MAX3657_V01 [MAXIM]

155Mbps Low-Noise Transimpedance Amplifier;
MAX3657_V01
型号: MAX3657_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

155Mbps Low-Noise Transimpedance Amplifier

文件: 总15页 (文件大小:755K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2834; Rev 3; 11/05  
155Mbps Low-Noise Transimpedance  
Amplifier  
MAX3657  
General Description  
Features  
The MAX3657 is a transimpedance preamplifier for  
receivers operating up to 155Mbps. The low noise, high  
gain, and low-power dissipation make it ideal for Class-B  
and Class-C passive optical networks (PONs).  
14nA  
Input-Referred Noise  
RMS  
54kΩ Transimpedance Gain  
130MHz (typ) Bandwidth  
The circuit features 14nA input-referred noise, 130MHz  
bandwidth, and 2mA input overload. Low jitter is  
achieved without external compensation capacitors.  
Operating from a +3.3V supply, the MAX3657 con-  
sumes only 76mW power. An integrated filter resistor  
provides positive bias for the photodiode. These fea-  
tures, combined with a small die size, allow easy  
assembly into a TO-46 header with a photodiode. The  
MAX3657 includes an average photocurrent monitor.  
2mA  
Input Current—0dBm Overload Capability  
P-P  
76mW (typ) Power Dissipation  
3.3V Single-Supply Operation  
Average Photocurrent Monitor  
Ordering Information  
The MAX3657 has a typical optical sensitivity of -38dBm  
(0.9A/W), which exceeds the Class-C PON require-  
ments. Typical overload is 0dBm. The MAX3657 is avail-  
able in die form with both output polarities (MAX3657E/D  
and MAX3657BE/D.) The MAX3657 is also available in a  
12-pin, 3mm x 3mm thin QFN package.  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
12 Thin QFN  
Die*  
MAX3657ETC  
MAX3657E/D  
MAX3657BE/D  
Die*  
*Dice are designed to operate over a -40°C to +110°C junction  
temperature (T ) range, but are tested and guaranteed at T  
+25°C.  
=
J
A
Applications  
Optical Receivers (Up to 155Mbps Operation)  
Passive Optical Networks (PONs)  
SFP/SFF Transceivers  
Pin Configuration appears at end of data sheet.  
BiDi Transceivers  
Typical Application Circuit  
3.3V  
C
C
VCC1  
VCC2  
V
V
CC  
CCZ  
R
FILT  
FILT  
IN  
1μF  
C
FILT  
OUT+  
OUT-  
MAX3964  
R
LOAD  
200Ω  
C
OUT  
LIMITING AMPLIFIER  
1μF  
MAX3657  
GND  
MON  
TO-46 HEADER  
R
MON  
*
*OPTIONAL COMPONENT  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
155Mbps Low-Noise Transimpedance  
Amplifier  
ABSOLUTE MAXIMUM RATINGS  
Power-Supply Voltage...........................................-0.5V to +6.0V  
Input Continuous Current ................................................ 3.5mA  
Operating Temperature Range  
12-Pin TQFN ....................................................-40°C to +85°C  
Operating Junction Temperature Range  
Voltage at OUT+, OUT-...................(V  
- 1.5V) to (V  
+ 0.5V)  
CC  
CC  
Voltage at FILT, MON.................................-0.5V to (V + 0.5V)  
Continuous Power Dissipation  
12-Pin TQFN (derate 14.7mW/°C above +70°C) .......1176mW  
Die .................................................................-40°C to +150°C  
