MAX32630IWG+ [MAXIM]

Ultra-Low Power, High-Performance Cortex-M4F Microcontroller for Wearables;
MAX32630IWG+
型号: MAX32630IWG+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-Low Power, High-Performance Cortex-M4F Microcontroller for Wearables

微控制器 外围集成电路
文件: 总27页 (文件大小:468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
General Description  
Benefits and Features  
®
®
The MAX32630/MAX32631 is an ARM Cortex -M4F  
32-bit microcontroller with a floating point unit, ideal for  
the emerging category of wearable medical and fitness  
applications. The architecture combines ultra-low power  
high-efficiency signal processing functionality with signifi-  
cantly reduced power consumption and ease of use. The  
device features four powerful and flexible power modes.  
A peripheral management unit (PMU) enables intelligent  
peripheral control with up to six channels to significantly  
reduce power consumption. Built-in dynamic clock gating  
and firmware-controlled power gating allows the user to  
optimize power for the specific application. Multiple SPI,  
High-Efficiency Microcontroller for Wearable Devices  
• Internal Oscillator Operates Up to 96MHz  
• Low Power 4MHz Oscillator System Clock Option  
for Always-On Monitoring Applications  
• 2MB Flash Memory  
• 512KB SRAM  
• 8KB Instruction Cache  
• 1.2V Core Supply Voltage  
• 1.8V to 3.3V I/O  
• Optional 3.3V ±5% USB Supply Voltage  
Power Management Maximizes Uptime for Battery  
Applications  
2
®
UART and I C serial interfaces, as well as 1-Wire mas-  
ter and USB, allow for interconnection to a wide variety of  
external sensors. A four-input, 10-bit ADC with selectable  
references is available to monitor analog input from exter-  
nal sensors and meters. The small 100-ball WLP package  
provides a tiny, 4.37mm x 4.37mm footprint.  
106μA/MHz Active Current Executing from Cache  
• Wakeup to 96MHz Clock or 4MHz Clock  
• 600nA Low Power Mode (LP0) Current with RTC  
Enabled  
3.5μW Ultra-Low Power Data Retention Sleep  
Mode (LP1) with Fast 5μs Wakeup to 96MHz  
The MAX32630/MAX32631 include a hardware AES  
engine. The MAX32631 is a secure version of the  
MAX32630. It incorporates a trust protection unit (TPU)  
with encryption and advanced security features. These  
features include a modular arithmetic accelerator (MAA)  
for fast ECDSA, a hardware PRNG entropy generator,  
and a secure boot loader.  
Optimal Peripheral Mix Provides Platform Scalability  
• SPIX Execute in Place (XIP) Engine for Memory  
Expansion with Minimal Footprint  
• Three SPI Masters, One SPI Slave  
• Four UARTs  
2
2
• Three I C Masters, One I C Slave  
• 1-Wire Master  
• Full-Speed USB 2.0 Engine with Internal  
Transceiver  
Applications  
Sports Watches  
• Sixteen Pulse Train (PWM) Engines  
• Six 32-Bit Timers and 3 Watchdog Timers  
• Up to 66 General-Purpose I/O Pins  
• One 10-Bit Delta-Sigma ADC Operating at 7.8ksps  
• AES-64, -128, -256  
Fitness Monitors  
Wearable Medical Patches  
Portable Medical Devices  
Sensor Hubs  
• CMOS-Level 32kHz RTC Output  
Secure Valuable IP and Data with Robust Internal  
Hardware Security (MAX32631 Only)  
• Trust Protection Unit (TPU) Including MAA Sup-  
ports ECDSA and Modular Arithmetic  
• PRNG Seed Generator  
Ordering Information appears at end of data sheet.  
ARM is a registered trademark and registered service mark and  
Cortex is a registered trademark of ARM Limited.  
• Secure Boot Loader  
1-Wire is a registered trademark of Maxim Integrated Products,  
Inc.  
19-8478; Rev 0; 3/16  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Simplified Block Diagram  
MAX32630/MAX32631  
GPIO WITH  
INTERRUPTS  
ARM CORTEX-M4F  
96MHz  
SRSTN  
NVIC  
6 × 32 BIT TIMERS  
TCK/SWCLK  
TMS/SWDIO  
TDO  
JTAG SWD (SERIAL  
WIRE DEBUG)  
16 × PULSE TRAIN  
ENGINE  
MEMORY  
TDI  
SHARED PAD  
FUNCTIONS  
2MB FLASH  
3 × SPI MASTER  
TIMERS/PWM  
CAPTURE/COMPARE  
POR,  
BROWNOUT  
MONITOR,  
SUPPLY VOLTAGE  
MONITORS  
RSTN  
512KB SRAM  
8KB CACHE  
UP TO 66 GPIO/SPECIAL  
FUNCTION  
USB  
SPI  
SPI XIP  
I2C  
1 × SPI SLAVE  
1 × SPI XIP  
UART  
V
V
DDA  
1-WIRE  
RTC OUTPUT  
SSA  
PERIPHERAL  
MANAGEMENT UNIT  
2
V
DDIOH  
3 × I C MASTER 1  
VOLTAGE  
REGULATION AND  
POWER CONTROL  
EXTERNAL  
INTERRUPTS  
× I2C SLAVE  
MAXIMUM OF  
3 PORTS  
V
DDIO  
DD12  
DD18  
V
V
3 × WINDOWED  
WATCHDOG TIMERS  
V
RTC  
V
SS  
4 × UART  
CLOCK  
32KOUT  
32KIN  
GENERATION  
96MHz INT OSC/  
SYSTEM CLOCK  
RTC AND WAKE UP  
TIMERS  
1-WIRE MASTER  
CRC 16/32  
DP  
USB 2.0 FULL  
SPEED  
EXT REF  
DM  
CONTROLLER  
1.2V  
AES-128,-192,-  
256  
V
DDB  
V
REF  
UNIQUE ID  
AIN0  
AIN1  
AIN2  
TRUST PROTECTION UNIT (TPU)  
MAA  
AIN3  
10-BIT  
ΣΔ ADC  
÷5  
÷5  
÷4  
SECURE NV KEY  
V
DDB  
V
DD18  
V
DD12  
V
RTC  
PRNG  
MAX32631 ONLY  
÷2  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Absolute Maximum Ratings  
(All voltages with respect to V , unless otherwise noted.)  
AIN[3:2].................................................................-0.3V to +3.6V  
SS  
V
V
V
V
V
V
.................................................................-0.3V to +1.89V  
.................................................................-0.3V to +1.26V  
V
...................................................................-0.3V to +3.6V  
.................................................................-0.3V to +3.6V  
DD18  
DD12  
DDA  
DDIO  
V
DDIOH  
relative to V  
........................................-0.3V to +1.89V  
Total Current into All V  
Total Current into V ......................................................100mA  
Power Pins (sink)................100mA  
SSA  
DD18  
...................................................................-0.3V to +1.89V  
....................................................................-0.3V to +3.6V  
.....................................................................-0.3V to +3.6V  
RTC  
DDB  
REF  
SS  
Output Current (sink) by Any I/O Pin..................................25mA  
Output Current (source) by Any I/O Pin............................-25mA  
Operating Temperature Range........................... -20°C to +85°C  
Storage Temperature Range............................ -65°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
32KIN, 32KOUT....................................................-0.3V to +3.6V  
RSTN, SRSTN, DP, DM, GPIO, JTAG.................-0.3V to +3.6V  
AIN[1:0].................................................................-0.3V to +5.5V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
100 WLP  
Package Code  
W1004D4+1  
Outline Number  
21-0452  
Land Pattern Number  
Refer to Application Note 1891  
Thermal Resistance, Single-Layer Board  
Junction-to-Ambient (θ  
)
N/A  
N/A  
JA  
Junction-to-Case Thermal Resistance (θ  
)
JC  
Thermal Resistance, Four-Layer Board  
Junction-to-Ambient (θ  
)
38.9°C/W  
N/A  
JA  
Junction-to-Case Thermal Resistance (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Electrical Characteristics  
(Limits are 100% tested at T = +25°C and T = +85°C. Limits over the operating temperature range and relevant supply voltage  
A
A
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.  
Specifications to -20°C are guaranteed by design and are not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.71  
1.14  
1.71  
1.75  
1.71  
1.71  
TYP  
1.8  
1.2  
1.8  
1.8  
1.8  
1.8  
MAX  
1.89  
1.26  
1.89  
