MAX3646 [MAXIM]

155Mbps to 622Mbps SFF/SFP Laser Driver with Extinction Ratio Control; 155Mbps至622Mbps的SFF / SFP激光驱动器,带有消光比控制
MAX3646
型号: MAX3646
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

155Mbps to 622Mbps SFF/SFP Laser Driver with Extinction Ratio Control
155Mbps至622Mbps的SFF / SFP激光驱动器,带有消光比控制

驱动器
文件: 总14页 (文件大小:831K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3161; Rev 1; 7/04  
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
General Description  
Features  
The MAX3646 is a +3.3V laser driver designed for mul-  
tirate transceiver modules with data rates from  
155Mbps to 622Mbps. Lasers can be DC-coupled to  
the MAX3646 for reduced component count and ease  
of multirate operation.  
Single +3.3V Power Supply  
47mA Power-Supply Current  
85mA Modulation Current  
100mA Bias Current  
Laser extinction ratio control (ERC) combines the features  
of automatic power control (APC), modulation compensa-  
tion, and built-in thermal compensation. The APC loop  
maintains constant average optical power. Modulation  
compensation increases the modulation current in pro-  
portion to the bias current. These control loops, com-  
bined with thermal compensation, maintain a constant  
optical extinction ratio over temperature and lifetime.  
Automatic Power Control (APC)  
Modulation Compensation  
On-Chip Temperature Compensation  
Self-Biased Inputs for AC-Coupling  
Ground-Referenced Current Monitors  
Laser Shutdown and Alarm Outputs  
The MAX3646 accepts differential data input signals.  
The wide 5mA to 60mA (up to 85mA AC-coupled) mod-  
ulation current range and up to 100mA bias current  
range, make the MAX3646 ideal for driving FP/DFB  
lasers in fiber optic modules. External resistors set the  
required laser current levels. The MAX3646 provides  
transmit disable control (TX_DISABLE), single-point  
fault tolerance, bias-current monitoring, and photocur-  
rent monitoring. The device also offers a latched failure  
output (TX_FAULT) to indicate faults, such as when the  
APC loop is no longer able to maintain the average  
optical power at the required level. The MAX3646 is  
compliant with the SFF-8472 transmitter diagnostic and  
SFP MSA timing requirements.  
Enable Control and Laser Safety Feature  
Ordering Information  
TEMP  
RANGE  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
MAX3646ETG  
-40°C to +85°C 24 Thin QFN T2444-1  
MAX3646ETG+ -40°C to +85°C 24 Thin QFN T2444-1  
+Denotes lead-free package.  
Pin Configuration  
The MAX3646 is offered in a 4mm x 4mm, 24-pin thin  
QFN package and operates over the extended -40°C to  
+85°C temperature range.  
TOP VIEW  
24 23 22 21 20 19  
Applications  
Multirate OC-3 to OC-12 FEC Transceivers  
1
2
3
4
5
6
MODTCOMP  
18  
17  
MD  
V
V
CC  
CC  
125Mbps Ethernet SFP, GBIC, and 1 x 9  
Transceivers  
IN+  
IN-  
16 OUT+  
MAX3646  
OUT-  
15  
14  
13  
V
CC  
V
CC  
BIAS  
TX_DISABLE  
7
8
9
10 11 12  
THE EXPOSED PADDLE MUST BE SOLDERED TO SUPPLY  
GROUND ON THE CIRCUIT BOARD.  
Typical Application Circuit appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage V ...............................................-0.5V to +6.0V  
OUT+, OUT-, BIAS Current.............................-20mA to +150mA  
CC  
IN+, IN-, TX_DISABLE, TX_FAULT, SHUTDOWN,  
BC_MON, PC_MON, APCFILT1, APCFILT2,  
MD, TH_TEMP, MODTCOMP, MODBCOMP,  
Continuous Power Dissipation (T = +85°C)  
A
24-Pin QFN (derate 20.8mW/°C above +85°C) .........1805mW  
Operating Junction Temperature Range...........-55°C to +150°C  
Storage Temperature Range.............................-55°C to +150°C  
MODSET, and APCSET Voltage.............-0.5V to (V  
+ 0.5V)  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.97V to +3.63V, T = -40°C to +85°C. Typical values are at V  
= +3.3V, I  
= 60mA, I = 60mA, T = +25°C, unless  
MOD A  
CC  
A
CC  
BIAS  
otherwise noted.) (Notes 1, 2)  
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Current  
I
(Note 3)  
f 1MHz, 100mA  
47  
33  
60  
mA  
dB  
CC  
Power-Supply Noise Rejection  
I/O SPECIFICATIONS  
Differential Input Swing  
PSNR  
(Note 4)  
P-P  
V
DC-coupled, Figure 1  
0.2  
1.7  
2.4  
V
ID  
P-P  
V
V
V
-
CC  
Common-Mode Input  
V
CM  
/ 4  
ID  
LASER BIAS  
Bias-Current-Setting Range  
Bias Off Current  
1
100  
0.1  
95  
mA  
mA  
TX_DISABLE = high  
Bias-Current Monitor Ratio  
LASER MODULATION  
