
20  
19  
20  
19  
R2OUTB  
R1OUT  
9
R2OUT  
T4IN  
10  
11  
12  
13  
14  
T2OUT 10  
T4OUT  
R3IN  
18 R3OUT T3OUT  
18 R2OUT  
17 R3OUT  
16 R4OUT  
11  
12  
13  
14  
T5IN  
17  
T5OUT  
EN  
T3IN  
T2IN  
T1IN  
16 R1OUTB  
15  
15  
MBAUD  
R5OUT  
SHDN  
SSOP  
SSOP/SO/TSSOP  
QFN  
14 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
__________________________________________________Typical Operating Circuits  
+3.3V  
+3.3V  
17  
16  
C
C
BYPASS  
BYPASS  
V
V
CC  
CC  
3
7
2
4
5
6
2
6
1
3
4
5
C1+  
C1+  
V+  
V+  
C1  
0.1 F  
C1  
0.1 F  
C3*  
C3*  
0.1 F  
0.1 F  
C1-  
C2+  
C1-  
C2+  
MAX3222E  
MAX3232E  
V-  
V-  
C2  
0.1 F  
C2  
0.1 F  
C4  
0.1 F  
C4  
0.1 F  
C2-  
C2-  
12  
T1OUT  
T1IN  
15  
8
11  
T1OUT  
T1IN  
14  
7
TTL/CMOS  
INPUTS  
RS-232  
TTL/CMOS  
INPUTS  
RS-232  
OUTPUTS  
OUTPUTS  
T2IN  
T2OUT  
R1IN  
11  
T2IN  
T2OUT  
R1IN  
10  
14  
9
13 R1OUT  
10 R2OUT  
13  
8
12 R1OUT  
TTL/CMOS  
OUTPUTS  
TTL/CMOS  
OUTPUTS  
RS-232  
INPUTS  
5k  
RS-232  
INPUTS  
5k  
R2IN  
9
R2OUT  
R2IN  
5k  
5k  
EN  
1
18  
SHDN  
GND  
16  
GND  
15  
*C3 CAN BE RETURNED TO EITHER V OR GROUND.  
CC  
NOTE: PIN NUMBERS REFER TO SO/DIP PACKAGES.  
SEE TABLE 2 FOR CAPACITOR SELECTION.  
______________________________________________________________________________________ 15  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
_____________________________________Typical Operating Circuits (continued)  
+3.3V  
+3.3V  
C
C
BYPASS  
28  
BYPASS  
26  
26  
V
V
CC  
CC  
27  
4
27  
3
28  
C1+  
C1+  
V+  
V-  
V+  
C1  
C3*  
0.1 F  
0.1 F  
C3*  
0.1 F  
25  
1
24  
1
C1-  
C2+  
C1-  
C2+  
0.1 F  
MAX3237E  
MAX3241E  
V-  
C2  
0.1 F  
C4  
0.1 F  
0.1 F  
0.1 F  
3
2
C2-  
C2-  
T1IN  
T1IN  
T1OUT  
T2OUT  
T3OUT  
5
6
7
T1OUT  
9
24  
14  
13  
T1  
T2  
T2IN  
T3IN  
T2IN  
T2OUT 10  
23  
22  
TTL/CMOS  
INPUTS  
RS-232  
OUTPUTS  
T3IN  
12  
21  
11  
T3OUT  
R1IN  
RS-232  
OUTPUTS  
LOGIC  
T3  
T4  
T5  
INPUTS  
R1OUTB  
T4IN  
T5IN  
T4OUT 10  
19  
17  
R2OUTB  
R1OUT  
20  
19  
12  
T5OUT  
R1IN  
4
5
R1OUTB  
R1OUT  
16  
21  
5k  
R2OUT  
R3OUT  
R4OUT  
R2IN  
18  
17  
16  
8
9
R1  
R2  
R3  
5k  
TTL/CMOS  
OUTPUTS  
5k  
6
7
8
R3IN  
RS-232  
INPUTS  
RS-232  
INPUTS  
R2OUT  
R3OUT  
R2IN  
R3IN  
20  
18  
LOGIC  
OUTPUTS  
5k  
5k  
5k  
R4IN  
11  
5k  
R5OUT  
EN  
15  
23  
R5IN  
15  
14  
5k  
MBAUD  
SHDN  
EN  
13  
22  
SHDN  
GND  
2
GND  
25  
*C3 CAN BE RETURNED TO EITHER V OR GROUND.  
CC  
16 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
Ordering Information (continued)  
___________________Chip Information  
TRANSISTOR COUNT:  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
18 Wide SO  
18 Plastic DIP  
Dice*  
MAX3222E/MAX3232E: 1129  
MAX3237E: 2110  
MAX3222ECWN  
MAX3222ECPN  
MAX3222EC/D  
MAX3222EEUP  
MAX3222EEAP  
MAX3222EEWN  
MAX3222EEPN  
MAX3232ECAE  
MAX3232ECWE  
MAX3232ECPE  
MAX3232ECUP  
MAX3232EEAE  
MAX3232EEWE  
MAX3241E: 1335  
20 TSSOP  
20 SSOP  
18 Wide SO  
18 Plastic DIP  
16 SSOP  
16 Wide SO  
16 Plastic DIP  
20 TSSOP  
16 SSOP  
16 Wide SO  
MAX3232EEPE  
MAX3232EEUP  
MAX3237ECAI  
MAX3237EEAI  
MAX3241ECAI  
MAX3241ECWI  
MAX3241ECUI  
MAX3241ECGJ  
MAX3241EEAI  
-40°C to +85°C  
-40°C to +85°C  
-0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
16 Plastic DIP  
20 TSSOP  
28 SSOP  
28 SSOP  
28 SSOP  
28 Wide SO  
28 TSSOP  
32 QFN  
28 SSOP  
MAX3241EEWI  
-40°C to +85°C  
28 Wide SO  
28 TSSOP  
MAX3241EEUI  
-40°C to +85°C  
______________________________________________________________________________________ 17  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
-ac5age Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
18 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Down to 10nA, 3.0k to ꢀ.ꢀk,  
Up to 1Mbps, True Rꢁꢂ232 Transceivers  
-ac5age Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
19 ____________________Maxim Integrated -roducts, 120 ꢁan Gabriel Drive, ꢁunnyvale, CA 94086 408ꢂ737ꢂ7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3241EEAI+

