MAX3395EEBC+ [MAXIM]

暂无描述;
MAX3395EEBC+
型号: MAX3395EEBC+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

转换器 电平转换器 驱动
文件: 总20页 (文件大小:551K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3884; Rev 2; 2/07  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
45/MAX396E  
General Description  
Features  
The MAX3394E/MAX3395E/MAX3396E bidirectional  
level translators provide level shifting required for data  
transfer in a multivoltage system. Internal slew-rate  
enhancement circuitry features 10mA current-sink and  
15mA current-source drivers to isolate capacitive loads  
from lower current drivers. In open-drain systems, slew-  
rate enhancement enables fast data rates with larger  
pullup resistors and increased bus load capacitance.  
15kV ESD Protection on I/O V  
Lines  
CC_  
Bidirectional Level Translation Without Direction  
Pin  
I/O V and I/O V  
10mA Sink-/15mA Source-  
L_  
CC_  
Current Capability  
Slew-Rate Enhancement Circuitry Supports  
Larger Capacitive Loads or Larger External Pullup  
Resistors  
6Mbps Push-Pull/1Mbps Open-Drain Guaranteed  
Externally applied voltages, V  
and V , set the logic-  
L
CC  
high levels for the device. A logic-low signal on one I/O  
side of the device appears as a logic-low signal on the  
opposite I/O side, and vice-versa. Each I/O line is  
Data Rate  
Wide Supply-Voltage Range: Operation Down to  
pulled up to V  
or V by an internal pullup resistor,  
L
allowing the devices to be driven by either push-pull or  
open-drain drivers.  
CC  
+1.2V on V and +1.65V on V  
L
CC  
Low Supply Current in Tri-State Output Mode  
(3µA typ)  
The MAX3394E/MAX3395E/MAX3396E feature a tri-  
state output mode, thermal-shutdown protection, and  
15kV ꢀuman ꢁody Model ꢂꢀꢁMꢃ EꢄS protection on  
Low Quiescent Current  
Thermal-Shutdown Protection  
UCSP, TDFN, and TQFN Packages  
the V  
side for greater protection in applications that  
CC  
route signals externally.  
Ordering Information  
The MAX3394E/MAX3395E/MAX3396E accept V  
volt-  
CC  
ages from +1.65V to +5.5V, and V voltages from +1.2V  
L
PART  
PIN-PACKAGE  
8 TSFN-EP**  
9 UCꢄP  
PKG CODE  
T833-1  
ꢁ9-5  
to V , making them ideal for data transfer between low  
CC  
MAX3394EETA+T  
MAX3394EEꢁL+T  
MAX3395EETC+  
MAX3395EEꢁC+T  
MAX3396EEꢁP+T*  
MAX3396EETP+*  
voltage AꢄIC/PLSs and higher voltage systems. The  
MAX3394E/MAX3395E/MAX3396E operate at a guaran-  
teed data rate of 6Mbps with push-pull drivers and  
1Mbps with open-drain drivers.  
12 TQFN-EP**  
12 UCꢄP  
T1244-4  
ꢁ12-1  
The MAX3394E is a dual-level translator available in  
9-bump UCꢄP™ and 8-pin 3mm x 3mm TSFN packages.  
The MAX3395E is a quad-level translator available in 12-  
bump UCꢄP, and 12-pin 4mm x 4mm TQFN packages.  
The MAX3396E is an octal-level translator available in 20-  
bump UCꢄP and 20-pin 5mm x 5mm TQFN packages.  
The MAX3394E/MAX3395E/MAX3396E operate over the  
extended -40°C to +85°C temperature range.  
20 UCꢄP  
ꢁ20-1  
20 TQFN-EP**  
T2055-4  
Note: All devices specified over the -40°C to +85°C operating  
range.  
+Senotes leadꢂPbꢃ-free/Roꢀꢄ-compliant package.  
*Future product—contact factory for availability.  
**EP = Exposed paddle.  
Applications  
Multivoltage ꢁidirectional Level Translation  
ꢄPI™, MICROWIRE™, and I2C Level Translation  
Open-Srain Rise-Time ꢄpeed-Up  
Selector Guide appears at end of data sheet.  
-in Configurations  
TOP VIEW  
(LEADS ON BOTTOM)  
ꢀigh-ꢄpeed ꢁus Fan-Out Expansion  
Cell Phones  
8
6
7
5
4
*EP  
Telecom, Networking, ꢄervers, RAIS/ꢄAN  
MAX3394E  
+
1
2
3
MICROWIRE is a trademark of National ꢄemiconductor Corp.  
ꢄPI is a trademark of Motorola, Inc.  
TDFN  
*CONNECT EXPOSED PAD TO GROUND  
UCꢄP is a trademark of Maxim Integrated Products, Inc.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
ABSOLUTE MAXIMUM RATINGS  
ꢂAll voltages referenced to GNS.ꢃ  
12-Pin TQFN ꢂderate 16.9mW/°C above +70°Cꢃ ........1349mW  
12-ꢁump UCꢄP ꢂderate 6.5mW/°C above +70°Cꢃ ..... 519mW  
20-Pin TQFN ꢂderate 20.8mW/°C above +70°Cꢃ ........1667mW  
20-ꢁump UCꢄP ꢂderate 10.0mW/°C above +70°Cꢃ .....800mW  