1.89  
3.6  
UNITS  
V
V
DD18  
DD12  
V
DDA  
Supply Voltage  
V
V
RTC  
V
DDIO  
V
V
must be ≥ V  
DDIO  
3.6  
DDIOH  
DDIOH  
Power Fail Reset  
Voltage  
V
Monitors V  
Monitors V  
1.62  
1.7  
V
V
V
RST  
POR  
DRV  
DD18  
DD18  
Power-On Reset  
Voltage  
V
V
1.5  
RAM Data Retention  
Voltage  
0.93  
Measured on the V  
pin and execut-  
DD12  
V
Dynamic  
ing code from cache memory, all inputs  
DD12  
I
106  
173  
μA/MHz  
DD12_DLP3  
Current, LP3 Mode  
are tied to V or V , outputs do not  
SS  
DD18  
source/sink any current, PMU disabled  
Measured on the V pin and execut-  
DD12  
ing code from cache memory, all inputs  
are tied to V or V , outputs do not  
SS  
DD18  
source/sink any current, 96MHz oscillator  
selected as system clock  
V
Fixed Current,  
DD12  
I
μA  
DD12_FLP3  
LP3 Mode  
Measured on the V  
pin and execut-  
DD12  
ing code from cache memory, all inputs  
are tied to V or V , outputs do not  
72  
SS  
DD18  
source/sink any current, 4MHz oscillator  
selected as system clock  
Measured on the V  
+ V  
device  
DD18  
DDA  
pins and executing code from cache mem-  
ory, all inputs are tied to V or V  
,
DD18  
366  
SS  
outputs do not source/sink any current,  
96MHz oscillator selected as system clock  
V
Fixed Current,  
DD18  
I
μA  
DD18_FLP3  
LP3 Mode  
Measured on the V  
+ V  
device  
DD18  
DDA  
pins and executing code from cache mem-  
ory, all inputs are tied to V or V  
outputs do not source/sink any current,  
4MHz oscillator selected as system clock  
,
DD18  
33  
27  
SS  
V
Dynamic  
Measured on the V  
pin, ARM in sleep  
DD12  
DD12  
I
μA/MHz  
DD12_DLP2  
Current, LP2 Mode  
mode, PMU with two channels active  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Electrical Characteristics (continued)  
(Limits are 100% tested at T = +25°C and T = +85°C. Limits over the operating temperature range and relevant supply voltage  
A
A
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.  
Specifications to -20°C are guaranteed by design and are not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Measured on the V  
pin, ARM in sleep  
DD12  
mode, PMU with two channels active,  
173  
96MHz oscillator selected as system clock  
V
Fixed Current,  
DD12  
I
I
μA  
DD12_FLP2  
LP2 Mode  
Measured on the V  
pin, ARM in sleep  
DD12  
mode, PMU with two channels active,  
4MHz oscillator selected as system clock  
72  
Measured on the V  
+ V  
device  
DD18  
DDA  
pins, ARM in sleep mode, PMU with two  
channels active, 96MHz oscillator selected  
as system clock  
366  
V
Fixed Current,  
DD18  
μA  
DD18_FLP2  
LP2 Mode  
Measured on the V  
+ V  
device  
DD18  
DDA  
pins. ARM in sleep mode, PMU with two  
channels active, 4MHz oscillator selected  
as system clock  
33  
V
Fixed Current,  
DD12  
I
I
Standby state with full data retention  
1.86  
120  
505  
14  
μA  
nA  
nA  
nA  
nA  
DD12_FLP1  
LP1 Mode  
V
Fixed Current,  
DD18  
Standby state with full data retention  
DD18_FLP1  
LP1 Mode  
V
Fixed Current,  
RTC enabled, retention regulator powered  
by V  
DD12  
RTC  
I
I
DDRTC_FLP1  
LP1 Mode  
V
Fixed Current,  
DD12  
I
I
DD12_FLP0  
DD18_FLP0  
LP0 Mode  
V
Fixed Current,  
DD18  
120  
LP0 Mode  
RTC enabled  
RTC disabled  
505  
105  
V
Fixed Current,  
RTC  
nA  
DDRTC_FLP0  
LP0 Mode  
LP2 Mode Resume  
Time  
t
t
t
0
5
μs  
μs  
μs  
LP2_ON  
LP1_ON  
LP0_ON  
LP1 Mode Resume  
Time  
LP0 Mode Resume  
Time  
Polling flash ready  
11  
JTAG  
Input Low Voltage for  
TCK, TMS, TDI  
0.3 x  
V
V
V
V
IL  
V
DDIO  
Input High Voltage for  
TCK, TMS, TDI  
0.7 x  
V
IH  
V
DDIO  
Output Low Voltage for  
TDO  
V
0.2  
0.4  
OL  
OH  
Output High Voltage for  
TDO  
V
DDIO  
0.4  
-
V
Maxim Integrated  
5  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Electrical Characteristics (continued)  
(Limits are 100% tested at T = +25°C and T = +85°C. Limits over the operating temperature range and relevant supply voltage  
A
A
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.  
Specifications to -20°C are guaranteed by design and are not production tested.)  
PARAMETER  
CLOCKS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
System Clock  
Frequency  
f
t
0.001  
98  
MHz  
ns  
CK  
CK  
System Clock Period  
1/f  
CK  
Factory default  
94  
96  
98  
Internal Relaxation  
Oscillator Frequency  
f
MHz  
Firmware trimmed, required for USB com-  
pliance  
INTCLK  
95.76  
96  
4
96.24  
Internal RC Oscillator  
Frequency  
f
3.9  
4.1  
MHz  
kHz  
RCCLK  
RTC Input Frequency  
f
32kHz watch crystal  
LP2 or LP3 mode  
LP0 or LP1 mode  
32.768  
0.7  
32KIN  
I
I
RTC_LP23  
RTC_LP01  
RTC Operating Current  
μA  
0.35  
250  
RTC Power-Up Time  
t
ms  
RTC_ ON  
GENERAL-PURPOSE I/O  
0.3 ×  
V
DDIO  
0.3 ×  
V
V
selected as I/O supply  
DDIO  
Input Low Voltage for All  
GPIO Pins  
V
V
V
IL  
selected as I/O supply  
DDIOH  
V
DDIOH  
0.3 x  
Input Low Voltage for  
RSTN  
V
V
IL  
V
RTC  
Input Low Voltage for  
SRSTN  
0.3 x  
IL  
V
DDIO  
0.7 ×  
V
DDIO  
0.7 ×  
V
V
selected as I/O supply  
DDIO  
Input High Voltage for  
All GPIO Pins  
V
V
IH  
selected as I/O supply  
DDIOH  
V
DDIOH  
0.7 x  
Input High Voltage for  
RSTN  
V
V
V
V
IH  
V
RTC  
Input High Voltage for  
SRSTN  
0.7 x  
IH  
V
DDIO  
Input Hysteresis  
(Schmitt)  
V
300  
0.2  
mV  
IHYS  
V
= V  
= 1.71V, V  
selected  
DDIO  
DDIOH  
DDIO  
as I/O supply, I = 4mA, normal drive  
0.4  
OL  
configuration  
Output Low Voltage for  
All GPIO Pins  
V
= V  
= 1.71V, V  
selected  
DDIO  
DDIOH  
DDIO  
V
V
OL  
as I/O supply I = 24mA, fast drive con-  
figuration  
0.2  
0.2  
0.4  
, OL  
V
= 1.71V V  
= 2.97V, V  
DDIO  
DDIOH DDIOH  
0.45  
selected as I/O supply, I = 300μA  
OL  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Electrical Characteristics (continued)  
(Limits are 100% tested at T = +25°C and T = +85°C. Limits over the operating temperature range and relevant supply voltage  
A
A
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.  
Specifications to -20°C are guaranteed by design and are not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Combined I , All GPIO  
OL  
Pins  
I
48  
mA  
OL_TOTAL  
I
V
= -2mA, V  
= V  
= 1.71V,  
OH  
DDIO  
DDIOH  
V
-
-
DDIO  
0.4  
selected as I/O supply, normal drive  
DDIO  
configuration  
Output High Voltage for  
All GPIO Pins  
I
= -8mA, V  
= V  
= 1.71V,  
OH  
VDDIO  
DDIO  
DDIOH  
V
V
V
V
V
OH  
OH  
DDIO  
0.4  
selected as I/O supply, fast drive  
configuration  
= -300μA, V  
I
= 3.6V, V  
DDIOH  
OH  
DDIOH  
DDIOH  
selected as I/O supply  
- 0.45  
Ouput High Voltage for  
All GPIO Pins  
V
= 1.71V, V  
= 3.6V. V  
V
-
DDIO  
DDIOH  
DDIO  
DDIO  
0.45  
V
selected as I/O supply, I  
= -2mA  
OH  
Combined I , All GPIO  
OH  
Pins  
I
-48  
mA  
pF  
OH_TOTAL  
Input/Output Pin Ca-  
pacitance for All Pins  
C
3
IO  
V
= 1.89V, V  
= 3.6V, V  
DDIO  
DDIOH DDIOH  
Input Leakage Current  
Low  
I
selected as I/O supply, V = 0V, internal  
pullup disabled  
-100  
-100  
+100  
+100  
nA  
nA  
IL  
IN  
V
= 1.89V, V  
= 3.6V, V  
DDIO  
DDIOH DDIOH  
I
selected as I/O supply, V = 3.6V, internal  
IH  
IN  
pulldown disabled  
Input Leakage Current  
High  
V
= 0V, V  
= 0V, V  
selected  
selected  
DDIO  
DDIOH  
DDIO  
I
-1  
-2  
+1  
+2  
OFF  
as I/O supply, V < 1.89V  
IN  
μA  
V
= V  
= 1.71V, V  
DDIO  
DDIOH  
DDIO  
I
IH3V  
as I/O supply, V = 3.6V  
IN  