Storage Temperature Range.............................-55°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Die Attach Temperature...................................................+400°C  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
MAX3657  
DC ELECTRICAL CHARACTERISTICS  
(V  
CC1  
= +2.97V to +3.63V, 200Ω load between OUT+ and OUT-, T = -40°C to +85°C. Typical values are at V  
= +3.3V, T = +25°C,  
CC A  
A
unless otherwise noted.) (Note 1)  
PARAMETER  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
23  
1
MAX  
34  
UNITS  
mA  
I
CC  
Input Bias Voltage  
V
I
1mA  
IN  
1.3  
V
IN  
0.95 < linearity < 1.05, referred to gain at  
1µA input  
Transimpedance Linear Range  
Small-Signal Transimpedance  
Output Common-Mode Voltage  
2
µA  
P-P  
P-P  
Z
Differential output, I < 200nA  
IN  
44  
54  
65  
kΩ  
21  
P-P  
V
-
CC  
0.225  
AC-coupled outputs  
V
Output Resistance (Per Side)  
Maximum Differential Output Voltage  
Filter Resistor  
R
Single-ended output resistance  
= 2mA = (V +) - (V  
82  
170  
640  
1
100  
250  
800  
1.5  
1
118  
450  
960  
Ω
OUT  
V
I
V
-)  
OUT  
mV  
P-P  
OUT(max) IN  
P-P, OUT  
OUT  
R
Ω
FILT  
DC Input Overload  
mA  
A/A  
Monitor Nominal Gain  
G
V
= +3.3V, +25°C (Note 2)  
CC  
0.8  
-1.5  
-1.5  
-3.0  
-4.0  
1.2  
NOM  
I
= 100µA to 1mA  
+1.5  
+2.2  
+2.7  
+3.4  
IN  
Die  
I
= 5µA  
Monitor Gain Stability  
(Note 3)  
IN  
ΔG  
TQFN package  
Die only  
dB  
I
I
= 2µA  
= 1µA  
IN  
IN  
Die only  
2.0  
AC ELECTRICAL CHARACTERISTICS  
(V  
CC  
= +2.97V to +3.63V, 200Ω load between OUT+ and OUT-, C = 0.5pF, C  
= 400pF, C = 680pF, T = -40°C to +85°C.  
VCC2 A  
IN  
FILT  
Typical values are at V  
= +3.3V, T = +25°C, unless otherwise noted.) (Note 1)  
CC  
A
PARAMETER  
Small-Signal Bandwidth  
Low-Frequency Cutoff  
AC Overload  
SYMBOL  
BW  
CONDITIONS  
Relative to gain at 1MHz  
-3dB, I = 1µA  
MIN  
TYP  
5
MAX  
UNITS  
MHz  
kHz  
110  
-3dB  
25  
IN  
2
mA  
P-P  
P-P  
Pulse-Width Distortion  
PWD  
300nA  
I 2mA  
IN P-P  
22  
ps  
P-P  
f = 100MHz (Note 4)  
f = 117MHz  
15  
Input-Referred Noise Current  
I
nA  
RMS  
n
14  
1.3  
5
RMS Noise Density  
Monitor Bandwidth  
f = 100MHz  
pA/Hz  
I
IN  
= 1µA  
kHz  
2
_______________________________________________________________________________________  
155Mbps Low-Noise Transimpedance  
Amplifier  
MAX3657  
AC ELECTRICAL CHARACTERISTICS (12-PIN TQFN)  
(V  
CC  
= +2.97V to +3.63V, R  
= 200Ω, C = 1.0pF, C  
= 1000pF, C  
= 0.01µF, T = -40°C to +85°C. Typical values are at  
VCC2 A  
LOAD  
IN  
FILT  
V
CC  
= +3.3V, T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
SYMBOL  
BW  
CONDITIONS  
Relative to gain at 1MHz  
-3dB, I = 1µA  
MIN  
TYP  
95  
5
MAX  
UNITS  
MHz  
kHz  
Small-Signal Bandwidth  
Low-Frequency Cutoff  
AC Overload  
-3dB  
25  
IN  
ε ≥ 10  
r
1.6  
mA  
Pulse-Width Distortion  
PWD  
1µA  
I 2mA  
22  
5
ps  
P-P  
P-P  
IN  
P-P  
f = 50MHz (Note 4)  
f = 100MHz  
Input-Referred Noise Current  
RMS Noise Density  
I
nA  
RMS  
n
13  
1.3  
f = 100MHz  
pA/Hz  
Note 1: Die parameters are production tested at room temperature only, but are guaranteed by design from T = -40°C to +85°C.  
A