I
/ I  
68  
79  
mA/mA  
BIAS BC_MON  
Modulation Current-Setting  
Range  
I
(Note 5)  
5
85  
mA  
MOD  
20% to 80%  
(Notes 6, 7)  
Output Edge Speed  
5mA I  
85mA  
100  
200  
ps  
%
MOD  
Output Overshoot/Undershoot  
Random Jitter  
(Note 7) (with 2pF between OUT+ and OUT-)  
(Notes 6, 7)  
±6  
1.1  
24  
2.5  
46  
ps  
RMS  
622Mbps, 5mA I  
85mA  
85mA  
MOD  
MOD  
Deterministic Jitter (Notes 6, 8)  
ps  
P-P  
155Mbps, 5mA I  
45  
100  
600  
480  
±20  
±15  
0.1  
5mA I  
10mA  
MOD  
175  
125  
Modulation-Current Temperature  
Stability  
(Note 6)  
ppm/°C  
10mA < I  
85mA  
MOD  
5mA I  
10mA  
MOD  
15load,  
Modulation-Current-Setting Error  
Modulation Off Current  
%
T
= +25°C  
A
10mA < I  
85mA  
MOD  
TX_DISABLE = high  
mA  
AUTOMATIC POWER AND EXTINCTION RATIO CONTROLS  
Monitor-Diode Input Current  
Range  
I
Average current into the MD pin  
18  
1500  
µA  
MD  
MD Pin Voltage  
MD Current Monitor Ratio  
1.4  
V
I
/ I  
0.85  
0.93  
1.15  
mA/mA  
MD PC_MON  
2
_______________________________________________________________________________________  
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.97V to +3.63V, T = -40°C to +85°C. Typical values are at V  
= +3.3V, I  
= 60mA, I = 60mA, T = +25°C, unless  
MOD A  
CC  
A
CC  
BIAS  
otherwise noted.) (Notes 1, 2)  
PARAMETER  
APC Loop Time Constant  
APC Setting Stability  
SYMBOL  
CONDITIONS  
MIN  
TYP  
3.3  
MAX  
UNITS  
µs  
C
= 0.01µF, I  
/ I  
= 1/70  
APC_FILT  
MD  
BIAS  
(Note 6)  
= +25°C  
±100  
±480  
±15  
ppm/°C  
%
APC Setting Accuracy  
T
A
I
Compensation-Setting  
MOD  
K
K = I  
/ I  
0
0
1.5  
1.0  
mA/mA  
mA/°C  
°C  
MOD  
BIAS  
Range by Bias  
I
Compensation-Setting  
MOD  
TC  
TC = I  
/ T (Note 6)  
MOD  
Range by Temperature  
Threshold-Setting Range for  
Temperature Compensation  
T
(Note 6)  
+10  
+60  
TH  
LASER SAFETY AND CONTROL  
Bias and Modulation Turn-Off  
Delay  
C
= 0.01µF, I  
= 0.01µF, I  
/ I  
/ I  
= 1/80  
= 1/80  
APC_FILT  
MD  
MD  
BIAS  
BIAS  
5
µs  
(Note 6)  
Bias and Modulation Turn-On  
Delay  
C
APC_FILT  
(Note 6)  
600  
µs  
V
Threshold Voltage at Monitor Pins  
INTERFACE SIGNALS  
V
Figure 5  
1.14  
2.0  
1.3  
-70  
1.39  
REF  
TX_DISABLE Input High  
TX_DISABLE Input Low  
V
V
V
HI  
V
R
= 45k(typical)  
0.8  
15  
LO  
PULL  
V
V
= V  
HI  
CC  
TX_DISABLE Input Current  
µA  
= GND  
-140  
0.4  
LO  
TX_FAULT Output Low  
Shutdown Output High  
Shutdown Output Low  
Sinking 1mA, open collector  
Sourcing 100µA  
V
V
V
V
- 0.4  
CC  
Sinking 100µA  
0.4  
Note 1: AC characterization is performed using the circuit in Figure 2 using a PRBS 223 - 1 or equivalent pattern.  
Note 2: Specifications at -40°C are guaranteed by design and characterization.  
Note 3: Excluding I  
and I  
. Input data is AC-coupled. TX_FAULT open, SHUTDOWN open.  
BIAS  
MOD  
Note 4: Power-supply noise rejection (PSNR) = 20log (V  
) / V  
). V  
is the voltage across the 15load when IN+  
OUT  
10 noise (on VCC  
OUT  
is high.  
Note 5: The minimum required voltage at the OUT+ and OUT- pins is +0.75V.  
Note 6: Guaranteed by design and characterization.  
Note 7: Tested with 00001111 pattern at 622Mbps.  
Note 8: DJ includes pulse-width distortion (PWD).  
_______________________________________________________________________________________  
3
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
Typical Operating Characteristics  
(V  
= +3.3V, C  
= 0.01µF, I  
= 20mA, I  
= 30mA, T = +25°C, unless otherwise noted.)  
CC  
APC  
BIAS  
MOD  
A
OPTICAL EYE DIAGRAM  
ELECTRICAL EYE DIAGRAM  
OPTICAL EYE DIAGRAM  
(622.08Mbps, 27 - 1 PRBS, 467MHz FILTER)  
(155Mbps, 27 - 1 PRBS, 117MHz FILTER)  
(I  
= 30mA, 622.08MHz, 27 - 1 PRBS)  
MOD  
MAX3646 toc01  
MAX3646 toc03  
MAX3646 toc02  
1310nm FP LASER  
2pF BETWEEN OUT+  
AND OUT-  
1310nm FP LASER  
r = 8.2dB  
e
r = 8.2dB  
e
75mV/div  
270ps/div  
320ps/div  
1ns/div  
BIAS-CURRENT MONITOR RATIO  
vs. TEMPERATURE  
PHOTOCURRENT MONITOR RATIO  
vs. TEMPERATURE  
SUPPLY CURRENT (I ) vs. TEMPERATURE  
(EXCLUDES BIAS AND MODULATION CURRENTS)  
CC  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
60  
55  
3.63V  
50  
45  
2.97V  
3.3V  
40  
35  
30  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DETERMINISTIC JITTER vs.  
MODULATION CURRENT  
MODULATION CURRENT vs. R  
PHOTODIODE CURRENT vs. R  
APCSET  