Operating Temperature Range ......................... -40°C to +85°C  
ꢄtorage Temperature Range ........................... -65°C to +150°C  
Junction Temperature .....................................................+150°C  
ꢁump Temperature ꢂsolderingꢃ ...................................... +235°C  
Lead Temperature ꢂsoldering, 10sꢃ ............................... +300°C  
V
CC  
......................................................................... -0.3V to +6V  
V ............................................................................ -0.3V to +6V  
L
I/O V  
...................................................... -0.3V to V  
+ 0.3V  
CC_  
CC  
L
I/O V ........................................................... -0.3V to V + 0.3V  
L_  
EN ........................................................................... -0.3V to +6V  
ꢄhort-Circuit Suration I/O V , I/O V to GNS ..... Continuous  
L_  
CC_  
Maximum Continuous Current ........................................ 50mA  
Continuous Power Sissipation ꢂT = +70°Cꢃ  
A
8-Pin TSFN ꢂderate 18.2mW/°C above +70°Cꢃ ........ 1455mW  
9-ꢁump UCꢄP ꢂderate 4.7mW/°C above +70°Cꢃ ........ 379mW  
ꢄtresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
ꢂV  
CC  
= +1.65V to +5.5V, V = +1.2V to V ; C  
15pF, C 15pF; T = -40°C to +85°C, unless otherwise noted. Typical val-  
IOVCC A  
L
CC IOVL  
ues are at T = +25°C.ꢃ ꢂNote 1ꢃ  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
V ꢄupply Range  
V
1.2  
V
CC  
V
V
L
L
V
ꢄupply Range  
V
1.65  
5.50  
150  
300  
600  
30  
CC  
CC  
MAX3394E  
MAX3395E  
MAX3396E  
MAX3394E  
MAX3395E  
MAX3396E  
I/O lines internally  
pulled up  
ꢄupply Current from V  
I
µA  
µA  
CC  
L
CC  
I/O lines internally  
pulled up  
ꢄupply Current from V  
I
30  
L
30  
V
Tri-ꢄtate ꢄupply Current  
I
EN = GNS, T = +25°C  
3
6
µA  
µA  
CC  
CC-3  
A
45/MAX396E  
V Tri-ꢄtate ꢄupply Current  
L
I
EN = GNS, T = +25°C  
0.7  
2
L-3  
A
LOGIC I/O  
I/O V _ Input-Voltage ꢀigh  
L
Threshold  
0.7 x  
V
L
V
V
IꢀL  
I/O V _ Input-Voltage Low  
L
Threshold  
0.3 x  
V
L
V
V
ILL  
I/O V _ Internal Pullup SC  
L
Resistance  
R
EN = V  
or V  
L
5
10  
15  
10  
20  
kΩ  
mA  
mA  
L
CC  
I/O V _ ꢄource Current Suring  
L
Low-to-ꢀigh Transition  
I
V = +1.2V  
L
IꢀL  
I/O V _ ꢄink Current Suring ꢀigh-  
L
to-Low Transition  
I
V
= +1.65V  
CC  
ILL  
2
_______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
45/MAX396E  
ELECTRICAL CHARACTERISTICS (continued)  
ꢂV  
CC  
= +1.65V to +5.5V, V = +1.2V to V ; C  
15pF, C  
15pF; T = -40°C to +85°C, unless otherwise noted. Typical val-  
IOVCC A  
L
CC IOVL  
ues are at T = +25°C.ꢃ ꢂNote 1ꢃ  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= +3.3V, V = +1.8V  
MIN  
TYP  
MAX  
UNITS  
I/O V _ Low-to-ꢀigh Transition  
L
Threshold  
0.3 x  
0.5 x  
V
L
V
V
V
L-Tꢀ  
CC  
L
V
L
I/O V _ sink current = 5mA, V  
= 0V  
0.25  
L
ILC  
I/O V _ Output-Voltage Low  
V
V
L
OLL  
I/O V _ sink current = 10mA, V  
0.4V or  
V
+
ILC  
L
ILC  
0.2 x V  
0.4V  
L
I/O V _ Tri-ꢄtate Output Leakage  
L
Current  
EN = GNS, T = +25°C  
A
-1  
+1  
µA  
V
I/O V _ Input-Voltage ꢀigh  
CC  
Threshold  
0.7 x  
V
CC  
V
ꢂNote 2ꢃ  
ꢂNote 2ꢃ  
IꢀC  
I/O V _ Input-Voltage Low  
CC  
Threshold  
0.3 x  
V
V
ILC  
V
CC  
I/O V _ Internal Pullup SC  
CC  
Resistance  
R
EN = V  
or V  
L
5
10  
15  
20  
kΩ  
mA  
mA  
V
CC  
CC  
I/O V _ ꢄource Current Suring  
CC  
Low-to-ꢀigh Transition  
I
V
V
V
= +1.65V  
= +1.65V  
IꢀCC  
CC  
CC  
CC  
I/O V _ ꢄink Current Suring  
CC  
ꢀigh-to-Low Transition  
I
10  
ILCC  
I/O V _ Low-to-ꢀigh Transition  
CC  
Threshold  
0.3 x  
CC  
0.5 x  
V
CC  
V
= +3.3V, V = +1.8V  
L
CC-Tꢀ  
V
I/O V _ sink current = 5mA, V = 0V  
0.25  
CC  
ILL  
I/O V _ Output-Voltage Low  
V
V
CC  
OLC  
I/O V _ sink current = 10mA, V 0.4V  
V
+
ILL  
CC  
ILL  
or 0.2 x V  
0.4V  
L
I/O V _ Tri-ꢄtate Output  
CC  
Leakage Current  
EN = GNS, T = +25°C  
-1  
+1  
µA  
V
A
0.7 x  
EN Input-Voltage ꢀigh Threshold  
V
IꢀE  
V
L
0.3 x  
EN Input-Voltage Low Threshold  
V
V
ILE  
V
L
EN Pin Input Leakage Current  
T
= +25°C  
-1  
+1  
µA  
A
ESD PROTECTION  
I/O V _ EꢄS Protection  
