MAX35104ETL+T [MAXIM]

Gas Flow Meter SoC;
MAX35104ETL+T
型号: MAX35104ETL+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Gas Flow Meter SoC

文件: 总80页 (文件大小:1299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX35104  
Gas Flow Meter SoC  
General Description  
Benefits and Features  
High Accuracy Flow Measurement for Billing and  
The MAX35104 is a gas flow meter system-on-chip (SoC)  
targeted as an analog front-end solution for the ultrasonic  
gas meter and medical ventilator markets. With a time  
measurement accuracy of 700ps and automatic differen-  
tial time of flight (TOF), the device makes for simplified  
computation of gaseous flow.  
Leak Detection  
• Time-to-Digital Accuracy Down to 700ps  
Measurement Range Up to 8ms  
• 2 Channels: Single-Stop Channel  
High Accuracy Temperature Measurement for Precise  
Flow Calculations  
Power consumption is the lowest available with ultra-low  
62µA time-of-flight measurement and 125nA duty-cycled  
temperature measurement. Multi-hit (up to six per wave)  
capability with stop-enable windowing allows the device to  
be fine-tuned for the application. Internal analog switches,  
a configurable three-stage integrated operational ampli-  
fier chain amplifier, and an ultra-low input offset compara-  
tor provide the analog interface and control for a minimal  
electrical bill of material solution. A programmable high-  
voltage (up to 30V) pulse launcher provides up to 19dB of  
transducer launch amplitude adjustment to compensate  
for transducer aging and temperature, pressure, humidity  
affects. Early edge detection ensures measurements are  
made with consistent wave patterns to greatly improve  
accuracy and eliminate erroneous measurements. Built-in  
arithmetic logic unit provides TOF difference measure-  
ments and programmable receiver hit accumulators to  
minimize the host microprocessor access. For tempera-  
ture measurement, the device supports a single 2-wire  
PT1000 platinum resistive temperature detector (RTD) or  
NTC thermistor. A simple 4-wire SPI interface allows any  
microcontroller to effectively configure the device for its  
intended measurement.  
• One 2-Wire Sensor: PT1000, PT500 RTD, and  
Thermistor Support  
Maximizes Battery Life with Low Device and Overall  
System Power  
• Ultra-Low 62µA TOF Measurement and 125nA  
Duty-Cycled Temperature Measurement  
• Event Timing Mode with Randomizer Reduces  
Host μC Overhead to Minimize System Power  
Consumption  
• 2.3V to 3.6V Single-Supply Operation  
High Integration Solution Minimizes Parts Count and  
Reduces BOM Cost  
• Built-In Real-Time Clock  
• Small, 5mm x 5mm, 40-Pin TQFN Package  
• -40°C to +85°C Operation  
Ordering Information appears at end of data sheet.  
Applications  
Ultrasonic Gas Meters  
Medical Ventilators  
19-8501; Rev 3; 12/17  
MAX35104  
Gas Flow Meter SoC  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended External Crystal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Time-of-Flight (TOF) Measurement Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Pulse Echo TOF Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Early Edge Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
TOF Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Step-Up DC-DC Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Control and Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Compensation Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
RSENSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Kelvin Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Inductor (L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Output Filter Capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Piezo Driver Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Transducer Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Analog Front-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Temperature Measurement Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Temperature Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Event Timing Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Continuous Event Timing Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Continuous Interrupt Timing Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
TOF Sample Randomizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Event Timing Mode 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Event Timing Mode 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Event Timing Mode 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
(
)
TABLE OF CONTENTS continued  
Calibration Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Error Handling during Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
RTC, Alarm, Watchdog, and Tamper Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
RTC Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Alarm Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Watchdog Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Tamper Detect Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Device Interrupt Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
INT Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Serial Peripheral Interface Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Opcode Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Execution Opcode Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
TOF_UP Command (00h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
TOF_Down Command (01h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
TOF_DIFF Command (02h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Temperature Command (03h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Reset Command (04h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Initialize Command (05h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Bandpass Calibrate Command (06h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
EVTMG1 Command (07h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
EVTMG2 Command (08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
EVTMG3 Command (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
HALT Command (0Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Calibrate Command (0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Register Opcode Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Read Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Write Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Register Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
RTC and Watchdog Register Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Configuration Register Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Conversion Results Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Chip Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
LIST OF FIGURES  
Figure 1. SPI Timing Diagram Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Figure 2. SPI Timing Diagram Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 3. Time-of-Flight Up Measurement Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 4. Start/Stop for Time-to-Digital Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 5A. Pulse Echo Measurement Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 5B. Early Edge Detect Received Wave Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 6. Boost Circuits Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 7. Kelvin Sense Connection Layout Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 8. Piezo Driver Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 9. Analog Front-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 10. Temperature Command Execution Cycle Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 11. EVTMG2 Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 12. EVTMG2 Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 13. EVTMG3 Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 14. EVTMG3 Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 15. EVTMG1 Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 16. EVTMG1 Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 17. Execution Opcode Command Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 18. Read Register Opcode Command Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 19. Continuous Read Register Opcode Command Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 20. Write Register Opcode Command Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 21. Continuous Write Register Opcode Command Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
LIST OF TABLES  
Table 1. Two’s Complement TOF_DIFF Conversion Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 2. RSENSE Example Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 3. Example Gain Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 4. Randomizer Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 5. Opcode Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 6. Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 7. RTC Seconds Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 8. RTC Mins_Hrs Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 9. RTC Day_Date Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 10. RTC Month_Year Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
(
)
LIST OF TABLES continued  
Table 11. Watchdog Alarm Counter Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 12. Alarm Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 13. Switcher 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 14. Switcher 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 15. AFE 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 16. AFE 2 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 17. TOF1 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 18. TOF2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 19. TOF3 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 20. TOF4 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 21. TOF5 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 22. TOF6 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 23. TOF7 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 24. Event Timing 1 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 25. Event Timing 2 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 26. TOF Measurement Delay Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 27. Calibration and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 28. Real-Time Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Table 29. Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 30. Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 31. Conversion Results Registers Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Absolute Maximum Ratings  
(Voltage relative to ground.)  
Operating Temperature Range............................-40ºC to +85ºC  
Junction Temperature......................................................+150ºC  
Storage Temperature Range.............................-55ºC to +125ºC  
Soldering Temperature (reflow).......................................+260ºC  
Lead Temperature (soldering, 10s) .................................+300ºC  
ESD Protection (All Pins, Human Body Model) ................±500V  
Voltage Range on V  
Pins.................................-0.5V to +4.0V  
CC  
Voltage Range on All Other  
Pins (not to exceed 4.0V)..................... -0.5V to (V  
Voltage Range on High Voltage Pins....................................32V  
+ 0.3V)  
CC  
Continuous Power Dissipation (T = +70ºC)  
A
TQFN (derate 35.70mW/ºC above +70ºC)...........2857.10mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
TQFN  
Junction-to-Ambient Thermal Resistance (θ ) ..........28°C/W  
Junction-to-Case Thermal Resistance (θ ).................2°C/W  
JC  
JA  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Recommended Operating Conditions  
(T = -40°C to +85°C, unless otherwise noted.) (Notes 2, 3)  
A
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
2.3  
3.3  
3.6  
V
CC  
Input Logic 1 (RST, CSW, SCK,  
DIN, CE)  
V
V
V
x 0.7  
V + 0.3  
CC  
V
V
IH  
CC  
Input Logic 0 (RST, CSW, SCK,  
DIN, CE)  
V
-0.3  
x 0.85  
V
x 0.3  
+ 0.3  
IL  
CC  
Input Logic 1 (32KX1)  
Input Logic 0 (32KX1)  
V
V
V
V
IH32KX1  
CC  
CC  
V
-0.3  
V
x 0.15  
CC  
IL32KX1  
Electrical Characteristics  
(V  
= +2.3V to +3.6V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Notes 2, 3)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Leakage (CSW, RST,  
SCK, DIN, CE, CIP, CIN)  
I
-0.1  
+0.1  
µA  
L
Output Leakage (INT, WDO,  
T1,T2)  
O
-0.1  
+0.1  
µA  
L
Output Voltage Low (32KOUT)  
Output Voltage High (32KOUT)  
V
2mA  
0.2 x V  
V
V
OL32K  
CC  
V
-1mA  
0.8 x V  
0.8 x V  
3.4  
OH32K  
CC  
Output Voltage High  
(DOUT, CMP_OUT/UP_DN)  
V
-4mA  
V
V
V
Ω
OH  
CC  
Output Voltage High (TC)  
V
V
= 3.6V, I  
= -4mA  
OHTC  
CC  
OUT  
Output Voltage Low (WDO,  
INT, DOUT, MP_OUT/UP_DN)  
V
4mA  
ITC  
0.2 x V  
1750  
OL  
TC  
CC  
Pulldown Resistance (TC)  
R
650  
1000  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Electrical Characteristics (continued)  
(V  
= +2.3V to +3.6V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Notes 2, 3)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
V
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Low (TC)  
Pulldown (RXP, RXN)  
Resistance (T1, T2)  
0.36 x V  
V
ILTC  
CC  
AFE_BP = 0, pins disabled  
80  
1.5  
7
µA  
Ω
R
ON  
Input Capacitance (CE, SCK,  
DIN, RST, CSW)  
C
Not tested  
pF  
ns  
IN  
RST Low Time  
t
100  
RST  
CURRENT  
Standby Current  
32kHz OSC Current  
4MHz OSC Current  
I
No oscillators running  
10  
1
µA  
µA  
µA  
DDQ  
I
32kHz oscillator only, V  
= 3.6V  
= 3.6V  
0.42  
82  
32KHZ  
CC  
I
4MHz oscillator only, V  
135  
4MHZ  
CC  
Time Measurement Unit  
Current  
I
V
= 3.3V  
4.3  
1.2  
62  
8
3
mA  
mA  
CCTMU  
CC  
Calculator Current  
I
CCCPU  
V
= 3.3V, TOF_DIFF = 2 per second,  
CC  
Device Current Drain  
I
CC  
µA  
temperature = 1 per 30 seconds  
TRANSMITTER: BOOST SWITCH  
Output Voltage Range  
ER  
9
30  
V
V
Programmable Output Voltage  
Step Size  
1.7  
Output Switching Frequency  
Current-Limit Trip Level  
100  
100  
200  
200  
kHz  
mV  
V
150  
CS-SW  
TRANSMITTER: FET GATE DRIVER  
External FET Gate Charge  
Rise Time  
Q
2
nC  
ns  
ns  
G
t
C = 1nF (Figure 2, Note 3)  
100  
100  
R
L
Fall Time  
t
C = 1nF (Figure 2, Note 3)  
L
F
TRANSMITTER: HIGH-VOLTAGE REGULATOR  
Output Voltage Range  
Low  
5.4  
V
V
Output Voltage Range  
High  
26.4  
Programmable Output Voltage  
Step Size  
1.7  
V
Output Voltage Accuracy  
5
%
Load Regulation  
I
= 15mA  
150  
mV  
LOAD  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Electrical Characteristics (continued)  
(V  
= +2.3V to +3.6V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Notes 2, 3)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TRANSMITTER: PIEZO DRIVER  
Driver Output Resistance  
Pulling Down (n-Channel)  
R
R
V
V
= 10V, I =10mA  
50  
50  
Ω
Ω
ON-N-PD  
IN  
LD  
Driver Output Resistance  
Pulling Up (p-Channel)  
= 10V, I =10mA  
ON-P-PU  
IN  
LD  
Output Leakage Current  
Rise Time  
I
0.05  
100  
100  
µA  
ns  
ns  
LK-PD  
t
C = 1nF  
L
R-PD  
Fall Time  
t
C = 1nF  
L
F-PD  
FILTER SPECIFICATION  
Input Amplitude  
1
10  
mV  
kΩ  
dB  
Differential Input Impedance  
Programmable Gain Resolution  
COMPARATOR SPECIFICATION  
4
Per bit  
1.5  
C_OFFSETUP or C_OFFSETDN  
register programmed to 00h  
Input Offset Voltage  
V
2
1
mV  
mV  
OFFSET  
Input Offset Step Size  
V
STEP  
Receiver Sensitivity  
V
Stop hit detect level  
f = 200kHz  
10  
mV  
P-P  
SENS  
ANALOG RECEIVER: BANDPASS FILTER  
Center Frequency Accuracy  
f
6
4
%
0A  
Q Range  
Hz/Hz  
%
12  
20  
Q Accuracy  
200kHz PERFORMANCE  
A1 Differential Gain  
200kHz, V = 6mV  
10  
±1  
V/V  
%
IN  
P-P  
UP/DN Gain Match  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Electrical Characteristics (continued)  
(V  
= +2.3V to +3.6V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Notes 2, 3)  
CC A  
CC  
A
PARAMETER  
PGA[3:0] = 0000b  
SYMBOL  
CONDITIONS  
MIN  
TYP  
3.16  
3.69  
4.30  
5.01  
5.84  
6.81  
7.94  
9.26  
10.8  
12.6  
14.7  
17.1  
20.0  
23.3  
27.1  
31.6  
MAX  
UNITS  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 19.0mV  
= 16.3mV  
= 14.0mV  
= 12.0mV  
= 10.3mV  
= 8.80mV  
= 7.55mV  
= 6.48mV  
= 5.56mV  
= 4.76mV  
= 4.09mV  
= 3.51mV  
= 3.02mV  
= 2.58mV  
= 2.21mV  
= 1.90mV  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
PGA[3:0]= 0001b  
PGA[3:0]= 0010b  
PGA[3:0]= 0011b  
PGA[3:0]= 0100b  
PGA[3:0]= 0101b  
PGA[3:0]= 0110b  
PGA[3:0]= 0111b  
PGA[3:0]= 1000b  
PGA[3:0]= 1001b  
PGA[3:0]= 1010b  
PGA[3:0]= 1011b  
PGA[3:0]= 1100b  
PGA[3:0]= 1101b  
PGA[3:0]= 1110b  
PGA[3:0]= 1111b  
PGA Gain  
V
= 600mV  
V/V  
OUT  
P-P  
V
V
= 19mV  
IN  
P-P  
P-P  
Filter Gain at 200kHz Trim  
1.0  
V/V  
V/V  
Filter Gain with Bypass  
= 19mV  
0.01  
IN  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Electrical Characteristics (continued)  
(V  
= +2.3V to +3.6V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Notes 2, 3)  
CC A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIME MEASUREMENT UNIT  
Measurement Range  
t
Time of flight  
Differential time measurement  
4
8000  
µs  
ps  
ps  
MEAS  
Time Measurement Accuracy  
Time Measurement Resolution  
EXECUTION TIMES  
t
700  
3.8  
ACC  
t
RES  
Power-On-Reset Time  
Case Switch Time  
V
MIN to POR bit set  
275  
20  
µs  
ns  
CC  
CSW pin logic-high until CSWI bit set  
Command received until CAL bit set  
CAL Command Time  
1.25  
ms  
SERIAL PERIPHERAL INTERFACE (Figure 1 and Figure 2)  
DIN to SCK Setup  
SCK to DIN Hold  
SCK to DOUT Delay  
t
20  
20  
20  
ns  
ns  
ns  
DC  
t
t
2
5
CDH  
CDD  
VCC ≥ 3.0V  
25  
50  
25  
4
SCK Low Time  
t
ns  
CL  
VCC = 2.3V  
30  
4
SCK High Time  
t
ns  
MHz  
ns  
CH  
SCK Frequency  
t
20  
10  
40  
20  
40  
40  
SCK  
SCK Rise and Fall  
CE to SCK Setup  
SCK to CE Hold  
t , t  
R
F
t
5
ns  
CC  
t
ns  
CCH  
CE Inactive Time  
CE to DOUT High Impedance  
t
2
5
ns  
CWH  
t
ns  
CCZ  
Note 2: All voltages are referenced to ground. Current entering the device are specified as positive and currents exiting the device  
are negative.  
Note 3: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage  
A
range are guaranteed by design and characterization.  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Recommended External Crystal Characteristics  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
32kHz Nominal Frequency  
f
32.768  
kHz  
32K  
32kHz Frequency Tolerance  
32kHz Load Capacitance  
32kHz Series Resistance  
∆f  
/f  
25°C  
-20  
+20  
70  
ppm  
pF  
32K 32K  
C
12.5  
L32K  
S32K  
R
kΩ  
4MHz Crystal Nominal Frequency  
4MHz Crystal Frequency Tolerance  
4MHz Crystal Loadapacitance  
f
4.000  
12.0  
4.000  
30  
MHz  
ppm  
pF  
4M  
Δf /f  
25°C  
25°C  
-30  
+30  
120  
+0.5  
4M 4M  
C
L4M  
4MHz Crystal Series Resistance  
4MHz Ceramic Nominal Frequency  
4MHz Ceramic Frequency Tolerance  
4MHz Ceramic Load Capacitance  
R
Ω
S4M  
MHz  
%
-0.5  
pF  
Timing Diagrams  
t
CC  
CE  
t
CWH  
t
CDH  
SCK  
DIN  
t
DC  
MSB  
LSB  
t
t
CCZ  
CDD  
DOUT  
HIGH IMPEDANCE  
MSB  
LSB  
Figure 1. SPI Timing Diagram Read  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Timing Diagrams (continued)  
t
CC  
t
CWH  
CE  
t
CLK  
t
R
t
t
CCH  
F
t
t
CH  
CDH  
V
IH  
t
CL  
SCK  
DIN  
V
IL  
t
DC  
MSB  
LSB  
DOUT  
HIGH IMPEDANCE  
Figure 2. SPI Timing Diagram Write  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Pin Configuration  
TOP VIEW  
30 29 28 27 26 25 24 23 22 21  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
AVDD  
RXP  
RXN  
CIN  
V
2X  
FETG  
VDD  
CPH  
CPL  
WDO  
INT  
CIP  
MAX35104  
AVSS  
32KOUT  
T1  
DOUT  
DIN  
EP = V  
SSIO  
+
T2  
SCK  
TC  
1
2
3
4
5
6
7
8
9
10  
TQFN  
(5mm x 5mm)  
Pin Description  
PIN  
NAME  
FUNCTION  
Connections for 32.768kHz Quartz Crystal, Connect a 12pF ceramic capacitor from each pin to  
ground. An external CMOS 32.768kHz signal can also drive the device. In this configuration, the  
32KX1 pin is connected to the external signal and the 32KX2 pin is left unconnected.  
1
32KX1  
2
3
32KX2  
LDO Supply Voltage. This pin should be decoupled to V  
(Note 1).  
with a 100nF ceramic capacitor  
SSISO  
V
DDISO  
Connections for 4MHz Quartz Crystal, connect a 12pF ceramic capacitor from each pin to  
ground. A ceramic resonator can also be used. An external CMOS 4MHz signal can also drive  
the device. In this configuration, the 4MX1 pin is connected to the external signal and the 4MX2  
pin is left unconnected.  
4
4MX1  
5
6
7
4MX2  
CSW  
CMOS Digital Input Case Switch. Active high tamper detect input.  
CMOS output that indicates the direction (upstream or downstream) of which the pulse launcher  
is currently launching pulses OR the comparator output (Note 2).  
CMP_OUT/UP_DN  
Connect this pin to ground with a 100nF ceramic capacitor to provide stability for the on-board  
low-dropout regulator. The effective series resistance of this capacitor needs to be in the range of  
1Ω to 2Ω (Note 3).  
8
BYPASS  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Pin Description (continued)  
PIN  
9
NAME  
RST  
CE  
FUNCTION  
Active-Low Reset (CMOS Digital Input). Performs the same function as a power-on reset (POR).  
Active-Low Serial Peripheral Interface Chip Enable Input (CMOS Digital Input)  
Serial Peripheral Interface Clock Input (CMOS Digital Input)  
10  
11  
12  
13  
SCK  
DIN  
Serial Peripheral Interface Data Input (CMOS Digital Input)  
DOUT  
Serial Peripheral Interface Data Output (CMOS Output)  
Active-Low, Open-Drain Interrupt Output. The pin is driven low when the device requires service  
from the host microprocessor.  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
INT  
WDO  
CPL  
CPH  
Active-Low, Open-Drain Watchdog Output. The pin is driven low when the watchdog counter  
reaches zero (if enabled).  
Negative terminal of the flying capacitor for the voltage doubler. Connect this pin to CPH with a  
100nF ceramic capacitor. (Note 4)  
Positive terminal of the flying capacitor for the voltage doubler. Connect this pin to CPL with a  
100nF ceramic capacitor. (Note 4,5)  
Supply Voltage. This pin should be decoupled to V with a 100nF and a 22µF ceramic capacitor  
SS  
(Note 1).  
V
DD  
PWM Modulated CMOS Gate Driver Output for External n-Channel Power Transistor used in the  
Boost Switcher. Place a 25Ω series resistor between this pin and the transistor gate.  
FETG  
Connect this pin to ground with a 100nF ceramic capacitor to provide stability for the on-board  
voltage doubler (Notes 3, 4).  
V
2X  
Error-Amplifier Output of Boost Converter. Connect the frequency-compensation network  
between COMP and AVSS. See Figure 6 (Notes 3, 4).  
COMP  
High-Current Ground Return for the Boost Switcher. Connect the current-sense resistor between  
this pin and CSIN+ (Note 4).  
V
SS_SW  
Positive Analog Input to the Current-Sense Amplifier for the Boost Switcher. Connect the current-  