MODSET  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
155mbps  
1
10  
100  
0.1  
1
10  
100  
0
10 20 30 40 50 60 70 80 90  
(mA)  
R
(k)  
R
(k)  
APCSET  
I
MODSET  
MOD  
4
_______________________________________________________________________________________  
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, C  
= 0.01µF, I  
= 20mA, I  
= 30mA, T = +25°C, unless otherwise noted.)  
CC  
APC  
BIAS  
MOD  
A
TEMPERATURE COMPENSATION vs.  
(R = 500)  
RANDOM JITTER vs.  
MODULATION CURRENT  
COMPENSATION (K) vs. R  
MODBCOMP  
R
TH_TEMP MODTCOMP  
10  
1
100  
90  
80  
70  
60  
50  
40  
30  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
= 12kΩ  
TH_TEMP  
R
= 7kΩ  
TH_TEMP  
R
= 4kΩ  
TH_TEMP  
R
= 2kΩ  
0.1  
0.01  
TH_TEMP  
0.001  
0.01  
0.1  
1
10  
100  
-10  
0
10 20 30 40 50 60 70 80 90  
0
10 20 30 40 50 60 70 80 90  
(mA)  
R
(k)  
TEMPERATURE (°C)  
I
MODBCOMP  
MOD  
TEMPERATURE COMPENSATION vs.  
HOT PLUG WITH TX_DISABLE LOW  
TRANSMITTER ENABLE  
R
(R  
= 10k)  
TH_TEMP MODTCOMP  
MAX3646 toc14  
MAX3646 toc15  
44  
42  
40  
38  
36  
34  
32  
30  
V
3.3V  
CC  
3.3V  
R
= 12kΩ  
TH_TEMP  
V
CC  
LOW  
t_init = 59.6ms  
FAULT  
0V  
R
= 7kΩ  
TH_TEMP  
HIGH  
LOW  
R
= 4kΩ  
= 2kΩ  
TH_TEMP  
FAULT  
TX_DISABLE  
t_on = 23.8µs  
R
TH_TEMP  
TX_DISABLE  
LOW  
LOW  
LASER  
OUTPUT  
LASER  
OUTPUT  
20ms/div  
10µs/div  
-10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
RESPONSE TO FAULT  
TRANSMITTER DISABLE  
FAULT RECOVERY TIME  
MAX3646 toc17  
MAX37646 toc16  
MAX3646 toc18  
V
PC_MON  
FAULT  
V
V
CC  
PC_MON  
EXTERNALLY  
FORCED FAULT  
EXTERNALLY  
FORCED FAULT  
3.3V  
LOW  
FAULT  
t_fault = 160ns  
FAULT  
HIGH  
HIGH  
t_init = 58ms  
HIGH  
LOW  
91.2ns  
TX_DISABLE  
LOW  
TX_DISABLE  
TX_DISABLE  
LASER  
OUTPUT  
LASER  
OUTPUT  
LOW  
LOW  
LASER  
OUTPUT  
400ns/div  
20ns/div  
40ms/div  
_______________________________________________________________________________________  
5
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
Pin Description  
PIN  
NAME  
FUNCTION  
Modulation-Current Compensation from Temperature. A resistor at this pin sets the temperature  
1
MODTCOMP coefficient of the modulation current when above the threshold temperature. Leave open for zero  
temperature compensation.  
2, 5, 14,  
17  
V
+3.3V Supply Voltage  
CC  
3
4
IN+  
IN-  
Noninverted Data Input  
Inverted Data Input  
Transmitter Disable, TTL. Laser output is disabled when TX_DISABLE is asserted high or left  
unconnected. The laser output is enabled when this pin is asserted low.  
6
7
8
9
TX_DISABLE  
PC_MON  
Photodiode-Current Monitor Output. Current out of this pin develops a ground-referenced voltage  
across an external resistor that is proportional to the monitor diode current.  
Bias-Current Monitor Output. Current out of this pin develops a ground-referenced voltage across an  
external resistor that is proportional to the bias current.  
BC_MON  
Shutdown Driver Output. Voltage output to control an external transistor for optional shutdown  
circuitry.  
SHUTDOWN  
10, 12  
11  
GND  
TX_FAULT  
BIAS  
Ground  
Open-Collector Transmit Fault Indicator (Table 1)  
Laser Bias-Current Output  
13  
15  
OUT-  
Inverted Modulation-Current Output. I  
MOD  
Noninverted Modulation-Current Output. I  
flows into this pin when input data is low.  
16  
OUT+  
flows into this pin when input data is high.  
MOD  
Monitor Photodiode Input. Connect this pin to the anode of a monitor photodiode. A capacitor to  
ground is required to filter the high-speed AC monitor photocurrent.  
18  
19  
MD  
Connect a capacitor (C  
) between pin 19 (APCFILT1) and pin 20 (APCFILT2) to set the dominant  
APC  
APCFILT1  
pole of the APC feedback loop.  
20  
21  
APCFILT2  
APCSET  
(See Pin 19)  
A resistor connected from this pin to ground sets the desired average optical power.  
A resistor connected from this pin to ground sets the desired constant portion of the modulation  
current.  
22  
23  
24  
EP  
MODSET  
MODBCOMP  
TH_TEMP  
Modulation-Current Compensation from Bias. Couples the bias current to the modulation current.  
Mirrors I  
BIAS  
through an external resistor. Leave open for zero-coupling.  
Threshold for Temperature Compensation. A resistor at this pin programs the temperature above  
which compensation is added to the modulation current.  