Input Pullup Resistor  
RSTN, SRSTN, TMS,  
TCK, TDI  
R
25  
kΩ  
PU  
Input Pullup/Pulldown  
Resistor for All GPIO  
Pins  
R
R
Normal resistance  
Highest resistance  
25  
1
kΩ  
PU1  
PU2  
MΩ  
FLASH MEMORY  
Page Size  
2MB flash  
8
kB  
t
Mass erase  
Page erase  
30  
30  
M_ERASE  
Flash Erase Time  
ms  
t
P_ERASE  
Flash Programming  
Time per Word  
t
60  
μs  
PROG  
Flash Endurance  
Data Retention  
10  
10  
kcycles  
years  
t
T = +85°C  
A
RET  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
ADC Electrical Characteristics  
(Internal bandgap reference selected, ADC_SCALE = ADC_REFSCL = 1, unless otherwise specified. Specifications marked GBD are  
guaranteed by design and not production tested.)  
PARAMETER  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
10  
ADC Clock Rate  
f
t
0.1  
8
MHz  
μs  
ACLK  
ACLK  
ADC Clock Period  
1/f  
ACLK  
AIN[3:0], ADC_CHSEL = 0–3, BUF_BY-  
PASS = 0  
V
-
DDA  
0.05  
0.05  
0.05  
AIN[1:0], ADC_CHSEL = 4–5, BUF_BY-  
PASS = 0  
5.5  
Input Voltage Range  
V
V
AIN  
AIN[3:0], ADC_CHSEL = 0–3, BUF_BY-  
PASS = 1  
V
V
SSA  
SSA  
DDA  
AIN[1:0], ADC_CHSEL = 4–5, BUF_BY-  
PASS = 1  
V
5.5  
Input Impedance  
R
AIN[1:0], ADC_CHSEL = 4-5, ADC active  
45  
kΩ  
μA  
AIN  
AIN  
Switched capactiance input current, ADC  
active, ADC buffer bypassed  
4.5  
Input Dynamic Current  
I
Switched capacitance input current, ADC  
active, ADC buffer enabled  
50  
nA  
Fixed capacitance to V  
SSA  
1
pF  
fF  
Analog Input  
Capacitance  
C
AIN  
Dynamically switched capacitance  
250  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
±2  
±1  
LSb  
LSb  
LSb  
LSb  
dB  
DNL  
V
±1  
±2  
OS  
Gain Error  
GE  
Signal to Noise Ratio  
SNR  
58.5  
Signal to Noise and  
Distortion  
SINAD  
THD  
58.5  
68.5  
74  
dB  
dB  
dB  
µA  
μA  
Total Harmonic  
Distortion  
Spurious Free Dynamic  
Range  
SFDR  
ADC active, reference buffer enabled, input  
buffer disabled  
ADC Active Current  
I
240  
53  
ADC  
Input Buffer Active  
Current  
I
INBUF  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
ADC Electrical Characteristics (continued)  
(Internal bandgap reference selected, ADC_SCALE = ADC_REFSCL = 1, unless otherwise specified. Specifications marked GBD are  
guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Any powerup of: ADC clock, ADC bias,  
reference buffer or input buffer to  
CpuAdcStart  
10  
µs  
ADC Setup Time  
t
ADC_SU  
Any power-up of: ADC clock or ADC bias to  
CpuAdcStart  
48  
t
t
ACLK  
ACLK  
ADC Output Latency  
ADC Sample Rate  
t
f
1025  
ADC  
ADC  
7.8  
4
ksps  
AIN0 or AIN1, ADC inactive or channel not  
selected  
0.12  
0.02  
ADC Input Leakage  
I
ADC_LEAK  
nA  
AIN2 or AIN3, ADC inactive or channel not  
selected.  
1
AIN0/AIN1 Resistor  
Divider Error  
ADC_CHSEL = 4 or 5, not including ADC  
offset/gain error  
±2  
1.2  
LSb  
V
Full-Scale Voltage  
V
ADC code = 0x3FF  
FS  
External Reference  
Voltage  
V
ADC_XREF = 1  
1.17  
1.23  
1.29  
V
REF_EXT  
Bandgap Temperature  
Coefficient  
V
Box method  
30  
4.1  
250  
ppm  
μA  
fF  
TEMPCO  
REF_EXT  
Reference Dynamic  
Current  
I
ADC_XREF = 1, ADC active  
Reference Input  
Capacitance  
Dynamically switched capacitance, ADC_  
XREF = 1, ADC active  
C
REFIN  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
SPI MASTER/SPIX MASTER Electrical Characteristics  
(Guaranteed by design and not production tested.)  
PARAMETER  
Operating Frequency  
SCLK Period  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ns  
f
t
48  
MCK  
MCK  
1/f  
MCK  
SCLK Output Pulse-  
Width High/Low  
t
, t  
t
t
t
/2  
ns  
ns  
ns  
ns  
ns  
MCH MCL  
MCK  
MCK  
MOSI Output Hold Time  
After SCLK Sample  
Edge  
t
/2  
/2  
MOH  
MOSI Output Valid to  
Sample Edge  
t
MOV  
MCK  
3
MISO Input Valid to  
SCLK Sample Edge  
Setup  
t
MIS  
MIH  
MISO Input to SCLK  
Sample Edge  
t
0
SPI Timing:  
SHIFT  
SAMPLE  
SHIFT SAMPLE  
SS  
t
MCK  
SCLK  
CKPOL/  
CKPHA  
0/1 OR 1/0  
t
t
t
MCL  
MCH  
MCH  
SCLK  
CKPOL/  
CKPHA  
0/0 OR 1/1  
t
MOH  
t
t
MLH  
MOV  
MOSI/  
SDIO  
MSB  
MSB-1  
LSB  
(OUTPUT)  
t
t
MIH  
MIS  
MISO/  
SDIO  
(INPUT)  
MSB  
MSB-1  
LSB  
Figure 1. SPI Master/SPIX Master Communications Timing Diagram  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
USB Electrical Characteristics  
(Guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
USB PHY Supply Volt-  
age  
V
2.97  
3.3  
3.63  
V
DDB  
Single-Ended Input High  
Voltage DP, DM  
V
2
V
V
IHD  
Single-Ended Input Low  
Voltage DP, DM  
V
0.8  
0.3  
ILD  
OLD  
OHD  
Output Low Voltage DP,  
DM  
V
R = 1.5kΩ from DP to 3.6V  
V
L
Output High Voltage  
DP, DM  
V
R = 15kΩ from DP and DM to V  
2.8  
0.2  
0.8  
0.8  
V
L
SS  
Differential Input Sensi-  
tivity DP, DM  
V
DP to DM  
V
DI  
Common-Mode Voltage  
Range  
V
Includes V range  
2.5  
2.0  
V
CM  
DI  
Single-Ended Receiver  
Threshold  
V
V
SE  
Single-Ended Receiver  
Hysteresis  
V
V
200  
mV  
V
SEH  
CRS  
Differential Output Sig-  
nal Cross-Point Voltage  
C = 50pF  
L
1.3  
300  
28  
2.0  
44  
DP, DM Off-State Input  
Impedance  
R
kΩ  
Ω
LZ  
Driver Output Imped-  
ance  
R
Steady-state drive  
DRV  
Idle  
0.9  
1.575  
3.09  
DP Pull-up Resistor  
R
kΩ  
PU  
Receiving  
1.425  
USB Timing Electrical Characteristics  
(AC Electrical Specifications are guaranteed by design and are not production tested, V  
= V  
to 1.89V, V  
= 3.63V, T =-20°C  
DD18  
RST  
DDB A  
to +85°C, Guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DP, DM Rise Time  
(Transmit)  
t
C = 50pF  
4
20  
ns  
R
L
DP, DM Fall Time  
(Transmit)  
t
C = 50pF  
4
20  
ns  
%
F
L
Rise/Fall Time Matching  
(Transmit)  
t ,t  
C = 50pF  
90  
110  
R F  
L
Maxim Integrated  
11  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
2
Electrical Characteristics - I C BUS  
(Guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
Standard mode  
MIN  
TYP  
100  
400  
MAX  
UNITS  
SCL Clock Frequency  
f
kHz  
SCL  
Fast mode  
0.7 ×  
V
DDIO  
0.7 ×  
Fast mode, V  
selected as I/O supply  
DDIO  
Fast mode, V  
selected as I/O supply  
DDIOH  
V
DDIOH  
0.7 ×  
Input High Voltage  
V
V
IH_I2C  
Standard mode, V  
supply  
selected as I/O  
DDIO  
V
DDIO  
0.7 ×  
Standard mode, V  
supply  
selected as I/O  
DDIOH  
V
DDIOH  
0.3 ×  
V
DDIO  
0.3 ×  
Fast mode, V  
selected as I/O supply  
DDIO  
Fast mode, V  
selected as I/O supply  
DDIOH  
V
DDIOH  
0.3 ×  
Input Low Voltage  
V
V
IL_I2C  
Standard mode, V  
supply  
selected as I/O  
DDIO  
V
DDIO  
0.3 ×  
Standard mode, V  
supply  
selected as I/O  
DDIOH  
V
DDIOH  
Input Hysteresis  
(Schmitt)  
V
Fast-mode  
300  
0.2  
0.2  
mV  
V
IHYS_I2C  
V
= V  
= 1.71V, V  
selected  
DDIO  
DDIOH  
DDIO  
as I/O supply, I = 4mA, normal drive  
configuration  
0.4  
OL  
Output Logic-Low (Open  
Drain or Open Collector)  
V
OL_I2C  
V
= 1.71V V  
= 2.97V, V  
DDIO  
DDIOH DDIOH  
0.45  
selected as I/O supply, I = 300μA  
OL  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Typical Operating Characteristics  
(V  
= 1.2V, V  
= 1.8V)  
DD12  
DD18  
IDD12 vs. FREQUENCY  
(INTERNAL 96MHz OSCILLATOR)  
IDD12 vs. FREQUENCY  
(INTERNAL 4MHz OSCILLATOR)  
toc01  
toc02  
12  
10  
8
600  
VDD12 = 1.2V  
VDD12 = 1.2V  
500  
400  
300  
200  
100  
0
6
4
2
0
0
20  
40  
60  
80  
100  
0
1
2
3
4
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TOTAL POWER vs. FREQUENCY  