C
= 1µF, ꢀuman ꢁody Model  
VCC  
15  
kV  
CC  
_______________________________________________________________________________________  
3
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
TIMING CHARACTERISTICS  
ꢂV  
CC  
= +1.65V to +5.5V, V = +1.2V to V ; C  
15pF, C 15pF; T = -40°C to +85°C, unless otherwise noted. Typical val-  
IOVCC A  
L
CC IOVL  
ues are at T = +25°C.ꢃ ꢂNote 1ꢃ  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
50  
UNITS  
Push-pull driver, Figure 1  
I/O V _ Rise Time  
t
ns  
CC  
RVCC  
Open-drain driver, internal pullup, Figure 2  
Push-pull driver, Figure 1  
500  
50  
I/O V _ Fall Time  
t
ns  
ns  
ns  
CC  
FVCC  
Open-drain driver, internal pullup, Figure 2  
Push-pull driver, Figure 3  
50  
50  
I/O V _ Rise Time  
t
RVL  
L
Open-drain driver, internal pullup, Figure 4  
Push-pull driver, Figure 3  
500  
50  
I/O V _ Fall Time  
L
t
FVL  
Open-drain driver, internal pullup, Figure 4  
Push-pull driver, Figure 1  
50  
50  
t
t
I/OVL-VCC  
I/OVCC-VL  
Open-drain driver, internal pullup, Figure 2  
Push-pull driver, Figure 3  
600  
50  
Propagation Selay  
ns  
Open-drain driver, internal pullup, Figure 4  
Push-pull or open-drain driver, Figure 5  
Push-pull driver  
600  
5
Propagation Selay After EN  
Channel-to-Channel ꢄkew  
t
µs  
ns  
EN  
5
t
ꢄKEW  
Open-drain driver, internal pullup  
Push-pull driver, Figures 1, 3  
100  
6
Maximum Sata Rate  
Mbps  
Open-drain driver, internal pullup,  
Figures 2, 4  
1
Note 1: All units are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by design  
A
and not production tested.  
Note 2: Suring a low-to-high transition, the threshold at which the I/O changes state is the lower of V and V  
since the two sides  
ILC  
ILL  
are internally connected by an internal switch while the device is in the logic-low state.  
45/MAX396E  
4
_______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
45/MAX396E  
Typical Operating Characteristics  
ꢂV  
CC  
= +2.5V, V = +1.8V, C = 15pF, T = +25°C, unless otherwise noted.ꢃ  
L
L
A
V
CC  
SUPPLY CURRENT  
vs. TEMPERATURE  
V
SUPPLY CURRENT  
V SUPPLY CURRENT  
L
vs. SUPPLY VOLTAGE  
CC  
vs. SUPPLY VOLTAGE  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
DRIVING I/O V  
L_  
V = +1.2V  
DRIVING I/O V  
V
= +5.0V  
L
CC  
DRIVING I/O V  
L_  
L_  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6Mbps PUSH-PULL  
1Mbps OPEN-DRAIN  
6Mbps PUSH-PULL  
6Mbps PUSH-PULL  
1Mbps OPEN-DRAIN  
1Mbps OPEN-DRAIN  
-40  
-15  
10  
35  
60  
85  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
V SUPPLY VOLTAGE (V)  
L
V
CC  
V
SUPPLY CURRENT  
V SUPPLY CURRENT  
L
vs. LOAD CAPACITANCE  
V SUPPLY CURRENT  
L
vs. TEMPERATURE  
CC  
vs. LOAD CAPACITANCE  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DRIVING I/O V  
L_  
DRIVING I/O V  
DRIVING I/O V  
L_  
L_  
6Mbps PUSH-PULL  
1Mbps OPEN-DRAIN  
6Mbps PUSH-PULL  
1Mbps OPEN-DRAIN  
1Mbps OPEN-DRAIN  
6Mbps PUSH-PULL  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CAPACITANCE (pF)  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CAPACITANCE (pF)  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
OPEN-DRAIN RISE TIME  
vs. LOAD CAPACITANCE  
OPEN-DRAIN FALL TIME  
vs. LOAD CAPACITANCE  
PUSH-PULL RISE TIME  
vs. LOAD CAPACITANCE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
DRIVING I/O V  
CC_  
DRIVING I/O V  
L_  
DRIVING I/O V  
L_  
DRIVING I/O V  
DRIVING I/O V  
CC_  
CC_  
DRIVING I/O V  
L_  
0
0
0
0
10 20 30 40 50 60 70 80 90 100  
CAPACITIVE LOAD (pF)  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CAPACITANCE (pF)  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CAPACITANCE (pF)  
_______________________________________________________________________________________  
5
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
Typical Operating Characteristics (continued)  
ꢂV  
CC  
= +2.5V, V = +1.8V, C = 15pF, T = +25°C, unless otherwise noted.ꢃ  
L L A  
PUSH-PULL FALL TIME  
vs. LOAD CAPACITANCE  
PROPAGATION DELAY  
vs. LOAD CAPACITANCE  
PROPAGATION DELAY  
vs. LOAD CAPACITANCE  
20  
18  
16  
14  
12  
10  
8
14  
12  
