MAX3291CSD-T [MAXIM]

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO14, 0.150 INCH, MS-012B, SOIC-14;
MAX3291CSD-T
型号: MAX3291CSD-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO14, 0.150 INCH, MS-012B, SOIC-14

通信
文件: 总16页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1405; Rev 1; 4/99  
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
1/MAX392  
________________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX3291/MAX3292 high-speed RS-485/RS-422  
transceivers feature driver preemphasis circuitry, which  
extends the distance and increases the data rate of reli-  
able communication by reducing intersymbol interfer-  
ence (ISI) caused by long cables. The MAX3291 is  
programmable for data rates of 5Mbps to 10Mbps,  
while the MAX3292 is programmable for data rates up  
to 10Mbps by using a single external resistor.  
Preemphasis Increases the Distance and Data  
Rate of Reliable RS-485/RS-422 Communication  
Data Rate  
Optimized for 5Mbps to 10Mbps (MAX3291)  
Programmable up to 10Mbps (MAX3292)  
100nA Low-Current Shutdown Mode  
Allow Up to 128 Transceivers on the Bus  
-7V to +12V Common-Mode Input Voltage Range  
The MAX3291/MAX3292 are full-duplex devices that  
operate from a single +5V supply and offer a low-cur-  
rent shutdown mode that reduces supply current to  
100nA. They feature driver output short-circuit current  
limiting and a fail-safe receiver input that guarantees a  
logic-high output if the input is open circuit. A 1/4-unit-  
load receiver input impedance allows up to 128 trans-  
ceivers on the bus.  
Pin-Compatible with ’75180, MAX489, MAX491  
MAX3080, MAX3083, MAX3086, MAX1482  
_______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
14 SO  
MAX3291CSD  
MAX3291CPD  
MAX3291ESD  
MAX3291EPD  
MAX3292CSD  
MAX3292CPD  
MAX3292ESD  
MAX3292EPD  
14 Plastic DIP  
14 SO  
________________________Ap p lic a t io n s  
Long-Distance, High-Speed RS-485/RS-422  
Communications  
14 Plastic DIP  
14 SO  
Telecommunications  
14 Plastic DIP  
14 SO  
Industrial-Control Local Area Networks  
14 Plastic DIP  
Typ ic a l Op e ra t in g Circ u it a n d Fu n c t io n a l Dia g ra m  
R
*
R
*
*
PSET  
PSET  
1µF  
1µF  
C
PSET  
C
PSET  
*
PEE  
PEE  
(PSET)  
(PSET)  
1
V
CC  
V
CC  
14  
1
14  
13  
13  
(V  
CCD  
)
(V  
)
CCD  
12  
11  
A
R = Z  
R = Z  
O
9
10  
Y
Z
O
2
5
RO  
DI  
B
4
3
3
4
5
DE  
RE  
RE  
DE  
DI  
10  
R = Z  
R = Z  
O
Z
11  
12  
B
A
O
2
RO  
Y 9  
( ) ARE FOR MAX3292  
* MAX3292 ONLY  
MAX3291  
MAX3292  
MAX3291  
MAX3292  
Z = THE CHARACTERISTIC  
O
IMPEDANCE OF THE CABLE  
7(6) GND  
7(6)  
GND  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V , V  
) .................................................+6V  
Operating Temperature Ranges  
CC CCD  
Control Input Voltage (RE, DE, PEE,  
PSET, DI) .................................................-0.3V to (V + 0.3V)  
Driver Output Voltage (Y, Z)................................-7.5V to +12.5V  
Receiver Input Voltage (A, B)..............................-7.5V to +12.5V  
MAX329_C_ D......................................................0°C to +70°C  
MAX329_E_ D...................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
Receiver Output Voltage (RO)....................-0.3V to (V + 0.3V)  
CC  
Continuous Power Dissipation (T = +70°C)  
A
14-Pin SO (derate 8.7mW/°C above +70°C).................695mW  
14-Pin Plastic DIP (derate 10.0mW/°C above +70°C) ..800mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(Typical Operating Circuit, V = +5V ±5%, R  
= 0 (MAX3292), V = V  
(MAX3292), T = T  
A
to T , unless otherwise  
MAX  
CC  
PSET  
CC  
CCD  
MIN  
noted. Typical values are at V = +5V and T = +25°C.) (Note 1)  
CC  
A
PARAMETER  
DRIVER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
1/MAX392  
R = 27Ω  
No load (Note 2)  
1.5  
5.0  
Differential Driver Output  
V
Figure 1  
V
V
V
OD  
5.25  
Differential Driver Output with  
Preemphasis  
V
ODP  
R = 27Ω  
2.4  
Differential Driver  
Preemphasis Ratio  
DPER  
Figure 1, R = 27(Note 3)  
Figure 1, R = 27(Note 4)  
1.65  
2.0  
2.35  
0.2  
Change in Magnitude of  
Differential Output Voltage  
(Normal and Preemphasis)  
V  
,
OD  
V
V
V
V  
ODP  
Driver Common-Mode Output  
Voltage (Normal and  
Preemphasis)  
V
OC  
Figure 1, R = 27Ω  
V
/ 2  
3
CC  
Change in Magnitude of  
Common-Mode Voltage  
(Normal and Preemphasis)  
V  
Figure 1, R = 27(Note 5)  
0.3  
OC  