(INTERNAL 4MHz OSCILLATOR)  
TOTAL POWER vs. FREQUENCY  
(INTERNAL 96MHz OSCILLATOR)  
toc04  
toc03  
700  
600  
500  
400  
300  
200  
100  
0
14  
TOTAL POWER =  
(IDD18 x 1.8V) + (IDD12 x 1.2V)  
TOTAL POWER =  
(IDD18 x 1.8V) + (IDD12 x 1.2V)  
12  
10  
8
LP3  
LP3  
LP2  
6
LP2  
4
2
0
0
1
2
3
4
0
20  
40  
60  
80  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Pin Configuration  
100-WLP  
TOP VIEW (BUMPS ON BOTTOM)  
10  
1
2
3
4
5
6
7
8
9
+
A
B
C
D
E
F
N.C.  
AIN0  
AIN1  
AIN2  
AIN3  
N.C.  
V
V
V
V
DD18  
DDIOH  
SSA  
REF  
SRSTN  
P0.1  
P8.1  
P8.0  
P7.7  
P7.6  
P7.5  
P7.4  
P7.3  
RSTN  
P0.0  
P0.5  
P0.7  
P1.3  
P1.6  
P2.1  
TCK  
P5.7  
P0.2  
P1.1  
P1.4  
P2.4  
P2.5  
TMS  
P5.5  
P5.6  
P1.5  
P3.0  
P2.6  
P2.7  
TDO  
P5.4  
P5.3  
P3.1  
P3.5  
P3.4  
P3.2  
TDI  
32KIN  
V
V
SS  
DDA  
P6.0  
P0.3  
P0.6  
P1.2  
P1.7  
P2.2  
P5.2  
P5.0  
P5.1  
P3.7  
P4.4  
P4.1  
32KOUT  
V
V
RTC  
P0.4  
V
DDB  
SS  
P1.0  
DP  
DM  
V
DDIO  
P4.7  
P4.5  
P4.2  
V
DD12  
G
H
P4.6  
P4.3  
V
SS  
V
DDIO  
J
P7.2  
N.C.  
P2.0  
P7.0  
P2.3  
P6.7  
P3.3  
P6.4  
P3.6  
P6.3  
P4.0  
P6.2  
P6.1  
N.C.  
V
V
V
SS  
DD18  
SS  
P7.1  
K
P6.6  
P6.5  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Bump Description  
BUMP  
NAME  
FUNCTION  
POWER PINS  
USB Transceiver Supply Voltage. This pin must be bypassed to V with a 1.0μF capacitor as close  
as possible to the package.  
SS  
D9  
F2  
V
DDB  
1.2V Nominal Supply Voltage. This pin must be bypassed to V with a 1.0μF capacitor as close as  
SS  
V
DD12  
possible to the package.  
RTC Supply Voltage. This pin must be bypassed to V with a 1.0μF capacitor as close as possible  
to the package.  
SS  
C9  
V
RTC  
DDA  
Analog Supply Voltage. This pin must be bypassed to V  
sible to this pin.  
with a 1.0μF capacitor as close as pos-  
SSA  
B4  
V
1.8V Supply Voltage. This pin must be bypassed to V with a 1.0μF capacitor as close as possible  
to the package.  
SS  
J5, A9  
H2, E10  
V
DD18  
DDIO  
I/O Supply Voltage. 1.8V ≤ V  
≤ 3.6V. See EC table for V  
specification. This pin must be  
DDIO  
DDIO  
V
bypassed to V with a 1.0μF capacitor as close as possible to the package.  
SS  
I/O Supply Voltage, High. 1.8V ≤ V  
≤ 3.6V, always with V  
≥ V  
. See EC table for  
DDIOH  
DDIOH  
DDIO  
A2  
A4  
V
V
specification. This pin must be bypassed to VSS with a 1.0μF capacitor as close as pos-  
DDIOH  
DDIOH  
sible to the package.  
V
ADC Reference. This pin must be left unconnected if an external reference is not used.  
REF  
B9, D10, G2,  
J6, J2  
V
Digital Ground  
Analog Ground  
SS  
A3  
CLOCK PINS  
C10  
V
SSA  
32KOUT  
32KIN  
32KHz Crystal Oscillator Output  
32kHz Crystal Oscillator Input. Connect a 6pF 32kHz crystal between 32KIN and 32KOUT for RTC  
operation. Optionally, an external clock source can be driven on 32KIN if the 32KOUT pin is left  
unconnected. A 32kHz crystal or external clock source is required for proper USB operation.  
B10  
USB PINS  
USB DP Signal. This bidirectional pin carries the positive differential data or single-ended data. This  
pin is weakly pulled high internally when the USB is disabled.  
E9  
DP  
USB DM Signal. This bidirectional pin carries the negative differential data or single-ended data.  
This pin is weakly pulled high internally when the USB is disabled.  
F9  
DM  
JTAG PINS  
B5  
B6  
B7  
B8  
TCK/SWCLK JTAG Clock or Serial Wire Debug Clock. This pin has an internal 25KΩ pullup to V  
.
DDIO  
TMS/SWDIO JTAG Test Mode Select or Serial Wire Debug I/O. This pin has an internal 25KΩ pullup to V  
.
DDIO  
TDO  
TDI  
JTAG Test Data Output  
JTAG Test Data Input. This pin has an internal 25kΩ pullup to V  
.
DDIO  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Bump Description (continued)  
BUMP  
NAME  
FUNCTION  
RESET PINS  
Hardware Power Reset (Active-Low) Input. The device remains in reset while this pin is in its active  
state. When the pin transitions to its inactive state, the device performs a POR reset (resetting all  
logic on all supplies except for real-time clock circuitry) and begins execution. This pin is internally  
B3  
RSTN  
connected with an internal 25kΩ pullup to the V  
supply. This pin should be left unconnected if  
RTC  
the system design does not provide a reset signal to the device.  
Software Reset, Active-Low Input/Output. The device remains in software reset while this pin is in  
its active state. When the pin transitions to its inactive state, the device performs a reset to the ARM  
core, digital registers and peripherals (resetting most of the core logic on the V  
supply). This  
DD12  
reset does not affect the POR only registers, RTC logic, ARM debug engine or JTAG debugger al-  
lowing for a soft reset without having to reconfigure all registers.  
B2  
SRSTN  
After the device senses SRSTN as a logic 0, the pin automatically reconfigures as an output sourc-  
ing a logic 0. The device continues to output for 6 system clock cycles and then repeats the input  
sensing/output driving until SRSTN is sensed inactive.  
This pin is internally connected with an internal 25kΩ pullup to the V  
supply. This pin should be  
DDIO  
left unconnected if the system design does not provide a reset signal to the device.  
GENERAL-PURPOSE I/O AND SPECIAL FUNCTIONS (See the Applications Information section for GPIO Matrix)  
C3  
C2  
D5  
D4  
D2  
D3  
E4  
E3  
E2  
E5  
F4  
F3  
F5  
E6  
G3  
G4  
J3  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
GPIO Port 0.0  
GPIO Port 0.1  
GPIO Port 0.2  
GPIO Port 0.3  
GPIO Port 0.4  
GPIO Port 0.5  
GPIO Port 0.6  
GPIO Port 0.7  
GPIO Port 1.0  
GPIO Port 1.1  
GPIO Port 1.2  
GPIO Port 1.3  
GPIO Port 1.4  
GPIO Port 1.5  
GPIO Port 1.6  
GPIO Port 1.7  
GPIO Port 2.0  
GPIO Port 2.1  
GPIO Port 2.2  
GPIO Port 2.3  
GPIO Port 2.4  
GPIO Port 2.5  
GPIO Port 2.6  
H3  
H4  
J4  
G5  
H5  
G6  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Bump Description (continued)  
BUMP  
H6  
F6  
NAME  
P2.7  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
P7.0  
P7.1  
P7.2  
P7.3  
P7.4  
P7.5  
FUNCTION  
GPIO Port 2.7  
GPIO Port 3.0  
GPIO Port 3.1  
GPIO Port 3.2  
GPIO Port 3.3  
GPIO Port 3.4  
GPIO Port 3.5  
GPIO Port 3.6  
GPIO Port 3.7  
GPIO Port 4.0  
GPIO Port 4.1  
GPIO Port 4.2  
GPIO Port 4.3  
GPIO Port 4.4  
GPIO Port 4.5  
GPIO Port 4.6  
GPIO Port 4.7  
GPIO Port 5.0  
GPIO Port 5.1  
GPIO Port 5.2  
GPIO Port 5.3  
GPIO Port 5.4  
GPIO Port 5.5  
GPIO Port 5.6  
GPIO Port 5.7  
GPIO Port 6.0  
GPIO Port 6.1  
GPIO Port 6.2  
GPIO Port 6.3  
GPIO Port 6.4  
GPIO Port 6.5  
GPIO Port 6.6  
GPIO Port 6.7  
GPIO Port 7.0  
GPIO Port 7.1  
GPIO Port 7.2  
GPIO Port 7.3  
GPIO Port 7.4  
GPIO Port 7.5  
E7  
H7  
J7  
G7  
F7  
J8  
F8  
J9  
H8  
H10  
H9  
G8  
G10  
G9  
F10  
D8  
E8  
C8  
D7  
C7  
C6  
D6  
C5  
C4  
J10  
K9  
K8  
K7  
K6  
K5  
K4  
K3  
K2  
J1  
H1  
G1  
F1  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Bump Description (continued)  
BUMP  
E1  
NAME  
P7.6  
P7.7  
P8.0  
P8.1  
N.C.  
N.C.  
N.C.  
N.C.  
FUNCTION  
GPIO Port 7.6  
GPIO Port 7.7  
GPIO Port 8.0  
GPIO Port 8.1  
Not Connected.  
Not Connected.  
Not Connected.  
Not Connected.  
D1  
C1  
B1  
A1  
A10  
K1  
K10  
ANALOG INPUT PINS  
A5  
A6  
A7  
A8  
AIN0  
ADC Input 0. 5V tolerant input.  
ADC Input 1. 5V tolerant input.  
ADC Input 2  
AIN1  