AC characteristics guaranteed by design and characterization.  
Note 2: G  
= I  
(1mA) / 1mA.  
NOM  
MON  
Note 3: Stability is relative to the nominal gain at V = +3.3V, T = +25°C. ΔG(I ) dB = 10 log [ I  
(I ) ] / [ I  
(1mA) - G  
MON NOM  
A
CC  
IN  
10 MON IN  
x (1mA - I )], V  
Note 4: Total noise integrated from 0 to f.  
2.1V, Input t , t > 550ps (20% to 80%).  
r f  
IN  
MON  
Typical Operating Characteristics  
(MAX3657E/D. V  
= 3.3V, C = 0.5pF, T = +25°C, unless otherwise noted.)  
IN A  
CC  
SMALL-SIGNAL TRANSIMPEDANCE  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. TEMPERATURE  
INPUT BIAS VOLTAGE  
vs. TEMPERATURE  
60  
55  
50  
45  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.2μA  
P-P  
1.0μA  
P-P  
40  
35  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
°
°
°
AMBIENT TEMPERATURE ( C)  
AMBIENT TEMPERATURE ( C)  
AMBIENT TEMPERATURE ( C)  
_______________________________________________________________________________________  
3
155Mbps Low-Noise Transimpedance  
Amplifier  
Typical Operating Characteristics (continued)  
(MAX3657E/D. V  
= 3.3V, C = 0.5pF, T = +25°C, unless otherwise noted.)  
IN A  
CC  
PULSE-WIDTH DISTORTION  
DIFFERENTIAL OUTPUT VOLTAGE  
vs. INPUT CURRENT AMPLITUDE  
vs. INPUT CURRENT  
FREQUENCY RESPONSE  
400  
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
98  
R
Z
= OPEN  
LOAD  
= 108kΩ  
21  
95  
92  
R
Z
= 200Ω  
LOAD  
= 54kΩ  
MAX3657  
21  
DIFFERENTIAL OUTPUT  
SINGLE-ENDED OUTPUT  
89  
86  
83  
80  
R
= 100Ω  
LOAD  
= 36kΩ  
-40°C  
Z
21  
-100  
-200  
-300  
-400  
+85°C  
+25°C  
V
FILT  
= GND  
1k  
10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
0.1  
1
10  
100  
1000  
10,000  
-20 -15 -10 -5  
INPUT CURRENT (μA)  
0
5
10 15  
20  
100  
1G  
INPUT SIGNAL AMPLITUDE (μA)  
INPUT-REFERRED RMS NOISE  
vs. CAPACITANCE  
INPUT-REFERRED RMS NOISE  
vs. DC INPUT CURRENT  
BANDWIDTH vs. CAPACITANCE  
35  
275  
250  
225  
200  
175  
150  
125  
100  
75  
1.2  
T = +110°C  
J
30  
25  
1.0  
0.8  
T = +25°C  
J
T = -40°C  
J
T = -40°C  
J
T = +25°C  
J
T = -40°C  
J
T = +110°C  
J
20  
15  
10  
0
0.6  
0.4  
0.2  
0
T = +25°C  
J
T = +110°C  
J
50  
25  
0
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5  
CAPACITANCE (pF)  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0.1  
1
10  
100  
1000  
10,000  
CAPACITANCE (pF)  
DC CURRENT IN (μA)  
OUTPUT EYE DIAGRAM  
(100μA ELECTRICAL INPUT)  
OUTPUT EYE DIAGRAM  
(1.0μA ELECTRICAL INPUT)  
OUTPUT EYE DIAGRAM  
(1mA ELECTRICAL INPUT)  
MAX3657 toc11  
MAX3657 toc10  
MAX3657 toc12  
200mV  
40mV  
50mV  
10mV  
200mV  
40mV  
-200mV  
-50mV  
-200mV  
1ns/div  
1ns/div  
1ns/div  
4
_______________________________________________________________________________________  
155Mbps Low-Noise Transimpedance  
Amplifier  
MAX3657  
Typical Operating Characteristics (continued)  
(MAX3657E/D. V  
= 3.3V, C = 0.5pF, T = +25°C, unless otherwise noted.)  
IN A  
CC  
OUTPUT EYE DIAGRAM  
(-30dBm OPTICAL INPUT)  
OUTPUT EYE DIAGRAM  
(-1dBm OPTICAL INPUT)  
INPUT IMPEDANCE vs. FREQUENCY  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
T = +25°C  
T = -40°C  
J
J
6mV/div  