10  
8
30  
25  
20  
15  
10  
5
DRIVING I/O V  
OPEN-DRAIN  
DRIVING I/O V OPEN-DRAIN  
CC_  
L_  
t
PDHL  
DRIVING I/O V  
CC_  
6
6
4
DRIVING I/O V  
L_  
t
4
PDHL  
2
t
t
2
PDLH  
PDLH  
0
0
0
0
10 20 30 40 50 60 70 80 90 100  
LOAD CAPACITANCE (pF)  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CAPACITANCE (pF)  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CAPACITANCE (pF)  
(DRIVING I/O V , V = +2.5V, V = +1.8V,  
L_ CC  
L
PROPAGATION DELAY  
vs. LOAD CAPACITANCE  
PROPAGATION DELAY  
vs. LOAD CAPACITANCE  
C = 15pF, DATA RATE = 6Mbps)  
L
MAX3394E-96E toc15  
20  
18  
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
DRIVING I/O V PUSH-PULL  
L_  
DRIVING I/O V  
SEE FIGURE 3  
PUSH-PULL  
CC_  
I/O V  
1V/div  
L_  
t
PDHL  
t
PDHL  
I/O V  
1V/div  
CC_  
6
4
9
t
PDLH  
2
0
0
40ns/div  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CAPACITANCE (pF)  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CAPACITANCE (pF)  
(DRIVING I/O V , V = +5.0V, V = +3.3V,  
L_ CC  
L
(DRIVING I/O V , V = +5.0V, V = +3.3V,  
C = 400pF, EXTERNAL 4.7kΩ  
L_ CC  
L
L
C = 100pF, DATA RATE = 1Mbps)  
PULLUPS, DATA RATE = 1Mbps)  
L
MAX3394E-96E toc16  
MAX3394E-96E toc17  
I/O V  
L_  
2V/div  
I/O V  
2V/div  
L_  
I/O V  
2V/div  
I/O V  
2V/div  
CC_  
CC_  
200ns/div  
200ns/div  
6
_______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
45/MAX396E  
-in Description  
PIN  
NAME  
FUNCTION  
MAX3394E  
MAX3395E  
MAX3396E  
TDFN  
UCSP  
TQFN  
UCSP  
TQFN  
UCSP  
V
V
ꢄupply Voltage +1.65V V  
to GNS with a 0.1µF ceramic capacitor and a  
+5.5V. ꢁypass  
CC  
CC  
CC  
1
2
A1  
11  
6
ꢁ1  
14  
4
S3  
V
CC  
1µF or greater ceramic capacitor as close to the  
device as possible.  
Enable Input. Srive EN logic high for normal  
operation. Srive EN logic low to force all I/O lines to  
a high-impedance state and disconnect internal  
pullup resistors.  
ꢁ1  
ꢁ3  
A4  
EN  
3
4
5
6
7
A2  
A3  
ꢁ3  
C3  
C2  
10  
9
C1  
C2  
ꢁ4  
A2  
A1  
18  
16  
13  
20  
19  
C1  
S1  
S4  
A1  
ꢁ1  
I/O V  
1
2
I/O 1 Referred to V  
I/O 2 Referred to V  
Ground  
CC  
CC  
I/O V  
CC  
CC  
5
GNS  
I/O V 2  
2
I/O 2 Referred to V  
I/O 1 Referred to V  
L
L
L
1
I/O V 1  
L
Logic ꢄupply Voltage +1.2V V V . ꢁypass V  
L
L
CC  
to GNS with a 0.1µF or greater ceramic capacitor  
8
C1  
12  
ꢁ2  
3
A3  
V
L
as close to the device as possible.  
EP  
3
4
A3  
A4  
C4  
C3  
1
2
ꢁ2  
A2  
S2  
C2  
C3  
S5  
C4  
C5  
ꢁ3  
A5  
ꢁ4  
ꢁ5  
I/O V 3  
I/O 3 Referred to V  
I/O 4 Referred to V  
I/O 4 Referred to V  
I/O 3 Referred to V  
I/O 5 Referred to V  
I/O 6 Referred to V  
I/O 7 Referred to V  
I/O 8 Referred to V  
I/O 5 Referred to V  
I/O 6 Referred to V  
I/O 7 Referred to V  
I/O 8 Referred to V  
L
L
I/O V 4  
L
L
7
15  
17  
12  
11  
10  
9
I/O V  
I/O V  
I/O V  
I/O V  
I/O V  
I/O V  
4
3
5
6
7
8
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
L
8
EP  
5
I/O V 5  
L
6
I/O V 6  
L
L
7
I/O V 7  
L
L
8
I/O V 8  
L
L
EP  
EP  
Exposed Pad. Connect exposed pad to GNS.  
pullup resistors and increased bus load capacitance.  
Externally applied voltages, V and V , set the logic-  
Detailed Description  
CC  
L
The MAX3394E/MAX3395E/MAX3396E bidirectional  
level translators provide level shifting required for data  
transfer in a multivoltage system. Internal slew-rate  
enhancement circuitry features 10mA current-sink and  
15mA current-source drivers to isolate capacitive loads  
from lower current drivers. In open-drain systems, slew-  
rate enhancement enables fast data rates with larger  
high levels for the device. A logic-low signal on one I/O  
side of the device appears as a logic-low signal on the  
opposite I/O side and vice-versa. Each I/O line is pulled  
up to V  
or V by an internal pullup resistor, allowing  
L
CC  
the devices to be driven by either push-pull or open-  
drain drivers.  
_______________________________________________________________________________________  
7
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
t
t
RVCC  
FVCC  
V
V
CC  
L
90%  
90%  
V
EN  
V
CC  
L
MAX3394E  
MAX3395E  
MAX3396E  
I/O V  
L