AIN2  
AIN3  
ADC Input 3  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Two parallel 16-bit add/sub  
Two parallel MACs  
Detailed Description  
The MAX32630/MAX32631 is a low-power, mixed signal  
microcontroller based on the ARM Cortex-M4 32-bit core  
with a maximum operating frequency of 96MHz. The  
MAX32631 is a secure version of the MAX32630, incor-  
porating a trust protection unit (TPU) with encryption and  
advanced security features.  
32- or 64-bit accumulate  
Signed, unsigned, data with or without saturation  
Analog-to-Digital Converter  
The 10-bit delta-sigma ADC provides 4 external inputs  
and can also be configured to measure all internal power  
supplies. It operates at a maximum of 7.8ksps. AIN0 and  
AIN1 are 5V tolerant, making them suitable for monitoring  
batteries.  
Application code executes from an onboard 2MB program  
flash memory, with up to 512KB SRAM available for gen-  
eral application use. An 8KB instruction cache improves  
execution throughput, and a transparent code scrambling  
scheme is used to protect customer intellectual property  
residing in the program flash memory. Additionally, a SPI  
execute in place (XIP) external memory interface allows  
application code and data (up to 16MB) to be accessed  
from an external SPI memory device.  
An optional feature allows samples captured by the ADC  
to be automatically compared against user-programmable  
high and low limits. Up to four channel limit pairs can be  
configured in this way. The comparison allows the ADC  
to trigger an interrupt (and potentially wake the CPU  
from a low-power sleep mode) when a captured sample  
goes outside the preprogrammed limit range. Since this  
comparison is performed directly by the sample limit  
monitors, it can be performed even while the main CPU is  
suspended in a low power mode.  
A 10-bit delta-sigma ADC is provided with a multiplexer  
front end for four external input channels (two of which  
are 5V tolerant) and six internal channels. An onboard  
temperature sensor block allows direct die temperature  
measurement without requiring any external system  
components. Dedicated divided supply input channels  
allow direct monitoring of onboard power supplies such  
The ADC reference is selectable:  
Internal bandgap  
as V  
, V  
, V  
, and V  
by the ADC. Built-in  
DD12 DD18 DDB  
RTC  
limit monitors allow converted input samples to be com-  
pared against user-configurable high and low limits, with  
an option to trigger an interrupt and wake the CPU from a  
low power mode if attention is required.  
External reference  
V  
. This option disables the reference buffer to  
DD18  
minimize power consumption.  
Pulse Train Engine  
A wide variety of communications and interface periph-  
erals are provided, including a USB 2.0 slave interface,  
three master SPI interfaces, one slave SPI interface, four  
Sixteen independent pulse train generators provide either  
a square wave or a repeating pattern from 2 bits to 32  
bits in length. The frequency of each enabled pulse train  
generator is also set separately, based on a divide down  
(divide by 2, divide by 4, divide by 8, etc.) of the input  
pulse train module clock.  
2
UART interfaces with multidrop support, three master I C  
2
interfaces, and a slave I C interface.  
ARM Cortex-M4F Processor  
The ARM Cortex-M4F processor is ideal for the emerging  
category of wearable medical and wellness applications.  
The architecture combines high-efficiency signal process-  
ing functionality with low power, low cost, and ease of use.  
Any single pulse train generator or any desired group of  
pulse train generators can be restarted at the beginning of  
their patterns and synchronized with one another ensur-  
ing simultaneous startup. Additionally, each pulse train  
can operate in a single shot mode.  
The Cortex-M4F DSP supports single instruction multiple  
data (SIMD) path DSP extensions, providing:  
Four parallel 8-bit add/sub  
Floating point single precision  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
table. The 32kHz output can be directed out to pin P1.7  
and remains active in all low power modes including LP0.  
Clocking Scheme  
The high-frequency internal relaxation oscillator operates  
at a nominal frequency of 96MHz. It is the primary clock  
source for the digital logic and peripherals. Select a 4MHz  
internal oscillator to optimize active power consump-  
tion. Wakeup is possible from either the 4MHz internal  
oscillator or the 96MHz internal oscillator. An external  
32.768kHz timebase is required when using the RTC or  
USB features of the device. The time base can be gen-  
erated by attaching a 32kHz crystal connected between  
32KIN and 32KOUT, or an external clock source can also  
be applied to the 32KIN pin. The external clock source  
must meet the electrical/timing requirements in the EC  
Interrupt Sources  
The ARM nested vector interrupt controller (NVIC) pro-  
vides a high-speed, deterministic interrupt response,  
interrupt masking, and multiple interrupt sources. Each  
peripheral is connected to the NVIC and can have mul-  
tiple interrupt flags to indicate the specific source of the  
interrupt within the peripheral. 55 distinct interrupts can  
be grouped by firmware into 8 levels of priority (including  
internal and external interrupts). There are 9 interrupts for  
the GPIO ports, one for each port.  
XTAL DRIVER OR  
EXTERNAL CLOCK  
32KIN  
32kHz  
REAL-TIME  
CLOCK  
RTC  
OSCILLATOR  
32kHz  
CRYSTAL  
32KOUT  
NANO-RING  
OSCILLATOR  
~8kHz  
POWER  
SEQUENCER  
32.768kHz  
OUTPUT CLOCK  
GPIO 1.7  
ALWAYS-ON DOMAIN  
(96MHz SYSCLK  
ONLY)  
48MHz  
FIRMWARE  
FREQUENCY  
CALIBRATION  
DIVIDE BY 2  
USB PHY  
INTERNAL  
96MHz  
OSCILLATOR  
15kHz–96MHz  
CORE  
CLOCK  
SCALER  
ARM  
CORTEX-M4  
CORE  
CLOCK  
SCALER  
INTERNAL  
4MHz  
OSCILLATOR  
ADC  
CLOCK  
SCALER  
8MHz  
SYSTEM  
CLOCK  
SELECT  
ADC  
INTERNAL 44MHz  
CRYPTOGRAPHIC  
OSCILLATOR  
44MHz  
TPU  
TRUST PROTECTION UNIT (MAX32621 ONLY)  
Figure 2. MAX32630/MAX32631 Clock Scheme  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Real-time clock  
Real-Time Clock and Wake-Up Timer  
A real-time clock (RTC) keeps the time of day in absolute  
seconds. The 32-bit seconds register can count up to  
approximately 136 years and be translated to calendar  
format by application software. A time-of-day alarm and  
independent subsecond alarm can cause an interrupt or  
wake the device from stop mode. The minimum wake-up  
Power management clock  
A third watchdog timer (WDT3) is provided for recovery  
from runaway code or system unresponsiveness. This  
recovery watchdog uses a 16-bit timer to generate the  
watchdog reset. When enabled, this watchdog must be  
written prior to timeout, resulting in a watchdog timeout.  
The WDT3 flag is set on reset if a watchdog expiration  
caused the system reset. The clock source for the recov-  
ery watchdog is the 8kHz nano ring, and the granularity  
of the timeout period is intended only for system recovery.  
interval is 244μs. The V  
supports SRAM retention in  
RTC  
power mode LP0.  
CRC Module  
A CRC hardware module is included to provide fast calcu-  
lations and data integrity checks by application software.  
The CRC module supports both the CRC-16-CCITT and  
Programmable Timers  
Six 32-bit timers provide timing, capture/compare, or gen-  