23-1  
23-1  
2
PRBS  
2
PRBS  
T = +110°C  
J
20mV/div  
SMALL SIGNAL  
ZARLINK 1A358 PHOTODIODE + MAX3657  
1ns/div  
ZARLINK 1A358 PHOTODIODE + MAX3657  
1ns/div  
1k  
10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
100  
Pin Description  
PIN  
NAME  
N.C.  
FUNCTION  
1, 9, 11  
No Connection. Do not connect.  
2
3
GND Negative Supply Voltage. Both GND and GNDZ must be connected to ground.  
GNDZ Negative Supply Voltage. Both GND and GNDZ must be connected to ground.  
Photocurrent Monitor. This is a current output. Connect a resistor between MON and ground to monitor the  
average photocurrent.  
4
5
MON  
IN  
Signal Input. Connect to photodiode anode.  
Filter Connection (Optional). Use to bias the photodiode cathode. An internal 800Ω on-chip resistor is connected  
between this pin and V ; an external decoupling capacitor connected to this pin forms a filter (see the Design  
CCZ  
6
FILT  
Procedure section).  
7
8
V
Power-Supply Voltage. Both V  
Power-Supply Voltage. Both V  
and V  
and V  
must be connected to the supply.  
must be connected to the supply.  
CCZ  
CC  
CC  
CCZ  
CCZ  
V
CC  
10  
12  
OUT+ Positive Data Output. This output has 100Ω back termination, increasing input current causes OUT+ to increase.  
OUT- Negative Data Output. This output has 100Ω back termination, increasing input current causes OUT- to decrease.  
_______________________________________________________________________________________  
5
155Mbps Low-Noise Transimpedance  
Amplifier  
Functional Diagram  
MAX3657  
TRANSIMPEDANCE  
AMPLIFIER  
VOLTAGE  
AMPLIFIER  
OUTPUT  
BUFFER  
R
F
R
R
OUT  
IN  
OUT+  
OUT-  
MAX3657  
OUT  
+1.0V  
DC-CANCELLATION  
CIRCUIT  
LOWPASS  
FILTER  
MON  
V
CCZ  
R
OUT  
ENABLE  
FILT  
do not drive a DC-coupled grounded load. The outputs  
Detailed Description  
should be AC-coupled or terminated to V . If a single-  
CC  
The MAX3657 transimpedance amplifier is designed for  
155Mbps fiber-optic applications. The functional dia-  
gram of the MAX3657 comprises a transimpedance  
amplifier, a voltage amplifier, a DC-cancellation circuit,  
and a CML output buffer.  
ended output is required, both the used and the unused  
outputs should be terminated in a similar manner.  
DC-Cancellation Circuit  
The DC-cancellation circuit uses low-frequency feed-  
back to remove the DC component of the input signal  
(Figure 2). This feature centers the input signal within  
the transimpedance amplifier’s linear range, thereby  
reducing pulse-width distortion.  
Transimpedance Amplifier  
The signal current at the input flows into the summing  
node of a high-gain amplifier. Shunt feedback through  
resistor R converts this current into a voltage. Schottky  
F
The DC-cancellation circuit is internally compensated  
and does not require external capacitors. This circuit  
minimizes pulse-width distortion for data sequences  
that exhibit a 50% mark density. A mark density signifi-  
cantly different from 50% causes the MAX3657 to gen-  
erate pulse-width distortion. Grounding the FILT pin  
disables the DC-cancellation circuit. For normal opera-  
tion, the DC-cancellation circuit must be enabled.  