sense resistor between this pin and CSIN (Note 4).  
CSIN  
Connect to the negative terminal of the piezo transducer located downstream of the gas flow.  
Performs the launching and receiving functions required for a time-of-flight measurement. In the  
launch case, it is the negative output of the bridged differential output driver pair. In the receive  
case, it is the negative input of the analog differential return signal from the piezo transducer  
(Notes 2, 4).  
24  
25  
TX_DNN  
TX_DNP  
Connect to the positive terminal of the piezo transducer located downstream of the gas flow.  
Performs the launching and receiving functions required for a time-of-flight measurement. In the  
launch case, it is the positive output of the bridged differential output driver pair. In the receive  
case, it is the positive input of the analog differential return signal from the piezo transducer  
(Notes 2, 4).  
26  
27  
V
Ground Connection  
SS  
Resulting High-Voltage Bias Generated by the Boost Switcher Circuit. Used as the supply for the  
high-voltage regulator and to generate the feedback voltage fed into the error-amplifier for closed  
loop control. (Notes 3, 4).  
V
P
Maxim Integrated  
14  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Connect this pin to ground with a 1µF ceramic capacitor to provide stability for the on-board high-  
voltage regulator. When the high-voltage regulator is not used and constantly disabled, short this  
pin to VP (Notes 3, 4).  
28  
V
PR  
Connected to the negative terminal of the piezo transducer located upstream of the gas flow.  
Performs the launching and receiving functions required for a time-of-flight measurement. In the  
launch case, it is the negative output of the bridged differential output driver pair. In the receive  
case, it is the negative input of the analog differential return signal from the piezo transducer  
(Notes 2, 4).  
29  
30  
TX_UPN  
TX_UPP  
Connected to the positive terminal of the piezo transducer located upstream of the gas flow.  
Performs the launching and receiving functions required for a time-of-flight measurement. In the  
launch case, it is the positive output of the bridged differential output driver pair. In the receive  
case, it is the positive input of the analog differential return signal from the piezo transducer  
(Notes 2, 4).  
Analog Supply Voltage. This pin should be decoupled to AVSS with a 100nF ceramic capacitor  
(Note 1).  
31  
32  
AVDD  
RXP  
Do Not Connect (DNC) When Utilizing the Internal Analog Front-End. Positive analog output from  
the selected transducer’s differential return signal. When used with the CIP pin provides a way to  
construct an external analog front-end (Note 5).  
Do Not Connect (DNC) When Utilizing the Internal Analog Front-End. Negative analog output  
from the selected transducer’s differential return signal. When used with the CIN pin provides a  
way to construct an external analog front-end (Note 5).  
33  
34  
35  
RXN  
CIN  
CIP  
Do Not Connect (DNC) When Utilizing the Internal Analog Front-End. Negative analog input to  
the differential receive comparator. When used with the RXN pin provides a way to construct an  
external analog front-end (Note 5). OR negative analog output of selectable AFE stages (Note 2).  
Do Not Connect (DNC) When Utilizing the Internal Analog Front-End. Positive analog input to  
the differential receive comparator. When used with the RXP pin provides a way to construct an  
external analog front-end (Note 5). OR positive analog output of selectable AFE stages (Note 2).  
36  
37  
38  
39  
40  
EP  
AVSS  
32KOUT  
T1  
Ground Connection  
CMOS Output That Repeats the 32kHz Crystal Oscillator Frequency  
Open-Drain Probe 1 Temperature Measurement (Note 5)  
Open-Drain Probe 2 Temperature Measurement (Note 5)  
Input/Output Temperature Measurement Capacitor Connection (Note 5)  
Exposed Pad, Ground Connection  
T2  
TC  
V
SSISO  
Note 1: A +2.7V to +3.6V supply. Typically sourced from a single lithium cell.  
Note 2: Dual functionality pin.  
Note 3: Do not connect to additional non-recommended external circuitry.  
Note 4: High-voltage tolerant.  
Note 5: This pin can be left open circuit if not needed.  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Block Diagram  
CIP CIN  
CMP_OUT/UP_DN  
T1  
T2  
V
BAT  
10kΩ (50ppm)  
METAL FILM  
TUNABLE BPF  
125kHz TO  
500kHz  
3.6V LTC CELL  
PGM OFFSET  
COMPARATOR  
TIME-TO-DIGITAL  
CONVERTER  
10DB TO  
30dB  
FIXED  
20dB  
10 nF COG (NP0)  
(30ppm/°C)  
TC  
TEMPERATURE  
RXP  
RXN  
MAX35104  
SCK  
DOUT  
DIN  
DATA AND STATUS  
REGISTER  
SPI  
PROGRAMMABLE ALU  
4-WIRE SPI  
I /  
TX_UPN  
HIGH-VOLTAGE  
PULSE  
TX_UPP  
CE  
PIEZOELECTRIC  
TRANSDUCERS  
LAUNCHER UP  
TX_DNN  
TX_DNP  
MICRO  
TO 30 V  
DIGITAL  
CONTROL  
INTERFACE  
WDO  
INT  
HV REGULATOR  
V
PR  
STATE MACHINE  
CONTROLLER  
INTERRUPT  
CONFIG  
REGISTERS  
V
P
V
DD  
RST  
COMP  
CSW  
F/F  
Q
ERROR  
AMP  
R
COMP  
V
DD  
SWITCHER  
N
S
INTERNAL LDO  
BYPASS  
GAIN  
(4x)  
BG  
CSIN  
HIGH-SPEED  
OSCILLATOR  
REAL-TIME  
CLOCK  
EVENT TIMER W/  
RANDOMIZER  
32kHz OSCILLATOR  
GATE DRIVER  
FETG  
VOLTAGE DOUBLER  
V
SS_SW  
AVDD  
V
V
DD  
DDISO  
CPL  
CPH  
4MX1  
4MX2  
32KOUT  
32KX1  
32KX2  
V
2X  
AVSS  
V
V
SS  
SSISO  
solution. A programmable high-voltage (up to 30V) pulse  
launcher provides up to 19dB of transducer launch ampli-  
tude adjustment to compensate for transducer aging and  
temperature, pressure, humidity affects.  
Detailed Description  
The MAX35104 is a gas flow meter SoC targeted as an  
analog front-end solution for the ultrasonic gas meter  
and medical ventilator markets. With a time measure-  
ment accuracy of 700ps and automatic differential Time-  
of-Flight measurement, the device makes for simplified  
computation of gaseous flow. Power consumption is the  
lowest available with ultra-low 62µA TOF measurement  
and 125nA duty-cycled temperature measurement.  
Early edge detection ensures measurements are made  
with consistent wave patterns to greatly improve accuracy  
and eliminate erroneous measurements. A built-in arith-  
metic logic unit provides TOF difference measurements  
and programmable receiver hit accumulators to minimize  
the host microprocessor access. For temperature mea-  
surement, the device supports a single 2-wire PT1000  
platinum resistive temperature detector (RTD) or NTC  
thermistor. A simple 4-wire SPI interface allows any micro-  
controller to effectively configure the device for its intended  
measurement.  
Multihit (up to 6 per wave) capability with stop-enable  
windowing allows the device to be fine-tuned for the appli-  
cation. Internal analog switches, a configurable 3-stage  
integrated operational amplifier chain amplifier, and an  
ultra-low input offset comparator provide the analog inter-  
face and control for a minimal electrical bill of material  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
TOF START  
V
HV-REGULATOR  
1
0
1
0
TX_UPN  
TX_UPP  
TRANSDUCER  
RING DOWN  
~0.7V  
TX_DNN  
TX_DNP  
AMPLIFIED AND FILTERED OUTPUT TO  
PROGRAMMABLE OFFSET  
COMPARATOR (INTERNAL TO THE  
DEVICE)  
POWER  
DOWN  
STATE  
TOF STOP  
AVG =  
(HIT[1:6]) ÷ 6  
COMPARATOR OFFSET  
WAVE NUMBER  
COMPARATOR  
OFFSET  
RETURN  
POWER DOWN STATE  
POWER  
DOWN  
STATE  
PROGRAMMABLE OFFSET COMPARATOR  
INPUTS (INTERNAL TO THE DEVICE)  
0
1
2
3
4
5
6
7
8
9
10 11  
INT PIN  
(2)  
(1)  
4 MHZ  
STARTUP  
(4)  
TOF  
ENABLE BOOST  
CIRCUIT & WAIT  
STABILIZATION  
TIME  
MEASUREMENT  
DELAY  
(3)  
LAUNCH  
PULSES  
~10us  
CONFIGURE  
(6)  
(8)  
ENABLE  
COMPARATOR  
TOF COMMAND  
(5)  
INTERNAL ANALOG  
RECEIVED  
BIAS APPLIED TO  
INTERNAL  
DISABLE BOOST  
CIRCUIT  
SWICTHES  
COMPARATOR CAPS  
(13)  
CALCULATIO  
NS  
(9)  
(11)  
(10)  
COMPARE  
RETURN  
(12)  
STOP  
HITS  
(14)  
INT  
ASSERTED  
t
WAVE  
t WAVE  
2
1
SELECTED WAVES FOR HITS:  
= 4 HIT1 = 6 HIT2 = 7 HIT3 = 8 HIT4 = 9 HIT5 = 10 HIT6 = 11  
STOP HITS SELECTED = 6, STOP POLARITY = POSITIVE EDGE  
t
2
Figure 3. Time-of-Flight Up Measurement Sequence  
1) The 4MHz oscillator and LDO is enabled with a pro-  
grammable settling delay time set by the CLK_S[2:0]  
bits in Calibration and Control register.  
Time-of-Flight (TOF) Measurement Operations  
TOF is measured by launching pulses from one piezo-  
electric transducer and receiving the pulses at a second  
transducer. The time between when the pulses are  
launched and received is defined as the time of flight. The  
device contains the functionality required to create a string  
of pulses, sense the receiving pulse string, and measure  
the time of flight. The device can measure two separate  
TOFs, which are defined as TOF Up and TOF Down.  
2) The boost circuit is enabled and attempts to reach  
the targeted set output voltage. Once at the target  
voltage, the stabilization time to wait before mov-  
ing to the next step is set by the ST[3:0] bits in the  
Switcher 2 register.  
3) The pulse launcher drives the appropriate TX pins  
with a programmable sequence of pulses. The num-  
ber of pulses launched is set by the PL[7:0] bits in  
the TOF1 register. The frequency of these 50% duty-  
cycle pulses is set by the DPL[3:0] bits, also in the  
TOF1 register. The start of these launch pulses gen-  
erates a start signal for the Time-to-Digital Converter  
(TDC) and is considered to be time zero for the TOF  
measurement. This is denoted in Figure 4.  
A TOF Up measurement has pulses launched from the  
TX_UPN and TX_UPP pins, which is connected to the  
downstream transducer. The ultrasonic pulse is received  
at the upstream transducer, which is connected to the  
TX_DNN and TX_DNP pins. A TOF Down measurement  
has pulses launched from the TX_DNN and TX_DNP  
pins, which is connected to the upstream transducer. The  
ultrasonic pulse is received at the downstream transduc-  
er, which is connected to the TX_UPN and TX_UPP pins.  
4) After a programmable delay time set in TOF Mea-  
surement Delay register, the comparator and hit  
detector at the appropriate pins are enabled. This  
delay allows the receiver to start recording hits when  
the received wave is expected, eliminating possible  
false hits from noise in the system.  
TOF measurements can be initiated by sending either the  
TOF_UP, TOF_DN, or TOF_DIFF commands. TOF_DIFF  
measurements can also be automatically executed using  
Event Timing Mode commands EVTMG1 or EVTMG2.  
The steps involved in a single TOF measurement are  
described below and labeled in Figure 3.  
5) Once the pulse launcher has completed transmitting  
the sequence of pulses, the boost circuit is disabled.  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
6) A common mode bias is enabled on the internal  
capacitor connecting the output of the bandpass filter  
to the input of the programmable offset comparator.  
This bias charge time is fixed at approximately 10µs.  
AVGDNInt and AVGDNFrac. The ratio of t /t and t /  
1 2 2  
t
are calculated and stored in the WVRUP or  
IDEAL  
WVRDN register.  
13) Once all the hit data, wave ratios, and averages  
become available in the Results registers, the TOF  
7) The comparator is enabled.  
bit in the Interrupt Status register is set and the INT  
pin is asserted (if enabled) and remains asserted  
until the Interrupt Status register is accessed by the  
microprocessor with a Read register command.  
8) Stop hits are detected according to the programmed  
preferred edge of the acoustic signal sequence  
received at the appropriate pins according to the  
setting of the STOP_POL bit in the TOF1 register.  
When a wave received at the receiving pins exceeds  
the Comparator Offset Voltage, which is set in the  
TOF6 and TOF7 registers, this wave is detected and  
identified as wave number 0. The width of the wave’s  
pulse that exceeds the Comparator Offset Voltage is  
The computation of the total time of flight is performed  
by counting the number of full and fractional 4MHz clock  
cycles that elapsed between the launch start and a hit  
stop as shown in Figure 4.  
Table 1. Two’s Complement TOF_DIFF  
Conversion Example  
measured and stored as the t time.  
1
9) The offset of the comparator then automatically and  
immediately switches to the Comparator Return Off-  
set, which is set in the TOF6 and TOF7 registers.  
REGISTER VALUE  
CONVERTER VALUE  
TOF_DIFFInt  
TOF_DIFFFrac  
(hex)  
TOF DIFF Value  
10) The t wave is detected and the width of the t pulse  
(hex)  
7FFF  
001C  
0001  
0000  
0000  
0000  
FFFF  
FFFF  
FFFE  
FF1C  
8000  
(ns)  
2
2
is measured and stored as the t time. The wave  
2
FFFF  
0403  
00A1  
0089  
0001  
0000  
FFFF  
FFC0  
1432  
8001  
0000  
8,191,999.9962  
7,003.9177  
250.6142  
0.5226  
number for the measurement of the t wave width is  
set by the T2WV[5:0] bits in the TOF2 register.  
2
11) The preferred number of stop hits are then detected.  
For each hit, the measured TOF is stored in the  
appropriate HITxUPINT and HITxUPFrac or HITx-  
DNINT and HITxDNFRAC registers. The number  
of hits to detect is set by the STOP[2:0] bits in the  
TOF2 register. The wave number to measure for  
each stop hit is set by the Hitx Wave Select bits in  
the TOF3, TOF4, and TOF5 registers.  
0.0038  
0.0000  
-0.0038  
-0.2441  
-480.2780  
-56,874.9962  
-8,192,000.0000  
12) After receiving all the programmed hits, the de-  
vice calculates the average of the recorded hits  
and stores this to AVGUPINT and AVGUPFrac or  
FRACTIONAL TOF RESULTS PORTION  
1 LSB = T4MHz/(2^16)  
INTEGER TOF RESULTS PORTION  
1 LSB = T4MHZ  
2
3
4
N
1
4 MHz CLOCK  
START SIGNAL  
STOP SIGNAL  
(INTERNALLY GENERATED  
WHEN ACOUSTIC SIGNAL  
IS TRANSMITTED)  
(GENERATED UPON  
ACOUSTIC SIGNAL  
RECEPTION)  
TOTAL TIME OF FLIGHT = INTEGER + FRACTIONAL  
Figure 4. Start/Stop for Time-to-Digital Timing  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Each TOF measurement result is comprised of an integer  
portion and a fractional portion. The integer portion is a  
if triggering on a negative edge, with 1 LSB = V /3072.  
CC  
Separate input offset settings are available for the  
Upstream received signal and the Downstream received  
signal. The input offset for the Upstream received signal is  
programmedusingtheC_OFFSETUP[6:0]bitsintheTOF6  
register,. The input offset for the Downstream received  
signal is programmed using the C_OFFSETDN[6:0] bits in  
binary representation of the number of t  
periods that  
4MHz  
contribute to the time results. The fractional portion is a  
binary representation of one t period quantized to  
4MHz  
a 16-bit resolution. The maximum size of the integer is  
15  
7FFFh or (2 - 1) x t  
or ~ 8.19ms. The maximum  
4MHz  
16  
16  
size of the fraction is FFFFh or (2 - 1)/2 x t  
. or  
the TOF7 register. Once the first hit is detected, the time t  
4MHz  
1
~ 249.9961 ns.  
equal to the width of the earliest detectable edge is mea-  
sured. The input offset voltage is then automatically and  
immediately returned to a preprogrammed comparator  
offset value. This return offset value has a range of +127  
LSB’s to -128 LSB’s in 1 LSB steps and is programmed  
into the C_OFFSETUPR[7:0] bits in the TOF6 register for  
the Upstream received signal and programmed into the  
C_OFFSETDNR[7:0] bits in the TOF7 register. This pre-  
programmed comparator offset return value is provided to  
allow for common-mode shifts that can be present in the  
received acoustic wave.  
Pulse Echo TOF Mode  
The device also has a pulse echo mode of operation.  
This mode allows time-of-flight measurements to be taken  
when only one transducer is used. The sole transducer  
transmits the high-voltage pulses and then receives the  
return signal. The time-of-flight measurement operation  
acts exactly as described in steps 1–13 except that the  
common mode of the AFE is applied to the same pins that  
transmitted the high-voltage pulses (Figure 5A).  
The resulting data from the measurement is reported in  
the same manner as described in the TOF_UP, TOF_  
DOWN, or TOF_DIFF sections depending upon which  
command was executed.  
The device is now ready to measure the successive hits.  
The next selected wave that is measured is the t wave.  
2
In the example in Figure 5B, this is the 7th wave after the  
Early Edge Detect wave. The selection of the t wave is  
2
made with the T2WV[5:0] bits in the TOF2 register.  
The pulse echo mode is enabled by setting the PECHO  
bit in the Switcher 2 Register.  
With reference to Figure 5B, the ratio t /t is calculated  
1 2  
and registered for the user. This ratio allows determination  
of abrupt changes in flow rate, received signal strength,  
partially filled tube detection, and empty tube. It also pro-  
vides noise suppression to prevent erroneous edge detec-  
Early Edge Detect  
The Early Edge Detect method of measuring the TOF of  
acoustic waves is used for all the TOF commands includ-  
ing TOF_UP, TOF_DN, and TOF_DIFF. This method  
allows the device to automatically control the input offset  
voltage of the receiver comparator so that it can provide  
advanced measurement accuracy. The input offset of the  
receiver comparator can be programmed with a range  
+127 LSBs if triggering on a positive edge and -127 LSBs  
tion. Also, the ratio t /t  
is calculated and registered  
2 iDEAL  
for the user. For this calculation, t  
is one-half the  
IDEAL  
period of launched pulse. This ratio adds confirmation that  
the t wave is a strong signal, which provides insight into  
2
the common mode offset of the received acoustic wave.  
DIFFERENTIAL DRIVE, SD_EN = 0B  
PULSE ECHO MODE, PECHO = 1b  
V
HV-REGULATOR  
1
0
TRANSDUCER  
RING DOWN  
TX_UPN  
TX_UPP  
~0.7V  
TX_DNN  
TX_DNP  
Figure 5A. Pulse Echo Measurement Mode  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
OFFSET RESETS AUTOMATICALLY TO A PRE-  
PROGRAMMED VALUE (± 127mV IN 1mV STEPS) TO  
DETECT SUBSEQUENT ZERO-CROSSINGS  
WAVE NUMBER  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
PROGRAMMABLE OFFSET DETECT: ± 127mV IN  
1mV STEPS  
Programmable Offset  
Comparator Inputs (Internal  
to the Device)  
HIT #:  
1
2
3
4
5
6
t
2
t
1
EXAMPLE: MEASURE WIDTH OF  
7TH WAVE AFTER EARLY EDGE  
DETECT  
Figure 5B. Early Edge Detect Received Wave Example  
The integrated boost controller in enabled and disabled  
automatically by the device. The logic enables the boost  
before executing a time of flight command and disables  
the boost once the transmit pulse train is complete, see  
example timing in the Figure 3. The boost is disabled  
upon completion of the transmit pulses in order to reduce  
overall system power consumption as well as to eliminate  
any controller switching noise that would be introduced  
during the return signal’s timing measurements.  
TOF Error Handling  
Any of the TOF measurements can result in an error.  
If an error occurs during the measurement, all the  
associated registers report FFFFh. If a TOF_DIFF is  
being performed, the TOF_DIFFInt and TOF_DIF_Frac  
registers report 7FFFh and FFFFh, respectively. The  
TOF_DIFF_AVG Results registers do not include the error  
measurement. If the measurement error is caused by  
the time measurement exceeding the timeout set by the  
TIMOUT[2:0] bits in the TOF2 register, then the TO bit in  
the Interrupt Status register is set and the INT device pin  
is asserted (if enabled).  
Control and Operation  
The switching frequency of the controller is programmable  
from 100kHz to 200kHz in 4 steps set by the SFREQ[1:0]  
bits in the Switcher 1 register. In order to set the output  
voltage the controller uses an outer loop feedback topol-  
ogy along with a peak current mode inner loop control.  
Step-Up DC-DC Controller  
In order to increase the power transferred to the trans-  
ducers during a launch sequence which is required to  
counteract the high attenuation factors for ultrasonic  
waves in gaseous mediums the device contains an inte-  
grated DC-DC Step-Up controller designed to operate  
in discontinuous-conduction mode (DCM boost). The  
controller provides adjustable-output voltage operation  
including programmable stabilization times with built in  
under voltage monitoring. The MAX35104’s integrated  
gate driver utilizes the onboard voltage double in order to  
drive an external N-channel MOSFET’s gate from ground  
The controller’s outer loop targets an output voltage from  
9V to 30V based on the programmed value set by the  
VS[3:0] bits in the Switcher 1 register. An internal error  
amplifier creates a control voltage, which generates a  
duty-modulated signal to control the operation of the  
internal gate driver used to switch the external MOSFET.  
Additionally, the MOSFET’s source needs an external  
current sense resistor, which feeds back the inductor’s  
current per cycle as a voltage and compares with the error  
amplifier’s output to further adjust the duty-modulated  
signal, thus forming an inner loop.  
to 2 x V . The controller uses an external sense resis-  
DD  
tor to control the peak inductor current and operates at  
adjustable switching frequencies.  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
The controller has an undervoltage comparator that deter-  
mines if the target output voltage is at target voltage, con-  
sidered power good, or undervoltage. If the output voltage  
is below target, the switcher operates in startup limit mode  
that is determined by user selectable peak current limit  
set by the LT_S[3:0] bits in the Switcher 2 register. This  
is essentially a slew rate control on how fast the boost  
powers up and can be used to control the current signa-  
tures seen by the supply battery. After the output voltage  
crosses the undervoltage threshold, the switcher runs in  
normal duty mode. There is an additional optional peak  
current limit setting for the normal duty mode that is set by  
the LT_N[3:0] bits in the Switcher 2 register. Once in nor-  
mal duty mode the device waits a programmable switcher  
stabilization time before a launch sequence begins. The  
stabilization time ensure that the controller has reaches a  
stable and repeatable output voltage each time it is pow-  
ered. This time is set by the ST[3:0] bits in the Switcher 2  
register. See Figure 6.  
frequency of the open-loop gain-transfer function of the  
converter. The error amplifier included in the devices is a  
transconductance amplifier. Figure 6 shows the compen-  
sation network used to apply the necessary loop com-  
pensation for the example inductor and output capacitor  
values provided, where:  
RZ = 22kΩ  
CP = 470pF  
CZ = 10nF  
RSENSE  
The external sense resistor value determines the peak  
allowable inductor current. For a given limit trim setting,  
LT_N[3:0] and LT_S[3:0] in the Switcher 2 register. Adjust  
the RSENSE value to adjust the peak allowable current.  
Select RSENSE based on the following criteria:  