Change in Magnitude of  
Common-Mode Output  
Voltage (Normal to  
Preemphasis)  
V  
Figure 1, R = 27Ω  
50  
mV  
V
NP  
2.4  
DE, DI, RE  
PEE  
Input High Voltage  
V
IH  
3.75  
Input Low Voltage  
V
0.8  
±2  
V
DE, DI, RE, PEE  
DE, DI, RE  
IL  
Input Current  
I
IN  
µA  
µA  
µA  
PEE Input Current (MAX3291)  
PSET Input Current (MAX3292)  
I
-15  
-30  
70  
-45  
110  
25  
PEE  
I
V
= V  
PSET  
PSET CC  
V = V = +12V  
Y
Z
DE = GND,  
= GND or 5.25V  
Output Leakage (Y and Z)  
I
O
µA  
V
CC  
V = V = -7V  
-25  
Y
Z
Driver Short-Circuit Output  
Current  
I
-7V V  
+12V (Note 6)  
±30  
±250  
mA  
OSD  
OUT  
2
_______________________________________________________________________________________  
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
1/MAX392  
DC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Operating Circuit, V = +5V ±5%, R  
= 0 (MAX3292), V = V  
(MAX3292), T = T  
A
to T , unless otherwise  
MAX  
CC  
PSET  
CC  
CCD  
MIN  
noted. Typical values are at V = +5V and T = +25°C.) (Note 1)  
CC  
A
PARAMETER  
RECEIVER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= +12V  
= -7V  
250  
IN  
DE = GND,  
Input Current (A and B)  
I ,  
A B  
µA  
V
= GND or 5.25V  
CC  
V
IN  
-150  
Receiver Differential  
Threshold Voltage  
V
-7V V +12V  
-200  
3.5  
200  
mV  
TH  
CM  
Receiver Input Hysteresis  
V  
V
A
= V = 0  
35  
mV  
V
TH  
B
Receiver Output High Voltage  
Receiver Output Low Voltage  
V
OH  
I = -4mA, V - V = V  
O A B TH  
V
OL  
I
O
= 4mA, V - V = -V  
TH  
0.4  
±1  
V
A
B
Three-State Output Current at  
Receiver  
I
0 V V  
CC  
0.1  
µA  
kΩ  
OZR  
O
Receiver Input Resistance  
R
-7V V +12V  
48  
IN  
CM  
Receiver Output Short-Circuit  
Current  
I
0 V V  
CC  
±15  
±95  
mA  
OSR  
RO  
SUPPLY CURRENT  
No-Load Supply Current  
I
I
2.0  
0.1  
3.0  
1
mA  
µA  
RE = GND, DE = V  
CC + CCD  
CC  
Supply Current in Shutdown  
Mode  
RE = V  
DE = GND, V = V = 0 to V or  
Y Z CC  
CC,  
I
SHDN  
floating  
SWITCHING CHARACTERISTICS  
(Typical Operating Circuit, V = +5V ±5%, R  
= 0 (MAX3292), V = V  
(MAX3292), T = +25°C, unless otherwise noted.  
CCD A  
CC  
PSET  
CC  
Typical values are at V = +5V and T = +25°C.)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
41  
MAX  
65  
UNITS  
t
t
DPLH  
DPHL  
Figures 3 and 5, R  
= 54,  
DIFF  
Driver Propagation Delay  
ns  
C
= C = 50pF  
L2  
L1  
44  
65  
t
t
HL  
LH  
Driver Differential Output  
Rise or Fall Time  
Figures 3 and 5, R  
= C = 50pF  
= 54,  
DIFF  
12  
100  
1
ns  
ns  
µs  
ns  
C
L1  
L2  
MAX3291/MAX3292,  
= 0  
80  
120  
Figures 3 and 10,  
R
PSET  
Driver Preemphasis Interval  
t
R
C
= 54,  
DIFF  
PRE  
MAX3292,  
= 523kΩ  
= C = 50pF  
L1  
L2  
0.75  
1.25  
R
PSET  
Preemphasis Voltage Level to  
Normal Voltage Level Delay  
Figures 3 and 10, R  
= 54,  
DIFF  
t
30  
3
PTND  
C
= C = 50pF  
L2  
L1  
Differential Driver Output  
Figures 3 and 5, R  
= 54,  
DIFF  
t
8
ns  
DSKEW  
Skew  
t
- t  
C
= C = 50pF  
L1 L2  
DPLH DPHL  
Maximum Data Rate  
f
10  
Mbps  
MAX  
_______________________________________________________________________________________  
3
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
SWITCHING CHARACTERISTICS (continued)  
(Typical Operating Circuit, V = +5V ±5%, R  
= 0 (MAX3292), V = V  
(MAX3292), T = +25°C, unless otherwise noted.  
CCD A  
CC  
PSET  
CC  
Typical values are at V = +5V and T = +25°C.)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Figures 2 and 6, S2 closed, R = 500,  
L
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
t
72  
105  
ns  
DZH  
C
= 100pF  
L
Figures 2 and 6, S1 closed, R = 500,  
L
t
55  
53  
71  
105  
100  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DZL  
DLZ  
DHZ  
C
= 100pF  
L
Figures 2 and 6, S1 closed, R = 500,  
L
t
C
= 15pF  
L
Figures 2 and 6, S2 closed, R = 500,  
L
t
C
= 15pF  
L
t
t
49  
52  
85  
85  
RPLH  
RPHL  
Figures 7 and 9, C = 50pF, V = 2V,  
L
ID  
Receiver Propagation Delay  
Receiver Output Skew  
V
CM  
= 0  
1/MAX392  
t
Figures 7 and 9, C = 100pF  
3
RSKEW  
L
t
- t  
RPLH RPHL  
Receiver Enable to Output  
Low  
Figures 2 and 8, R = 1k, C = 100pF,  
L
L
t
3
3
43  
43  
25  
55  
55  
45  
RZL  
S1 closed  
Receiver Enable to Output  
High  
Figures 2 and 8, R = 1k, C = 100pF,  
L
L
t
RZH  
S2 closed  
Receiver Disable Time from  
Low  
Figures 2 and 8, R = 1k, C = 15pF,  
L
L
t
RLZ  
S1 closed  
Receiver Disable Time from  