diodes clamp the output signal for large input currents  
(Figure 1).  
Voltage Amplifier  
The voltage amplifier provides additional gain and con-  
verts the transimpedance amplifier single-ended output  
signal into a differential signal.  
Output Buffer  
The output buffer provides a reverse-terminated volt-  
age output and is designed to drive a 200Ω differential  
load between OUT+ and OUT-. For optimum supply-  
noise rejection, the MAX3657 should be terminated with  
a differential load. The MAX3657 single-ended outputs  
The DC-cancellation current is drawn from the input and  
creates noise. For low-level signals with little or no DC  
component, the added noise is insignificant. However,  
amplifier noise increases for signals with significant DC  
component (see the Typical Operating Characteristics).  
6
_______________________________________________________________________________________  
155Mbps Low-Noise Transimpedance  
Amplifier  
MAX3657  
AMPLITUDE  
AMPLITUDE  
INPUT FROM PHOTODIODE  
TIME  
TIME  
OUTPUT (SMALL SIGNALS)  
OUTPUT (LARGE SIGNALS)  
INPUT AFTER DC CANCELLATION  
Figure 1. MAX3657 Limited Outputs  
Figure 2. Effects of DC Cancellation on Input  
Photocurrent Monitor  
The MAX3657 includes an average photocurrent monitor.  
The current at MON is approximately equal to the DC cur-  
rent at IN. Best monitor accuracy is obtained when data  
input edge time is longer than 500ps.  
Select R  
MON  
Connect a resistor between MON and ground to moni-  
tor the average photocurrent. Select R  
possible:  
as large as  
MON  
2.1V  
R
=
Design Procedure  
MON  
I
MONMAX  
Select Photodiode  
Noise performance and bandwidth are adversely affected  
by stray capacitance on the TIA input node. Select a  
low-capacitance photodiode to minimize the total input  
capacitance on this pin. The MAX3657 is optimized for  
0.5pF of capacitance on the input. Assembling the  
MAX3657 in die form using chip and wire technology  
provides the lowest capacitance input and the best  
possible performance.  
where I  
is the largest average input current  
MONMAX  
observed.  
Select Coupling Capacitors  
A receiver built with the MAX3657 has a bandpass fre-  
quency response. The low-frequency cutoff due to the  
coupling capacitors and load resistors is:  
1
LFCTERM  
=
2π x RLOAD x CCOUPLE  
Select C  
FILT  
Supply voltage noise at the cathode of the photodiode  
produces a current I = C  
ΔV/Δt, which reduces the  
Select C  
so the low-frequency cutoff due to the  
PD  
COUPLE  
receiver sensitivity (C  
is the photodiode capaci-  
load resistors and coupling capacitors is much lower than  
the low-frequency cutoff of the MAX3657. The coupling  
capacitor should be 0.1µF or larger, but 1.0µF is recom-  
mended for lowest jitter. Refer to Maxim Application Note  
HFAN-01.1: Choosing AC-Coupling Capacitors for more  
information.  
PD  
tance). The filter resistor of the MAX3657, combined  
with an external capacitor, can be used to reduce the  
noise (see the Typical Application Circuit). Current gen-  
erated by supply-noise voltage is divided between  
C