Resistor Value: Select an RSENSE resistor value in which  
the largest desired current would result in a 200mV full-  
scale current sense voltage. Assuming an LT_x setting of  
0h, select RSENSE in accordance to the following equa-  
tion and see Table 2 for examples:  
Compensation Component Values  
In order to achieve standard operations the boost control-  
ler requires that proper loop compensation be applied to  
the error-amplifier output (COMP pin). The goal of the  
compensator design is to achieve the desired closed-loop  
bandwidth and sufficient phase margin at the crossover  
RSENSE = 200mV/(Max Current)  
Power Dissipation: Select a sense resistor that is rated  
for the max expected current and power dissipation (watt-  
age). The sense resistor’s value might drift if it is allowed  
to heat up excessively.  
V
DD  
Kelvin Sense  
For best performance, a Kelvin Sense arrangement is  
recommended for sense resistor as shown in Figure 7. In  
a Kelvin Sense arrangement, the voltage-sensing nodes  
across the sense element are placed such that they mea-  
sure the true voltage drop across the sense element and  
not any additional excess voltage drop that can occur in  
the copper PCB traces or the solder mounting of the sense  
element. Routing the differential sense lines along the  
same path to the device and keeping the path short also  
improves the system performance. The analog differential  
current-sense traces should be routed close together to  
maximize common-mode rejection.  
5µH  
B340A-13-F  
0Ω  
N
FETG  
IRLM10060TRPBF  
CSIN+  
1µF  
100mΩ  
MAX35104  
CSIN  
V
P
R
22kΩ  
=
Z
Power Transistor  
COMP  
C
10nF  
=
Z
C
470pF  
=
P
Use an n-channel MOSFET power transistor with the  
MAX35104. To ensure the external n-channel MOSFET  
(nFET) is turned on hard, use logic-level or low-threshold  
nFETs such that the MAX35104’s internal gate driver’s 2 x  
V
supply voltage is sufficient for proper switching oper-  
DD  
ation. nFETs provide the highest efficiency because they  
do not draw any DC gate-drive current. When selecting  
Figure 6. Boost Circuits Components  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
an nFET, three important parameters are the total gate  
Table 2. RSENSE Example Values  
charge (Qg), on-resistance (R  
fer capacitance (CRSS).  
), and reverse trans-  
DS(ON)  
LIMIT TRIM  
SETTING  
(STARTUP  
CSIN TRIP  
VOLTAGE  
(V)  
MAX  
CURRENT  
(A)  
RLIM  
(Ω)  
Qg takes into account all capacitances associated with  
charging the gate. Use the typical Qg value for best  
results; the maximum value is usually grossly over speci-  
fied since it is a guaranteed limit and not the measured  
value. The typical total gate charge should be 50nC or  
less. With larger numbers, the FETG pins may not be able  
to adequately drive the gate.  
AND NORMAL)  
0
1
2
4
0
1
2
4
0
1
2
4
0
1
2
4
0
1
2
4
0.2  
0.4  
0.8  
1.6  
0.2  
0.4  
0.8  
1.6  
0.2  
0.4  
0.8  
1.6  
0.2  
0.4  
0.8  
1.6  
0.2  
0.4  
0.8  
1.6  
2
4
0.1  
0.25  
0.5  
1
8
16  
0.8  
1.6  
3.2  
6.4  
0.4  
0.8  
1.6  
3.2  
0.2  
0.4  
0.8  
1.6  
0.1  
0.2  
0.4  
0.8  
The two most significant losses contributing to the nFET’s  
2
power dissipation are I R losses and switching losses.  
Select a transistor with low r  
minimize these losses.  
and low CRSS to  
DS(ON)  
Determine the maximum required gate-drive current  
from the Qg specification in the nFET data sheet. The  
MAX35104’s maximum allowed switching frequency is  
200kHz, so the maximum current required to charge  
the nFET’s gate is f(max) x Qg(typ). Use the typical Qg  
number from the transistor data sheet. For example, the  
Si9410DY has a Qg(typ) of 17nC (at V  
= 5V), there-  
GS  
fore, the current required to charge the gate is:  
IGATE (max) = (300kHz) (17nC) = 5.1mA  
The bypass capacitor (C1) on the voltage double pin V2X  
must instantaneously furnish the gate charge without  
excessive droop (e.g., less than 200mV):  
2
∆V2X = Qg/C1  
Note: The current must be large enough such that the switcher  
can reach its target output voltage (< 1s).  
Continuing with the example, ∆V+ = 17nC/0.1μF = 170mV.  
Figure 6 uses an IRLM10060TRPBF logic-level nFET with  
a guaranteed threshold voltage (V ) of 2.5V.  
TH  
CURRENT PATH  
KELVIN CONNECTIONS  
COPPER  
TRACE  
COPPER  
TRACE  
SENSE RESISTOR OUTLINE  
ROUTE SENSE LINES ALONG  
THE SAME PATH  
IN+ IN-  
Figure 7. Kelvin Sense Connection Layout Example  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
high voltage transducer drivers. The regulator is used  
to provide a more stable higher bandwidth source from  
which the transducers can be driven. This helps mitigate  
any loading mismatches between the two transduc-  
ers and provides a more repeatable launch signature  
between upstream and downstream measurements, ulti-  
mately reducing overall system error.  
Inductor (L)  
Practical inductor values range from 5μH to 150μH. 56μH  
is a good choice for most applications. Larger inductance  
values tend to increase the startup time slightly, while  
smaller inductance values allow the coil current to ramp  
up to higher levels before the over current switch halts  
switching, increasing the ripple at light loads. Inductors  
with a ferrite core or equivalent are recommended; pow-  
der iron cores are not recommended for use with high  
switching frequencies. Make sure the inductor’s satura-  
tion current rating (the current at which the core begins  
to saturate and the inductance starts to fall) exceeds the  
The high-voltage linear regulator operates from 5.4V to  
27V in programmable 1.7V steps set by the VS[3:0] bits in  
the Switcher 1 register. There is an option to not use the  
high voltage regulator in the case where it is not desired  
and the switcher voltage is deem sufficient to drive the  
transducers. Disable the regulator with the HREG_EN bit  
in the Switcher 1 register. When disabled the VPR and VP  
pins must be externally shorted together.  
peak current rating set by R  
. For highest efficiency,  
SENSE  
use a coil with low DC resistance, preferably under 20mΩ.  
To minimize radiated noise, use a toroid, a pot core, or a  
shielded coil.  
When the regulator is enabled, its output is cycled off and  
on automatically by the device at the same time as the  
boost switcher, see example timing Figure 3.  
Diode  
The device high switching frequency demands a high-  
speed rectifier. Schottky diodes such as the B340A-13-F  
are recommended. Make sure the Schottky diode’s aver-  
age current rating exceeds the peak current limit set by  
Output Capacitor Selection  
For stable operation over the full temperature range, use  
a low-ESR 1µF (min) 0805 ceramic output capacitor on  
the VPR pin. Ceramic capacitors exhibit capacitance  
and ESR variations over temperature. Ensure that the  
minimum capacitance under worst-case conditions does  
not drop below 1µF to ensure output stability. With a 1µF  
X7R dielectric, is sufficient at all operation temperatures.  
R
, and that its breakdown voltage exceeds V  
.
SENSE  
OUT  
Output Filter Capacitor  
The primary criterion for selecting the output filter capaci-  
tor is low effective series resistance (ESR). The product of  
the peak inductor current and the output filter capacitor’s  
ESR determines the amplitude of the ripple seen on the  
output voltage. Smaller-value and/or higher- ESR capaci-  
tors are acceptable for light loads or in applications that  
can tolerate higher output ripple. Since the output filter  
capacitor’s ESR affects efficiency, use low-ESR capaci-  
tors for best performance.  
Transducer Driver  
The device has two integrated high voltage full-bridge  
transducer drivers, one for the upstream and one for the  
downstream transducer as shown in Figure 8. The drivers  
direct connect to the transducers without any external  
components required. The drivers can also be configured  
to drive the transducer in a single-ended manner. Set  
the single-ended drive enable bit, SD_EN, in the AFE  
1 register. In this configuration, the negative terminal of  
the drivers are held at ground and the positive terminal  
is modulated between the high-voltage node and ground.  
Piezo Driver Regulator  
The MAX35104 provides an internal high voltage low  
dropout linear regulator. The input to this regulator is the  
boost switcher’s output and the output of the regulator  
supplies the high side bias used for the CMOS push pull  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
V
HV_REGULATOR  
TX_UPP  
DOWNSTREAM  
TRANSDUCER  
DRIVER  
V
HV_REGULATOR  
TX_UPN  
MAX35104  
V
HV_REGULATOR  
TX_DNP  
UPSTREAM  
TRANSDUCER  
DRIVER  
V
HV_REGULATOR  
TX_DNN  
Figure 8. Piezo Driver Connection  
applied to the common mode, providing an additional  
level of system accuracy and robustness.  
Analog Front-End  
The device has a programmable analog front-end used  
to condition the return signal before the signal is used  
to determine when the stop-hit timing should occur. This  
analog front-end consists of two amplifications stages, fol-  
lowed by a band pass filter, which feeds into the final com-  
parator. The return signal is sampled differentially from  
the transducer. The entire AFE operates differentially all  
the way to the final comparator. By operating differently,  
the receive chain is less susceptible to noise injections  
The first stage is a fixed 20dB gain amplifier. An internal  
analog switch automatically connects the input of this  
amplifier to the appropriate receiving transducer. When  
enabled, the input is pulled to VBIAS ~0.7V through 2kΩ  
input resistance. The valid input range for the first amplifi-  
cation stage, and, therefore, the targeted return amplitude  
from the receiving transducer is 1mV to 10mV.  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
The second amplification stage is a programmable gain  
amplifier (PGA). The PGA is has a programmable range  
from 10 dB to 30dB in 1.33dB steps set by the PGA[3:0]  
bits in the AFE 1 register. Figure 9 shows the possible  
gain settings and input voltage amplitude combinations.  
The ideal input amplitude for the differential stop com-  
parator is 350mV and therefore this should be the target  
for the output of the AFE. Table 3 shows ideals settings  
highlighted in green for all return signal amplitudes.  
routine that can be used to select and set the appropriate  
center frequency. To use this feature send the BYPASS_  
CALIBRATE command and wait until the complete bit is  
set. This routine performs the required calibration and  
automatically sets the F0 Adjust settings, bits F0[6:0] in  
the AFE 2 register to the correct value.  
The bandpass filter can be bypassed as shown in  
Figure 9 by enabling the BP_BP bit in the AFE1 register.  
If the internal analog front-end is not required it can be  
completely bypassed by externally shorting the RNX/RXP  
pins to the CIN/CIP pins as shown in Figure 9 and setting  
the AFE_BYPASS bit in the AFE1 register. This allows for  
an external AFE to be constructed with external compo-  
nents. The CIN/CIP pins can also be used to output each  
stage of the AFE by setting the AFEOUT[1:0] bits in the  
AFE 2 register.  
The bandpass filter is a 2-pole bandpass filter with pro-  
grammable Q and center frequency. The Q of the filter  
can be adjusted with four programmable options in the  
range for 4.2 to 12 (Hz/Hz) set by the LOWQ[1:0] bits in  
the AFE 1 register. The center frequency is programmable  
from 125kHz to 500kHz in 3kHz steps set by the F0[6:0]  
bits in the AFE 2 register. The MAX35104 provides an  
integrated and automated center-frequency calibration  
HARDWIRE  
AFE BYPASS*  
CIN CIP  
RXN RXP  
CMP_OUT/UP_DN  
AFE OUTPUT SELECT BITS  
MAX35104  
AFE_BYPASS  
BIT  
BP BYPASS  
SELECT BIT  
TUNABLE BPF  
125kHz TO  
500kHz  
TIME-TO-  
DIGITAL  
CONVERTER  
TX_UPN  
TX_UPP  
10 dB  
TO 30  
dB  
PGM OFFSET  
COMPARATOR  
FIXED  
20 dB  
TX_DNN  
TX_DNP  
TUNABLE Q  
* USED TO BYPASS INTERNAL AFE  
OR  
4 TO 12 (Hz/Hz)  
RECEIVE  
TRANSDUCER SELECT  
TO IMPLEMENT A DIFFERENT  
FILTERING ARCHITECTURE  
BP BYPASS  
Figure 9. Analog Front-End  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 3. Example Gain Settings  
TRANSDUCER RECEIVE SIGNAL (V)  
0.001  
0.03  
0.04  
0.04  
0.05  
0.06  
0.07  
0.08  
0.09  
0.11  
0.13  
0.15  
0.17  
0.20  
0.23  
0.27  
0.31  
0.002  
0.06  
0.07  
0.09  
0.10  
0.12  
0.14  
0.16  
0.18  
0.22  
0.25  
0.29  
0.34  
0.40  
0.46  
0.54  
0.63  
0.003  
0.09  
0.11  
0.13  
0.15  
0.17  
0.20  
0.24  
0.28  
0.32  
0.38  
0.44  
0.51  
0.60  
0.69  
0.81  
0.94  
0.004  
0.13  
0.15  
0.17  
0.20  
0.23  
0.27  
0.32  
0.37  
0.43  
0.50  
0.58  
0.68  
0.79  
0.93  
1.08  
1.26  
0.005  
0.16  
0.18  
0.22  
0.25  
0.29  
0.34  
0.40  
0.46  
0.54  
0.63  
0.73  
0.85  
0.99  
1.16  
1.35  
1.57  
0.006  
0.19  
0.22  
0.26  
0.30  
0.35  
0.41  
0.48  
0.55  
0.65  
0.75  
0.88  
1.02  
1.19  
1.39  
1.62  
1.89  
0.007  
0.22  
0.26  
0.30  
0.35  
0.41  
0.48  
0.56  
0.65  
0.75  
0.88  
1.02  
1.19  
1.39  
1.62  
1.89  
2.20  
0.008  
0.25  
0.30  
0.34  
0.40  
0.47  
0.54  
0.63  
0.74  
0.86  
1.00  
1.17  
1.36  
1.59  
1.85  
2.16  
2.52  
0.009  
0.28  
0.33  
0.39  
0.45  
0.52  
0.61  
0.71  
0.83  
0.97  
1.13  
1.32  
1.53  
1.79  
2.08  
2.43  
2.83  
0.01  
0.32  
0.37  
0.43  
0.50  
0.58  
0.68  
0.79  
0.92  
1.08  
1.26  
1.46  
1.70  
1.99  
2.32  
2.70  
3.14  
3.16  
3.69  
4.3  
5.01  
5.83  
6.8  
7.93  
9.24  
10.76  
12.55  
14.62  
17.04  
19.86  
23.15  
26.98  
31.44  
an approximation to the TDC converter. During the real  
measurement, the TDC can then optimize its measure-  
ment parameters to use power efficiently. These evalu-  
ate cycles are automatically inserted. The time from the  
start of one port’s temperature measurement to the next  
port’s temperature measurement is set using with the  
PORTCYC[1:0] bits in the Event Timing 2 register.  
Temperature Measurement Operations  
A temperature measurement is a time measurement of  
the RC circuit connected to the temperature port device  
pins T1, T2, and TC. The TC device pin has a driver to  
charge the timing capacitor.  
Figure 6 depicts a 10kΩ NTC thermistor with a 10nF NPO  
COG 30ppm/°C capacitor. It shows two dummy cycles  
with two temperature port-evaluation measurements and  
two real temperature port measurements.  
Once all the temperature measurements are completed,  
the times measured for each port are reported in the cor-  
responding TxInt and TxFrac Results registers. The TE bit  
in the Interrupt Status register is also set and the INT pin  
is asserted (if enabled).  
The Dummy 1 and Dummy 2 cycles represent preamble  
measurements that are intended to eliminate the dielectric  
absorption of the temperature measurement capacitor.  
These Dummy cycles are executed using a thermistor  
Emulation resistor of 1000 Ohms internal to the device.  
This Dummy path allows the dielectric absorption effects  
of the capacitor to be eliminated without causing the  
thermistor to be unduly self-heated. The number of  
Dummy measurements to be taken ranges from 0 to 7.  
This parameter is configured by setting the PRECYC[2:0]  
bits in the Event Timing 2 register.  
Actual temperature is determined by a ratio-metric calcu-  
lation. If T2 is connected to a thermistor and T1 is con-  
nected to the reference resistor (as shown in the System  
Diagram), then the ratio of T2/T1 = R  
/R  
..  
THERMISTOR REF  
The ratio R  
/R  
. can be determined by the  
THERMISTOR REF  
host microprocessor and the temperature can be derived  
from a lookup table of Temperature vs. Resistance for the  
thermistor utilizing interpolation of table entries if required.  
Temperature Error Handling  
Following the dummy cycles, an evaluation, TXevaluate,  
is performed. This measurement allows the device to  
maximize power efficiency by evaluating the temperature  
of the thermistor with a coarse measurement prior to a  
real measurement. The coarse measurement provides  
The temperature measurement unit can detect open and/  
or short circuit temperature probes. If the resultant tem-  
perature reading in less than 8µs, then the device writes  
a value of 0000h to the corresponding Results registers to  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
EVTMG2: Performs automatic TOF_DIFF measure-  
ments. The parameters and operation of the TOF  
measurement are described in the Time-of-Flight  
Measurement section.  
Table 4. Randomizer Sampling  
TDF  
MINIMUM  
MAXIMUM  
LSB  
FREQUENCY NEXT SAMPLE NEXT SAMPLE WEIGHT  
(Hz)  
PERIOD (S)  
PERIOD (S)  
(S)  
EVTMG3: Performs automatic Temperature  
measurements. The parameters and operation of the  
Temperature measurements are described in  
the Temperature Measurement section.  
0.50  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
4.00  
4.50  
5.00  
5.50  
6.00  
6.50  
7.00  
7.50  
8.00  
0.082  
0.084  
0.086  
0.088  
0.090  
0.092  
0.094  
0.096  
0.098  
0.100  
0.101  
0.103  
0.105  
0.107  
0.109  
0.111  
1.00  
2.00  
2.0E-3  
3.9E-3  
2.99  
5.9E-3  
EVTMG1: Performs automatic TOF_DIFF and  
Temperature measurements.  
3.99  
7.8E-3  
4.99  
9.8E-3  
Continuous Event Timing Operation  
5.99  
11.7E-3  
13.7E-3  
15.6E-3  
17.6E-3  
19.5E-3  
21.5E-3  
23.4E-3  
25.4E-3  
27.3E-3  
29.3E-3  
31.3E-3  
The device can be configured to continue running Event  
Timing sequences at the completion of any sequence. If  
the ET_CONT bit in the Calibration and Control register  
is set, the currently executing EVTMGx command con-  
tinues to execute until a HALT command is received by  
the device. If the ET_CONT bit is clear, automatic execu-  
tion of Event Timing stops after the completion of a full  
sequence of measurements.  
6.99  
7.98  
8.98  
9.98  
10.98  
11.98  
12.97  
13.97  
14.97  
15.97  
Continuous Interrupt Timing Operation  
When operating in Event Timing Mode, the INT pin  
can be asserted (if enabled) either after each TOF or  
Temperature measurement, or at the completion of the  
sequence of measurements. If the CONT_INT bit in the  
Calibration and Control register is set to a 1, then the INT  
pin is asserted (if enabled) at the completion of each TOF  
or Temperature command. This allows the host micro-  
controller to interrogate the current Event for accuracy of  
measurement. If the CONT_INT bit is set to a 0, then the  
INT pin is only asserted (if enabled) at the completion of  
a sequence of measurements. This allows the host micro-  
controller to remain in a low-power sleep mode and only  
wake-up upon the assertion of the INT pin.  
indicate a short circuit temperature probe. If the measure-  
ment process does not discharge the TC pin below the  
threshold of the internal temperature comparator within  
2µs of the time set by the PORTCYC[1:0] bits in the Event  
Timing 2 register, then an open circuit temperature probe  
error is declared. The MAX35104 writes a value of FFFFh  
to the corresponding results registers to indicate an open  
circuit temperature probe, the TO bit in the Interrupt Status  
register is set, and the INT pin is asserted (if enabled). If  
the temperature measurement error is caused by any  
other problems, then the device writes a value of FFFFh  
to each of the temperature port results registers indicating  
that all the temperature port measurements are invalid.  
TOF Sample Randomizer  
The device has the ability to randomize the TOF samples  
when operating in event timing mode, given a sample fre-  
quency as selected by the TDF[3:0] bits, the subsequent  
samples in the sequence occur at a period ±(1/F) from the  
previous sample.  
Event Timing Operation  
The Event Timing mode of operation is an advanced  
feature that allows the user to configure the device to  
perform automatic measurement cycles. This allows  
the host microcontroller to enter low power mode and  
only awaken upon assertion of the INT pin (if enabled)  
when new measurement data is available. By using the  
TOF_DIFF and Temperature commands and configur-  
ing the appropriate TOFx registers and the Event Timing  
registers, the Event Timing Modes directs the device to  
provide complete data for a sequence of measurements  
captured on a cyclical basis. There are three versions of  
the EVTMG commands.  
This is accomplished using a 9-bit linear feedback shift  
register (LFSR) to randomize the internals between suc-  
cessive samples. The feedback polynomial implemented  
9
5
for the LFSR is x + X + 1.  
For example, if TDF[3:0] is set to 0, which is a sample fre-  
quency of 0.5s and an event timing mode is initiated, the  
first sample occurs 0.5s after that start. The subsequent  
samples occur at a time between 0.082s and 1s after the  
start of the previous sample, and so on. The times are  
start-to-start times.  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
COUNT BEGINS  
DRIVER TO CHARGE TC-  
CONNECTED CAPACITOR  
COUNT ENDS  
VDD  
3.0  
2.0  
1.2  
1.0  
T2  
DUMMY 1  
DUMMY 2  
T1 EVALUATE  
T2 EVALUATE  
T1  
0
256  
128  
384  
512  
640  
768  
SCHMITT  
TRIGGER  
THRESHOLD  
PORTCYCLE TIME SET TO 128µs  
DUMMY MEASUREMENTS SET TO 2  
TIME (µs)  
Figure 10. Temperature Command Execution Cycle Example  
measurements. In addition, the Temperature Average  
Results registers, TxAVG, are not updated with the error  
measurement if a temperature error occurs during Event  
Timing Operation.  
Error Handling During Event Timing Operation  
During execution of Event Timing modes, any error that  
occurs during a TOF_DIFF or Temperature measurement  
are handled as described in the corresponding error  
handling sections. Calibration can also be executed dur-  
ing Event Timing operation, if programmed to do so with  
the Calibration Configuration bits in the Calibration and  
Control register. If a Calibration error occurs, this is han-  
dled as described in the Error Handling during Calibration  
section. If any of these errors occur, the Event Timing  
operation does not terminate, but continues operation.  
Event Timing Mode 2  
The EVTMG2 command execution causes the TOF_DIFF  
command to be executed automatically with program-  
mable repetition rates and programmable total counts as  
shown in Figure 11.  
During execution of the EVTMG2 command, each TOF_  
DIFF command execution cycle causes the device to  
compute a TOF_DIFF measurement (AVGUP register  
minus AVGDN register) as well as the running average of  
TOF_DIFF measurements (TOFF_DIFF_AVG register).  
The setting of the TDF[3:0] bits in the Event Timing 1 reg-  
ister selects the rate at which TOF_DIFF commands are  
executed. The setting of the TDM[4:0] bits in the Event  
Timing 1 register determines the number of TOF_DIFF  
measurements to be taken during the sequence.  
When making TOF measurements in Event Timing Mode,  
the device provides additional data in the TOF_Cycle_  
Count/TOF_Range register that can be used to check  