High  
Figures 2 and 8, R = 1k, C = 15pF,  
L
L
t
25  
45  
ns  
ns  
ns  
RHZ  
S2 closed  
Figures 4 and 11 (Note 7)  
Figures 2 and 6, R = 500, C = 100pF,  
Time to Shutdown  
t
50  
160  
500  
SHDN  
Driver Enable from Shutdown  
to Output High  
L
L
t
t
6000  
8750  
DZH(SHDN)  
S2 closed  
Driver Enable from Shutdown  
to Output Low  
Figures 2 and 6, R = 500, C = 100pF,  
L
L
t
6000  
850  
30  
8750  
1500  
1500  
ns  
ns  
ns  
DZL(SHDN)  
S1 closed  
Receiver Enable from  
Shutdown to Output High  
Figures 2 and 8, R = 1k, C = 100pF,  
L
L
RZH(SHDN)  
S2 closed  
Receiver Enable from  
Shutdown to Output Low  
Figures 2 and 8, R = 1k, C = 100pF,  
L
L
t
RZL(SHDN)  
S1 closed  
Note 1: All currents into the device are positive; all currents out of the device are negative. All voltages are referenced to device  
ground unless otherwise noted.  
Note 2: Guaranteed by design.  
Note 3: DPER is defined as (V  
/ V ).  
OD  
ODP  
Note 4: V  
and V are the changes in V and V , respectively, when the DI input changes. This specification reflects  
DD OC  
OC  
ODP  
constant operating conditions. When operating conditions shift, the maximum value may be momentarily exceeded.  
Note 5: V and V are the changes in V and V , respectively, when the DI input changes state.  
ODP  
OC  
OD  
OC  
Note 6: Maximum current level applies to peak current just prior to foldback-current limiting; minimum current level applies during  
current limiting.  
Note 7: Shutdown is enabled by bringing RE high and DE low. If the enable inputs are in this state for less than 50ns, the device is  
guaranteed not to enter shutdown. If the enable inputs are in this state for at least 500ns, the device is guaranteed to have  
entered shutdown. Time to shutdown for the device (t ) is measured by monitoring R0 as in Figure 4.  
SHDN  
4
_______________________________________________________________________________________  
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
1/MAX392  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V, T = +25°C, unless otherwise noted.)  
CC  
A
PREEMPHASIS INTERVAL vs. R  
PSET  
(C  
PSET  
= 0.1µF)  
TYPICAL PREEMPHASIS WAVEFORM  
R
PRE  
AND t  
vs. t  
PRE BAUD  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
1200  
1000  
800  
600  
400  
200  
0
V - V  
2V/  
div  
Y
Z
NOTE A  
NOTE A  
750  
500  
250  
0
800  
100ns/div  
0
100 200 300 400 500 600 700  
(k)  
900 1000  
0
500  
1000  
(ns)  
1500  
2000  
R
t
PSET  
BAUD  
RECEIVER PROPAGATION DELAY  
vs. TEMPERATURE  
DRIVER DIFFERENTIAL  
DRIVER DIFFERENTIAL  
OUTPUT VOLTAGE vs. TEMPERATURE  
OUTPUT VOLTAGE vs. R  
DIFF  
60.0  
57.5  
55.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.25  
C = 50pF  
L
STRONG  
STRONG (V  
)
ODP  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
NORMAL  
52.5  
50.0  
47.5  
45.0  
42.5  
40.0  
NORMAL (V  
)
OD  
R
DIFF  
= 54Ω  
100  
100  
100  
-40 -20  
0
20  
40  
60  
80  
10 20 30 40 50 60 70 80 90  
()  
-40 -20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
R
DIFF  
TEMPERATURE (°C)  
DRIVER PROPAGATION DELAY  
vs. TEMPERATURE  
RECEIVER PROPAGATION DELAY  
50.0  
47.5  
45.0  
C
L1  
= C = 50pF  
L2  
42.5  
40.0  
37.5  
35.0  
32.5  
30.0  
2.5V/  
div  
V - V  
A
B
5V/  
div  
RO  
100  
-40 -20  
0
20  
40  
60  
80  
20ns/div  
TEMPERATURE (°C)  
Note A: Dotted line represents region in which preemphasis may not work in systems with excessive power-supply noise. See  
Preemphasis at Low Data Rates.  
_______________________________________________________________________________________  
5
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
____________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, T = +25°C, unless otherwise noted.)  
CC  
A
RECEIVER OUTPUT LOW VOLTAGE  
vs. TEMPERATURE  
RECEIVER OUTPUT HIGH VOLTAGE  
vs. TEMPERATURE  
DRIVER PROPAGATION DELAY  
0.30  
0.25  
4.60  
4.55  
4.50  
4.45  
4.40  
4.35  
4.30  
4.25  
4.20  
4.15  
4.10  
I
RO  
= 8mA  
I = 8mA  
RO  
5V/  
div  
DI  
0.20  
0.15  
2.5V/  
div  
V - V  
Y
Z
0.10  
0.05  
0
100  
100  
-40 -20  
0
20  
40  
60  
80  
-40 -20  
0
20  
40  
60  
80  
20ns/div  
1/MAX392  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT SINK CURRENT vs.  
RECEIVER OUTPUT LOW VOLTAGE  
OUTPUT SOURCE CURRENT vs.  
RECEIVER OUTPUT HIGH VOLTAGE  
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0