Ground. Solder the exposed pad to the circuit board ground for specified thermal and electrical  
performance.  
Exposed Pad  
6
_______________________________________________________________________________________  
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
VOLTAGE  
V
V
CC  
CC  
SINGLE ENDED  
V
IN+  
100mV (min)  
V
1200mV (max)  
IN-  
30  
30Ω  
Z = 30Ω  
OUT-  
0
DIFFERENTIAL  
(V ) - (V  
)
200mV (min)  
IN+  
IN-  
30Ω  
0.5pF  
2400mV (max)  
MAX3646  
OSCILLOSCOPE  
I
OUT+  
CURRENT  
Z = 30Ω  
0
Z = 50Ω  
0
OUT+  
I
75Ω  
50Ω  
OUT+  
I
MOD  
TIME  
Figure 1. Required Input Signal and Output Polarity  
Figure 2. Test Circuit for Characterization  
HOST BOARD  
MODULE  
FILTER DEFINED BY SFP MSA  
TO LASER  
DRIVER V  
L1  
1µH  
SOURCE  
NOISE  
CC  
OPTIONAL  
OPTIONAL  
VOLTAGE  
SUPPLY  
C1  
0.1µF  
C2  
10µF  
C3  
0.1µF  
Figure 3. Supply Filter  
the laser diode should equal 15. To further damp  
aberrations caused by laser diode parasitic induc-  
tance, an RC shunt network may be necessary. Refer to  
Maxim Application Note HFAN 0.0: Interface Maxim’s  
Laser Driver to Laser Diode for more information.  
Detailed Description  
The MAX3646 laser driver consists of three main parts:  
a high-speed modulation driver, biasing block with  
ERC, and safety circuitry. The circuit design is opti-  
mized for high-speed, low-voltage (+3.3V) operation  
(Figure 4).  
Any capacitive load at the cathode of a laser diode  
degrades optical output performance. Because the  
BIAS output is directly connected to the laser cathode,  
minimize the parasitic capacitance associated with the  
pin by using an inductor to isolate the BIAS pin para-  
sitics form the laser cathode.  
High-Speed Modulation Driver  
The output stage is composed of a high-speed differ-  
ential pair and a programmable modulation current  
source. The MAX3646 is optimized for driving a 15Ω  
load. The minimum instantaneous voltage required at  
OUT- is 0.7V for modulation currents up to 60mA and  
0.75V for currents from 60mA to 85mA. Operation  
above 60mA can be accomplished by AC-coupling or  
with sufficient voltage at the laser to meet the driver  
output voltage requirement.  
Extinction Ratio Control  
The extinction ratio (r ) is the laser on-state power  
e
divided by the off-state power. Extinction ratio remains  
constant if peak-to-peak and average power are held  
constant:  
r = (2P  
e
+ P ) / (2P  
- P  
)
P-P  
AVG  
P-P  
AVG  
To interface with the laser diode, a damping resistor  
(R ) is required. The combined resistance damping  
D
resistor and the equivalent series resistance (ESR) of  
_______________________________________________________________________________________  
7
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
V
CC  
SHUTDOWN  
MAX3646  
INPUT BUFFER  
IN+  
DATA  
PATH  
OUT-  
OUT+  
R
D
IN-  
I
MOD  
ENABLE  
I
MOD  
SHUTDOWN  
TX_FAULT  
SAFETY LOGIC  
AND  
POWER DETECTOR  
I
BIAS  
BIAS  
ENABLE  
V
CC  
I
BIAS  
TX_DISABLE  
R
= 45kΩ  
PULL  
V
R
I
CC  
APCSET  
MD  
1
V
APCSET  
MD  
BG  
I
BIAS  
PC_MON  
x1/2  
R
PC_MON  
xTC  
x268  
xK  
I
APCSET  
I
BIAS  
82  
T > T  
I
MD  
TH  
BC_MON  
C
MD  
R
BC_MON  
T
x1  
V
BG  
TH_TEMP  
MODTCOMP  
MODSET MODBCOMP  
APCFILT1  
APCFILT2  
R
R
R
R
MODBCOMP  
TH_TEMP  
MODTCOMP  
MODSET  
C
APC  
Figure 4. Functional Diagram  
Average power is regulated using APC, which keeps  
constant current from a photodiode coupled to the  
laser. Peak-to-peak power is maintained by compen-  
sating the modulation current for reduced slope effi-  
ciency (h) of laser over time and temperature:  
K = I  
/ I  
MOD BIAS  
This provides a first-order approximation of the current  
increase needed to maintain peak-to-peak power.  
Slope efficiency decreases more rapidly as tempera-  
ture increases. The MAX3646 provides additional tem-  
perature compensation as temperature increases past  
P
AVG  
= I /ρ  
MD MON  
a user-defined threshold (T ).  
TH  
P
P-P  
= η x I  
MOD  
Modulation compensation from bias increases the mod-  
ulation current by a user-selected proportion (K) need-  
ed to maintain peak-to-peak laser power as bias  
current increases with temperature. Refer to Maxim  
Application Note HFAN-02.21 for details:  
8
_______________________________________________________________________________________  
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