50%  
50%  
V
V
L
CC  
50%  
50%  
I/O V  
L_  
I/O V  
CC_  
10%  
I/O V  
10%  
CC  
50Ω  
C
IOVCC  
t
I/OVL-VCC  
t
I/OVL-VCC  
Figure 1. Push-Pull Sriving I/O V Test Circuit and Timing  
L_  
t
t
RVCC  
FVCC  
V
L
V
CC  
I/O V  
CC  
90%  
90%  
EN  
V
V
L
CC  
MAX3394E  
MAX3395E  
MAX3396E  
V
GATE  
50%  
50%  
V
V
L
CC  
50%  
50%  
I/O V  
I/O V  
CC_  
L_  
10%  
10%  
45/MAX396E  
C
IOVCC  
V
GATE  
t
I/OVL-VCC  
t
I/OVL-VCC  
Figure 2. Open-Srain Sriving I/O V Test Circuit and Timing  
L_  
The MAX3394E/MAX3395E/MAX3396E feature a tri-  
state output mode, thermal-shutdown protection, and  
15kV ꢀuman ꢁody Model ꢂꢀꢁMꢃ EꢄS protection on  
teed data rate of 6Mbps with push-pull drivers and  
1Mbps with open-drain drivers.  
Level Translation  
The MAX3394E/MAX3395E/MAX3396E utilize a trans-  
mission gate architecture to provide bidirectional level  
the V  
side for greater protection in applications that  
CC  
route signals externally.  
The MAX3394E/MAX3395E/MAX3396E accept V  
volt-  
CC  
translation between I/O V _ and I/O V _. The trans-  
L
CC  
ages from +1.65V to +5.5V, and V voltages from +1.2V  
L
mission gate architecture is comprised of a pass-FET,  
gate-control logic, and slew-rate enhancement circuit-  
to V , making them ideal for data transfer between low-  
CC  
voltage AꢄIC/PLSs and higher voltage systems. The  
MAX3394E/MAX3395E/MAX3396E operate at a guaran-  
ry. When both I/O V _ and I/O V _ are logic high, the  
L
CC  
gate-control logic disables the pass-FET, providing  
8
_______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
45/MAX396E  
t
t
FVL  
RVL  
V
V
L
CC  
I/O V  
CC  
EN  
V
V
CC  
L
MAX3394E  
MAX3395E  
MAX3396E  
V
V
CC  
L
90%  
90%  
50%  
50%  
50%  
50%  
I/O V  
CC_  
I/O V  
L_  
10%  
50Ω  
10%  
t
I/O V  
L
C
IOVL  
t
I/OVCC-VL  
I/OVCC-VL  
Figure 3. Push-Pull Sriving I/O V  
Test Circuit and Timing  
CC_  
t
t
RVL  
V
L
V
FVL  
CC  
EN  
V
V
L
CC  
I/O V  
L
MAX3394E  
MAX3395E  
MAX3396E  
90%  
90%  
50%  
50%  
V
V
CC  
L
50%  
50%  
I/O V  
10%  
10%  
I/O V  
CC_  
L_  
C
IOVL  
V
GATE  
t
t
I/OVCC-VL  
I/OVCC-VL  
Figure 4. Open-Srain Sriving I/O V  
Test Circuit and Timing  
CC_  
capacitive isolation between I/O lines. When one or  
both I/O lines are at a logic-low level, the gate-control  
logic turns the pass-FET on. When the pass-FET is  
active, I/O V _ and I/O V _ are connected, allowing  
the logic-low signal to be expressed simultaneously on  
both I/O lines.  
Internal ꢁlewꢂRate Enhancement  
Internal slew-rate enhancement circuitry accelerates  
logic-state changes by turning on MOꢄFETs M and  
P1  
M
M
during low-to-high logic transitions, and MOꢄFETs  
L
CC  
P2  
N3  
and M  
during high-to-low logic transitions ꢂsee  
N4  
the Functional Siagramꢃ. Suring logic-state changes,  
speed-up MOꢄFETꢄ are triggered by I/O line voltage  
thresholds. MOꢄFETꢄ M  
high-to-low logic transitions. M and M source 15mA  
The MAX3394E/MAX3395E/MAX3396E have internal  
and M  
sink 10mA during  
N3  
N4  
10kΩ ꢂtypꢃ pullup resistors from I/O V _ and I/O V  
_
L
CC  
P1  
P2  
to the respective supply voltages, allowing operation  
with open-drain drivers. Internal slew-rate enhancement  
circuitry accelerates logic-state transitions, maintaining  
a fast data rate with a higher bus load capacitance.  
Additionally, the 10mA current sink drivers permit the  
use of smaller external pullup resistors.  
during low-to-high logic transitions. ꢄlew-rate enhance-  
ment allows a fast data rate despite large capacitive bus  
loads, and permits larger external pullup resistors.  
_______________________________________________________________________________________  
9
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
V
V
V
L
V
CC  
L
CC  
V
V
V
CC  
V
CC  
L
L
EN  
EN  
MAX3394E  
MAX3395E  
MAX3396E  
MAX3394E  
MAX3395E  
MAX3396E  
V
V
V
V
L
CC  
L
CC  
R
R
LOAD  
LOAD  
I/O V  
I/O V  
I/O V  
CC_  
I/O V  
CC_  
L_  
L_  
C
C
IOVCC  
IOVL  
50Ω  
50Ω  
t
EN  
V
I/O V  
CC_  
EN  
0.5V  
TIME  
V
t
EN  
45/MAX396E  
EN  
I/O V  
L_  
0.2V (V < 2V)  
L
0.5V (V 2V)  
L
TIME  
Figure 5. Enable Test Circuit and Timing  