100  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT LOW VOLTAGE (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT HIGH VOLTAGE (V)  
-40 -20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
1/MAX392  
P in De s c rip t io n  
PIN  
NAME  
PEE  
FUNCTION  
MAX3291  
MAX3292  
Preemphasis Enable Input. To enable preemphasis, leave PEE unconnected, connect to  
1
V
CC  
, or drive high. To enable strong-level-drive only mode, connect PEE to GND or drive  
low.  
Preemphasis Set Input. Sets the preemphasis interval. Connect a resistor (R  
) in paral-  
PSET  
1
PSET  
lel with a capacitor (C  
Operating Circuit.  
) from PSET to V to set the preemphasis interval. See Typical  
PSET CC  
Receiver Output. When RE is low and if A - B 200mV, RO is high; if A - B -200mV, RO  
is low.  
2
3
4
2
3
4
RO  
RE  
DE  
Receiver Output Enable. Drive RE low to enable RO; RO is high impedance when RE is  
high. Drive RE high and DE low to enter low-power shutdown mode.  
Driver Output Enable. Drive DE high to enable the driver outputs. These outputs are high  
impedance when DE is low. Drive RE high and DE low to enter low-power shutdown mode.  
Driver Input. With DE high, a low on DI forces the noninverting output low and the inverting  
output high. Similarly, a high on DI forces the noninverting output high and the inverting  
output low.  
5
5
DI  
6, 8, 13  
8
6, 7  
9
N.C.  
GND  
Y
No Connection. Not internally connected.  
Ground  
7
9
Noninverting Driver Output  
Inverting Driver Output  
Inverting Receiver Input  
Noninverting Receiver Input  
10  
11  
12  
14  
10  
11  
12  
13  
14  
Z
B
A
V
CCD  
Connect to V  
CC  
V
CC  
Positive Supply: +4.75V V +5.25V  
CC  
Y
R
V
CC  
S1  
S2  
R
L
V
V
ODP  
OD  
OUTPUT  
UNDER TEST  
C
L
R
V
OC  
Z
Figure 2. Driver or Receiver Enable/Disable Timing Test Load  
_______________________________________________________________________________________  
Figure 1. Driver DC Test Load  
7
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
5V  
t < t  
SHDN  
t > t  
SHDN  
DE  
C
L1  
RE  
Y
Z
DI  
R
D
DIFF  
V
ODP  
t
RZH(SHDN)  
C
L2  
RO  
DE = LOW  
Figure 3. Driver Timing Test Circuit  
Figure 4. Shutdown Timing Diagram  
1/MAX392  
5V  
5V  
DI  
1.5V  
1.5V  
DE  
1.5V  
1.5V  
0
t
t
DPHL  
DPLH  
0
Z
P
Y
P
V
PH  
Z
N
Y
N
t
DLZ  
t
, t  
DZL(SHDN) DZL  
Y, Z  
0 DIFFERENTIAL  
OUTPUT NORMALLY LOW  
2.3V  
V * + 0.5V  
OL  
Z
N
Y
N
Z
P
Y
P
OUTPUT NORMALLY HIGH  
V
DIFF  
= V - V  
Y Z  
Y, Z  
0
V
DIFF  
0 DIFFERENTIAL  
20%  
V * - 0.5V  
OH  
2.3V  
80%  
80%  
20%  
V
PL  
t
, t  
t
DHZ  
DZH(SHDN) DZH  
t
LH  
t
HL  
t
t
- t  
SKEW = | PLH PHL |  
Y - Z = V  
|
|
N
N |  
OD  
*NOTE: V AND V ARE THE OUTPUT LEVELS IN FIGURE 2 WITH  
OH  
OL  
Y - Z = V  
P |  
P
ODP  
S2 AND S1 CLOSED, RESPECTIVELY.  
Figure 5. Driver Propagation Delays  
Figure 6. Driver Enable and Disable Times  
3V  
1.5V  
1.5V  
RE  
V
OH  
0
RO  
1.5V  
t
1.5V  
V
OL  
t
t
, t  
RLZ  
RZL(SHDN) RZL  
t
RPLH  
RPHL  
V
RO  
CC  
1.5V  
V
+ 0.5V  
- 0.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
OL  
A
B
+1V  
-1V  
0 DIFFERENTIAL  
RO  
V
OH  
1.5V  
0
t
t
- t  
RSKEW = | RPLH RPHL |  
t
, t  
t
RHZ  
RZH(SHDN) RZH  
Figure 7. Receiver Propagation Delays  
Figure 8. Receiver Enable and Disable Times  
8
_______________________________________________________________________________________  
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
1/MAX392  
t
PTND  
Y
P
Z
P
80%  
20%  
Z
N
Y
N
B
A
RO  
V
ID  
R
ATE  
0 DIFFERENTIAL  
Z
N
C
L
Y
N
50%  
Y
P
Z
P
t
PRE  
Figure 9. Receiver Propagation Delay Test Circuit  
Figure 10. Preemphasis Timing  
V
CC  
RE  
1k  
MAX3291  
MAX3292  
RO  
DI  
DE  
Figure 11. Time-to-Shutdown Test Circuit  
Fu n c t io n Ta b le s  
RECEIVING  
TRANSMITTING  
INPUTS  
OUTPUT  
INPUTS  
OUTPUTS  
DE  
X
A-B  
0.2V  
-0.2V  
Open  
X
RO  
RE  
0
DE  
1
DI  
1
Z
0
1
Y
RE  
X
1
1
0
0
X
0
1
X
1
0
0
X
0
0
X
High-Z  
High-Z  
1
1
High-Z  
High-Z and  
SHUTDOWN  
High-Z and  
SHUTDOWN  
1
0
X
1
0
X
X = Dont care  
Z = High impedance  
SHUTDOWN = Low-power shutdown; driver and receiver outputs are high impedance.  
_______________________________________________________________________________________  
9
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
De t a ile d De s c rip t io n  
The MAX3291/MAX3292 high-speed RS-485/RS-422  
SIGNAL 1  
transceivers feature driver preemphasis circuitry, which  
extends the distance and increases the data rate of  