and C . To obtain a good optical sensitivity,  
PD  
FILT  
FILT  
select C  
> 400pF.  
Layout Considerations  
Figure 3 shows a suggested layout for a TO header for  
the MAX3657.  
Select Supply Filter  
The MAX3657 requires wideband power-supply decou-  
pling. Power-supply bypassing should provide low  
Wire Bonding  
For high-current density and reliable operation, the  
MAX3657 uses gold metalization. For best results, use  
gold-wire ball-bonding techniques. Use caution if  
attempting wedge bonding. Die size is 41 mils x 48 mils,  
(1040µm x 1220µm) and die thickness is 15 mils (380µm).  
The bond pad is 94.4µm x 94.4µm and its metal thickness  
is 1.2µm. Refer to Maxim Application Note HFAN- 08.0.1:  
impedance between V  
and ground for frequencies  
CC  
between 10kHz and 200MHz. Use LC filtering at the  
main supply terminal and decoupling capacitors as  
close to the die as possible.  
_______________________________________________________________________________________  
7
155Mbps Low-Noise Transimpedance  
Amplifier  
V
CC  
C
VCC  
PHOTODIODE  
MAX3657  
C
FILT  
4-PIN TO HEADER  
FILT IN MON  
VCCZ  
OUT+  
OUT-  
VCC  
GNDZ  
GND  
OUTPUT POLARITIES  
OUT+ OUT-  
REVERSED FOR MAX3567BE/D.  
CASE IS GROUND.  
MAX3657E/D  
GND  
PHOTODIODE  
C
FILT  
V
MON  
CC  
5-PIN TO HEADER  
C
VCC  
OUT+  
OUT-  
FILT IN MON  
VCCZ  
VCC  
GNDZ  
GND  
OUTPUT POLARITIES  
OUT+ OUT-  
REVERSED FOR MAX3567BE/D.  
CASE IS GROUND.  
MAX3657E/D  
Figure 3. Suggested TO Header Layout  
8
_______________________________________________________________________________________  
155Mbps Low-Noise Transimpedance  
Amplifier  
MAX3657  
Understanding Bonding Coordinates and Physical Die  
Table 1. Optical Power Relations*  
Size for more information on bond-pad coordinates.  
PARAMETER  
Average power  
Extinction ratio  
SYMBOL  
RELATION  
Applications Information  
P
P
= (P0 + P1)/2  
AVG  
AVG  
r
r = P1/P0  
e
Optical Power Relations  
Many of the MAX3657 specifications relate to the input-  
signal amplitude. When working with optical receivers,  
the input is sometimes expressed in terms of average  
optical power and extinction ratio. Figure 4 and Table 1  
show relations that are helpful for converting optical  
power to input signal when designing with the MAX3657.  
e
r
e
+ 1  
Optical power  
of a 1  
P1 = 2P  
AVG  
P1  
P0  
r
e
Optical power  
of a 0  
P0 = 2P  
/(r + 1)  
e
AVG  
IN  
P= P1 P0 =  
Optical Sensitivity Calculation  
The input-referred RMS noise current (i ) of the  
n
MAX3657 generally determines the receiver sensitivity.  
To obtain a system bit-error rate (BER) of 1E-10, the  
signal-to-noise ratio must always exceed 12.7. The  
input sensitivity, expressed in average power, can be  
estimated as:  
Optical modulation  
amplitude  
r
e
+ 1  
P
IN  
2P  
AVG  
r
e
*Assuming a 50% average mark density.  
Actual results may vary depending on supply noise, out-  
put filter, limiting amplifier sensitivity, and other factors  
(refer to Maxim Application Note HFAN-03.0.0: Accurately  
Estimating Optical Receiver Sensitivity).  
12.7 x i x (r + 1)  
n
e
Sensitivity = 10log  
x 1000 dBm  
2 x ρ x (r 1)  
e