Tri-State Output Mode  
for normal operation. Srive  
CC  
-owerꢂꢁupply ꢁequencing  
The MAX3394E/MAX3395E/MAX3396E require two sup-  
ply voltages. For proper operation, ensure that +1.65V ≤  
Connect EN to V or V  
L
EN low to force the MAX3394E/MAX3395E/MAX3396E  
to a tri-state output mode. In tri-state output mode, all  
I/O lines are driven to a high-impedance state, and the  
pass-FET is disabled to prevent current flow between  
I/O lines. Tri-state output mode disables the internal  
pullup resistors on I/O V _ and I/O V _, and reduces  
V
CC  
+5.5V, and +1.2V V V . There are no restric-  
L CC  
tions on power-supply sequencing. Suring power-up or  
power-down, the MAX3394E/MAX3395E/MAX3396E can  
withstand either the V or the V  
supply floating while  
L
CC  
the other supply is applied. The device will not latch up in  
this state.  
L
CC  
supply current to 3µA typ ꢂV ꢃ and 0.7µA typ ꢂV ꢃ.  
CC  
L
10 ______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
45/MAX396E  
R
C
R
D
1MΩ  
1500Ω  
I 100%  
P
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
AMPERES  
HIGH-  
VOLTAGE  
DC  
36.8%  
DEVICE-  
UNDER-  
TEST  
C
100pF  
STORAGE  
CAPACITOR  
s
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 6b. ꢀꢁM Sischarge Current Waveform  
Figure 6a. ꢀuman ꢁody EꢄS Test Model  
To ensure full 15kV EꢄS protection, bypass V  
ground with a 0.1µF ceramic capacitor and an additional  
1µF ceramic capacitor as close to the device as possible.  
to  
CC  
The high-impedance state of the I/O lines during tri-  
state output mode facilitates use in multidrop networks.  
In tri-state output mode, do not exceed ꢂV + 0.3Vꢃ on  
L
I/O V _ or ꢂV  
+ 0.3Vꢃ on I/O V _.  
CC CC  
L
EꢁD Test Conditions  
EꢄS performance depends on a variety of conditions.  
Contact Maxim for a reliability report documenting test  
setup, methodology, and results.  
Thermalꢂꢁhutdown -rotection  
The MAX3394E/MAX3395E/MAX3396E are protected  
from thermal damage resulting from short-circuit faults.  
In the event of a short-circuit fault, when the junction  
Applications Information  
temperature ꢂT ꢃ reaches +125°C, a thermal sensor  
J
forces the device into the tri-state output mode. When  
-owerꢂꢁupply Decoupling  
to ground with 0.1µF ceramic  
CC  
T drops below +115°C, normal operation resumes.  
J
ꢁypass V and V  
L
capacitors. To ensure full 15kV EꢄS protection,  
bypass V to ground with an additional 1µF or greater  
ceramic capacitor. Place all capacitors as close to the  
device as possible.  
±±5ꢀk EꢁD -rotection  
As with all Maxim devices, EꢄS-protection structures are  
incorporated on all pins to protect against EꢄS encoun-  
CC  
tered during handling and assembly. The I/O V _ lines  
CC  
are further protected by advanced EꢄS structures to  
guard these pins from damage caused by EꢄS of up to  
15kV. Protection structures prevent damage caused by  
EꢄS events in normal operation, tri-state output mode,  
and when the device is unpowered. After arresting an  
EꢄS event, MAX3394E/MAX3395E/MAX3396E continue  
to function without latching up, whereas competing  
devices can enter a latched-up state and must be power  
cycled to restore functionality.  
OpenꢂDrain Mode vs. -ushꢂ-ull Mode  
The MAX3394E/MAX3395E/MAX3396E are compatible  
with push-pull ꢂactiveꢃ and open-drain drivers. For push-  
pull operation, maximum data rate is guaranteed to  
6Mbps. For open-drain applications, the MAX3394E/  
MAX3395E/MAX3396E include internal pullup resistors  
and slew-rate enhancement circuitry, providing a maxi-  
mum data rate of 1Mbps. External pullup resistors can  
be added to increase data rate when the bus is loaded  
by high capacitance. ꢂꢄee the Use of External Pullup  
Resistors section.ꢃ  
ꢄeveral EꢄS testing standards exist for gauging the  
robustness of EꢄS structures. The EꢄS protection of  
the MAX3394E/MAX3395E/MAX3396E is characterized  
for the human body model ꢂꢀꢁMꢃ. Figure 6a shows the  
model used to simulate an EꢄS event resulting from  
contact with the human body. The model consists of a  
100pF storage capacitor that is charged to a high volt-  