the validity of all the TOF measurements. The TOF_  
Cycle_Count is the number of valid error-free TOF mea-  
surements that were recorded during an Event Timing  
Sequence. If a TOF error occurs, the TOF_Cycle_Count  
register is not incremented. The TOF_Range is the range  
of all valid TOF measurements that were captured during  
a sequence.  
Once all the TOF_DIFF measurements in the sequence  
are captured, the TOF_DIFF_AVG register contains the  
average of the differences of the resultant AVGDN and  
AVGUP Results register content of each TOF_DIFF  
measurement. After the TOF_DIFF_AVG registers are  
updated, the TOF_EVTMG bit is set in the Interrupt Status  
register and the INT pin is asserted (if enabled).  
When making temperature measurements in Event  
Timing Mode, the device provides additional data in the  
Temp_Cycle_Count register. This count increments after  
every valid error-free temperature measurement and  
can be used to check the validity of all the temperature  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
EVTMG2  
COMMAND  
TIME OF FLIGHT EVENT  
HOST MICROCONTROLLER USE OF EVTMG2  
TIME OF FLIGHT EVENT  
START  
PROGRAM TOF  
DIFFERENCE  
MEASUREMENT  
GET CONFIGURATION  
REGISTER DATA  
PROGRAMMABLE IN  
0.5 SECOND STEPS  
UP TO 8 SECONDS  
FREQUENCY  
(8XS/TDF3-TDF0)  
(EG. EVERY 2 SECONDS)  
START TIMER  
PROGRAM NUMBER OF TOF  
DIFFERENCE  
MEASUREMENTS  
(TDM4-TDM0) TO BE TAKEN  
(EG. 15)  
NO  
IS TIMER > = NEXT  
8XS/TDF3-TDF0  
INCREMENT?  
UP TO 32  
MEASUREMENTS CAN  
BE TAKEN  
ASSERT THE INT  
DEVICE PIN  
YES  
PERFORM TOF_DIFF  
COMMAND  
CONFIGURE REMAINING  
MAX35104 REGISTERS  
INCLUDING THE CONT_INT  
AND ET_CONT BITS  
YES  
IS TIMER > = NEXT  
8XS/TDF3-TDF0  
INCREMENT?  
NO  
SEND THE EVTMG2  
COMMAND  
COMPUTE RUNNING  
AVG FOR TOF_DIFF  
MEASUREMENTS AND  
STORE AT  
SEE ERROR  
HANDLING  
DESCRIPTION  
TOF_DIFF_AVG  
WAIT FOR ASSERTION OF  
INT DEVICE PIN  
INCREMENT  
TOF_CYCLE_COUNT  
SETTING CONT_INT  
ALLOWS HOST  
READ INTERRUPT STATUS  
REGISTER  
MICROCONTROLLER  
TO INTERROGATE  
MAX35104 AFTER  
EACH MEASUREMENT  
CYCLE  
INCREMENT  
SEQUENCE CYCLE  
COUNTER  
NO  
IS TOF_EVTMG  
BIT SET?  
NO  
SEQUENCE CYCLE  
COUNTER = TDM4-  
TDM0 ?  
NO  
YES  
IS THE CONT_INT  
BIT SET?  
YES  
AVERAGE OF 15 TOF  
DIFFERENCE  
MEASUREMENTS ARE  
READY FOR THE  
HOST  
SET THE  
TOF_EVTMG BIT IN  
THE INTERRUPT  
STATUS REGISTER  
READ TOF_DIFF_AVG,  
TOF_DIFF, AVGUP,  
AVGDN, HITX REGISTERS  
FOR TOF DATA  
YES  
ASSERT THE INT  
DEVICE PIN  
MICROCONTROLLER  
ASSERT THE INT  
DEVICE PIN  
ASSERT THE INT  
DEVICE PIN  
SETTING ET_CONT BIT  
CAUSES THE  
SEQUENCE TO BE  
CONTINUOUS  
NO  
OTHER  
PROCESS  
IS THE ET_CONT  
BIT SET?  
YES  
IS THE ET_CONT BIT  
SET?  
NO  
YES  
END  
Figure 11. EVTMG2 Command  
Figure 12. EVTMG2 Pseudo Code  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Event Timing Mode 3  
Calibration Operation  
The EVTMG3 command execution causes the  
Temperature command to be executed automatically with  
programmable repetition rates and programmable total  
counts as shown in Figure 13.  
For more accurate results, calibration of the TDC can be  
performed. Calibration allows the device to perform a cali-  
bration measurement that is based upon the 32.768kHz  
crystal, which is the most accurate clock in the system.  
This calibration is used when a ceramic oscillator is  
used in place of an AT-cut crystal for the 4MHz refer-  
ence. The device automatically generates start and stop  
signals based upon edges of the 32.768kHz clock. The  
number of 32.768kHz clock periods that are used and  
then averaged are selected with the CAL_PERIOD[3:0]  
bits in the Calibration and Control register. The TDC  
measures the number of 4MHz clock pulses that occur  
during the 32.768kHz pulses. The measured time of a  
32.768kHz clock pulse is reported in the CalibrationInt  
and CalibrationFrac Results registers. These results can  
then be used as a gain factor for calculating actual Time-  
to-Digital converter measurement if the CAL_USE bit in  
the Event Timing 2 register is set.  
During execution of the EVTMG3 command, each  
Temperature command execution cycle computes the  
running average of the measurement of each tempera-  
ture port. The results are provided in the Tx_AVGInt and  
TxAVGFrac Results registers.  
The setting of the TMF[5:0] bits in the Event Timing 1  
register selects the rate at which Temperature commands  
are executed. The setting of the TMM[4:0] bits in the Event  
Timing 2 register determines the number of temperature  
measurements to be taken during the sequence.  
Once all the Temperature measurements in the sequence  
are captured, the Tx_AVGInt and TxAVGFrac Results reg-  
isters contain the average of all the temperature measure-  
ments in the sequence. After these registers are updated,  
the Temp_EVTMG bit is set in the Interrupt Status register  
and the INT pin is asserted (if enabled).  
Following is a description of an example calibration. Each  
TDC measurement is a 15-bit fixed-point integer value  
concatenated with a 16-bit fractional value binary repre-  
sentation of the number of t_4MHz periods that contribute  
to the time result, the actual period of t_4MHz needs to  
be known. If the CAL_PERIOD[3:0] bits in the Calibration  
and Control register are set to 6, then six measurements  
of 32.768kHz periods are measured by the TDC and  
then averaged. The expected measured value would be  
30.5176µs/250ns = 122.0703125 t_4MHz periods. Let  
us assume that the 4MHz ceramic resonator is actually  
running at 4.02MHz. The TDC measurement unit would  
then measure 30.5176µs/248.7562ns = 122.6806641  
t_4MHz periods and this result would be returned in the  
Calibration Results register. For all TDC measurements, a  
gain value of 122.0703125/122.6806641 = 0.995024876  
would then be applied.  
Event Timing Mode 1  
The EVTMG1 command execution causes the TOF_DIFF  
command and the Temperature Command to be executed  
automatically with programmable repetition rates and pro-  
grammable total counts. In essence, both the EVTMG2  
and EVTMG3 commands are simultaneously executed in  
a synchronous manner.  
Setting up the TOF measurements for automatic execu-  
tion in Event Timing Mode 1 is identical to setting these up  
for execution with Event Timing Mode 2. Likewise, setting  
up the Temperature Measurements is identical to setting  
these up for execution using Event Timing Mode 3.  
If the TOF_DIF command repetition rate and the  
Temperature command repetition rate cause both mea-  
surements to be required at the same time, the TOFF_DIF  
command takes precedent. Upon completion of the  
TOFF_DIFF command, the pending Temperature com-  
mand is executed, as shown in Figure 15.  
Calibration is performed at the following events:  
When the Calibration command is sent to the  
MAX35104. At the completion of this calibration, the  
CAL bit in the Interrupt Status register and the INT  
pin is asserted (if enabled).  
Once all the TOF_DIFF measurements in the sequence  
are complete, the TOF_EVTMG bit in the Interrupt  
Status register is set and the INT pin asserts (if enabled).  
Likewise, when all the Temperature measurements in the  
sequence are completed, the Temp_EVTMG bit in the  
Interrupt Status register is set and the INT pin is asserted  
(if enabled). It should be noted that depending upon the  
selected rates and number of cycles, the TOF_DIFF and  
Temperature measurements can complete their sequenc-  
es at different times. This causes the INT pin to be assert-  
ed (if enabled) before both sequences are complete.  
During Event Timing Operation, automatic calibra-  
tions can be performed before executing TOF or  
Temperature measurements. This is selectable with  
the CAL_CFG[2:0] bits in the Event Timing 2 register.  
Upon completion of an automatic calibration during  
Event Timing, the result is updated in the Calibration  
Results register, but the CAL bit in the Interrupt Sta-  
tus register is not set and the INT pin is not asserted.  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
EVTMG3  
COMMAND  
TEMPERATURE EVENT  
HOST MICROCONTROLLER USE OF EVTMG3  
TEMPERATURE EVENT  
START  
PROGRAM TEMPERATURE  
GET CONFIGURATION  
REGISTER DATA  
DIFFERENCE  
MEASUREMENT  
PROGRAMMABLE IN  
1 SECOND STEPS  
UP TO 64 SECONDS  
FREQUENCY  
(8XS/TDF5-TDF0)  
(EG. EVERY 15 SECONDS)  
START TIMER  
TEMPERATURE  
MEASUREMENT  
REPETITION RATE  
PROGRAM NUMBER OF  
TEMPERATURE  
NO  
IS TIMER > = NEXT  
8XS/TDF5-TDF0  
INCREMENT?  
UP TO 32  
MEASUREMENTS CAN  
BE TAKEN  
DIFFERENCE  
MEASUREMENTS  
(TDM4-TDM0) TO BE TAKEN  
(EG. 2)  
YES  
PERFORM  
TEMPERATURE  
COMMAND  
CONFIGURE REMAINING  
MAX35104 REGISTERS  
INCLUDING THE CONT_INT  
AND ET_CONT BITS  
YES  
TEMPERATURE  
COMMAND ERROR ?  
NO  
COMPUTE RUNNING  
AVG FOR EACH  
MEASURED PORT  
AND STORE AT  
T1_AVG, T2_AVG,  
T3_AVG, T4_AVG  
REGISERS  
SEND THE EVTMG3  
COMMAND  
SEE ERROR  
HANDLING  
DESCRIPTION  
WAIT FOR ASSERTION OF  
INT DEVICE PIN  
SETTING CONT_INT  
ALLOWS HOST  
INCREMENT  
TEMP_CYCLE_COUNT  
RESULTS REGISTER  
MICROCONTROLLER  
TO INTERROGATE  
MAX35104 AFTER  
EACH MEASUREMENT  
CYCLE  
READ INTERRUPT STATUS  
REGISTER  
INCREMENT  
SEQUENCE CYCLE  
COUNTER  
NO  
IS TEMP_EVTMG  
BIT SET?  
NO  
NO  
SEQUENCE CYCLE  
COUNTER = TDM4-  
TDM0 ?  
IS THE CONT_INT  
BIT SET?  
YES  
YES  
YES  
ACCUMULATION OF  
TWO TEMPERATURE  
MEASUREMENTS ARE  
READY FOR THE  
HOST  
SET THE  
SET THE  
TE BIT IN THE  
INTERRUPT STATUS  
REGISTER  
TOF_EVTMG BIT IN  
THE INTERRUPT  
STATUS REGISTER  
READ THE TXINT, TXFRAC,  
TX_AVGINT, TX_AVGFRAC  
REGISTERS FOR  
TEMPERATURE DATA  
MICROCONTROLLER  
ASSERT THE INT  
DEVICE PIN  
ASSERT THE INT  
DEVICE PIN  
SETTING ET_CONT BIT  
CAUSES THE  
SEQUENCE TO BE  
CONTINUOUS  
NO  
OTHER  
PROCESS  
IS THE ET_CONT  
BIT SET?  
YES  
IS THE ET_CONT BIT  
SET?  
NO  
YES  
END  
Figure 13. EVTMG3 Command  
Figure 14. EVTMG3 Pseudo Code  
Maxim Integrated  
31  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Error Handling during Calibration  
HOST MICROCONTROLLER USE OF EVTMG1  
TIME OF FLIGHT / TEMPERATURE EVENT  
Since calibration can be set to be automatic by configur-  
ing the CAL_CFG[2:0] bits in the Event Timing 2 register,  
any errors that occur during the Calibrate command stop  
the CalibrationInt and the CalibrationFrac Results regis-  
ters from being updated with new calibration coefficients.  
The results for the previous Calibration data remain in  
these two registers and be used for scaling measured  
results. If the calibration error is caused by the internal  
calibration time measurement exceeding the time set  
by the TIMOUT[2:0] bits in the TOF2 register, the TO bit  
in the Interrupt Status register is set and the INT pin is  
asserted (if enabled).  
PROGRAM TOF  
DIFFERENCE  
MEASUREMENT  
FREQUENCY  
(8XS/TDF3-TDF0)  
(EG. EVERY 2 SECONDS)  
PROGRAMMABLE IN  
0.5 SECOND STEPS  
UP TO 8 SECONDS  
PROGRAM NUMBER OF TOF  
DIFFERENCE  
MEASUREMENTS  
(TDM4-TDM0) TO BE TAKEN  
(EG. 2)  
UP TO 32  
MEASUREMENTS CAN  
BE TAKEN  
PROGRAM TEMPERATURE  
MEASUREMENT FREQUENCY  
(8XS/TMF5-TMF0)  
PROGRAMMABLE IN  
1 SECOND STEPS  
UP TO 64 SECONDS  
(EG. EVERY 15 SECONDS)  
RTC, Alarm, Watchdog, and Tamper Operation  
RTC Operation  
PROGRAM # OF  
TEMPERATURE  
MEASUREMENTS  
(TMM4-TMM0) TO BE TAKEN  
(EG. 2)  
UP TO 32  
MEASUREMENTS CAN  
BE TAKEN  
The device contains a real-time clock (RTC) that is driven  
by the 32kHz oscillator. The time and calendar informa-  
tion is obtained by reading the appropriate register words.  
The time and calendar are set or initialized by writing the  
appropriate register words. The contents of the time and  
calendar registers are in the binary-coded decimal (BCD)  
format. The clock/calendar provides hundredths of sec-  
onds, tenths of seconds, seconds, minutes, hours, day,  
date, month, and year information. The date at the end  
of the month is automatically adjusted for months with  
fewer than 31 days, including corrections for leap year  
valid up to 2100. The clock operates in either the 24-hour  
or the 12-hour format with AM/PM indicator. The device’s  
RTC can be programmed for either 12-hour or 24-hour  
formats. If using the 24-hour format, Bit6 (12 HR MODE)  
of the Mins_Hrs register should be cleared to 0 and then  
Bit5 represents the 20-hour indicator. If using the 12-hour  
format, Bit6 should be set to 1 and Bit5 represents AM  
(if 0) or PM (if 1). The day-of-week register increments  
at midnight. Values that correspond to the day of week  
are user defined but must be sequential (i.e., if 0 equals  
Sunday, then 1 equals Monday, and so on). Illogical time  
and date entries result in undefined operation.  
CONFIGURE REMAINING  
MAX35104 REGISTERS  
INCLUDING THE CONT_INT  
AND ET_CONT BITS  
SEND THE EVTMG3  
COMMAND  
WAIT FOR ASSERTION OF  
INT DEVICE PIN  
AVERAGE OF 15 TOF  
DIFFERENCE  
MEASUREMENTS ARE  
READY FOR THE HOST  
MICROCONTROLLER  
READ INTERRUPT STATUS  
REGISTER  
READ TOF_DIFF_AVG,  
TOF_DIFF, AVGUP,  
AVGDN, HITX REGISTERS  
FOR TOF DATA  
IS TEMP_EVTMG  
BIT SET?  
NO  
IS TEMP_EVTMG  
BIT SET?  
Alarm Operation  
YES  
AVERAGE OF TWO  
TEMPERATURE  
MEASUREMENTS ARE  
READY FOR THE  
HOST  
The device’s RTC provides one programmable alarm.  
The alarm is activated when either the AM1 or AM2 bits in  
the Real-Time Clock register are set. Based upon these  
bits, an alarm can occur when either the minutes and/or  
hours programmed in the Alarm register match the current  
value in the Mins_Hrs register. When an Alarm occurs, the  
AF bit in the Interrupt Status register is set and the INT  
device pin is asserted (if enabled).  
READ THE TXINT, TXFRAC,  
TX_AVGINT, TX_AVGFRAC  
REGISTERS FOR  
TEMPERATURE DATA  
MICROCONTROLLER  
NO  
OTHER  
PROCESS  
IS THE ET_CONT  
BIT SET?  
YES  
Figure 15. EVTMG1 Pseudo Code  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
EVTMG1  
TIME OF FLIGHT / TEMPERATURE COMMAND  
START  
START TIMER  
GET CONFIGURATION REGISTER DATA  
TOF_DIFF  
MEASUREMENT  
REPETITION  
RATE  
YES  
YES  
YES  
IS TIMER > = NEXT  
8XS/TDF3-TDF0  
INCREMENT?  
SET  
TOF_PENDING  
NO  
TEMPERATURE  
MEASUREMENT  
REPETITION RATE  
SET  
IS TIMER > = NEXT  
8XS/TMF5–TMF0  
INCREMENT?  
TEMPERATURE_  
PENDING  
NO  
IS TOF_PENDING SET?  
NO  
IS  
NO  
PERFORM TOF_DIFF  
COMMAND  
TEMPERATURE_  
PENDING SET?  
YES  
YES  
TOF_DIFF  
COMMAND ERROR?  
CLEAR  
TEMPERATURE_  
PENDING  
PERFORM  
TEMPERATURE  
COMMAND  
CLEAR  
TOF_PENDING  
NO  
COMPUTE RUNNING  
AVG FOR TOF_DIFF  
MEASUREMENTS AND  
STORE AT  
YES  
SEE ERROR  
HANDLING  
DESCRIPTION  
TEMPERATURE  
COMMAND ERROR?  
SETTING CONT_INT  
ALLOWS HOST  
TOF_DIFF_AVG  
MICROCONTROLLER  
TO INTERROGATE  
MAX35104 AFTER  
EACH MEASUREMENT  
CYCLE  
NO  
INCREMENT  
TOF_CYCLE_COUNT  
COMPUTE RUNNING  
AVG FOR EACH  
MEASURED PORT  
AND STORE AT  
T1_AVG, T2_AVG,  
T3_AVG, T4_AVG  
REGISERS  
SEE ERROR HANDLING  
DESCRIPTION  
INCREMENT  
SEQUENCE CYCLE  
COUNTER  
SETTING  
CONT_INT  
ALLOWS HOST  
MICROCONTROLL  
ER TO  
INCREMENT  
TEMPERATURE  
CYCLE COUNTER  
NO  
NO  
SEQUENCE CYCLE  
COUNTER = TDM4–  
TDM0?  
IS THE CONT_INT  
BIT SET?  
INTERROGATE  
MAX35104 AFTER  
EACH  
MEASUREMENT  
CYCLE  
INCREMENT  
SEQUENCE CYCLE  
COUNTER  
YES  
YES  
SET THE  
SET THE  
TOF BIT IN THE  
INTERRUPT STATUS  
REGISTER  
TOF_EVTMG BIT IN  
THE INTERRUPT  
STATUS REGISTER  
NO  
NO  
SEQUENCE CYCLE  
COUNTER = TMM4-  
TMM0?  
IS THE CONT_INT  
BIT SET?  
IS  
IS  
YES  
YES  
YES  
YES  
TEMPERATURE_PEND  
ING SET?  
TEMPERATURE_  
PENDING SET?  
SET THE  
SET THE  
BIT IN THE INTERRUPT  
STATUS REGISTER  
TEMP_EVTMG BIT IN  
THE INTERRUPT  
STATUS REGISTER  
NO  
NO  
SETTING ET_CONT BIT  
CAUSES THE  
SEQUENCE TO BE  
CONTINUOUS  
ASSERT THE INT  
DEVICE PIN  
ASSERT THE INT  
DEVICE PIN  
ASSERT THE INT  
DEVICE PIN  
ASSERT THE INT  
DEVICE PIN  
YES  
YES  
IS THE ET_CONT BIT  
SET?  
IS THE ET_CONT BIT  
SET?  
NO  
NO  
END  
END  
Figure 16. EVTMG1 Command  
Maxim Integrated  
33  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
For proper alarm function, programming of the ALARM  
register HOURS bits must match the format (12- or  
24-hour modes) used in the Mins_Hrs register.  
real-time events being performed by the MAX35104.  
Upon completion of any command, the device alerts the  
host microprocessor using the INT pin. The assertion of  
the INT pin can be used to awaken the host microproces-  
sor from its low-power mode. Upon receiving an interrupt  
on the INT pin, the host microprocessor should read the  
Interrupt Status register to determine which tasks were  
completed.  
Watchdog Operation  
The device also contains a watchdog alarm. The Watchdog  
Alarm Counter register is a 16-bit BCD counter that is pro-  
grammable in 10ms intervals from 0.01 to 99.99 seconds.  
A seed value can be written to this register representing  
the start value for the countdown. The watchdog counter  
begins decrementing when the WD_EN bit in the RTC  
register is set.  
Interrupt Status Register  
The interrupt status register contains flags for all for all  
commands and events that occur within the MAX35104.  
These flags are set when the event occurs or at the  
completion of the executing command. When the Interrupt  
Status Register is read, all asserted bits are cleared. If  
another interrupt source has generated an interrupt during  
the read, these new flags are asserted following the read.  
An immediate read of Watchdog Alarm Counter returns  
the value just written. A read after a “wait” duration causes  
a value “seed” minus “wait” to be returned. For example  
if the seed value was 28.01 seconds, an immediate read  
returns 28.01. A read after a 4 seconds returns 24.01 sec-  
onds. The value read out for any read operation is a snap-  
shot obtained at the instant of a serial read operation.  
INT Pin  
The device’s INT pin is asserted when any of the bits in  
the Interrupt Status register are set. The INT pin remains  
asserted until the Interrupt Status register is read by the  
user and all bits in this register are clear. For the INT pin  
to operate, it must first be enabled by setting the INT_EN  
bit in the Calibration and Control register.  
A write operation to the Watchdog Alarm Counter causes a  
re-load with the newly written seed. When the Watchdog is  
enabled and a non-zero value is written into the Watchdog  
Alarm Counter, the Watchdog Alarm Counter decrements  
every 1/100 second, until it reaches zero. At this point, the  
WF bit in the Real Time Clock register is set and the WDO  
pin is asserted low for a minimum of 150ms. At the end of  
the pulse, the WDO pin becomes high impedance.  
Serial Peripheral Interface Operation  
Four pins are used for SPI-compatible communications:  
DOUT (serial-data out), DIN (serial-data in), CE (chip  
enable), and SCK (serial clock). DIN and DOUT are  
the serial data input and output pins for the devices,  
respectively. The CE input initiates and terminates a data  
transfer. SCK synchronizes data movement between the  
master (microcontroller) and the slave (MAX35104). The  
SCK, which is generated by the microcontroller, is active  
only when CE is low and during opcode and data transfer  
to any device on the SPI bus. The inactive clock polarity  
is logic-low. DIN is latched on the falling edge of SCK.  
There is one clock for each bit transferred. Opcode bits  
are transferred in groups of eight, MSB first. Data bits are  
transferred in groups of 16, MSB first.  
The WF flag remains set until cleared by writing WF to  
a logic 0 in the Real-Time Clock register. If the WF bit is  
cleared while the WDO device pin is being held low, the  
WDO device pin is immediately released to its high-imped-  
ance state. Writing a seed value of 0 does not cause the  
WF bit to be asserted.  
Tamper Detect Operation  
The device provides a single input that can be connected  
to a device case switch and used for tamper detection.  
Upon detection of a case switch event the CSWA in  
the Control Register and the CSWI bit in the Interrupt  
Status register is set and the INT device pin is asserted  
(if enabled).  
The SPI is used to access the features and memory of the  
MAX35104 using an opcode/command structure.  
Device Interrupt Operations  
The device is designed to optimize the power efficiency  
of a flow metering application by allowing the host micro-  
processor to remain in a low power sleep mode, instead  
of requiring the microprocessor to keep track of complex  
Opcode Commands  
The MAX35104 supports the opcode/commands shown  
in Table 5.  
Maxim Integrated  
34  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 5. Opcode Commands  
GROUP  
COMMAND  
OPCODE FIELD (HEX)  
EXECUTION OPCODE COMMANDS  
TOF_Up  
00h  
01h  
02h  
03h  
04h  
06h  
07h  
08h  
09h  
0Ah  
0Eh  
CE  
TOF_Down  
TOF_Diff  
0
1
2
3
4
5
6
7
Temperature  
Reset  
SCK  
DIN  
Execution  
Opcode  
Bandpass_Calibrate  
EVTMG1  
Commands  
O
O
EVTMG2  
LSB  
MSB  
8 BITS  
EVTMG3  
HALT  
OPCODE  
HIGH IMPEDANCE  
Calibrate  
DOUT  
94h–97h, B0h–FFh  
Each hex value  
represents the location  
of a single 16-bit  
register.  
Figure 17. Execution Opcode Command Protocol  
Read Register  
Write Register  
Register  
Opcode  
Commands  
Note: The TOF_UP command yields absolute time of  
flight results that include circuit delays.  
14h–17h, 30h–43h Each  
hex value  
represents the location  
of a single 16-bit  
register.  
TOF_Down Command (01h)  
The TOF_DOWN command generates a single TOF  
measurement in the downstream direction. Pulses are  
launched from the TX_DNP and TX_DNN pins and  
received by TX_UPP and TX_UPN pins. The measured  
hit results are reported in the HITxDnInt and HITxDnFrac  
registers, with the calculated average of all the measured  
hits being reported in the AVGDNInt and AVGDNFrac  
Execution Opcode Commands  
The device supports several single byte opcode com-  
mands, which cause the MAX35104 to execute various  
routines. All commands have the same SPI protocol  
sequence as shown in Figure 17. Once all 8 bits of the  
opcode are received by the MAX35104 and the CE  
device pin is deasserted, the device begins execution of  
the specified command as described in that Command’s  
description.  
register. The t /t and t /t  
wave ratios are reported  
1 2  
2 IDEAL  
in the WVRDN register. Once all these results are stored,  
the TOF bit in the Interrupt Status register is set and the  
INT pin is asserted (if enabled).  
Note: The TOF_Down command yields absolute time of  
flight results that include circuit delays.  
TOF_DIFF Command (02h)  
TOF_UP Command (00h)  
The TOF_DIFF command performs back-to-back TOF_  
UP and TOF_DN measurements as required for a meter-  
ing application. The TOF_UP sequence is followed by the  
TOF_DN sequence. The time between the start of the  