Input Optical Overload  
Overload is the largest input the MAX3657 accepts  
while meeting the pulse-width distortion specification.  
Optical overload can be estimated in terms of average  
power with the following equation:  
where ρ is the photodiode responsivity in A/W and i is  
n
the RMS noise current in amps. For example, with pho-  
todiode responsivity of 0.9A/W, an extinction ratio of 10  
and 15nA input-referred noise, the sensitivity of the  
MAX3657 is:  
2mA  
2 x ρ  
Overload = 10log  
x 1000 dBm  
12.7 x 15nA x 11  
2 x 0.9A/W x 9  
Sensitivity = 10log  
x 1000 dBm = 38dBm  
For example, if photodiode responsivity is 1.0A/W, the  
input overload is 0dBm.  
Optical Linear Range  
The MAX3657 has high gain, which limits the output for  
large input signals. The MAX3657 operates in a linear  
range for inputs not exceeding:  
P1  
2μA (r + 1)  
e
Linear Range = 10log  
x 1000 dBm  
2 x ρ (r 1)  
e
P
AVG  
P0  
For example, with photodiode responsivity of 0.9A/W  
and an extinction ratio of 10 the linear range is:  
2μA x 11  
2 x 0.9 x 9  
Linear Range = 10log  
x 1000 dBm = 28dBm  
TIME  
Figure 4. Optical Power Relations  
_______________________________________________________________________________________  
9
155Mbps Low-Noise Transimpedance  
Amplifier  
of the MAX3657 to the 50Ω controlled impedance by  
Interface Schematics  
placing a 100Ω pullup resistor in parallel with the out-  
put. Then establish similar loading conditions on the  
unused output. Note that the loading conditions affect  
the overall gain of the MAX3657. Figures 6a, 6b, and 6c  
show alternate interface schemes for the MAX3657.  
Equivalent Output Interface  
The MAX3657 has a differential CML output structure  
with 100Ω back termination (200Ω differentially). Figure  
5 is a simplified diagram of the output interface. The  
output current is divided between the internal 100Ω  
resistor and the external load resistance. Because of  
the CML structure, the maximum output-signal ampli-  
tude is affected by load impedance. Note that the inter-  
nal back termination is 100Ω single ended and external  
termination is recommended to interface the device to  
50Ω test equipment. For example, if single-ended oper-  
ation in a 50Ω system is required, first match the output  
Pad Coordinates  
Table 2 lists center-pad coordinates for the MAX3657  
bond pads. Refer to Maxim Application Note HFAN-  
08.0.1: Understanding Bonding Coordinates and  
Physical Die Size for more information on bond-pad  
coordinates.  
MAX3657  
Table 2. Bond-Pad Information  
V
CC  
NAME  
COORDINATES (µm)  
V
CC  
PAD  
R
OUT  
R
OUT  
100Ω  
MAX3657  
MAX3657B  
OUT+  
GND  
X
Y
100Ω  
OUT-  
GND  
GNDZ  
MON  
IN  
BP1  
BP2  
BP3  
BP4  
BP5  
BP6  
BP7  
BP8  
BP9  
BP10  
BP11  
47.2  
994.8  
484.6  
357.7  
47.2  
OUT+  
CC  
52.2  
V
GNDZ  
MON  
IN  
52.2  
395.5  
522.3  
648.5  
808.5  
808.5  
808.5  
808.5  
741.1  
OUT-  
47.2  
FILT  
N.C.  
FILT  
47.2  
N.C.  
49.9  
V
V
176.8  
303.7  
994.8  
859.9  
CCZ  
CCZ  
V
V
CC  
CC  
OUT+  
N.C.  
OUT-  
N.C.  
4.5mA  
Figure 5. Equivalent Output Interface  