age then discharged through a 1.5kΩ resistor. Figure  
6b shows the current waveform when the storage  
capacitor is discharged into a low impedance.  
Serial-Interface Level Translation  
The MAX3395E provides level translation on four I/O  
lines, making it an ideal device for multivoltage I2C,  
MICROWIRE, and ꢄPI serial interfaces.  
Use of External -ullup Resistors  
The MAX3394E/MAX3395E/MAX3396E include internal  
10kΩ pullup resistors. Suring a low-to-high logic transi-  
tion, the internal pullup resistors charge the bus capac-  
______________________________________________________________________________________ 11  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
Functional Diagram  
V
CC  
V
L
V
L
V
CC  
M
P1  
M
P2  
GATE CONTROL  
I/O V  
I/O V  
L_  
CC_  
N-CHANNEL  
PASS-FET  
SLEW-RATE  
ENHANCEMENT  
M
N3  
M
N4  
Typical Operating Circuit  
+1.8V  
+3.3V  
0.1μF  
1μF  
0.1μF  
V
V
L
CC  
+1.8V  
SYSTEM  
CONTROLLER  
+3.3V  
SYSTEM  
MAX3394E  
EN  
EN  
I/O V  
I/O V  
1
I/O V 1  
L
CLK  
CLK  
CC  
I/O V 2  
L
2
DATA  
DATA  
CC  
45/MAX396E  
GND  
GND  
GND  
itance with a characteristic RC charging waveform.  
When the low-to-high transition threshold ꢂV or V  
upon restoration of the V  
supply voltage. The  
CC  
MAX3395E provides bidirectional level translation on  
four I/O lines, making it well suited for buffering and  
translating 4-wire serial interfaces.  
CC-Tꢀ  
L-  
ꢃ is reached, the rise time accelerators switch on,  
Tꢀ  
sourcing 15mA to fully charge the bus capacitance.  
External pullup resistors reduce the time needed to  
reach the low-to-high transition threshold, thereby  
increasing the data rate. In the logic-low state however,  
external pullup resistors increase the SC current  
through the internal pass-FET, increasing the output  
voltage of the device.  
UCꢁ- Applications Information  
For the latest application details on UCꢄP construction,  
dimensions, tape carrier information, PCꢁ techniques,  
bump-pad layout, and recommended reflow temperature  
profiles, as well as the latest information on reliability test-  
ing results, go to Maxim’s web site at www.maxim-  
ic.com/ucsp to find the Application Note 1891:  
Wafer-Level Packaging ꢂWLPꢃ and Its Applications.  
ꢁmartꢂCard Interface  
The MAX3395E provides level translation for Class A, ꢁ,  
and C smart cards. When supply voltage V  
is inter-  
CC  
rupted due to the disconnection of a smart card, the  
device does not latch up. Normal operation resumes  
12 ______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
45/MAX396E  
-in Configurations (continued)  
TOP VIEW  
(BUMPS ON BOTTOM)  
1
2
3
A
I/O V  
1
I/O V 2  
CC  
V
CC  
CC  
B
MAX3394E  
EN  
GND  
C
V
L
I/O V 1  
L
I/O V 2  
L
UCSP  
TOP VIEW  
TOP VIEW  
(BUMPS ON BOTTOM)  
(LEADS ON BOTTOM)  
1
2
3
4
MAX3395E  
9
8
7
A
*EP  
I/O V  
1
10  
11  
12  
6
5
4
EN  
CC  
I/O V 1  
L
I/O V 3  
L
I/O V 2  
L
I/O V 4  
L
V
GND  
CC  
MAX3395E  
B
V
CC  
EN  
V
L
V
L
GND  
I/O V 4  
L
+
C
1
2
3
I/O V  
CC  
1
I/O V 3  
CC  
I/O V  
CC  
2
I/O V 4  
CC  
TQFN  
UCSP  
*CONNECT EXPOSED PAD TO GROUND  
TOP VIEW  
(LEADS ON BOTTOM)  
TOP VIEW  
(BUMPS ON BOTTOM)  
1
2
3
5
4
15  
14  
13  
12  
11  
MAX3396E  
I/O V  
7
8
10  
9
I/O V  
I/O V  
I/O V  
2
3
1
16  
17  
18  
CC  
CC  
CC  
CC  
CC  
A
*EP  
I/O V  
I/O V 6  
L
I/O V 2  
L
V
L
I/O V 4  
L
EN  
8
I/O V 8  
L
MAX3396E  
B
I/O V 1 19  
7
I/O V 7  
L
L
I/O V 8  
L
I/O V 1  
L
I/O V 5  
L
I/O V 3  
I/O V 7  
L
L
20  
6
I/O V 6  
L
I/O V 2  
L
+
C
1
2
3
4
5
I/O V  
I/O V  
8
I/O V  
CC  
1
2
I/O V 5  
CC  
I/O V  
I/O V  
3
I/O V 7  
CC  
CC  
CC  
D
TQFN  
*CONNECT EXPOSED PAD TO GROUND  
6
I/O V  
CC  
V
CC  
4
GND  
CC  
CC  
UCSP  
______________________________________________________________________________________ 13  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
ꢁelector Guide  
Chip Information  
PROCEꢄꢄ: ꢁiCMOꢄ  
NUMBER OF  
TOP  
PART  
CONNECT EXPOꢄES PAS TO GNS.  
TRANSLATORS  
MARK  
MAX3394EETA+T  
MAX3394EEꢁL+T  
MAX3395EETC+  
MAX3395EEꢁC+T  
MAX3396EEꢁP+T  
MAX3396EETP+  
2
2
4
4
8
8
APE  
AEZ  