TOF_UP measurement and the start of the TOF_DN mea-  
surement is set by the TOF_CYC[2:0] bits in the TOF2  
register. Upon completion of the TOF_DN measurement,  
the results of AVGUP minus AVGDN is computed and  
stored at the TOF_DIFFInt and TOF_DIFFFrac Results  
register locations. Once these results are stored, then the  
The TOF_UP command generates a single TOF mea-  
surement in the upstream direction. Pulses are launched  
from the TX_UPP and TX_UPN pins and received by the  
TX_DNP and TX_DNN pins. The measured hit results  
are reported in the HITxUPInt and HITxUPFrac regis-  
ters, with the calculated average of all the measured hits  
being reported in the AVGUPInt and AVGUPFrac register.  
The t /t and t2/t  
wave ratios are reported in the  
1 2  
IDEAL  
WVRUP register. Once all these results are stored, then  
the TOF bit in the Interrupt Status register is set and the  
INT pin is asserted (if enabled).  
Maxim Integrated  
35  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
TOF bit in the Interrupt Status register is set and the INT  
EVTMG2 Command (08h)  
pin is asserted (if enabled).  
The EVTMG2 command initiates the event timing mode  
2 advanced automatic measurement feature. This timing  
mode performs automatic TOF_DIFF measurements as  
described in the Event Timing Operations section. The  
duration of the automatic measurements depends upon  
the settings in the Event Timing 1 register, CONT_INT  
and ET_CONT bits in the Calibration and Control register.  
Temperature Command (03h)  
The Temperature command initiates a temperature mea-  
surement sequence as described in the Temperature  
Measurement Operations section. The characteristics the  
temperature measurement sequence depends upon the  
settings in the Event Timing 1 Register, and Event Timing  
2 register. Once all the measurements are completed, the  
times measured for each port are reported in the corre-  
sponding TxInt and TxFrac Results Registers. The TE bit  
in the Interrupt Status register is also set and the INT pin  
is asserted (if enabled).  
EVTMG3 Command (09h)  
The EVTMG3 command initiates the event timing mode  
3 advanced automatic measurement feature. This timing  
mode performs automatic Temperature measurements as  
described in the Event Timing Operations section. The  
duration of the automatic measurements depends upon  
the settings in the Event Timing 1 register, Event timing 2  
register, CONT_INT and ET_CONT bits in the Calibration  
and Control register.  
Reset Command (04h)  
The Reset command essentially performs the same func-  
tion as a POR and causes all the Configuration registers to  
be set to their POR values and all the Results registers and  
the Interrupt Status register to be cleared and set to zero.  
HALT Command (0Ah)  
The HALT command is sent to the device to stop any  
of the three EVTMG1/2/3 commands. All register data  
content is frozen and the SPI is then made available for  
access by the host microcontroller for commands, mem-  
ory access, and register access. The HALT command  
takes time to execute. Because the EVTMGx commands  
are composed of multiple TOF_DIFF and Temperature  
commands, the HALT command causes the device to  
evaluate its own state and complete the currently execut-  
ing TOF_DIFF or Temperature command. Once the HALT  
command has completed, all registers are updated and  
the device sets the Halt bit in the Interrupt Status regis-  
ter and then asserts the INT device pin (if enabled). The  
host microprocessor reads the Interrupt Status register to  
determine the interrupt source.  
Initialize Command (05h)  
The Initialize command recalls POR values for registers  
14h–17h.  
Bandpass Calibrate Command (06h)  
The Bandpass Calibrate command is used to automati-  
cally program the bandpass filter’s center frequent. This  
command should be run before any TOF commands are  
executed (if the bandpass is enabled). To execute this  
command, first select the desired launch frequency by  
setting the DPL[3:0] bits in the TOF1 register. Upon exe-  
cution of this command, the device uses internally gener-  
ated signals at the set launch frequency to stimulate the  
bandpass filter and selects the correct center frequency  
values for the F0 Adjust bits, F0[6:0] in the AFE 2 register.  
Calibrate Command (0Eh)  
EVTMG1 Command (07h)  
The Calibrate command performs the calibration routine  
as described in the Calibration Operation section. When  
the Calibrate command has completed the measurement,  
the Calibration Results register contains the measured  
32kHz period measurement value, the device sets the Cal  
bit in the Interrupt Status register and then asserts the INT  
device pin (if enabled). The host microprocessor reads  
the Interrupt Status register to determine the interrupt  
source and then reads the Calibration Results register to  
calculate the 4MHz ceramic oscillator gain factor.  
After issuing the Bandpass Calibrate command, an addi-  
tional 5mA ICC current is active until the CE pin is toggled.  
Note: The Bandpass Calibrate command is not available  
for 1MHz pulse lauch divider setting, DPL[3:0] = 1.  
The EVTMG1 command initiates the event timing mode  
1 advanced automatic measurement feature. This timing  
mode performs automatic TOF_DIFF and Temperature  
measurements as described in the Event Timing  
Operations section. The duration of the automatic mea-  
surements depends upon the settings in the Event Timing  
1 Register, Event timing 2 register, CONT_INT and ET_  
CONT bits in the Calibration and Control register.  
Register Opcode Commands  
To manipulate the register memory, there are two com-  
mands supported by the device: Read register and Write  
Maxim Integrated  
36  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
register. Each register accessed with these commands is  
16 bits in length. These commands are used to access  
all sections of the memory map including the RTC and  
Watchdog registers, Configuration registers, Conversion  
Results registers, and Status registers. The Conversion  
Results registers and the Interrupt Status register of the  
Status registers are all read only.  
pin is deasserted as shown in Figure 19. The address  
counter is automatically incremented.  
Write Register Command  
This command applies to all writable registers. See the  
Register Memory Map for more detail. Figure 20 shows  
the SPI protocol sequence.  
The Write Register command can also be used to write  
consecutive addresses. In this case, the data bits are  
continuously received on the DIN device pin and bound  
for the initial starting address register that is addressed in  
the opcode. The address counter is automatically incre-  
mented after each 16 bits of data and wraps around to the  
beginning of the Configuration/Results register memory  
map if the SCK device pin is continually clocked and the  
CE device pin remains asserted as shown in Figure 21.  
Read Register Command  
The opcode must be clocked into the DIN device pin  
before the DOUT device pin produces the register data.  
Figure 18 shows the SPI protocol sequence.  
The Read Register command can also be used to read  
consecutive addresses. In this case, the data bits are  
continuously delivered in sequence starting with the MSB  
of the data register that is addressed in the opcode, and  
continues with each SCK rising edge until the CE device  
READ REGISTER COMMAND  
CE  
0
1
2
3
4
5
6
7
8
9
10  
19 20 21 22 23  
SCK  
DIN  
O
O
MSB  
LSB  
8 BITS  
DATA 16 BITS  
OPCODE  
D
D
D
D
D
D
D
D
D
HIGH IMPEDANCE  
DOUT  
HIGH IMPEDANCE  
MSB  
LSB  
Figure 18. Read Register Opcode Command Protocol  
Maxim Integrated  
37  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
CONTINUOUS READ REGISTER COMMAND  
CE  
SCK  
DIN  
0
1
2
3
4
5
6
7
8
9
10  
19 20 21 22 23  
24 25 26 27  
39 40 41 42 43  
O
O
MSB  
LSB  
8 BITS  
DATA 16 BITS  
DATA 16 BITS  
OPCODE  
DOUT  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
HIGH IMPEDANCE  
HIGH IMPEDANCE  
MSB  
LSB MSB  
LSB  
Figure 19. Continuous Read Register Opcode Command Protocol  
WRITE REGISTER COMMAND  
CE  
0
1
2
3
4
5
6
7
8
9
10  
19 20 21 22 23  
SCK  
O
O
D
D
D
D
D
D
D
D
D
DIN  
LSB MSB  
LSB  
MSB  
8 BITS  
DATA 16 BITS  
OPCODE  
DOUT  
HIGH IMPEDANCE  
Figure 20. Write Register Opcode Command Protocol  
Maxim Integrated  
38  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
CONTINUOUS WRITE REGISTER COMMAND  
CE  
0
1
2
3
4
5
6
7
8
9
10  
19 20 21 22 23 24 25 26 27  
39  
SCK  
O
O
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
DIN  
LSB MSB  
LSB  
LSB  
MSB  
MSB  
8 BITS  
DATA 16 BITS  
DATA 16 BITS  
OPCODE  
DOUT  
HIGH IMPEDANCE  
Figure 21. Continuous Write Register Opcode Command Protocol  
figuration variables are set to their POR default value. The  
RTC, Results, Interrupt Status, and Control registers are  
all 0000h following a reset.  
Register Memory Map  
Table 6 shows the registers that are accessed by the  
Read register command and the Write register command.  
“X” represents a reserved bit. Following a reset, all con-  
Maxim Integrated  
39  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Maxim Integrated  
40  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Maxim Integrated  
41  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Maxim Integrated  
42  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Maxim Integrated  
43  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Maxim Integrated  
44  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
RTC and Watchdog Register Descriptions  
Table 7. RTC Seconds Register  
RTC SECONDS REGISTER  
WRITE OPCODE  
30h  
READ OPCODE  
POR DEFAULT VALUE  
0000h  
B0h  
Bit  
15  
14  
13  
12  
4
11  
3
10  
9
8
0
Name  
Tenths of Seconds  
Hundredths of Seconds  
Bit  
7
0
6
5
2
1
Name  
10 Seconds  
Seconds  
BIT  
NAME  
DESCRIPTION  
15:12  
11:8  
7
Tenths of Seconds  
Hundredths of Seconds  
0
Range 0 to 9  
Range 0 to 9  
This bit always returns 0  
Range 0 to 5  
6:4  
10 Second  
3:0  
Seconds  
Range 0 to 9  
Table 8. RTC Mins_Hrs Register  
RTC MINS_HRS REGISTER  
WRITE OPCODE  
31h  
READ OPCODE  
POR DEFAULT VALUE  
0000h  
B1h  
Bit  
15  
0
14  
13  
12  
11  
10  
2
9
8
0
Name  
10 Minutes  
Minutes  
Hours  
Bit  
7
0
6
5
4
3
1
Name  
12/24  
20HR/AM/PM  
10HR  
BIT  
NAME  
DESCRIPTION  
15  
0
This bit always returns 0  
Range 0 to 5  
14:12  
11:8  
7
10 Minutes  
Minutes  
0
Range 0 to 9  
This bit always returns 0  
1 = 12-Hour Mode  
0 = 24-Hour Mode  
This bit is write only  
6
12/24  
In 12-Hour Mode  
1 = PM  
0 = AM  
5
20HR/AM/PM  
In 24-Hour Mode: 20 Hour Digit  
4
10HR  
Hours  
3:0  
Range 0 to 9  
Maxim Integrated  
45  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 9. RTC Day_Date Register  
RTC DAY_DATE REGISTER  
WRITE OPCODE  
32h  
READ OPCODE  
POR DEFAULT VALUE  
B2h  
0000h  
Bit  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
9
8
0
Name  
Day  
Bit  
7
0
6
0
5
4
3
2
1
Name  
10 Date  
Date  
BIT  
NAME  
DESCRIPTION  
15:11  
10:8  
7:6  
0
Day  
These bits always return 0  
Range 0 to 7  
0
These bits always return 0  
Range 0 to 3  
5:4  
10 Date  
Date  
3:0  
Range 0 to 9  
Table 10. RTC Month_Year Register  
RTC MONTH_YEAR REGISTER  
WRITE OPCODE  
33h  
READ OPCODE  
POR DEFAULT VALUE  
0000h  
B3h  
Bit  
15  
0
14  
0
13  
0
12  
11  
3
10  
9
1
8
0
Name  
10 Month  
Month  
Bit  
7
6
5
4
2
Name  
10 Year  
Year  
BIT  
NAME  
DESCRIPTION  
15:13  
12  
0
These bits always return 0.  
10 Month Range 0 to 1  
11:8  
7:4  
Month  
10 Year  
Year  
Range 0 to 9  
Range 0 to 9  
Range 0 to 9  
3:0  
Maxim Integrated  
46  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 11. Watchdog Alarm Counter Register  
WATCHDOG ALARM COUNTER REGISTER  
WRITE OPCODE  
34h  
READ OPCODE  
POR DEFAULT VALUE  
0000h  
B4h  
15  
14  
13  
12  
4
11  
3
10  
9
8
0
Bit  
Tenths of Seconds  
Hundredths of Seconds  
Name  
7
6
5
2
1
Bit  
10 Seconds  
Seconds  
Name  
BIT  
NAME  
Tenths of Seconds  
Hundredths of Seconds  
10 Second  
DESCRIPTION  
15:12  
11:8  
7:4  
Range 0 to 9  
Range 0 to 9  
Range 0 to 9  
Range 0 to 9  
3:0  
Seconds  
Table 12. Alarm Register  
ALARM REGISTER  
WRITE OPCODE  
35h  
READ OPCODE  
B5h  
POR DEFAULT VALUE  
0000h  
Bit  
15  
X
14  
13  
12  
11  
3
10  
9
8
0
Name  
10 Minutes  
Minutes  
Bit  
7
6
5
4
2
1
Name  
X
12/24  
20HR/AM/PM  
10HR  
Hours  
BIT  
15  
NAME  
DESCRIPTION  
X
Reserved  
14:12  
11:8  
7
10 Minutes  
Minutes  
X
Range 0 to 5  
Range 0 to 9  
Reserved  
1 = 12-Hour Mode  
0 = 24-Hour Mode  
This bit is write only  
6
12/24  
In 12-Hour Mode  
1 = PM  
0 = AM  
5
20HR/AM/PM  
In 24-Hour Mode: 20 Hour Digit  
4
10HR  
Hours  
3:0  
Range 0 to 9  
Maxim Integrated  
47  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Configuration Register Descriptions  
Table 13. Switcher 1 Register  
SWITCHER 1 REGISTER  
WRITE OPCODE  
14h  
READ OPCODE  
94h  
POR VALUE  
0030h  
Bit  
15  
14  
13  
12  
11  
X
10  
X
9
8
Name  
SFREQ1  
SFREQ0  
HREG_D  
0
X
X
Bit  
7
6
5
1
4
1
3
2
1
0
Name  
DFREQ1  
DFREQ0  
VS3  
VS2  
VS1  
VS0  
BIT  
NAME  
DESCRIPTION  
Switcher Control Frequency: These 2 bits are used to control the switching frequency of the switcher  
boost circuit.  
SFREQ1  
SFREQ0  
SWITCHING FREQUENCY (kHz)  
SFREQ  
[1:0]  
0
0
1
1
0
1
0
1
100  
125  
166  
200  
15:14  
High Voltage Regulator Disable: This bit powers down the high voltage regulator in the case where it  
is not desired and the switcher voltage is deem sufficient to drive the piezos. In such a case, the VPR  
and VP pins must be externally shorted together.  
13  
HREG_D  
When set to 0 the high voltage regulator is enabled. When set to 1 it is disabled.  
Zero: This bit must always be written to 0b when accessing this register.  
WARNING: Writing this bit to a non-zero value causes undesired device operation.  
12  
0
11:8  
X
Reserved  
Doubler Control Frequency: These 2 bits are used to control the switching frequency of the doubler  
circuit.  
DREQ1  
DREQ0  
SWITCHING FREQUENCY (kHz)  
0
0
1
1
0
1
0
1
100  
125  
166  
200  
7:6  
DREQ[1:0]  
Maxim Integrated  
48  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 13. Switcher 1 Register (continued)  
One: These bits must always be written to 11b when accessing this register.  
WARNING: Writing these bits to a non-one value causes undesired device operation.  
5:4  
11  
BIT  
NAME  
DESCRIPTION  
Voltage Select: This is a hex value that controls the switcher and high voltage regulator output target  
voltage:  
DESCRIPTION  
VS0[3:0]  
MAX FET DUTY CYCLE (%)  
REGULATOR  
TARGET (V)  
SWITCHER  
TARGET (V)  
LT_50D = 0b  
LT_50D = 1b  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
5.4  
5.4  
9
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
60  
63  
65  
68  
70  
73  
73  
78  
80  
83  
85  
90  
9
5.4  
9
5.4  
9
5.4  
9
7.2  
10.8  
12.6  
15  
3:0  
VS[3:0]  
9
11.4  
13.2  
15.6  
17.4  
19.2  
21.6  
23.4  
25.2  
27  
16.8  
19.2  
21  
22.8  
25.2  
27  
28.8  
30.6  
Maxim Integrated  
49  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 14. Switcher 2 Register  
SWITCHER 2 REGISTER  
WRITE OPCODE  
15h  
READ OPCODE  
95h  
POR VALUE  
44E0h  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Name  
LT_N3  
LT_N2  
LT_N1  
LT_N0  
LT_S3  
LT_S2  
LT_S1  
LT_S0  
Bit  
7
6
5
4
3
2
0
1
0
0
Name  
ST3  
ST2  
ST1  
ST0  
LD_50D  
PECHO  
BIT  
NAME  
DESCRIPTION  
Limit trim Normal Operation: After the output voltage crosses the undervoltage good threshold,  
which is the programmed voltage select output, the switcher runs in normal duty mode. Four bits  
control the max inductor current in normal duty mode. The bits must be set in the one-hot pattern  
shown below.  
0000b = Loop conditions determine max  
0001b = 0.2V/RSENSE = MAX CURRENT  
15:12  
LT_N[3:0]  
LT_N[3:0]  
0010b = 0.4V/RSENSE = MAX CURRENT  
0100b = 0.8V/RSENSE = MAX CURRENT  
1000b = 1.6V/RSENSE = MAX CURRENT  
Limit trim Startup: During power up, a soft-start must be initiated as the inductor can saturate from  
a maxed out duty cycle arising from the large error between target and the output voltage. Four bits  
control the max inductor current. The bits must be set in the one-hot pattern shown below.  
0000b = No limit  
11:8  
LT_S[3:0]  
0001b = 0.2V/RSENSE = MAX CURRENT  
LT_S[3:0]  
0010b = 0.4V/RSENSE = MAX CURRENT  
0100b = 0.8V/RSENSE = MAX CURRENT  
1000b = 1.6V/RSENSE = MAX CURRENT  
Maxim Integrated  
50  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 14. Switcher 2 Register (continued)  
BIT  
NAME  
DESCRIPTION  
Switcher Stabilization Time: This is a hex number that selects the time allotted for the stabilization  
of the output voltage of the switcher. This count begins once the under voltage comparator  
determines the target output voltage is within the defined specifications. After the stabilization time  
expires the launch pulses are then transmitted.  
The time is based upon the 32.768 KHz crystal.  
ST[3:0]  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
STABILIZATION TIME  
64µs  
128µs  
192µs  
256µs  
320µs  
7:4  
ST[3:0]  
384µs  
473µs  
512µs  
768µs  
1.02ms  
1.25ms  
1.50ms  
2.05ms  
4.10ms  
8.19ms  
16.4ms  
LIMIT TRIM 50% Disable: This bit disables the 50% MAX duty cycle applied to the switcher FET.  
When set to 0 the switcher FET’s applied MAX duty cycle will never exceed a 50%  
When set to a 1 the switcher FET’s applied MAX duty cycle will dependent upon the settings in the  
Launch Voltage Select, VS[3:0], bit field in the Switcher 1 Register.  
3
2:1  
0
LT_50D  
0
Zero: These bits must always be written to 00b when accessing this register.  
WARNING: Writing these bits to a non-zero value will cause undesired device operation  
Pulse Echo enable: This bit enables the pulse echo mode of the device. In pulse echo mode the  
launch transducer is also the receive transducer.  
When set to 1 the device operates in pulse echo mode.  
PECHO  
When set to 0 the device operates in normal time of flight mode.  
Maxim Integrated  
51  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 15. AFE 1 Register  
AFE 1 REGISTER  
WRITE OPCODE  
16h  
READ OPCODE  
96h  
POR VALUE  
04Xxh  
Bit  
15  
14  
13  
0
12  
0
11  
0
10  
9
8
Name  
AFE_BP  
0
SD_EN  
AFEOUT1  
AFEOUT0  
Bit  
7
0
6
5
4
3
2
1
0
Name  
WRITE BACK READ VALUES  
BIT  
NAME  
DESCRIPTION  
Analog Front-End Bypass: This bit is used to remove the entire analog front-end signal chain,  
including both gain stages and the bandpass filter, from the return signal-chain path.  
When set to 1, externally connecting the RXN/RXP pins to the CIN/CIP pins is required.  
15  
AFE_BP  
When set to 0 the return signals are routed to the first gain stage of the analog front-end.  
Zero: These bits must always be written to 0000b when accessing this register.  
WARNING: Writing these bits to a non-zero value will cause undesired device operation  
14:11  
10  
0
Single Ended Drive Enable: This bit enables the transmitted square wave to be driven in a single  
ended manner. When set to 0, the transmitted square wave will be driven differentially.  
SD_EN  
Analog Front End Output: These bits enable the AFE signals to be output on the CIP/CIN pins  
according to the following stage output  
AFEOUT1  
AFEOUT0  
DESCRIPTION  
CIP/CIN output disabled  
0
0
1
1
0
1
0
1
9:8  
AFEOUT[1:0]  
Route bandpass filter out  
Route programmable gain amplifier out  
Route fixed gain amplifier out  
Zero: This bit must always be written to 0b when accessing this register.  
WARNING: Writing this b it to a non-zero value will cause undesired device operation  
7
0
Write Back: This bit field must be written back to the initial value that is read from the device after a  
POR, before it is modified. When writing this register a POR read must occur first and the value of  
these 7 bits must be stored in the host microcontroller. Any future writes to this register must write this  
7-bit bit-field to the value that was initially read.  
6:0  
WB  
WARNING :Writing these bits to a value that does not match the initial POR read value will cause  
undesired device operation  
Maxim Integrated  
52  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 16. AFE 2 Register  
AFE 2 REGISTER  
WRITE OPCODE  
17h  
READ OPCODE  
97h  
POR VALUE  
0000h  
15  
14  
13  
12  
11  
10  
9
8
Bit  
4M_BP  
F06  
F05  
F04  
F03  
F02  
F01  
F00  
Name  
7
6
5
4
3
2
1
0
0
Bit  
PGA3  
NAME  
PGA2  
PGA1  
PGA0  
LOWQ1  
LOWQ0  
BP_BP  
Name  
BIT  
DESCRIPTION  
4MHz Bypass: This bit, when set, allows an external CMOS-level 4.0 MHz signal to be applied to the  
4MX1 device pin. The internal 4MHz oscillator is bypassed and the external signal is driven into the  
device’s core.  
15  
4M_BP  
F0 Adjust: This is a hex value that adjusts the center frequency of the bandpass filter.  
Use the Bandpass Calibrate Command (06h) and the device will automatically select  
the best center frequency based upon the selected launch frequency. These bits will  
be set automatically by the device.  
14:8  
F0[6:0]  
Gain Select: This is a hex value that selects the gain for the programmable gain amplifier:  
AMPLIFIER GAIN  
PGA[3:0]  
dB  
V/V  
3.16  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
10  
11.33  
12.66  
13.99  
15.32  
16.65  
17.98  
19.31  
20.64  
21.97  
23.30  
24.63  
25.96  
27.29  
28.62  
29.95  
3.69  
4.30  
5.01  
5.83  
6.80  
7:4  
PGA[3:0]  
7.93  
9.24  
10.76  
12.55  
14.62  
17.04  
19.86  
23.15  
26.98  
31.44  
Maxim Integrated  
53  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 16. AFE 2 Register (continued)  
BIT  
NAME  
DESCRIPTION  
BPF Q Select: These 2 bits are used to lower the Q factor of the filter  
LOWQ1  
LOWQ2  
FILTER Q (Hz/Hz)  
0
0
1
1
0
1
0
1
12  
7.4  
5.3  
4.2  
3:2  
LOWQ[1:0]  
Zero: This bit must always be written to 0b when accessing this register.  
WARNING :Writing this bit to a non-zero value will cause undesired device operation  
1
0
0
Bandpass Filter Bypass: This bit is used to remove the tunable bandpass filter from the return  
signal-chain path. When the bandpass filter is bypassed, the return signals present at the input of the  
tunable bandpass filter are routed directly to programmable offset comparator.  
BP_BP  
When set to 0 the BPF is used to condition the return signal. When set to 1 the BPF is bypassed.  
Table 17. TOF1 Register  
TOF1 REGISTER  
WRITE OPCODE  
38h  
READ OPCODE  
B8h  
POR DEFAULT VALUE  
0000h  
15  
14  
13  
12  
11  
10  
9
8
Bit  
PL7  
PL6  
PL5  
PL4  
PL3  
PL2  
PL1  
PL0  
Name  
7
6
5
4
3
2
1
0
Bit  
DPL3  
DPL2  
DPL1  
DPL0  
STOP_POL  
X
X
X
Name  
Maxim Integrated  
54  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 17. TOF1 Register (continued)  
BIT  
NAME  
DESCRIPTION  
Pulse Launcher Size: This is a hex value that defines the number of pulses that are launched  
from the pulse launcher during transmission. The range of this hex value is 00h–FFh. When  