eration of pulse-width modulated (PWM) signals. Each of  
the 32-bit timers can also be split into two 16-bit timers,  
enabling 12 standard 16-bit timers.  
32  
26  
4
23  
2
22  
16  
12  
11  
10  
CRC-32 (X + X + X + X + X + X + X + X  
8
7
5
+ X + X + X + X + X + X + 1) polynomials.  
Watchdog Timers  
32-bit timer features:  
Two independent watchdog timers (WDT1 and WDT2)  
with window support are provided. The watchdog timers  
are independent and have multiple clock source options  
to ensure system security. The watchdog uses a 32-bit  
timer with prescaler to generate the watchdog reset. When  
enabled, the watchdog timers must be written prior to time-  
out or within a window of time if window mode is enabled.  
Failure to write the watchdog timer during the programmed  
timing window results in a watchdog timeout. The WDT1  
or WDT2 flags are set on reset if a watchdog expiration  
caused the system reset. The clock source options for the  
watchdog timers WDT1 and WDT2 include:  
32-bit up/down autoreload  
Programmable 16-bit prescaler  
PWM output generation  
Capture, compare, and capture/compare capability  
GPIOs can be assigned as external timer inputs,  
clock gating or capture, limited to an input frequency  
of 1/4 of the peripheral clock frequency  
Timer output pin  
Configurable as 2x 16-bit general purpose timers  
Timer interrupt  
Scaled system clock  
32-BIT TIMER BLOCK  
APB  
BUS  
TIMER CONTROL  
REGISTER  
TIME INTERRUPT  
REGISTER  
32-BIT COMPARE  
REGISTER  
TIMER  
INTERRUPT  
COMPARE  
APB  
CLOCK  
INTERRUPT  
PWM AND TIMER  
OUTPUT  
32-BIT TIMER  
(WITH PRESCALER)  
CONTROL  
TIMER  
OUTPUT  
COMPARE  
32-BIT  
PWM/COMPARE  
TIMER  
INPUT  
Figure 4. Timer Block Diagram, 32-Bit Mode  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Serial Peripheral Interface—Master  
Serial Peripherals  
USB Controller  
The integrated USB slave controller is compliant with the  
full-speed (12Mb/s) USB 2.0 specification. The integrated  
USB physical interface (PHY) reduces board space and  
system cost. An integrated voltage regulator enables  
The SPI master-mode-only (SPIM) interface operates  
independently in a single or multiple slave system and is  
fully accessible to the user application.  
The SPI ports provide a highly configurable, flexible, and  
efficient interface to communicate with a wide variety of  
SPI slave devices. The three SPI master ports (SPI0,  
SPI1, SPI2) support the following features:  
smart switching between the main supply and V  
connected to a USB host controller.  
when  
DDB  
SPI modes (0, 3) for single-bit communication  
The USB controller supports DMA for the endpoint buf-  
fers. A total of 7 endpoint buffers are supported with con-  
figurable selection of IN or OUT in addition to endpoint 0.  
3- or 4-wire mode for single-bit slave device commu-  
nication  
An external 32kHz crystal or clock source is required  
for USB operation, even if the RTC function is not used.  
Although the USB timing is derived from the internal  
96MHz oscillator, the default accuracy is not sufficient  
for USB operation. Periodic firmware adjustments of  
the 96MHz oscillator, using the 32kHz timebase as a  
reference, are necessary to comply with the USB timing  
requirements.  
Full-duplex operation in single-bit, 4-wire mode  
Dual and Quad I/O supported  
Up to 5 slave select lines per port  
Up to 2 slave ready lines  
Programmable interface timing  
Programmable SCK frequency and duty cycle  
High-speed AHB access to transmit and receive  
2
I C Master and Slave Ports  
using 32-byte FIFOs  
2
The I C interface is a bidirectional, two-wire serial bus  
that provides a medium-speed communications network.  
It can operate as a one-to-one, one-to-many or many-  
to-many communications medium. Three I C master  
engines and one I C-selectable slave engine interface  
to a wide variety of I C-compatible peripherals. These  
engines support both Standard-mode and Fast-mode I C  
standards. The slave engine shares the same I/O port  
as the master engines and is selectable through the I/O  
configuration settings. It provides the following features:  
SS assertion and deassertion timing with respect to  
leading/trailing SCK edge  
2
Serial Peripheral Interface—Slave  
2
The SPI slave (SPIS) port provide a highly configurable,  
flexible, and efficient interface to communicate with a wide  
variety of SPI master devices. The SPI slave interface  
supports the following features:  
2
2
Supports SPI modes 0 and 3  
Full-duplex operation in single-bit, 4-wire mode  
Slave select polarity fixed (active low)  
Dual and Quad I/O supported  
Master or slave mode operation  
Supports standard (7-bit) addressing or 10-bit  
addressing  
Support for clock stretching to allow slower slave  
High-speed AHB access to transmit and receive  
devices to operate on higher speed busses  
using 32-byte FIFOs  
Multiple transfer rates  
Four interrupts to monitor FIFO levels  
• Standard-mode: 100kbps  
• Fast-mode: 400kbps  
Internal filter to reject noise spikes  
Serial Peripheral Interface Execute in Place (SPIX)  
Master  
The SPI execute in place (SPIX) master allows the CPU  
to transparently execute instructions stored in an external  
SPI flash. Instructions fetched through the SPIX master  
are cached just like instructions fetched from internal  
program memory. The SPIX master can also be used to  
access large amounts of external static data that would  
otherwise reside in internal data memory.  
Receiver FIFO depth of 16 bytes  
Transmitter FIFO depth of 16 bytes  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
UART  
Peripheral Management Unit (PMU)  
All four universal asynchronous receiver-transmitter  
(UART) interfaces support full-duplex asynchronous com-  
munication with optional hardware flow control (HFC)  
modes to prevent data overruns. If HFC mode is enabled  
on a given port, the system uses two extra pins to imple-  
ment the industry standard request to send (RTS) and  
clear to send (CTS) methodology. Each UART is individu-  
ally programmable.  
The PMU is a DMA-based link list processing engine that  
performs operations and data transfers involving memory  
and/or peripherals in the advanced peripheral bus (APB)  
and advanced high-performance bus (AHB) peripheral  
memory space while the main CPU is in a sleep state.  
This allows low-overhead peripheral operations to be  
performed without the CPU, significantly reducing overall  
power consumption. Using the PMU with the CPU in a  
sleep state provides a lower noise environment critical for  
obtaining optimum ADC performance.  
2-wire interface or 4-wire interface with flow control  
32-byte send/receive FIFO  
Key features of the PMU engine include:  
Full-duplex operation for asynchronous data transfers  
Programmable interrupt for receive and transmit  
Independent baud-rate generator  
Programmable 9th bit parity support  
Multidrop support  
Six independent channels with round-robin schedul-  
ing allows for multiple parallel operations  
Programmed using SRAM-based PMU op codes  
PMU action can be initiated from interrupt conditions  
from peripherals without CPU  
Start/stop bit support  
Integrated AHB bus master  
Hardware flow control using RTS/CTS  
Maximum baud rate 1843.2kB  
Coprocessor-like state machine  
Additional Documentation  