reliable communication by reducing intersymbol inter-  
BAUD PERIOD  
ference (ISI) caused by long cables. The MAX3291 is  
programmable for data rates of 5Mbps to 10Mbps,  
V - V  
A
B
while the MAX3292 is programmable for data rates up  
to 10Mbps by using a single external resistor.  
The MAX3291/MAX3292 are full-duplex devices that  
operate from a single +5V supply and offer a low-cur-  
rent shutdown mode that reduces supply current to  
100nA. They feature driver output short-circuit current  
limiting and a fail-safe receiver input that guarantees a  
logic-high output if the input is open circuit. A 1/4-unit-  
load receiver input impedance allows up to 128 trans-  
ceivers on the bus.  
t
ISI  
SIGNAL 2  
Figure 12. Inter-Symbol Interference among Two Data  
Patterns: Signal 1 = 11111110, Signal 2 = 00000010  
Inter-symbol interference (ISI) causes significant prob-  
lems for UARTs if the total RS-485/RS-422 signal jitter  
b e c ome s 10% or more of the b a ud p e riod . ISI is  
caused by the effect of the cables RC time constant on  
different bit patterns. If a series of ones is transmitted,  
followed by a zero, the transmission-line voltage rises  
to a high value at the end of the string of ones (signal 1  
in Figure 12). As the signal moves towards the zero  
s ta te , it ta ke s long e r to re a c h the ze ro-c ros s ing ,  
because its starting voltage is farther from the zero  
crossing. On the other hand, if the data pattern has a  
string of zeros followed by a one and then another zero,  
the one-to-zero transition starts from a voltage that is  
1/MAX392  
V - V  
Y
Z
2.5V/div  
5V/div  
DI  
much closer to the zero-crossing (V - V = 0) and it  
A
B
takes much less time for the signal to reach the zero-  
crossing (signal 2 in Figure 12). In other words, the  
propagation delay depends upon the previous bit pat-  
tern. This is inter-symbol interference (ISI).  
0
1
1
1
0
0
0
1
0
1
100ns  
Pre e mp ha s is re d uc e s ISI b y inc re a s ing the s ig na l  
amplitude at every transition edge for about one baud  
period, counteracting the effects of the cable (see the  
section Setting the Preemphasis Interval). Figure 13  
shows a typical preemphasis waveform optimized for  
d a ta ra te s b e twe e n 5Mb p s a nd 10Mb p s . Whe n DI  
changes from a logic low to a logic high, the differential  
output switches to a strong high. At the end of the pre-  
emphasis interval, the strong high returns to a normal  
high level. Both levels meet RS-485/RS-422 specifica-  
tions, and the strong levels are typically 1.9 times larger  
than the normal levels. If DI switches back to a logic  
low before the end of the preemphasis interval, the dif-  
ferential output switches directly from the strong high to  
the strong low. Similarly, this explanation applies when  
DI transitions from high to low.  
Figure 13. Typical Preemphasis Waveform with a 100ns  
Preemphasis Interval  
Ap p lic a t io n s In fo rm a t io n  
Da t a Ra t e vs . Ca b le Le n g t h  
In general, preemphasis allows either double the dis-  
tance for a fixed data rate or double the data rate for a  
fixe d e xis ting c a b le d is ta nc e ove r e xis ting RS-485  
transceivers that do not feature preemphasis. Figure 14  
shows that the MAX3291/MAX3292 transmits approxi-  
mately twice as far at the same data rate or twice as  
fast at the same cable length as a conventional RS-485  
transceiver without preemphasis for 10% jitter.  
10 ______________________________________________________________________________________  
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
1/MAX392  
S e t t in g t h e P re e m p h a s is In t e rva l  
The MAX3291 has an internal fixed preemphasis interval  
of 100ns. Use the MAX3291 for existing designs requiring  
industry-standard 75180 pin-compatibility at data rates of  
5Mbps to 10Mbps.  
Eye Dia g ra m s  
One simple method to quickly determine your circuit  
configuration is to view an eye diagram. An eye dia-  
gram is a scope photo (voltage vs. time) showing the  
transitions of a pseudo-random bit string displaying at  
least one bit interval. Use an eye diagram to quickly  
calculate the total jitter of a circuit configuration. Jitter is  
the total time variation at the zero-volt differential cross-  
ing, and percent jitter is expressed as a percentage of  
The MAX3292 has a resistor-programmable preemphasis  