PL[7:0] is set to 00h, the Pulse Launcher is disabled. Up to 127 pulses can be launched. When  
PL7 is set, the pulse count is clamped at 127.  
15:8  
PL[7:0]  
Pulse Launch Divider: This is a hex value that defines the divider ratio of the internal clock  
signal used to drive the Pulse Launch signal. The 4 MHz external reference oscillator is used  
as the source for the internal clock reference. The internal reference clock is first divided by  
2 to produce a 2MHz clock. The range of this hex value is 1h to Fh, resulting in a range of  
division from ÷2 to ÷16 of the 2 MHz clock. A value of 0h is not supported and should not be  
programmed.  
Pulse Launch Frequency = 2MHz / (1+DPL[3:0])  
7:4  
DPL[3:0]  
DPL[3:0]  
0000b  
0001b  
0002b  
. . .  
PULSE LAUNCH FREQUENCY  
RESERVED  
1MHz  
666kHz  
. . .  
1110b  
1111b  
133.33kHz  
125kHz  
Stop Polarity: This bit defines the edge sensitivity of the internal programmable stop  
comparator. The comparator generates a stop condition for the internal TDC time count on  
the rising slope of the received signal if this bit is set to 0. The comparator generates a stop  
condition for the internal TDC time count on the falling slope of the received signal if this bit is  
set to 1.  
3
STOP_POL  
X
2:0  
Reserved  
Maxim Integrated  
55  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 18. TOF2 Register  
TOF2 REGISTER  
WRITE OPCODE  
39h  
READ OPCODE  
B9h  
POR DEFAULT VALUE  
0000h  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Name  
STOP2  
STOP1  
STOP0  
T2WV5  
T2WV4  
T2WV3  
T2WV2  
T2WV1  
Bit  
7
6
5
4
3
2
1
0
Name  
T2WV0  
TOF_CYC2  
TOF_CYC1  
TOF_CYC0  
X
TIMOUT2  
TIMOUT1  
TIMOUT0  
BIT  
NAME  
DESCRIPTION  
Stop Hits: These bits set the number of stop hits to be expected and measured.  
STOP2  
STOP1  
STOP0  
DESCRIPTION  
1 Hit  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2 Hits  
3 Hits  
15:13  
STOP[2:0]  
4 Hits  
5 Hits  
6 Hits  
6 Hits  
6 Hits  
Wave Selector for t :These bits determine the wave number for which t is measured. To ensure  
2
2
measurement accuracy, the first wave measurable after the Early Edge Detect is Wave 2. Waves are  
numbered as depicted in Figure 5B.  
T2WV[5:0] (decimal)  
DESCRIPTION  
Wave 2  
12:7  
T2WV[5:0]  
0 through 2  
3
Wave 3  
4
Wave 4  
5 through 63  
Wave 5 through 63  
Maxim Integrated  
56  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 18. TOF2 Register (continued)  
BIT  
NAME  
DESCRIPTION  
TOF Duty Cycle: These bits determine the time delay between successive executions of TOF  
measurements. It is the Start-to-Start time of automatic execution of the TOF_UP and the TOF_DN and  
is applicable only for the TOF_DIFF command. It is based upon the 32.768kHz crystal. If the actual TOF  
of the acoustic path exceeds the programmed Start-to-Start time in this setting, then the TOF Duty Cycle  
performs as if the bit setting is 000b.  
DESCRIPTION  
TOF_CYC[2:0]  
32kHz CLOCK  
CYCLES(decimal)  
TYPICAL  
TIME  
4MHz ON BETWEEN TOF_UP  
AND TOF_DOWN  
TOF_CYC  
[2:0]  
6:4  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
0
4
0µs  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
122µs  
244µs  
488µs  
732µs  
976µs  
16.65ms  
19.97ms  
8
16  
24  
32  
546  
655  
No  
3
X
Reserved  
Timeout: These bits force a timeout in the Time-To-Digital measurement block. If the hit required  
to measure t or Hit1 thru Hit6of the received signal does not occur in this time, the TO bit in the  
t
1, 2,  
Interrupt Status register is set and the INT pin is asserted (if enabled). Additionally, any of the Conversion  
Results registers read FFFFh if the data for that register is invalid. In addition, if resultant temperature  
readings exceed the timeout value set by these bits, then the device writes a value of FFFFh to the  
corresponding T1, T2, T3, T4 Results register to indicate an open circuit temperature probe.  
TIMOUT2  
TIMOUT1  
TIMOUT0  
DESCRIPTION  
128µs  
TIMOUT  
[2:0]  
2:0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
256µs  
512µs  
1024µs  
2048µs  
4096µs  
8192µs  
16384µs  
Maxim Integrated  
57  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 19. TOF3 Register  
TOF3 REGISTER  
WRITE OPCODE  
3Ah  
READ OPCODE  
BAh  
POR DEFAULT VALUE  
0000h  
15  
X
14  
X
13  
12  
11  
10  
9
8
Bit  
Hit1WV5  
Hit1WV4  
Hit1WV3  
Hit1WV2  
Hit1WV1  
Hit1WV0  
Name  
7
6
5
4
3
2
1
0
Bit  
X
X
Hit2WV5  
Hit2WV4  
Hit2WV3  
Hit2WV2  
Hit2WV1  
Hit2WV0  
Name  
BIT  
15:14  
NAME  
DESCRIPTION  
X
Reserved  
Hit1 Wave Select: These bits select the wave number for which the Hit1 stop time is  
measured. Wave Numbers are depicted in Figure 5B. The Hit1 Wave Select value must be  
at least 1 greater than the Wave Selected for t , which is configured in the TOF2 register.  
2
For example, if the Wave Selector for t is set to wave number 7, then the Hit1 Wave Select  
2
must be set to deselect wave number 8 or greater. The earliest wave for which Hit1 can be  
measured is Wave 3.  
13:8  
HIT1WV[5:0]  
HIT1WV[5:0] (decimal)  
DESCRIPTION  
Wave 3  
0 to 3  
4
5
Wave 4  
Wave 5  
6 to 63  
Wave 6 to 63  
7:6  
5:0  
X
Reserved  
Hit2 Wave Select: These bits select the wave number for which the Hit2 stop time is  
measured. Wave numbers are depicted in Figure 5B. The Hit2 Wave Select value must be at  
least 1 greater than the Hit1 Wave Select value. For example, if Hit1 Wave Select value is set  
to measure wave number 9, then the Hit2 Wave Select must be set to detect wave number 10  
or greater. The earliest wave for which Hit2 can be measured is Wave 4.  
HIT2WV[5:0]  
HIT2WV[5:0] (decimal)  
DESCRIPTION  
Wave 4  
0 to 4  
5
6
Wave 5  
Wave 6  
7 to 63  
Wave 7 to 63  
Maxim Integrated  
58  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 20. TOF4 Register  
TOF4 REGISTER  
WRITE OPCODE  
3Bh  
READ OPCODE  
BBh  
POR DEFAULT VALUE  
0000h  
15  
X
14  
X
13  
12  
11  
10  
9
8
Bit  
Hit3WV5  
Hit3WV4  
Hit3WV3  
Hit3WV2  
Hit3WV1  
Hit3WV0  
Name  
7
6
5
4
3
2
1
0
Bit  
X
X
Hit4WV5  
Hit4WV4  
Hit4WV3  
Hit4WV2  
Hit4WV1  
Hit4WV0  
Name  
BIT  
NAME  
DESCRIPTION  
15:14  
13:8  
7:6  
X
Reserved  
Hit3 Wave Select: These bits select the wave number for which the Hit3 stop time is measured.  
Wave numbers are depicted in Figure 5B. The Hit3 Wave Select value must be at least 1 greater  
than the Hit2 Wave Select value. For example, if the Hit2 Wave Select value is set to measure wave  
number 10, then the Hit3 Wave Select must be set to detect wave number 11 or greater. The earliest  
wave for which Hit3 can be measured is Wave 5.  
HIT3WV  
[5:0]  
HIT3WV[5:0] (decimal)  
DESCRIPTION  
Wave 5  
0 to 5  
6
7
Wave 6  
Wave 7  
8 to 63  
Wave 8 to 63  
X
Reserved  
Hit4 Wave Select: These bits select the wave number for which the Hit4 stop time is measured.  
Wave numbers are depicted in Figure 5B. The Hit4 Wave Select value must be at least 1 greater  
than the Hit3 Wave Select value. For example, if the Hit3 Wave Select value is set to measure wave  
number 11, then the Hit4 Wave Select must be set to detect wave number 12 or greater. The earliest  
wave for which Hit4 can be measured is Wave 6.  
HIT4WV  
[5:0]  
5:0  
HIT4WV[5:0] (decimal)  
DESCRIPTION  
Wave 6  
0 to 6  
7
8
Wave 7  
Wave 8  
9 to 63  
Wave 9 to 63  
Maxim Integrated  
59  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 21. TOF5 Register  
TOF5 REGISTER  
WRITE OPCODE  
3Ch  
READ OPCODE  
BCh  
POR DEFAULT VALUE  
0000h  
Bit  
15  
X
14  
X
13  
12  
11  
10  
9
8
Name  
Hit5WV5  
Hit5WV4  
Hit5WV3  
Hit5WV2  
Hit5WV1  
Hit5WV0  
Bit  
7
6
5
4
3
2
1
0
Name  
X
X
Hit6WV5  
Hit6WV4  
Hit6WV3  
Hit6WV2  
Hit6WV1  
Hit6WV0  
BIT  
NAME  
DESCRIPTION  
15:14  
13:8  
7:6  
X
Reserved  
Hit5 Wave Select: These bits select the wave number for which the Hit5 stop time is measured.  
Wave numbers are depicted in Figure 5B. The Hit5 Wave Select value must be at least 1 greater  
than the Hit4 Wave Select value. For example, if the Hit4 Wave Select value is set to measure wave  
number 12, then the Hit5 Wave Select must be set to detect wave number 13 or greater. The earliest  
wave for which Hit5 can be measured is Wave 7.  
HIT5WV  
[5:0]  
HIT5WV[5:0] (decimal)  
DESCRIPTION  
Wave 7  
0 to 7  
8
9
Wave 8  
Wave 9  
10 to 63  
Wave 10 to 63  
X
Reserved  
Hit6 Wave Select: These bits select the wave number for which the Hit6 stop time is measured.  
Wave numbers are depicted in Figure 5B. Hit6 Wave Select value must at least 1 greater than the  
Hit5 Wave Select value. For example, if Hit5 Wave Select value is set to measure wave number 13,  
then the Hit6 Wave Select must be set to detect wave number 14 or greater. The earliest wave for  
which Hit6 can be measured is Wave 8.  
HIT5WV  
[5:0]  
5:0  
HIT4WV[5:0] (decimal)  
DESCRIPTION  
Wave 8  
0 to 8  
9
Wave 9  
10  
Wave 10  
11 to 63  
Wave 11 to 63  
Maxim Integrated  
60  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 22. TOF6 Register  
TOF6 REGISTER  
WRITE OPCODE  
3Dh  
READ OPCODE  
BDh  
POR DEFAULT VALUE  
0000h  
Bit  
15  
14  
13  
12  
11  
10  
9
8
C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET  
Name  
UPR7  
UPR6  
UPR5  
UPR4  
UPR3  
UPR2  
UPR1  
UPR0  
Bit  
7
6
5
4
3
2
1
0
C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET  
Name  
X
UP6  
UP5  
UP4  
UP3  
UP2  
UP1  
UP0  
BIT  
NAME  
DESCRIPTION  
Comparator Return Offset Upstream: When the device is measuring the t wave, the  
2
programmed receive comparator offset is returned to a common mode voltage automatically after  
the Early Edge, t , is detected. The actual offset return voltage is dependent upon and scales  
1
with the voltage present at the V  
pins. The following formula defines the Comparator Return  
CC  
Offset voltage setting, where C_OFFSETUPR is a two’s-complement number:  
1152 + C_OFFSETUPR  
Comparator Return Offset Voltage = V  
×
CC  
C_OFFSETUP  
R[7:0]  
3072  
15:8  
V
CC  
where 1 LSB =  
3072  
C_OFFSETUPR[6:0]  
7Fh to 01h  
00h  
OFFSET (LSBs)  
127 to 1  
0
80h to FFh  
-128 to -1  
7
X
Reserved  
Maxim Integrated  
61  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 22. TOF6 Register (continued)  
BIT  
NAME  
DESCRIPTION  
Comparator Offset Upstream: These bits define an initial selected receive comparator offset  
voltage for the analog receiver comparator front-end. This comparator offset is used to detect the  
Early Edge wave, t . The actual common mode voltage is dependent upon and scales with the  
1
voltage present at the V  
pins.  
CC  
When the STOP_POL bit in the TOF1 register is set to zero indicating a rising edge detection of  
the zero crossing of the received acoustic wave, then the Comparator Offset is a positive value.  
When the STOP_POL bit in the TOF1 register is set to one indicating a falling edge detection of  
the zero crossing of the received acoustic wave, then the Comparator Offset is a negative value.  
The following formulas define the Comparator Offset voltage setting  
C_OFFSETUP  
[6:0]  
6:0  
1152 + C_OFFSETUP  
STOP_POL = 0 Comparator Offset Voltage = V  
×
CC  
3072  
1151C_OFFSETUP  
STOP_POL = 1 Comparator Offset Voltage = V  
×
CC  
3072  
V
CC  
where 1 LSB =  
3072  
C_OFFSETUP[6:0]  
OFFSET (LSBs)  
00h to 7Fh  
0 to 127  
Maxim Integrated  
62  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 23. TOF7 Register  
TOF7 REGISTER  
WRITE OPCODE  
3Eh  
READ OPCODE  
BEh  
POR DEFAULT VALUE  
0000h  
Bit  
15  
14  
13  
12  
11  
10  
9
8
C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET  
Name  
DNR7  
DNR6  
DNR5  
DNR4  
DNR3  
DNR2  
DNR1  
DNR0  
Bit  
7
6
5
4
3
2
1
0
C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET C_OFFSET  
Name  
X
DN6  
DN5  
DN4  
DN3  
DN2  
DN1  
DN0  
BIT  
NAME  
DESCRIPTION  
Comparator Return Offset Downstream: When the device is measuring the t2 wave, the  
programmed receive comparator offset is returned to a common mode voltage automatically  
after the Early Edge, t , is detected. The actual offset return voltage is dependent upon and  
1
scales with the voltage present at the V  
pins. The following formula defines the Comparator  
CC  
Return Offset voltage setting, where C_OFFSETDNR is a two’s-complement number:  
1152 + C_OFFSETDNR  
Comparator Return Offset Voltage = V  
×
CC  
C_OFFSETDNR  
[7:0]  
3072  
15:8  
V
CC  
where 1 LSB =  
3072  
C_OFFSETDNR[6:0]  
7Fh to 01h  
00h  
OFFSET (LSBs)  
127 to 1  
0
80h to FFh  
-128 to -1  
7
X
Reserved  
Maxim Integrated  
63  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 23. TOF7 Register (continued)  
BIT  
NAME  
DESCRIPTION  
Comparator Offset Downstream: These bits define an initial selected receive comparator  
offset voltage for the analog receiver comparator front-end. This comparator offset is used  
to detect the Early Edge wave, t . The actual common mode voltage is dependent upon and  
1
scales with the voltage present at the V  
pins.  
CC  
When the STOP_POL bit in the TOF1 register is set to zero indicating a rising edge detection of  
the zero crossing of the received acoustic wave, then the Comparator Offset is a positive value.  
When the STOP_POL bit in the TOF1 register is set to one indicating a falling edge detection  
of the zero crossing of the received acoustic wave, then the Comparator Offset is a negative  
value.  
The following formulas define the Comparator Offset voltage setting:  
C_OFFSETDN  
[6:0]  
6:0  
1152 + C  
OFFSETUP  
3072  
STOP_POL = 0 Comparator Offset Voltage = V  
×
CC  
CC  
1151C  
OFFSETUP  
STOP_POL = 1 Comparator Offset Voltage = V  
×
3072  
V
CC  
3072  
where 1 LSB =  
C_OFFSETDN[6:0]  
OFFSET (LSBs)  
00h to 7Fh  
0 to 127  
Maxim Integrated  
64  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 24. Event Timing 1 Register  
EVENT TIMING 1 REGISTER  
WRITE OPCODE  
3Fh  
READ OPCODE  
BFh  
POR DEFAULT VALUE  
0000h  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Name  
TDF3  
TDF2  
TDF1  
TDF0  
TDM4  
TDM3  
TDM2  
TDM1  
Bit  
7
6
5
4
3
2
1
0
Name  
TDM0  
TMF5  
TMF4  
TMF3  
TMF2  
TMF1  
TMF0  
X
BIT  
NAME  
DESCRIPTION  
TOF Difference Measurement Frequency: These bits define the rate at which TOF_DIFF  
measurements are executed when the EVTMG1 or EVTMG2 command is executed.  
Rate = 0.5s + (TDF[3:0] x 0.5s) + randomizer value  
TDF[3:0] (decimal)  
RATE (s)  
0.5  
15:12  
TDF[3:0]  
0
1
1.0  
. . .  
14  
. . .  
7.5  
TOF Difference Measurements: These bits define the number of TOF_DIFF measurement cycles to  
be executed when the EVTMG1 or EVTMG2 command is executed.  
Cycles = 1+ TDM[4:0]  
TDM[4:0] (decimal)  
CYCLES  
11:7  
TDM[4:0]  
0
1
1
2
. . .  
30  
. . .  
31  
Temperature Measurement Frequency: These bits define the time delay between temperature  
cycle measurements. It is a start-cycle to start-cycle time duration at which temperature  
measurement cycles are executed when the EVTMG1 or EVTMG3 command is executed.  
Rate = 1.0s + (TMF[3:0] * 1.0s) + randomizer value  
6:1  
TMF[5:0]  
TMF[5:0] (decimal)  
RATE (S)  
0
1
1
2
. . .  
62  
. . .  
63  
0
X
Reserved  
Maxim Integrated  
65  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 25. Event Timing 2 Register  
EVENT TIMING 2 REGISTER  
WRITE OPCODE  
40h  
READ OPCODE  
C0h  
POR DEFAULT VALUE  
0000h  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Name  
TMM4  
TMM3  
TMM2  
TMM1  
TMM0  
CAL_USE  
CAL_CFG2  
CAL_CFG1  
Bit  
7
6
5
4
3
2
1
0
Name  
CAL_CFG0  
X
X
PRECYC2  
PRECYC1  
PRECYC0  
PORTCYC1 PORTCYC0  
BIT  
NAME  
DESCRIPTION  
Temperature Measurements: These bits define the number of temperature measurement  
cycles to be executed when the EVTMG1 or EVTMG3 command is executed.  
Cycles = 1+ TMM[4:0]  
TMM[4:0] (decimal)  
CYCLES  
15:11  
TMM[4:0]  
CAL_USE  
0
1
1
2
. . .  
30  
. . .  
31  
Calibration Usage: This bit, when set, causes the device to use the calibration data in the  
CalibrationInt and CalibrationFrac registers during measurement, averaging and accumulation  
of data while executing the EVTMG commands. All time measurements are scaled using the  
calibration factors as described by the Calibrate command.  
10  
Calibration Configuration: These bits define the point in the EVTMGx cycle/sequence where  
the automatic Calibration command is executed.  
DESCRIPTION  
CAL_CFG[2:0]  
During EVTMGx sequences, automatic execution of the Calibrate  
command occurs at:  
000b to 011b  
100b  
Auto Calibration Disabled  
The beginning of each TOF_DIFF cycle  
The beginning of each Temperature cycle  
9:7  
CAL_CFG[2:0]  
The beginning of each TOF_DIFF cycle  
The beginning of each Temperature sequence  
101b  
110b  
111b  
Once at the beginning of each TOF_DIFF sequence  
The beginning of each Temperature cycle  
Once at the beginning of each TOF_DIFF sequence  
The beginning of each Temperature sequence  
6:5  
X
Reserved  
Maxim Integrated  
66  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 25. Event Timing 2 Register (continued)  
BIT  
NAME  
DESCRIPTION  
Preamble Temperature Cycle: These 3 bits are used to set the number of cycles to use as  
preamble for reducing dielectric absorption of the temperature measurement capacitor. Each  
cycle is comprised of one temperature measurement sequence as defined by the TP[1:0] bits.  
PRECYC2  
PRECYC1  
PRECYC0  
DESCRIPTION  
0 Dummy Cycle  
1 Dummy Cycles  
2 Dummy Cycles  
3 Dummy Cycles  
4 Dummy Cycles  
5 Dummy Cycles  
6 Dummy Cycles  
7 Dummy Cycles  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
4:2  
PRECYC[2:0]  
Port Cycle Time: These two bits define the time interval between successive individual  
temperature port measurements. It is a start-to-start time. These bits also define the timeout  
function of the temperature measurement ports. See the Temperature Operation Sections for  
timeout details.  
PORTCYC1  
PORTCYC0  
DESCRIPTION (µs)  
1:0  
PORTCYC[1:0]  
0
0
1
1
0
1
0
1
128  
256  
384  
512  
Table 26. TOF Measurement Delay Register  
TOF MEASUREMENT DELAY REGISTER  
WRITE OPCODE  
41h  
READ OPCODE  
C1h  
POR DEFAULT VALUE  
0000h  
15  
14  
13  
12  
11  
10  
9
8
Bit  
DLY15  
DLY14  
DLY13  
DLY12  
DLY11  
DLY10  
DLY9  
DLY8  
Name  
7
6
5
4
3
2
1
0
Bit  
DLY7  
DLY6  
DLY5  
DLY4  
DLY3  
DLY2  
DLY1  
DLY0  
Name  
BIT  
NAME  
DESCRIPTION  
This is hexadecimal value ranging from 0000h to FFFFh (Decimal 0 to 65535). It is a multiple  
of the 4MHz crystal period (250ns). The minimum setting is 0064h, which is equivalent to 25µs.  
The analog comparator driven by the bandpass filter does not generate a stop condition until  
this delay, counted from the internally generated start pulse for the acoustic wave, has expired.  
This delay applies to Early Edge Detect wave.  
15:0  
DLY[15:0]  
Care must be taken to set the TIMOUT bits in the TOF2 register so that a timeout interrupt  
does not occur before this delay expires.  
Maxim Integrated  
67  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 27. Calibration and Control Register  
CALIBRATION AND CONTROL REGISTER  
WRITE OPCODE  
42h  
READ OPCODE  
C2h  
POR DEFAULT VALUE  
0000h  
Bit  
15  
X
14  
X
13  
12  
X
11  
10  
9
8
Name  
X
CMP_EN  
CMP_SEL  
INT_EN  
ET_CONT  
Bit  
7
6
5
4
3
2
1
0
CAL_  
PERIOD3  
CAL_  
PERIOD2  
CAL_  
PERIOD1  
CAL_  
PERIOD0  
Name  
CONT_INT  
CLK_S2  
CLK_S1  
CLK_S0  
BIT  
NAME  
DESCRIPTION  
15:12  
X
Reserved  
Comparator/UP_DN Output Enable :  
11  
CMP_EN  
1 = CMP_OUT/UP_DN output device pin is enabled.  
0 = CMP_OUT/UP_DN output device pin is driven low.  
Comparator/UP_DN Output Select: This bit selects the output function of the CMP_OUT/UP_DN pin  
and is only used when CMP_EN = 1.  
1 = CMP_EN: The output monitors the receiver front-end comparator output.  
0 = UP_DN: The output monitors the launch direction of the pulse launcher.  
High Output: Upstream measurement (TX_UP to TX_DN)  
10  
9
CMP_SEL  
INT_EN  
Low Output: Downstream measurement (TX_DN to TX_UP)  
Interrupt Enable: This bit, when set, enables the INT pin. All interrupt sources are wire-ORed to the  
INT pin.  
Event Timing Continuous Operation: This bit, when set, causes the currently executing EVTMGx  
command to continuously execute until the HALT command is received by the device.  
This bit, when cleared, causes:  
•ꢀ The currently executing EVTMG1 command to run one sequence of TOF_DIFF  
measurement cycles and/or one sequence of temperature measurement.  
•ꢀ The currently executing EVTMG2 command to run one sequence of TOF_DIFF measurements  
cycles.  
8
ET_CONT  
•ꢀ The currently executing EVTMG3 command to run one sequence of temperature measurement  
cycles.  
Continuous Interrupt: This bit, when set, causes the currently executing EVTMGx command to assert  
the INT pin (if enabled) after every TOF_DIFF or Temperature measurement cycle. This allows the host  
microprocessor to interrogate the current Event for accuracy of measurements and hit data.  
When this bit is cleared, the currently executing EVTMGx command interrupt-generation behavior is  
controlled only by the setting of the ET_CONT bit.  
7
CONT_INT  
Maxim Integrated  
68  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 27. Calibration and Control Register (continued)  
BIT  
NAME  
DESCRIPTION  
Clock Settling Time: These bits define the time interval that the device waits after enabling the  
4MHz clock for it to stabilize before making any measurements of time or temperature.  
DESCRIPTION  
CLK_S2  
CLK_S1  
CLK_S0  
32kHz CLOCK CYCLES  
TYPICAL TIME  
488µs  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
16  
48  
1.46ms  
6:4  
CLK_S[2:0]  
96  
2.93ms  
128  
168  
3.9ms  
5.13ms  
4MHz Osc On Continuously  
4MHz Osc On Continuously  
4MHz Osc On Continuously  
4MHz Ceramic Oscillator Calibration Period: These bits define the number of 32.768kHz oscillator  
periods to measure for determination of the 4MHz ceramic oscillator period.  
32kHz Clock Cycles = 1+ CAL_PERIOD[3:0]  
DESCRIPTION  
CAL_PERIOD[3:0]  
32kHz CLOCK CYCLES  
(decimal)  
TYPICAL TIME  
CAL_PERI  
OD[3:0]  
(decimal)  
3:0  
(µs)  
0
1
1
2
30.5  
61  
. . .  
14  
15  
. . .  
15  
16  
. . .  
457.7  
488.0  
Maxim Integrated  
69  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 28. Real-Time Clock Register  
REAL-TIME CLOCK REGISTER  
WRITE OPCODE  
43h  
READ OPCODE  
C3h  
POR DEFAULT VALUE  
0000h  
Bit  
15  
X
14  
X
13  
X
12  
X
11  
X
10  
9
8
Name  
X
X
X
Bit  
7
6
5
4
3
2
1
0
Name  
X
32K_BP  
32K_EN  
EOSC  
AM1  
AM0  
WF  
WD_EN  
BIT  
15:7  
NAME  
DESCRIPTION  
X
Reserved  
32kHz Bypass: This bit, when set, allows an external CMOS-level 32.768kHz signal to be applied to  
the 32KX1 device pin. The internal 32.768kHz oscillator is bypassed and the external signal is driven  
into the device’s core.  
6
32K_BP  
32kHz Clock Output Enable: This bit enables the 32KOUT device pin to drive a CMOS-level square  
wave representation of the 32kHz crystal.  
5
4
32K_EN  
EOSC  
Enable Oscillator: This active-low bit when set to logic 0 starts the real time clock oscillator. When  
this bit is set to logic 1, the oscillator is stopped.  