Trust Protection Unit (TPU) (MAX32631 Only)  
Engineers must have the following documents to fully use  
this device:  
The TPU enhances cryptographic data security for valu-  
able intellectual property (IP) and data. A high-speed,  
dedicated, hardware-based math accelerator (MAA) per-  
forms mathematical computations that support strong  
cryptographic algorithms including:  
● This data sheet, containing pin descriptions, feature  
overviews, and electrical specifications  
● The device-appropriate user guide, containing detailed  
information and programming guidelines for core features  
and peripherals  
AES-128  
AES-192  
● Errata sheets for specific revisions noting deviations  
from published specifications  
AES-256  
For information regarding these documents, visit Technical  
Support at support.maximintegrated.com/micro.  
1024-bit DSA  
2048-bit (CRT)  
Development and Technical Support  
The device provides a pseudo-random number genera-  
tor that can be used to create cryptographic keys for any  
application. A user-selectable entropy source further  
increases the randomness and key strength.  
Contact technical support for information about highly  
versatile, affordable development tools, available from  
Maxim Integrated and third-party vendors.  
The secure bootloader protects against unauthorized  
access to program memory.  
● Evaluation kits  
● Software development kit  
● Compilers  
● Integrated development environments (IDEs)  
● USB interface modules for programming and debugging  
For technical support, go to support.maximintegrated.  
com/micro  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Applications Information  
Table 1. General-Purpose I/O Matrix  
QUATER-  
NARY FUNC-  
TION  
PRIMARY  
FUNCTION  
SECONDARY  
FUNCTION  
TERTIARY  
FUNCTION  
PULSE  
TRAIN  
GPIO INTER-  
TIMER INPUT  
RUPT  
P0.0 UART0A_RX  
P0.1 UART0A_TX  
P0.2 UART0A_CTS  
P0.3 UART0A_RTS  
P0.4 SPIM0A_SCK  
UART0B_TX  
UART0B_RX  
UART0B_RTS  
UART0B_CTS  
PT_PT0  
TIMER_TMR0 GPIO_INT(P0)  
TIMER_TMR1 GPIO_INT(P0)  
TIMER_TMR2 GPIO_INT(P0)  
TIMER_TMR3 GPIO_INT(P0)  
TIMER_TMR4 GPIO_INT(P0)  
PT_PT1  
PT_PT2  
PT_PT3  
PT_PT4  
SPIM0A_MOSI/  
SDIO0  
P0.5  
PT_PT5  
PT_PT6  
TIMER_TMR5 GPIO_INT(P0)  
TIMER_TMR0 GPIO_INT(P0)  
SPIM0A_MISO/  
SDIO1  
P0.6  
P0.7 SPIM0A_SS0  
P1.0 SPIM1A_SCK  
PT_PT7  
PT_PT8  
TIMER_TMR1 GPIO_INT(P0)  
TIMER_TMR2 GPIO_INT(P1)  
SPIX0A_SCK  
SPIM1A_MOSI/  
SDIO0  
SPIX0A_  
SDIO0  
P1.1  
PT_PT9  
TIMER_TMR3 GPIO_INT(P1)  
SPIM1A_MISO/  
SDIO1  
SPIX0A_  
SDIO1  
P1.2  
PT_PT10  
PT_PT11  
PT_PT12  
TIMER_TMR4 GPIO_INT(P1)  
TIMER_TMR5 GPIO_INT(P1)  
TIMER_TMR0 GPIO_INT(P1)  
P1.3 SPIM1A_SS0  
SPIX0A_SS0  
SPIX0A_  
SDIO2  
P1.4 SPIM1A_SDIO2  
SPIX0A_  
SDIO3  
P1.5 SPIM1A_SDIO3  
PT_PT13  
TIMER_TMR1 GPIO_INT(P1)  
P1.6 I2CM0A/S0A_SDA  
P1.7 I2CM0A/S0A_SCL  
P2.0 UART1A_RX  
P2.1 UART1A_TX  
PT_PT14  
PT_PT15  
PT_PT0  
PT_PT1  
PT_PT2  
PT_PT3  
PT_PT4  
TIMER_TMR2 GPIO_INT(P1)  
TIMER_TMR3 GPIO_INT(P1)  
TIMER_TMR4 GPIO_INT(P2)  
TIMER_TMR5 GPIO_INT(P2)  
TIMER_TMR0 GPIO_INT(P2)  
TIMER_TMR1 GPIO_INT(P2)  
TIMER_TMR2 GPIO_INT(P2)  
UART1B_TX  
UART1B_RX  
UART1B_RTS  
UART1B_CTS  
P2.2 UART1A_CTS  
P2.3 UART1A_RTS  
P2.4 SPIM2A_SCK  
SPIM2A_MOSI/  
SDIO0  
P2.5  
PT_PT5  
PT_PT6  
TIMER_TMR3 GPIO_INT(P2)  
TIMER_TMR4 GPIO_INT(P2)  
SPIM2A_MISO/  
SDIO1  
P2.6  
P2.7 SPIM2A_SS0  
P3.0 UART2A_RX  
P3.1 UART2A_TX  
P3.2 UART2A_CTS  
P3.3 UART2A_RTS  
PT_PT7  
PT_PT8  
PT_PT9  
PT_PT10  
PT_PT11  
PT_PT12  
TIMER_TMR5 GPIO_INT(P2)  
TIMER_TMR0 GPIO_INT(P3)  
TIMER_TMR1 GPIO_INT(P3)  
TIMER_TMR2 GPIO_INT(P3)  
TIMER_TMR3 GPIO_INT(P3)  
TIMER_TMR4 GPIO_INT(P3)  
UART2B_TX  
UART2B_RX  
UART2B_RTS  
UART2B_CTS  
P3.4 I2CM1A/S0B_SDA SPIM2A_SS1  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Table 1. General-Purpose I/O Matrix (continued)  
QUATER-  
NARY FUNC-  
TION  
PRIMARY  
FUNCTION  
SECONDARY  
FUNCTION  
TERTIARY  
FUNCTION  
PULSE  
TRAIN  
GPIO INTER-  
TIMER INPUT  
RUPT  
P3.5 I2CM1A/S0B_SCL  
P3.6 SPIM1A_SS1  
P3.7 SPIM1A_SS2  
P4.0 OWM_I/O  
SPIM2A_SS2  
SPIX_SS1  
PT_PT13  
PT_PT14  
PT_PT15  
PT_PT0  
PT_PT1  
TIMER_TMR5 GPIO_INT(P3)  
TIMER_TMR0 GPIO_INT(P3)  
TIMER_TMR1 GPIO_INT(P3)  
TIMER_TMR2 GPIO_INT(P4)  
TIMER_TMR3 GPIO_INT(P4)  
SPIX_SS2  
SPIM2A_SR0  
SPIM2A_SR1  
P4.1 OWM_PUPEN  
SPIS0A_  
SDIO2  
P4.2 SPIM0A_SDIO2  
P4.3 SPIM0A_SDIO3  
P4.4 SPIM0A_SS1  
P4.5 SPIM0A_SS2  
P4.6 SPIM0A_SS3  
PT_PT2  
PT_PT3  
PT_PT4  
PT_PT5  
PT_PT6  
TIMER_TMR4 GPIO_INT(P4)  
TIMER_TMR5 GPIO_INT(P4)  
TIMER_TMR0 GPIO_INT(P4)  
TIMER_TMR1 GPIO_INT(P4)  
TIMER_TMR2 GPIO_INT(P4)  
SPIS0A_  
SDIO3  
SPIS0A_  
SCLK  
SPIS0A_  
MOSI/SDIO0  
SPIS0A_  
MISO/SDIO1  
P4.7 SPIM0A_SS4  
P5.0  
SPIS0A_SSEL  
SPIM2B_SCK  
PT_PT7  
PT_PT8  
TIMER_TMR3 GPIO_INT(P4)  
TIMER_TMR4 GPIO_INT(P5)  
SPIM2B_  
MOSI/SDIO0  
P5.1  
PT_PT9  
TIMER_TMR5 GPIO_INT(P5)  
SPIM2B_  
MISO/SDIO1  
P5.2  
P5.3  
P5.4  
PT_PT10  
PT_PT11  
PT_PT12  
TIMER_TMR0 GPIO_INT(P5)  
TIMER_TMR1 GPIO_INT(P5)  
TIMER_TMR2 GPIO_INT(P5)  
SPIM2B_SS0 UART3A_RX  
UART3B_TX  
UART3B_RX  
SPIM2B_  
UART3A_TX  
SDIO2  
SPIM2B_  
SDIO3  
P5.5  
P5.6  
UART3A_CTS UART3B_RTS PT_PT13  
TIMER_TMR3 GPIO_INT(P5)  
SPIM2B_SR  
UART3A_RTS UART3B_CTS PT_PT14  
TIMER_TMR4 GPIO_INT(P5)  
TIMER_TMR5 GPIO_INT(P5)  
TIMER_TMR0 GPIO_INT(P6)  
TIMER_TMR1 GPIO_INT(P6)  
P5.7 I2CM2A/S0C_SDA SPIM2B_SS1  
P6.0 I2CM2A/S0C_SCL SPIM2B_SS2  
PT_PT15  
PT_PT0  
PT_PT1  
P6.1 SPIM2C_SCK  
SPIS0B_SCK  
SPIM2C_MOSI/  
SDIO0  
SPIS0B_  
MOSI/SDIO0  
P6.2  
PT_PT2  
TIMER_TMR2 GPIO_INT(P6)  
SPIM2C_MISO/  
SDIO1  
SPIS0B_  
MISO/SDIO1  
P6.3  
PT_PT3  
PT_PT4  
PT_PT5  
TIMER_TMR3 GPIO_INT(P6)  
TIMER_TMR4 GPIO_INT(P6)  
TIMER_TMR5 GPIO_INT(P6)  
P6.4 SPIM2C_SS0  
SPIS0B_SSEL  
SPIS0B_  
SDIO2  
P6.5 SPIM2C_SDIO2  
SPIS0B_  
SDIO3  
P6.6 SPIM2C_SDIO3  
P6.7 SPIM2C_SR0  
PT_PT6  
PT_PT7  
TIMER_TMR0 GPIO_INT(P6)  
TIMER_TMR1 GPIO_INT(P6)  
I2CM2B/  
SE_SDA  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Table 1. General-Purpose I/O Matrix (continued)  
QUATER-  
NARY FUNC-  
TION  
PRIMARY  
FUNCTION  
SECONDARY  
FUNCTION  
TERTIARY  
FUNCTION  
PULSE  
TRAIN  
GPIO INTER-  
TIMER INPUT  
RUPT  
I2CM2B/  
SE_SCL  
P7.0 SPIM2C_SS1  
P7.1 SPIM2C_SS2  
P7.2 SPIM2C_SR1  
P7.3 SPIS0C_SCK  
PT_PT8  
TIMER_TMR2 GPIO_INT(P7)  
TIMER_TMR3 GPIO_INT(P7)  
TIMER_TMR4 GPIO_INT(P7)  
TIMER_TMR5 GPIO_INT(P7)  
TIMER_TMR0 GPIO_INT(P7)  
I2CM1B/  
SD_SDA  
PT_PT9  
I2CM1B/  
SD_SCL  
PT_PT10  
PT_PT11  
PT_PT12  
I2CM2C/  
SG_SDA  
SPIS0C_MOSI/  
I2CM2C/  
SG_SCL  
P7.4  
SDIO0  
SPIS0C_MISO/  
SDIO1  
P7.5  
PT_PT13  
PT_PT14  
PT_PT15  
TIMER_TMR1 GPIO_INT(P7)  
TIMER_TMR2 GPIO_INT(P7)  
TIMER_TMR3 GPIO_INT(P7)  
P7.6 SPIS0C_SS0  
I2CM1C/  
SF_SDA  
P7.7 SPIS0C_SDIO2  
I2CM1C/  
SF_SCL  
P8.0 SPIS0C_SDIO3  
P8.1  
PT_PT0  
PT_PT1  
TIMER_TMR4 GPIO_INT(P8)  
GPIO_INT(P8)  
TIMER_TMR5  
Ordering Information  
TRUST PROTECTION UNIT  
(TPU)  
PART  
FLASH  
SRAM  
PIN-PACKAGE  
MAX32630IWG+  
MAX32631IWG+  
MAX32630IWG+T  
MAX32631IWG+T  
2MB  
2MB  
2MB  
2MB  
512KB  
512KB  
512KB  
512KB  
No  
Yes  
No  
100 WLP  
100 WLP  
100 WLP  
100 WLP  
Yes  
+ Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX32630/MAX32631  
Ultra-Low Power, High-Performance  
Cortex-M4F Microcontroller for Wearables  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
3/16  
Initial release  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2016 Maxim Integrated Products, Inc.  
27  