V
CC  
POR AND COUNTER  
60ms DELAY  
I
MOD  
TX_DISABLE  
ENABLE  
COUNTER  
60ms DELAY  
I
BIAS  
100ns DELAY  
ENABLE  
V
CC  
I
MD  
1
V
V
REF  
REF  
PC_MON  
Q
R
S
COMP  
COMP  
V
R
R
CC  
PC_MON  
RS  
LATCH  
I
BIAS  
82  
BC_MON  
SHUTDOWN  
TX_FAULT  
BC_MON  
CMOS  
EXCESSIVE  
APC CURRENT  
SETPOINT  
EXCESSIVE  
MOD CURRENT  
SETPOINT  
TTL  
OPEN COLLECTOR  
Figure 5. Simplified Safety Circuit  
Table 1. Typical Fault Conditions  
If any of the I/O pins are shorted to GND or V  
exceeds the programmed threshold.  
(single-point failure; see Table 2), and the bias current or the photocurrent  
CC  
1
2
3
End-of-life (EOL) condition of the laser diode. The bias current and/or the photocurrent exceed the programmed threshold.  
Laser cathode is grounded and photocurrent exceeds the programming threshold.  
No feedback for the APC loop (broken interconnection, defective monitor photodiode), and the bias current exceeds the  
programmed threshold.  
4
_______________________________________________________________________________________  
9
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
Table 2. Circuit Responses to Various Single-Point Faults  
CIRCUIT RESPONSE TO OVERVOLTATGE OR  
SHORT TO V  
CIRCUIT RESPONSE TO UNDERVOLTAGE OR  
SHORT TO GROUND  
PIN  
CC  
TX_FAULT  
Does not affect laser power.  
Does not affect laser power.  
TX_DISABLE Modulation and bias currents are disabled.  
The optical average power increases and a fault occurs  
Normal condition for circuit operation.  
The optical average power decreases and the APC loop  
responds by increasing the bias current. A fault state  
IN+  
if V  
exceeds the threshold. The APC loop  
PC_MON  
responds by decreasing the bias current.  
The optical average power decreases and the APC loop The optical average power increases and a fault occurs  
responds by increasing the bias current. A fault state if V exceeds the threshold. The APC loop  
occurs if V exceeds the threshold voltage.  
occurs if V  
exceeds the threshold voltage.  
BC_MON  
IN-  
PC_MON  
responds by decreasing the bias current.  
BC_MON  
The APC circuit responds by increasing the bias current  
until a fault is detected, then a fault* state occurs.  
MD  
SHUTDOWN  
BIAS  
This disables bias current. A fault state occurs.  
Does not affect laser power. If the shutdown circuitry is  
used, the laser current is disabled.  
Does not affect laser power.  
In this condition, the laser forward voltage is 0V and no  
light is emitted.  
Fault state* occurs. If the shutdown circuitry is used, the  
laser current is disabled.  
The APC circuit responds by increasing the bias current  
until a fault is detected, then a fault state* occurs.  
Fault state* occurs. If the shutdown circuitry is used, the  
laser current is disabled.  
OUT+  
OUT-  
Does not affect laser power.  
Fault state* occurs.  
Does not affect laser power.  
Does not affect laser power.  
Does not affect laser power.  
PC_MON  
BC_MON  
Fault state* occurs.  
I
increases until V  
exceeds the threshold  
exceeds the threshold  
I
increases until V  
exceeds the threshold  
exceeds the threshold  
BIAS  
BC_MON  
BC_MON  
BIAS  
BC_MON  
APCFILT1  
APCFILT2  
voltage.  
voltage.  
I increases until V  
BIAS  
I
increases until V  
BIAS  
BC_MON  
voltage.  
voltage.  
MODSET  
APCSET  
Does not affect laser power.  
Does not affect laser power.  
Fault state* occurs.  
Fault state* occurs.  
*A fault state asserts the TX_FAULT pin, disables the modulation and bias currents, and asserts the SHUTDOWN pin.  
10 ______________________________________________________________________________________  
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
isolation resistors are included to reduce the number of  
Table 3. Optical Power Relations  
components needed to implement this function.  
PARAMETER  
Average power  
SYMBOL  
RELATION  
= (P + P ) / 2  
Design Procedure  
P
P
AVG  
AVG  
0
1
When designing a laser transmitter, the optical output is  
usually expressed in terms of average power and  
extinction ratio. Table 3 shows relationships that are  
helpful in converting between the optical average  
power and the modulation current. These relationships  
are valid if the mark density and duty cycle of the opti-  
cal waveform are 50%.  
Extinction ratio  
r
r = P / P  
e 1 0  