Alarm Control: The device contains a time-of-day alarm. The alarm is activated when either the  
AM1 or AM2 bits are set. When the RTC’s hours or minutes value increments to a value equal to the  
alarm settings in Alarm registers, the AF bit in the Interrupt Status register is set and the INT device  
pin is asserted (if enabled) and remains asserted until the Interrupt Status register is accessed by the  
microprocessor with a Read register command.  
3:2  
AM[1:0]  
AM1  
AM0  
ALARM FUNCTION  
0
0
1
1
0
1
0
1
No alarm  
Alarm when minutes match  
Alarm when hours match  
Alarm when hours and minutes match  
Watchdog Flag: This bit is set when the watchdog counter reaches zero. This bit must be written to  
a zero to clear the bit. Writing this bit to a zero when the WDO pin is asserted low releases the WDO  
pin to its inactive high-impedance state.  
1
0
WF  
Watchdog Enable:  
1 = Watchdog timer is enabled.  
WD_EN  
0 = Watchdog time is disabled and the WDO pin is high impedance.  
Maxim Integrated  
70  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 29. Interrupt Status Register  
INTERRUPT STATUS REGISTER  
WRITE OPCODE  
READ ONLY  
READ OPCODE  
POR DEFAULT VALUE  
0000h  
FEh  
Bit  
15  
14  
13  
X
12  
11  
10  
9
8
Name  
TO  
AF  
TOF  
TE  
LDO  
TOF_EVTMG  
TEMP_EVTMG  
Bit  
7
6
5
4
3
2
1
0
Name  
X
Cal  
Halt  
CSWI  
X
PORX  
X
X
Note: This register is read only and bits are self-clearing upon a read to this register, see the Interrupt Operations section for more  
information.  
BIT  
NAME  
DESCRIPTION  
TimeOut: The TO bit is set if any one of the t , t , Hit1 thru Hit6, or temperature measurements do not  
1
2
15  
TO  
occur causing the time set by the TIMOUT[2:0] bits in the TOF2 register to elapse.  
Alarm Flag: Set when the RTC’s hours or minutes value increments to a value equal to the alarm  
settings in Alarm registers.  
14  
13  
AF  
X
Reserved  
Time of Flight: Set when the TOF_UP, TOF_DN, or TOF_DIFF command has completed.  
During execution of The EVTMG1 or EVTMG2 command, this bit is set and the INT pin is asserted  
(if enabled) upon completion of each of the cycles of the Event defined by the TOF Difference  
Measurements setting if the CONT_INT bit in the Calibration and Control register has been set.  
12  
11  
TOF  
Temperature: Set when the Temperature command has completed.  
During execution of The EVTMG1 or EVTMG3 command, this bit is set and the INT pin is asserted  
(if enabled) upon completion of each of the cycles of the Event defined by the Temperature  
Measurements setting if the CONT_INT bit in the Calibration and Control register has been set.  
TE  
Internal LDO Stabilized: Set when the internal low-dropout regulator is turned on by either the LDO_  
Timed or LDO_ON and has stabilized.  
10  
9
LDO  
Event Timing TOF Completed: Set when either the EVTMG1 or EVTMG2 commands have completed  
its last TOF_DIFF measurement cycle. This indicates that the data in the T1, T2, T1_AVG, and T2_AVG  
registers is valid.  
TOF_  
EVTMG  
Event Timing Temperature Completed: Set when the EVTMG1 or EVTMG3 commands have  
completed its last temperature measurements. This indicates that the data in the T1, T2, T3, T4, T1_  
AVG, T2AVG, T3AVG, and T4_AVG Results registers is valid.  
TEMP_  
EVTMG  
8
7
X
Reserved  
Calibrate: Set after completion of the Calibrate command when the command is manually sent by the  
host microprocessor. When Calibration occurs as a result of the setting of the Cal_Use, Cal_AUTO  
and Cal_CFGx bits in the Event Timing 2 register and the device is automatically executing Calibration  
commands as required during execution of any of the EVTMGx commands, this bit is not set.  
6
CAL  
5
4
3
HALT  
CSWI  
X
HALT: Set when the HALT command has completed  
Case Switch: Set when a high logic level is detected on the CSW device pin.  
Reserved  
Power-On-Reset: Set when the device has been successfully powered by application of V . Upon  
application of power, the SPI port is inactive until this bit has been set.  
CC  
2
POR  
X
1:0  
Reserved  
Maxim Integrated  
71  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 30. Control Register  
CONTROL REGISTER  
WRITE OPCODE  
FFh  
READ OPCODE  
7Fh  
POR DEFAULT VALUE  
000xh  
Bit  
15  
X
14  
X
13  
12  
X
11  
X
10  
9
8
Name  
X
X
AFA  
CSWA  
Bit  
7
6
5
4
3
2
1
0
Name  
X
X
X
X
HWR3  
HWR2  
HWR1  
HWR0  
BIT  
NAME  
DESCRIPTION  
15:10  
X
Reserved  
Alarm Flag Arm: This bit is set when the RTC’s hours and/or minutes value matched the alarm  
settings in the Real-Time Clock register. This bit is set at the same time as the AF bit in the Interrupt  
Status register. After resetting the RTC alarm settings, a 0 must be written to this bit to re-arm the  
RTC Alarm. This bit can only be written to a 0.  
9
AFA  
Case Switch Arm: This bit is set when the CSW pin detects a logic-high, indicating the MAX35104  
has detected a tamper condition. This bit is set at the same time as the CSWI bit in the Interrupt  
Status register. Once set, this bit must be written to a 0 to re-arm the Case Switch Detection. The  
Case Switch Detection must be re-armed before the CSWI interrupt can be set again. This bit can  
only be written to a 0.  
8
CSWA  
7:0  
3:0  
X
Reserved  
Hardware Revision: These 4 bits contain hardware revision code specific to the MAX35104 device.  
Note: This value can be accessed and modified. Read this register directly after a POR to get the  
correct hardware revision number.  
HWR[3:0]  
Maxim Integrated  
72  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Conversion Results Register Descriptions  
The devices conversion results registers are all read only volatile SRAM. The POR default value for all registers is 0000h.  
Table 31. Conversion Results Registers Description  
READ-ONLY  
ADDRESS  
REGISTER  
DESCRIPTION  
Bit 15 to Bit 8 holds the 8 bit value of the pulse width ratio (t ÷ t ).for the upstream measurement.  
1
2
Each bit is weighted as follows:  
Bit15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
0.0625  
Bit 10  
Bit 9  
Bit 8  
1
0.5  
0.25  
0.125  
0.03125  
0.015625 0.0078125  
Bit 7 to bit 0 holds the 8 bit value of the pulse width ratio (t ÷ t  
half the period of the Pulse Launch Frequency for the upstream measurement. Each bit is weighted  
) where t AL is equal to one-  
IDE  
2
IDEAL  
C4h  
WVRUP  
as follows:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
0.5  
0.25  
0.125  
0.0625  
0.03125  
0.015625 0.0078125  
The maximum value of each of these ratios is 1.9921875.  
15-bit fixed-point integer value of the first hit in the upstream direction. This integer portion is a binary  
C5h  
C6h  
C7h  
C8h  
C9h  
Hit1UPInt representation of the number of t  
15  
periods that contribute to the time results. The maximum size  
4MHz  
of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the first hit in the upstream direction. This fractional portion is a binary  
Hit1UPFrac representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the second hit in the upstream direction. This integer portion  
Hit2UPInt is a binary representation of the number of t periods that contribute to the time results. The  
4MHz  
15  
maximum size of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the second hit in the upstream direction. This fractional portion is a binary  
Hit2UPFrac representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the third hit in the upstream direction. This integer portion is a binary  
Hit3UPInt representation of the number of t  
15  
periods that contribute to the time results. The maximum size  
4MHz  
of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the third hit in the upstream direction. This fractional portion is a binary  
CAh  
CBh  
CCh  
CDh  
Hit3UPFrac representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the fourth hit in the upstream direction. This integer portion is  
Hit4UPInt a binary representation of the number of t  
periods that contribute to the time results. The  
4MHz  
15  
maximum size of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the fourth hit in the upstream direction. This fractional portion is a binary  
Hit4UPFrac representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the fifth hit in the upstream direction. This integer portion is a binary  
Hit5UPInt representation of the number of t  
15  
periods that contribute to the time results. The maximum size  
4MHz  
of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
Maxim Integrated  
73  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 31. Conversion Results Registers Description (continued)  
READ-ONLY  
ADDRESS  
REGISTER  
DESCRIPTION  
16-bit fractional value of the fifth hit in the upstream direction. This fractional portion is a binary  
CEh  
Hit5UPFrac representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the sixth hit in the upstream direction. This integer portion is  
CFh  
D0Fh  
D1h  
Hit6UPInt a binary representation of the number of t  
periods that contribute to the time results. The  
4MHz  
15  
maximum size of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the sixth hit in the upstream direction. This fractional portion is a binary  
Hit6UPFrac representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the average of the hits recorded in the upstream direction This  
AVGUPInt integer portion is a binary representation of the number of t  
15  
periods that contribute to the time  
4MHz  
results. The maximum size of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the average of the hits recorded in the upstream direction. This fractional  
portion is a binary representation of one t4MHz period quantized to a 16-bit resolution. The maximum  
AVGUP  
Frac  
D2h  
16  
16  
size of the fraction is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
Bit 15 thru Bit 8 holds the 8 bit value of the pulse width ratio (t ÷ t2).for the downstream  
1
measurement. Each bit is weighted as follows:  
Bit15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
0.015625 0.0078125  
) where t is equal to  
IDEAL  
Bit 8  
1
0.5  
0.25  
0.125  
0.0625  
0.03125  
Bit 7 to bit 0 holds the 8 bit value of the pulse width ratio (t ÷ t  
2
IDEAL  
D3h  
WVRDN  
one-half the period of the Pulse Launch Frequency for the downstream measurement. Each bit is  
weighted as follows:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
0.5  
0.25  
0.125  
0.0625  
0.03125  
0.015625 0.0078125  
The maximum value of each of these ratios is 1.9921875.  
15-bit fixed-point integer value of the first hit in the downstream direction. This integer portion is  
D4h  
D5h  
D6h  
D7h  
D8h  
Hit1DNInt a binary representation of the number of t  
periods that contribute to the time results. The  
4MHz  
15  
maximum size of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the first hit in the downstream direction. This fractional portion is a binary  
Hit1DNFrac representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the second hit in the downstream direction. This integer portion  
Hit2DNInt is a binary representation of the number of t periods that contribute to the time results. The  
4MHz  
15  
maximum size of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the second hit in the downstream direction. This fractional portion is a binary  
Hit2DNFrac representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the third hit in the downstream direction. This integer portion  
Hit3DNInt is a binary representation of the number of t periods that contribute to the time results. The  
4MHz  
15  
maximum size of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
Maxim Integrated  
74  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 31. Conversion Results Registers Description (continued)  
READ-ONLY  
ADDRESS  
REGISTER  
DESCRIPTION  
16-bit fractional value of the third hit in the downstream direction. This fractional portion is a binary  
D9h  
Hit3DNFrac representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the fourth hit in the downstream direction. This integer portion  
Hit4DNInt is a binary representation of the number of t periods that contribute to the time results. The  
DAh  
DBh  
DCh  
DDh  
DEh  
DFh  
E0h  
E1h  
4MHz  
15  
maximum size of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the fourth hit in the downstream direction. This fractional portion is a binary  
Hit4DNFrac representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the fifth hit in the downstream direction. This integer portion is  
Hit5DNInt a binary representation of the number of t  
periods that contribute to the time results. The  
4MHz  
15  
maximum size of the integer is 7FFFh or (2 - 1) x t  
H
4M Z.  
16-bit fractional value of the fifth hit in the downstream direction. This fractional portion is a binary  
Hit5DNFrac representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the sixth hit in the downstream direction This integer portion is  
Hit6DNInt a binary representation of the number of t  
periods that contribute to the time results. The  
4MHz  
15  
maximum size of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the sixth hit in the downstream direction. This fractional portion is a binary  
Hit6DNFrac representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the average of the hit times recorded in the downstream direction  
AVGDNInt This integer portion is a binary representation of the number of t  
15  
periods that contribute to the  
4MHz  
time results. The maximum size of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the average of the hit times recorded in the downstream direction. This  
AVGDN  
Frac  
fractional portion is a binary representation of one t  
16  
period quantized to a 16-bit resolution. The  
4MHz  
16  
maximum size of the fraction is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
16-bit fixed-point two’s-complement integer portion of the difference of the averages for the hits  
recorded in both the upstream and downstream directions. It is computed as:  
AVGUP – AVGDN  
TOF_  
DIFFInt  
E2h  
E3h  
This integer represents the number of t  
periods that contribute to computation.  
15  
4MHz  
The maximum size of the integer is 7FFFh or (2 - 1) x t  
15  
. The minimum size of this integer is  
4MHZ  
8000h or -2 x t  
.
4MHz  
16-bit fractional portion of the two’s complement difference of the averages for the hits recorded  
in both the upstream and downstream directions. This fractional portion is a binary representation  
TOF_  
DIFFFrac  
of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or  
4MHz  
16  
(2 - 1)/ 2 x t  
.
4MHZ  
Maxim Integrated  
75  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 31. Conversion Results Registers Description (continued)  
READ-ONLY  
ADDRESS  
REGISTER  
DESCRIPTION  
Bit 15 thru Bit 8 holds the 8 bit value of the TOF_Range. The TOF_Range is an 8-bit binary integer  
that indicates the range of valid error-free TOF_DIFF measurements that were made during  
execution of either of the EVTMG1 or EVTMG2 commands. The maximum value of TOF_Range is  
equal to 2 times the actual pulse launch period as configured by the Pulse Launch Divider bits in the  
TOF1 register.  
Bit15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
MSB  
TOF_Range 8-bit binary integer  
LSB  
The formulas to calculate the Range and Resolution of the TOF_Range integer for a given DPL[3:0]  
bit setting are shown below:  
Maximum Range (µs) = DPL[3:0] + 1 Resolution = Maximum Range / 256  
LAUNCH  
FREQUENCY  
MAXIMUM RANGE  
RESOLUTION  
DPL[3:0]  
(µs)  
(ns)  
TOF_  
Cycle_  
Count/  
TOF_  
0001b  
0002b  
. . .  
1 MHz  
666.6kHz  
. . .  
2
3
7.8175  
11.7185  
. . .  
E4h  
. . .  
15  
16  
Range  
1110b  
1111b  
133.3kHz  
125kHz  
58.59375  
62.5  
Bit 7 to Bit 0 holds the 8-bit value of the TOF Cycle Count. The TOF Cycle Count is an 8-bit binary  
integer that indicates the number of valid error-free cycles that either of the EVTMG1 or EVTMG2  
commands has executed. It also represents the number of TOF_DIFF cycles that have been totaled  
for the purpose of averaging, which affects the results provided in the TOF_DIFF_AVGFrac and  
TOF_DIFF_AVGInt registers. It is incremented every time an error-free TOF_DIFF command is  
executed by either the EVTMG1 or EVTMG2 sequence. Because of this internal error checking, once  
the complete number of cycles defined by the TOF Difference Measurements bits in the Event Timing  
1 register has been completed and the TOF_EVTMG bit has been set in the Interrupt Status register  
causing the INT device pin to be asserted (if enabled), the TOF Cycle Count may not be equal to the  
setting of the TOF Difference Measurements bits in the Event Timing 1 register.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MSB  
TOF Cycle Count 8-bit binary integer  
LSB  
16-bit fixed-point two’s-complement integer portion of the average of the accumulated TOF_DIFF  
measurements. It is computed as:  
TOF_DIFF_  
AVGInt  
E5h  
E6h  
This integer represents the number of t  
periods that contribute to the computation. The  
4MHz  
15  
maximum size of the integer is 7FFFh or (2 - 1) x t  
15  
. The minimum size of this integer is 8000h  
4MHZ  
or -2 x t  
.
4MHZ  
16-bit fractional portion of the two’s complement average of the accumulated TOF_DIFF  
TOF_DIFF_  
AVGFrac  
measurements. This fractional portion is a binary representation of one t  
16  
period quantized to a  
4MHz  
16  
16-bit resolution. The maximum size of the fraction is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
Maxim Integrated  
76  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 31. Conversion Results Registers Description (continued)  
READ-ONLY  
ADDRESS  
REGISTER  
DESCRIPTION  
15-bit fixed-point integer value of the time taken to discharge the timing capacitor through the  
temperature sensing element connected to the T1 device pin. This integer portion is a binary  
E7h  
T1Int  
representation of the number of t  
15  
periods that contribute to the time results. The maximum size  
4MHz  
of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the time taken to charge the timing capacitor through the temperature  
sensing element connected to the T1 device pin. This fractional portion is a binary representation  
E8h  
EBh  
ECh  
T1Frac  
T2Int  
of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or  
4MHz  
16  
(2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the time taken to charge the timing capacitor through the  
temperature sensing element connected to the T2 device pin. This integer portion is a binary  
representation of the number of t  
15  
periods that contribute to the time results. The maximum size  
4MHz  
of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the time taken to charge the timing capacitor through the temperature  
sensing element connected to the T2 device pin. This fractional portion is a binary representation  
T2Frac  
of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or  
4MHz  
16  
(2 - 1)/ 2 x t  
.
4MHZ  
The Temp Cycle Count is an 8-bit binary integer that indicates the number of valid error-free cycles  
that either of the EVTMG1 or EVTMG3 commands has executed. It also represents the number of  
Temperature cycles that have been totaled for the purpose of averaging, which affects the results  
provided in the Tx_AVGFrac and Tx_AVGInt registers. It is incremented every time an error-free  
Temperature command is executed by either the EVTMG1 or EVTMG3 sequence. Because of  
this internal error checking, once the complete number of cycles defined by the Temperature  
Measurements bits in the Event Timing 2 register has been completed and the Temp_EVTMG bit  
has been set in the Interrupt Status register causing the INT device pin to be asserted (if enabled),  
the Temp Cycle Count may not be equal to the setting of the Temperature Measurements bits in the  
Event Timing 2 register.  
Temp_  
Cycle_  
Count  
EFh  
Bit15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
X
X
X
X
X
X
X
X
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MSB  
Temp Cycle Count  
LSB  
15-bit fixed-point integer value of the average of the T1 port measurements. It is computed as:  
F0h  
F1h  
T1_AVGInt  
This integer portion is a binary representation of the number of t  
15  
periods that contribute to the  
4MHz  
time results. The maximum size of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional portion of the average of the T1 port measurements. This fractional portion is a binary  
T1_AVG  
Frac  
representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
Maxim Integrated  
77  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Table 31. Conversion Results Registers Description (continued)  
READ-ONLY  
ADDRESS  
REGISTER  
DESCRIPTION  
15-bit fixed-point integer value of the average of the T2 port measurements. It is computed as:  
F4h  
T2_AVGInt  
This integer portion is a binary representation of the number of t  
15  
periods that contribute to the  
4MHz  
time results. The maximum size of the integer is 7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional portion of the average of the T2 port measurements. This fractional portion is a binary  
T2_AVG  
Frac  
F5h  
F8h  
representation of one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction  
4MHz  
16  
is FFFFh or (2 - 1)/ 2 x t  
.
4MHZ  
15-bit fixed-point integer value of the time taken to measure the period of the 32.768kHz crystal  
Calibration oscillator during execution of the Calibrate command. This integer portion is a binary representation  
Int  
of the number of t  
15  
periods that contribute to the time results. The maximum size of the integer is  
4MHz  
7FFFh or (2 - 1) x t  
.
4MHZ  
16-bit fractional value of the time taken to measure the period of the 32.768kHz crystal oscillator  
during execution of the Calibrate command. This fractional portion is a binary representation of  
Calibration  
Frac  
F9h  
one t  
16  
period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or  
16  
4MHz  
(2 - 1)/ 2 x t  
.
4MHZ  
FAh  
FBh  
FCh  
FDh  
Reserved  
Reserved  
Reserved  
Reserved  
Maxim Integrated  
78  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PART  
TEMP RANGE  
PIN-PACKAGE  
40 TQFN-EP*  
40 TQFN-EP*  
MAX35104ETL+  
-40°C to +85°C  
MAX35104ETL+T -40°C to +85°C  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
*EP = Exposed pad.  
40 TQFN-EP  
T4055+2  
21-0140  
90-0016  
Chip Information  
PROCESS: CMOS  
Maxim Integrated  
79  
www.maximintegrated.com  
MAX35104  
Gas Flow Meter SoC  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
2
3
3/16  
Initial release  
6/17  
Corrected measurement range and clarified notes about measurement accuracy  
Updated ESD specification  
1, 35  
2
7/17  
12/17  
Corrected register address for T2, removed references to T3 and T4  
71, 77, 78  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
80  