interval for more flexibility. For data rates less than 1Mbps,  
use the following equation to calculate R  
emphasis setting resistor):  
(the pre-  
PSET  
one baud period, t . Figures 15 and 16 show typi-  
BAUD  
R
PSET  
= 580 (t  
- 100)  
BAUD  
cal eye diagrams for a non-preemphasis device and  
the MAX3291/MAX3292. ISI and jitter are often used  
interchangeably; however, they are not exactly the  
same thing. ISI usually makes up the majority of the jit-  
ter, but asymmetrical high and low driver output voltage  
levels and time skews of non-ideal transceivers (driver  
and receiver) also contribute to jitter.  
where t  
= one baud period in ns.  
BAUD  
For example, a baud rate of 500kbps produces a baud  
period of 2µs (2µs = 2000ns).  
R
R
= 580 (t  
= 580 (2000 - 100) = 1.1M  
- 100)  
PSET  
PSET  
BAUD  
For data rates of 1Mbps to 10Mbps, use the following  
equation to calculate R  
:
PSET  
R
= 580 (t  
- 100)(t  
/ 1000)  
PSET  
BAUD  
BAUD  
where t  
= one baud period in ns.  
BAUD  
For example, a baud rate of 1Mbps produces a baud  
period of 1µs (1µs = 1000ns).  
R
= 580 (1000 - 100)(1000 / 1000) = 522kΩ  
PSET  
(closest standard value is 523k)  
Set the preemphasis interval by connecting the R  
PSET  
resistor from PSET to V . Use a 0.1µF bypass capaci-  
CC  
tor (C  
) from PSET to V . If PSET is connected  
PSET  
CC  
directly to V  
(R  
= 0), the preemphasis interval  
PSET  
CC  
reverts to the nominal 100ns value.  
Figure 15. Eye Diagram of a Typical RS-485 Transceiver  
Without Preemphasis, while Driving 1000 feet of Cable at  
5Mbps  
10,000  
24-GAUGE  
TWISTED PAIR  
10% JITTER  
PREEMPHASIS  
485 DRIVER  
LIMIT  
1000  
CONVENTIONAL  
485 DRIVER  
LIMIT  
PREEMPHASIS REQUIRED  
FOR ERROR-FREE  
TRANSMISSION  
100  
0.1  
1
10  
DATA RATE (Mbps)  
Figure 14. Preemphasis Driver Performance Compared to a  
Conventional Driver Without Preemphasis at 10% Jitter  
Figure 16. Eye Diagram of the MAX3292 with a Preemphasis  
Interval of 175ns, while Driving 1000 feet of Cable at 5Mbps  
______________________________________________________________________________________ 11  
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
Lin e Re p e a t e r  
For line le ng ths g re a te r tha n wha t one MAX3291/  
MAX3292 c a n d rive , us e the re p e a te r a p p lic a tion  
shown in Figure 17.  
% Jitter = (total jitter / t  
) · 100  
BAUD  
When the total amount of time skew becomes 10% or  
more of the b a ud p e riod , the d a ta e rror ra te c a n  
increase sharply.  
Figure 18 shows the system differential voltage for the  
MAX3292 driving 4000 feet of 26AWG twisted-pair wire  
into two 120termination loads.  
1 2 8 Tra n s c e ive rs o n t h e Bu s  
The standard RS-485 receiver input impedance is 12kΩ  
(one unit load), and the standard driver can drive up to  
32 unit loads. The MAX3291/MAX3292 transceivers have  
a 1/4-unit-load receiver input impedance (48k), allow-  
ing up to 128 transceivers to be connected in parallel on  
one c ommunic a tion line . Any c omb ina tion of the s e  
devices and/or other RS-485 transceivers with a total of  
32 unit-loads or less can be connected to the line.  
Lin e Te rm in a t io n  
The MAX3291/MAX3292 are targeted for applications  
requiring the best combination of long cable length and  
lowest bit-error rate. In order to achieve this combina-  
tion, the cable system must be set up with care. There  
are three basic steps:  
1) The cable should only have two ends (no tree configu-  
ration with long branches), which are terminated with  
a s imp le re s is tor te rmina tion whos e va lue is the  
Lo w -P o w e r S h u t d o w n Mo d e  
Initiate low-power shutdown mode by bringing RE high  
and DE low. In shutdown the MAX3291/MAX3292 typi-  
cally draw only 1µA of supply current.  
cables characteristic impedance (Z ). Avoid termina-  
O
1/MAX392  
tions anywhere else along the cable. This ensures that  
there are no reflections at the end of the cable, and  
that all transmitters (whether they are located at the  
ends of the cable or somewhere along the length) see  
Simultaneously driving RE and DE is allowed; the parts  
are guaranteed not to enter shutdown if RE is high and  
DE is low for less than 80ns. If the inputs are in this  
state for at least 300ns, the parts are guaranteed to  
enter shutdown.  
the same impedance, equal to Z / 2.  
O
2) Make all branches or stubs short enough so that  