AAFZ  
ACO  
Note: All devices specified over the -40°C to +85°C operating  
range.  
+Senotes leadꢂPbꢃ-free/Roꢀꢄ-compliant package.  
45/MAX396E  
14 ______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
45/MAX396E  
-acꢀage Information  
ꢂThe package drawingꢂsꢃ in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.ꢃ  
PACKAGE VARIATIONS  
COMMON DIMENSIONS  
SYMBOL MIN. MAX.  
PKG. CODE  
T633-2  
N
6
8
8
D2  
1.50 0.10 2.30 0.10 0.95 BSC  
1.50 0.10 2.30 0.10  
1.50 0.10 2.30 0.10 0.65 BSC  
E2  
e
b
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEED-3  
[(N/2)-1] x e  
0.40 0.05 1.90 REF  
0.30 0.05 1.95 REF  
0.30 0.05 1.95 REF  
A
D
0.70  
2.90  
2.90  
0.00  
0.20  
0.80  
3.10  
3.10  
0.05  
0.40  
T833-2  
0.65 BSC  
E
T833-3  
T1033-1  
T1033MK-1  
T1033-2  
T1433-1  
T1433-2  
T1433-3F  
10 1.50 0.10 2.30 0.10 0.50 BSC  
0.25 0.05  
2.00 REF  
2.00 REF  
2.00 REF  
2.40 REF  
2.40 REF  
A1  
L
10 1.50 0.10 2.30 0.10 0.50 BSC MO229 / WEED-3 0.25 0.05  
10 1.50 0.10 2.30 0.10 0.50 BSC MO229 / WEED-3 0.25 0.05  
k
0.25 MIN.  
0.20 REF.  
14 1.70 0.10 2.30 0.10 0.40 BSC  
14 1.70 0.10 2.30 0.10 0.40 BSC  
14 1.70 0.10 2.30 0.10 0.40 BSC  
- - - -  
- - - -  
- - - -  
0.20 0.05  
0.20 0.05  
A2  
0.20 0.05 2.40 REF  
______________________________________________________________________________________ 15  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
-acꢀage Information (continued)  
ꢂThe package drawingꢂsꢃ in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.ꢃ  
45/MAX396E  
PACKAGE OUTLINE, 3x3 UCSP  
1
21-0093  
L
1
16 ______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
45/MAX396E  
-acꢀage Information (continued)  
ꢂThe package drawingꢂsꢃ in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.ꢃ  
PACKAGE OUTLINE, 4x3 UCSP  
1
21-0104  
F
1
______________________________________________________________________________________ 17  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
-acꢀage Information (continued)  
ꢂThe package drawingꢂsꢃ in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.ꢃ  
45/MAX396E  
18 ______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
45/MAX396E  
-acꢀage Information (continued)  
ꢂThe package drawingꢂsꢃ in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.ꢃ  
______________________________________________________________________________________ 19  
±±5ꢀk EꢁDꢂ-rotected, HighꢂDrive Current, Dualꢂ/Quadꢂ/  
OctalꢂLevel Translators with ꢁpeedꢂUp Circuitry  
-acꢀage Information (continued)  
ꢂThe package drawingꢂsꢃ in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.ꢃ  
45/MAX396E  
Revision History  
Pages changed at Rev 2: 1–4, 9, 11, 12, 14, 20  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated -roducts, ±20 ꢁan Gabriel Drive, ꢁunnyvale, CA 94086 408ꢂ737ꢂ7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
ꢁoblet  

相关型号:

MAX3395EEBC+T

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/ Octal-Level Translators with Speed-Up Circuitry
MAXIM

MAX3395EETC+

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/ Octal-Level Translators with Speed-Up Circuitry
MAXIM

MAX3395EETC+T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220, TQFN-12
MAXIM

MAX3396E

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/ Octal-Level Translators with Speed-Up Circuitry
MAXIM

MAX3396EEBP T

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/ Octal-Level Translators with Speed-Up Circuitry
MAXIM

MAX3396EEBP+T

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/ Octal-Level Translators with Speed-Up Circuitry
MAXIM

MAX3396EETP

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/ Octal-Level Translators with Speed-Up Circuitry
MAXIM

MAX3396EETP+

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/ Octal-Level Translators with Speed-Up Circuitry
MAXIM

MAX3397E

Dual Bidirectional Low-Level Translator in レDFN
MAXIM

MAX3397EELA+

Dual Bidirectional Low-Level Translator in レDFN
MAXIM

MAX3397EELA+T

Interface Circuit, BICMOS, 2 X 2 MM, 0.80 MM HEIGHT, LEAD FREE, DFN-8
MAXIM

MAX339CEE

DUAL 4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, QSOP-16
ROCHESTER