相关型号:

MAX3510EEP

Upstream CATV Amplifier
MAXIM

MAX3510EEP

5MHz - 65MHz RF/MICROWAVE NARROW BAND LOW POWER AMPLIFIER, QSOP-20
ROCHESTER

MAX3510EEP+

Upstream CATV Amplifier
MAXIM

MAX3510EEP+T

Narrow Band Low Power Amplifier, 5MHz Min, 65MHz Max, 1 Func, QSOP-20
MAXIM

MAX3510EEP-T

5MHz - 65MHz RF/MICROWAVE NARROW BAND LOW POWER AMPLIFIER, QSOP-20
ROCHESTER

MAX3510EEP-T

Narrow Band Low Power Amplifier, 5MHz Min, 65MHz Max, 1 Func, QSOP-20
MAXIM

MAX3510EVKIT

Evaluation Kit for the MAX3510
MAXIM

MAX3510_07

Upstream CATV Amplifier
MAXIM

MAX3514

Upstream CATV Amplifiers
MAXIM

MAX3514EEP

Upstream CATV Amplifiers
MAXIM

MAX3514EEP+

5MHz - 65MHz RF/MICROWAVE NARROW BAND MEDIUM POWER AMPLIFIER, LEAD FREE, QSOP-20
ROCHESTER

MAX3514EEP-T

暂无描述
MAXIM