10 ______________________________________________________________________________________  
155Mbps Low-Noise Transimpedance  
Amplifier  
MAX3657  
V
CC  
100Ω∗  
100Ω∗  
50Ω  
50Ω  
100Ω  
100Ω  
50Ω∗  
50Ω∗  
L
DIFFERENTIAL CML  
INPUT STAGE  
MAX3657  
CML OUTPUT  
STAGE  
*COMPONENT NOT REQUIRED IF L < 10cm.  
Figure 6a. 50Ω DC-Coupled Interface  
V
CC  
100Ω∗  
50Ω  
100Ω∗  
100Ω  
100Ω  
50Ω  
50Ω∗  
L
SINGLE-ENDED  
INPUT STAGE  
MAX3657  
CML OUTPUT  
STAGE  
NOTE: THE PARALLEL COMBINATION AT THE UNUSED OUTPUT  
CAN BE REPLACED BY A SINGLE EQUIVALENT 33Ω RESISTOR.  
*COMPONENT NOT REQUIRED IF L < 10cm.  
Figure 6b. 50Ω DC-Coupled Single-Ended Output Interface  
______________________________________________________________________________________ 11  
155Mbps Low-Noise Transimpedance  
Amplifier  
V
CC  
100Ω∗  
100Ω∗  
100Ω  
100Ω  
50Ω  
MAX3657  
50Ω∗  
L
50Ω  
50Ω LOAD TO  
GROUND  
MAX3657  
CML OUTPUT  
STAGE  
*COMPONENT NOT REQUIRED IF L < 10cm  
Figure 6c. 50Ω AC-Coupled Single-Ended Output Interface  
V
CC  
V
CC  
800Ω  
FILT  
MON  
Figure 8. MON Interface  
Figure 7. FILT Interface  
12 ______________________________________________________________________________________  
155Mbps Low-Noise Transimpedance  
Amplifier  
MAX3657  
Pin Configuration  
Chip Topographies  
Topography for MAX3657  
N.C.  
9
V
V
CC  
CCZ  
TOP VIEW  
8
7
OUT-  
OUT+  
N.C.  
1
10  
11  
OUT+ 10  
N.C. 11  
OUT- 12  
6
5
4
FILT  
IN  
MAX3657  
0.048in  
1.219mm  
MON  
GND  
2
3
GNDZ  
1
2
3
9
8
7
V
V
CC  
N.C.  
GND GNDZ  
CCZ  
TQFN  
*EXPOSED PAD IS CONNECTED TO GND.  
4
5
6
MON  
IN  
FILT  
N.C.  
0.041in  
1.041mm  
Chip Information  
TRANSISTOR COUNT: 417  
PROCESS: Silicon bipolar  
Topography for MAX3657B  
SUBSTRATE: Connected to GND  
DIE SIZE: 1.04mm x 1.22mm  
OUT+  
OUT-  
N.C.  
1
10  
11  
0.048in  
1.219mm  
GND  
2
3
GNDZ  
9
8
7
V
V
CC  
CCZ  
4
5
6
MON  
IN  
FILT  
N.C.  
0.041in  
1.041mm  
______________________________________________________________________________________ 13  
155Mbps Low-Noise Transimpedance  
Amplifier  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.  
MAX3657  
14 ______________________________________________________________________________________  
155Mbps Low-Noise Transimpedance  
Amplifier  
MAX3657  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX3658

622Mbps, Low-Noise, High-Gain Transimpedance Preamplifier
MAXIM

MAX3658AE/D

622Mbps, Low-Noise, High-Gain Transimpedance Preamplifier
MAXIM

MAX3658AETA

622Mbps, Low-Noise, High-Gain Transimpedance Preamplifier
MAXIM

MAX3658AETA+

暂无描述
MAXIM

MAX3658AETA+T

Telecom Circuit, 1-Func, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEC, TDFN-8
MAXIM

MAX3658AETA-T

Telecom Circuit, 1-Func, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEEC, TDFN-8
MAXIM

MAX3658AEVKIT

Evaluation Kit for the MAX3658A
MAXIM

MAX3658BE/D

622Mbps, Low-Noise, High-Gain Transimpedance Preamplifier
MAXIM

MAX3658EVKIT

Evaluation Kit for the MAX3658
MAXIM

MAX365C/D

Precision, Quad, SPST Analog Switches
MAXIM

MAX365CPE

Precision, Quad, SPST Analog Switches
MAXIM

MAX365CPE+

SPST, 4 Func, 1 Channel, CMOS, PDIP16, 0.300 INCH, PLASTIC, MS-001AA, DIP-16
MAXIM