twice the propagation delay along the stub (down  
and back) is significantly less than one baud period  
(around 15% or less). This ensures that the reflec-  
tions from the end of the stub (which are unavoid-  
able, since the stubs are not terminated) settle in  
much less than a baud period. If the application  
re q uire s a b ra nc h muc h long e r tha n this , us e a  
repeater (see the Line Repeater section).  
Enable times t  
tics tables correspond to when the part is not in the low-  
power shutdown state. Enable times t and  
and t in the Switching Characteris-  
ZL  
ZH  
ZH(SHDN)  
t
assume the parts are shut down. It takes dri-  
ZL(SHDN)  
vers and receivers longer to activate from the low-  
power shutdown mode (t , t ) than from  
the driver/receiver disable mode (t , t ).  
ZH(SHDN) ZL(SHDN)  
ZH ZL  
MAX3291  
MAX3292  
5V/div  
1V/div  
DI  
RECEIVER  
INPUT  
A
B
RO  
RE  
120Ω  
120Ω  
R
DATA IN  
V - V  
A
B
DE  
DI  
RO  
5V/div  
Z
DATA OUT  
D
Y
2µs/div  
TYPICAL OPERATING CIRCUIT, R  
= 1MΩ  
PSET  
Figure 18. MAX3292 System Differential Voltage Driving 4000  
Figure 17. Line-Repeater Application  
Feet, Using Two 120Termination Resistors  
12 ______________________________________________________________________________________  
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
1/MAX392  
3) Dont overload the cable with too many receivers.  
Even though the MAX3291/MAX3292 receives pre-  
sent only 1/4-unit load, placing 128 receivers on the  
cable will attenuate the signal if spaced out along  
the c a b le a nd , in a d d ition, c a us e re fle c tions if  
clumped in one spot. The MAX3291/MAX3292 suc-  
cessfully drive the cables to correct RS-485/RS-422  
le ve ls with 128 re c e ive rs , b ut the p re e mp ha s is  
effect is significantly diminished.  
significantly less preemphasis. Determine the preempha-  
sis ratio versus load by referring to the Driver Differential  
Output Voltage vs. R  
graph in the Typical Operating  
DIFF  
Characteristics. Read the strong and normal levels from  
the graph (remember that the horizontal units are half  
your cable impedance) and divide the two numbers to  
get DPER (DPER = V  
/ V  
= V  
/ V ).  
STRONG  
NORMAL  
ODP OD  
Figures 19 and 20 show typical network application cir-  
cuits with proper termination.  
The MAX3291/ MAX3292 are centered for a load imped-  
ance of 54, which corresponds to the parallel combina-  
tion of the cable impedance and termination resistors. If  
your cable impedance deviates somewhat from this  
value, you still get the preemphasis effect (although the  
P re e m p h a s is a t Lo w Da t a Ra t e s  
(MAX3 2 9 2 )  
At low data rates (<1Msps), preemphasis operation is  
not guaranteed because it is highly dependent on the  
system power-supply noise. Minimize this noise by  
increasing bypass capacitance and using a power  
supply with a fast transient response.  
ideal preemphasis time, t  
, may need adjustment).  
PRE  
However, if your cable impedance is significantly differ-  
ent, the preemphasis ratio DPER changes, resulting in  
DE  
Z
Z
DI  
D
R = Z  
R = Z  
O
O
D
DI  
Y
Y
B
DE  
B
A
Z
Y
B
A
RO  
RE  
RO  
RE  
R
R
A
R
D
MAX3291  
MAX3292  
DI  
DE  
RO RE  
Figure 19. Typical Half-Duplex RS-485 Network  
A
Y
R = Z  
O
R = Z  
O
RO  
RE  
R
DI  
D
B
Z
Z
B
DE  
DE  
RE  
RO  
R = Z  
R = Z  
O
O
DI  
R
D
Y
A
Y
Z
B
A
Y
Z
B
A
R
R
MAX3291  
MAX3292  
D
DI  
D
DI  
DE RE RO  
DE RE RO  
NOTE: RE AND DE ON.  
Figure 20. Typical Full-Duplex RS-485 Network  
______________________________________________________________________________________ 13  
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
P in Co n fig u ra t io n  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 2280  
SUBSTRATE CONNECTED TO GND  
TOP VIEW  
MAX3291  
MAX3292  
PEE (PSET)  
RO  
1
2
3
4
5
6
7
14  
V
CC  
13 N.C. (PV  
)
CC  
RE  
12  
11  
10  
9
A
DE  
B
DI  
Z
N.C. (GND)  
GND  
Y
8
N.C.  
1/MAX392  
SO/DIP  
( ) ARE FOR THE MAX3292 ONLY.  
14 ______________________________________________________________________________________  
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
1/MAX392  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 15  
RS-485/RS-422 Tra ns c e ive rs w ith Pre e m pha s is  
for High-Spe e d, Long-Dis ta nc e Com m unic a tion  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
1/MAX392  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3291EPD