Line Transceiver, 3 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO28, ROHS COMPLIANT, SSOP-28
MAXIM

MAX3241EEAITG002

Line Transceiver, 3 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MAX3241EEAITG032

Line Transceiver, 3 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MAX3241EEUI

【15kV ESD-Protected, Down to 10nA, 3.0V to 5.5V, Up to 1Mbps, True RS-232 Transceivers
MAXIM

MAX3241EEUI+

暂无描述
MAXIM

MAX3241EEUI+T

Line Transceiver, 3 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO28, 4.40 MM, LEAD FREE, MO-153AE, TSSOP-28
MAXIM

MAX3241EEWI

Transceiver
MAXIM

MAX3241EEWI+

Line Transceiver, 3 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO28, ROHS COMPLIANT, SOIC-28
MAXIM

MAX3241EEWI+T

Line Transceiver, 3 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO28, LEAD FREE, SO-28
MAXIM

MAX3241EUI

3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232 Transceivers Using Four 0.1レF External Capacitors
MAXIM

MAX3241EUI+

Line Transceiver, 3 Func, 3 Driver, 5 Rcvr, CMOS, PDSO28, 4.40 MM, LEAD FREE, MO-153AE, TSSOP-28
MAXIM

MAX3241EUI+T

Line Transceiver, 1 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO28, 4.40 MM, 0.65 MM PITCH, MO-153AF, TSSOP-28
MAXIM