e
Optical power of a one  
Optical power of a zero  
Optical amplitude  
P
P
P = 2P x r / (r + 1)  
AVG e e  
1
0
1
P = 2P  
/ (r + 1)  
e
0
AVG  
P
P
= P - P  
P-P 1 0  
P-P  
Laser slope efficiency  
Modulation current  
Threshold current  
η
η = P  
/ I  
P-P MOD  
I
I
= P  
/ η  
P-P  
MOD  
MOD  
For a desired laser average optical power (P  
) and  
AVG  
I
P at I I  
0 TH  
TH  
optical extinction ratio (r ), the required bias and modu-  
e
Bias current  
(AC-coupled)  
lation currents can be calculated using the equations in  
Table 3. Proper setting of these currents requires  
I
I
I + I  
/ 2  
BIAS  
BIAS  
TH  
MOD  
knowledge of the laser to monitor transfer (ρ  
slope efficiency (η).  
) and  
MON  
Laser to monitor  
transfer  
ρ
I
/ P  
MD AVG  
MON  
Note: Assuming a 50% average input duty cycle and mark  
density.  
Programming the Monitor-Diode  
Current Set Point  
The MAX3646 operates in APC mode at all times. The  
bias current is automatically set so average laser power  
is determined by the APCSET resistor:  
Safety Circuitry  
The safety circuitry contains a disable input  
(TX_DISABLE), a latched fault output (TX_FAULT), and  
fault detectors (Figure 5). This circuitry monitors the  
operation of the laser driver and forces a shutdown if a  
fault is detected (Table 1). The TX_FAULT pin should  
P
AVG  
= I  
/ ρ  
MD MON  
The APCSET pin controls the set point for the monitor  
diode current. An internal current regulator establishes  
the APCSET current in the same manner as the  
be pulled high with a 4.7kto 10kresistor to V  
as  
CC  
MODSET pin. See the I  
vs. R  
graph in the  
APCSET  
MD  
required by the SFP MSA. A single-point fault can be a  
short to V or GND. See Table 2 to view the circuit  
Typical Operating Characteristics and select the value  
of R that corresponds to the required current at  
CC  
APCSET  
+25°C:  
response to various single-point failure. The transmit  
fault condition is latched until reset by a toggle or  
TX_DISABLE or V . The laser driver offers redundant  
CC  
I
= 1/2 x V  
/ R  
MD  
REF ACPSET  
laser diode shutdown through the optional shutdown  
circuitry as shown in the Typical Operation Circuit. This  
shutdown transistor prevents a single-point fault at the  
laser from creating an unsafe condition.  
The laser driver automatically adjusts the bias to main-  
tain the constant average power. For DC-coupled laser  
diodes:  
I
= I  
+ I  
/ 2  
AVG  
BIAS  
MOD  
Safety Circuitry Current Monitors  
Programming the Modulation  
Current with Compensation  
The MAX3646 features monitors (BC_MON, PC_MON)  
for bias current (I  
) and photocurrent (I ). The  
MD  
BIAS  
Determine the modulation current form the laser slope  
efficiency:  
monitors are realized by mirroring a fraction of the cur-  
rents and developing voltages across external resistors  
connected to ground. Voltages greater than V  
at  
I
= 2 x P / η x (r - 1)/(r + 1)  
AVG e e+  
REF  
MOD  
PC_MON or BC_MON result in a fault state. For exam-  
ple, connecting a 100resistor to ground at each mon-  
itor output gives the following relationships:  
The modulation current of the MAX3646 consists of a  
static modulation current (I ), a current proportion-  
MODS  
al to I  
, and a current proportional to temperature.  
BIAS  
V
= (I  
/ 82) x 100Ω  
The portion of I  
set by MODSET is established by  
BC_MON  
BIAS  
MOD  
an internal current regulator, which maintains the refer-  
ence voltage of V across the external programming  
V
= I  
x 100Ω  
PC_MON  
MD  
REF  
External sense resistors can be used for high-accuracy  
measurement of bias and photodiode currents. On-chip  
resistor. See the I  
vs. R  
graph in the  
MODSET  
MOD  
Typical Operating Characteristics and select the value  
______________________________________________________________________________________ 11  
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
of R  
that corresponds to the required current  
Current Compliance (I  
60mA),  
MODSET  
at +25°C:  
MOD  
DC-Coupled  
The minimum voltage at the OUT+ and OUT- pins is  
0.7V.  
I
= I  
+ K x I  
+ I  
MOD  
MODS  
BIAS MODT  
I
= 268 x V  
/ R  
MODS  
REF  
MODSET  
| T > T  
| T < T  
For:  
I
I
= TC x (T - T )  
TH  
MODT  
MODT  
TH  
TH  
V
= Diode bias point voltage (1.2V typ)  
DIODE  
= 0  
R = Diode bias point resistance (5typ)  