相关型号:

MAX32630IWG+T

Ultra-Low Power, High-Performance Cortex-M4F Microcontroller for Wearables
MAXIM

MAX32631

Ultra-Low Power, High-Performance Cortex-M4F Microcontroller for Wearables
MAXIM

MAX32631IWG+

Ultra-Low Power, High-Performance Cortex-M4F Microcontroller for Wearables
MAXIM

MAX32631IWG+T

Ultra-Low Power, High-Performance Cortex-M4F Microcontroller for Wearables
MAXIM

MAX3263C/D

Interface Circuit, DIE
MAXIM

MAX3263CAG

Single +5V, Fully Integrated, 155Mbps Laser Diode Driver
MAXIM

MAX3263CAG+

Interface Circuit, BIPolar, PDSO24, 5.30 MM, ROHS COMPLIANT, MO-150, SSOP-24
MAXIM

MAX3263CAG+T

暂无描述
MAXIM

MAX3263CAG-T

暂无描述
MAXIM

MAX3264

3.0V to 5.5V, 1.25Gbps/2.5Gbps Limiting Amplifiers
MAXIM

MAX3264C/D

3.0V to 5.5V, 1.25Gbps/2.5Gbps Limiting Amplifiers
MAXIM

MAX3264CUE

3.0V to 5.5V, 1.25Gbps/2.5Gbps Limiting Amplifiers
MAXIM