RS-485/RS-422 Transceivers with Preemphasis for High-Speed, Long-Distance Communication
MAXIM

MAX3291ESD

RS-485/RS-422 Transceivers with Preemphasis for High-Speed, Long-Distance Communication
MAXIM

MAX3291ESD+T

暂无描述
MAXIM

MAX3291ESD-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO14, 0.150 INCH, MS-012B, SOIC-14
MAXIM

MAX3292

RS-485/RS-422 Transceivers with Preemphasis for High-Speed, Long-Distance Communication
MAXIM

MAX3292CPD

RS-485/RS-422 Transceivers with Preemphasis for High-Speed, Long-Distance Communication
MAXIM

MAX3292CSD

RS-485/RS-422 Transceivers with Preemphasis for High-Speed, Long-Distance Communication
MAXIM

MAX3292CSD+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO14, 0.150 INCH, MS-012B, SOIC-14
MAXIM

MAX3292CSD-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO14, 0.150 INCH, MS-012B, SOIC-14
MAXIM

MAX3292EPD

RS-485/RS-422 Transceivers with Preemphasis for High-Speed, Long-Distance Communication
MAXIM

MAX3292ESD

RS-485/RS-422 Transceivers with Preemphasis for High-Speed, Long-Distance Communication
MAXIM

MAX3292ESD+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO14, 0.150 INCH, MS-012B, SOIC-14
MAXIM