L
An external resistor at the MODBCOMP pin sets current  
proportional to I  
pin can turn off the interaction between I  
R = Series matching resistor (20typ)  
D
. Open circuiting the MODBCOMP  
BIAS  
and I  
:
MOD  
For compliance:  
BIAS  
K = 1700 / (1000 + R  
MODBCOMP  
) +10%  
to I  
V
OUT+  
= V  
- V  
- I  
x (R + R ) -  
CC  
DIODE MOD  
D
L
I
x R 0.7V  
BIAS  
L
If I  
must be increased from I  
to  
MOD2  
MOD  
MOD1  
maintain the extinction ratio at elevated temperatures,  
the required compensation factor is:  
Current Compliance (I  
> 60mA),  
MOD  
AC-Coupled  
K = (I  
- I  
) / (I  
- I  
)
MOD2 MOD1  
BIAS2 BIAS1  
For applications requiring modulation current greater  
than 60mA, headroom is insufficient from proper opera-  
tion of the laser driver if the laser is DC-coupled. To  
avoid this problem, the MAX3646’s modulation output  
can be AC-coupled to the cathode of a laser diode. An  
external pullup inductor is necessary to DC-bias the  
A threshold for additional temperature compensation  
can be set with a programming resistor at the  
TH_TEMP pin:  
T
TH  
= -70°C + 1.45M/ (9.2k+ R )°C +10%  
TH_TEMP  
The temperature coefficient of thermal compensation  
above T is set by R . Leaving the  
modulation output at V . Such a configuration isolates  
CC  
TH  
MODTCOMP  
laser forward voltage from the output circuitry and allows  
the output at OUT+ to swing above and below the sup-  
MODTCOMP pin open disables additional thermal  
compensation:  
ply voltage (V ). When AC-coupled, the MAX3646  
CC  
modulation current can be programmed up to 85mA.  
TC = 1 / (0.5 + R  
(k)) mA/°C +10%  
MODTCOMP  
Refer to Maxim Application Note HFAN 02.0: Interfacing  
V
CC  
V
CC  
MAX3646  
PACKAGE  
0.7nH  
16kΩ  
PACKAGE  
0.7nH  
V
CC  
OUT-  
IN+  
0.11pF  
0.11pF  
5kΩ  
5kΩ  
0.7nH  
OUT+  
0.11pF  
V
CC  
0.7nH  
IN-  
0.11pF  
MAX3646  
24kΩ  
Figure 6. Simplified Input Structure  
Figure 7. Simplified Output Structure  
12 ______________________________________________________________________________________  
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
Maxim’s Laser Drivers to Laser Diodes for more informa-  
balance between turn-on time and low-frequency cutoff  
may be needed at low data rates for some values of  
laser gain.  
tion on AC-coupling laser drivers to laser diodes.  
For compliance:  
V
= V  
- I  
/ 2 x (R + R ) 0.75V  
Interface Models  
Figures 6 and 7 show simplified input and output cir-  
cuits for the MAX3646 laser driver. If dice are used,  
replace package parasitic elements with bondwire par-  
asitic elements.  
OUT+  
CC MOD D L  
Determine C  
APC  
The APC loop filter capacitor (C  
) must be selected  
APC  
to balance the requirements for fast turn-on and mini-  
mal interaction with low frequencies in the data pattern.  
The low-frequency cutoff is:  
Layout Considerations  
To minimize loss and crosstalk, keep the connections  
between the MAX3646 output and the laser diode as  
short as possible. Use good high-frequency layout  
techniques and multilayer boards with uninterrupted  
ground plane to minimize EMI and crosstalk. Circuit  
boards should be made using low-loss dielectrics. Use  
controlled-impedance lines for data inputs, as well as  
the module output.  
1.1  
ρ
C
(µF) 68 / (f  
(kHz) x (η x  
3dB  
)
MON  
APC  
High-frequency noise can be filtered with an additional  
cap, C , from the MD pin to ground:  
MD  
C
MD  
C  
/ 4  
APC  
The MAX3646 is designed so turn-on time is faster than  
1ms for most laser gain values (η x ρ  
smaller value of C  
). Choosing a  
MON  
reduces turn-on time. Careful  
APC  
Typical Application Circuit  
+3.3V  
OPTIONAL SHUTDOWN  
CIRCUITRY  
+3.3V  
0.1µF  
0.01µF  
+3.3V  
IN+  
15  
CDR  
OUT-  
0.1µF  
10Ω  
IN-  
OUT+  
R
R
MODBCOMP  
MAX3646  
MODBCOMP  
MODTCOMP  
TH_TEMP  
BIAS  
MD  
FERRITE BEAD  
MODTCOMP  
R
TH_TEMP  
C
MD  
C
APC  
REPRESENTS A CONTROLLED-IMPEDANCE TRANSMISSION LINE.  
______________________________________________________________________________________ 13  
155Mbps to 622Mbps SFF/SFP  
Laser Driver with Extinction Ratio Control  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12, 16, 20, 24L THIN QFN, 4x4x0.8mm  
1
C
21-0139  
2
PACKAGE OUTLINE  
12, 16, 20, 24L THIN QFN, 4x4x0.8mm  
2
C
21-0139  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3646ETG

155Mbps to 622Mbps SFF/SFP Laser Driver with Extinction Ratio Control
MAXIM

MAX3646ETG+

155Mbps to 622Mbps SFF/SFP Laser Driver with Extinction Ratio Control
MAXIM

MAX3646ETGT

155Mbps to 622Mbps SFF/SFP Laser Driver with Extinction Ratio Control
MAXIM

MAX3646EVKIT

Evaluation Kit for the MAX3646
MAXIM

MAX3646_11

155Mbps to 622Mbps SFF/SFP Laser Driver with Extinction Ratio Control
MAXIM

MAX364C/D

Precision, Quad, SPST Analog Switches
MAXIM

MAX364CPE

Precision, Quad, SPST Analog Switches
MAXIM

MAX364CPE+

SPST, 4 Func, 1 Channel, CMOS, PDIP16, 0.300 INCH, PLASTIC, MS-001AA, DIP-16
MAXIM

MAX364CSE

Precision, Quad, SPST Analog Switches
MAXIM

MAX364CSE+T

SPST, 4 Func, 1 Channel, CMOS, PDSO16, PLASTIC, SO-16
MAXIM

MAX364CSE-T

SPST, 4 Func, 1 Channel, CMOS, PDSO16, 0.150 INCH, MS-012AC, SOP-16
MAXIM

MAX364D

Precision, Quad, SPST Analog Switches
MAXIM